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 Characteristic forms and
 geometric invariants

 By SHIING-SHEN CHERN AND JAMES SIMONS*

 1. Introduction

 This work, originally announced in [4], grew out of an attempt to

 derive a purely combinatorial formula for the first Pontrjagin number of a
 4-manifold. The hope was that by integrating the characteristic curvature

 form (with respect to some Riemannian metric) simplex by simplex, and

 replacing the integral over each interior by another on the boundary, one

 could evaluate these boundary integrals, add up over the triangulation, and

 have the geometry wash out, leaving the sought after combinatorial formula.

 This process got stuck by the emergence of a boundary term which did not

 yield to a simple combinatorial analysis. The boundary term seemed interest-

 ing in its own right and it and its generalization are the subject of this
 paper.

 The Weil homomorphism is a mapping from the ring of invariant poly-

 nomials of the Lie algebra of a Lie group, G, into the real characteristic

 cohomology ring of the base space of a principal G-bundle, cf. [5], [7]. The
 map is achieved by evaluating an invariant polynomial P of degree 1 on the

 curvature form Q of a connection, 0, on that bundle, and obtaining a closed
 form on the base, P(Q1). Because the lift of a principal bundle over itself is
 trivial, the forms P(Q1) are exact in the bundle. Moreover, in a way that
 is canonical up to an exact remainder one can construct a form TP(8) on the
 bundle such that d TP(8) = P(Q1). Under some circumstances, e.g., dim P(Q1) >
 dim base, P(Q1) = 0 and TP(8) defines a real cohomology class in the bundle.
 Our object here is to give some geometrical significance to these classes.

 In ? 2 we review standard results in connection theory. In ? 3 we con-

 struct the forms TP(8) and derive some basic properties. In particular we
 show that if deg P = n and the base manifold has dim 2n - 1 that the
 forms TP(8) lead to real cohomology classes in the total space, and, in the
 case that P(Q1) is universally an integral class, to R/Q characteristic num-

 bers. Both the class above and the numbers depend on the connection.

 In ? 4 we restrict ourselves to the principal tangent bundle of a

 * Work done under partial support of NSF Grants GP-20096 and GP-31526.
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 manifold and show that if 0, 8', Q, Q' are the connection and curvature
 forms of conformally related Riemannian metrics then P(Q1) _ P(Q'1). More-

 over, if P(Q1) = 0 then TP(8) and TP(8') determine the same cohomology

 class and thus define a conformal invariant of M. In ? 5 we examine the

 question of conformal immersion of an n-dim manifold into Rn+k. We show

 that a necessary condition for such an immersion is that in the range i> [k/2]

 the forms Pi (Q2$) = 0, and the classes {(1/2) TP1 (8)} be integral classes in the
 principal bundle. Here Pi is the jth inverse Pontrjagin polynomial. In ? 6
 we apply these results to 3-manifolds.

 In a subsequent paper, [3], by one of the present authors and J. Cheeger,

 it will be shown that the forms TP(8) can be made to live on the manifold

 below in the form of "differential characters". These are homomorphisms

 from the group of smooth singular cycles into R/Z, subject to the restriction

 that on boundaries they are the mod Z reduction of the value of a differential

 form with integral periods evaluated on a chain whose boundary is the

 given one. These characters form a graded ring, and this ring structure

 may be exploited to perform vector bundle calculations of geometric interest.

 We are very happy to thank J. Cheeger, W. Y. Hsiang, S. Kobayashi,

 J. Roitberg, D. Sullivan, and E. Thomas for a number of helpful suggestions.

 2. Review of connection tbeory*

 Let G be a Lie group with finitely many components and Lie algebra 9.

 Let M be a Co oriented manifold, and {E, M} a principal G-bundle over M

 with projection w: E -d M. Rg: E n E will denote right action by g e G. If

 {E', M'} is another principal G-bundle and p: E E' is a Co map com-

 muting with right action, p is called a bundle map. Such a map defines

 P: M-e M', and the use of the same symbol should lead to no confusion.

 Let {E,, B0} be a universal bundle and classifying space for G. B0 is not
 a manifold. Its key feature is that every principal G-bundle over M admits

 a bundle map into {E0, B0}, and any two such maps of the same bundle are
 homotopic. If A is any coefficient ring, u e Hk(B0, A), and a = {E, M},

 then the characteristic class

 u(a) e Hk(M, A)

 is well-defined by pulling back u under any bundle map. Since G is assumed

 to have only finitely many components it is well-known that

 (2.1) H21'(B0, R) 0 0 all 1.
 We finally recall that EG is contractible.

 * This chapter summarizes material presented in detail in [7].
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 50 S-S CHERN AND J. SIMONS

 Let 91 = 9ggXg ... ? * . Polynomials of degree 1 are defined to be
 symmetric, multilinear maps from 9l OR. G acts on 91 by inner auto-

 morphism, and polynomials invariant under this action are called invariant

 polynomials of degree 1, and are denoted by 1P(G). These multiply in a natural

 way, and if P e II(G), Q e I '(G) then PQ eIV+ '(G). We set I(G)

 E)II(G), a graded ring.
 These polynomials give information about the real cohomology of BG.

 In fact, there is a universal Weil homomorphism

 (2.2) W: I(G) > H2(BG, R)

 such that W: I(G) Heven(BG, R) is a ring homomorphism.
 If {E, M} is a principal G-bundle over M we denote by Ak l(E) k-forms

 on E taking values in 91. We have the usual exterior differential d: A kjl(E)

 Ak+ll() If 'p E Ak l(E) and * E Ak' l'(E) define

 cP A , e Ak+k',l+l(E)

 'P A *(x1, , Xk+k ) = Reshuff1eU(7)(P(X,1 , x k) (0 1r(xlk+l 9 zk+k )

 If p E Skl(E) and * E Ak'l(E) define

 [(p A] G Ak+kl',(E)

 [(by *]$19 9 Xk+k') =EShuffle "(7:)['P ($:r 9 0 ;rXk)9 *(X,-k+19 X 7-k+k')

 Let P be a polynomial of degree 1 and 'p E Ak l(E). Then P(q') = Po p

 is a real valued k-form on E. The following are elementary

 (2.3) [(p A] = (_ I)kkl+l[age <7p]

 (2.4) [[?, A], (P = 0

 (2.5) d['p, A] [dp, A] + (_-)kp[, dI]

 (2.6) d(T A = dT A * + (_ )k A d*

 (2.7) d(P(9)) P(dqq)

 (2.8) P('p A A P) = (_1)kk'P(* A ' A P)

 where 'p 1 _Ak',l' p e Ak",l" and in the first three lines 1= I' 1.
 If P e IF(G) then differentiating the invariance condition shows

 (2.9) '1 (-t)kl+ +kiP(r, A *. A [*i, (PI A *. A A 0) 0

 where vi E Aki l(E) and 'p e AJl1(E).
 For e e E, let T(E)e denote the tangent space of E at e and V(E)e

 {x G T(E)e I dw(x) = 0}. V(E)e is called the vertical space, and may be
 canonically identified with 9. If x E V(E)e we let x E 9 denote its image
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 under this identification. A connection on {E, M} in a 9 valued 1-form,

 8, on E satisfying R*(8) = ad-'o 8, and 8(v) = v for vertical v. If 8 is

 a connection, setting H(E)e = {x E T(E)e I 8(x) = 0} defines a complement

 to V(E)e called the horizontal space; i.e., T(E)e V(E)e & H(E)e and

 dRg(H(E)e) = H(E)R The structural equation states
 9~~~~~~~~~

 (2.10) d8 = Q- 1 [8, 8]
 2

 where Q is the curvature form. Q e A1"(E) and is horizontal, i.e., Q(x, y)

 Q(H(x), H(y)), H(x), and H(y) denoting the horizontal projections of x and

 y. (2.4) and (2.5) show

 (2.11) dQ = [Q. 8].

 An element p e Akl is called equivariant if R*(p) = ad g-1 A p. A con-
 nection is equivariant by definition, and so is its curvature by (2.10), as

 equivariance is preserved under d, wedge products, and brackets. If

 'p e Akl (E) is equivariant and P e 1 (G) then P('p) is a real valued invariant

 k-form on E. In particular, Q1 = Q A ... A Q is equivariant, and so P(QI)

 is real valued, invariant and horizontal, and so uniquely defines a 21-form

 on M whose lift is P(QI). We will also denote this form on M by P(QI).

 Formulae (2.11) and (2.9) immediately show this form is closed.

 THEOREM 2.12 (Weil homomorphism). Let a = {E, M, d} be a principal

 G-bundle with connection, and let Pe II(G). Then

 P(Q1) e W(P)(a);

 i.e., P(QI) represents the characteristic class corresponding to the universal

 Weil image of P.

 For some of the calculations in the sections that follow it will be con-

 venient to have classifying bundles equipped with connections. To do this

 we use a theorem of Narasimhan-Ramanan [10]. We introduce the category

 s(G). Objects in s(G) are triples a = {E, M, 8} where {E, M} is a principal
 G-bundle with connection 8. Morphisms are connection-preserving bundle

 maps; i.e., if a = {E, M, 8} and ar = {E, M, -}, and p: {E, M} {E, M} is
 a bundle map, then (P: ar a is a morphism if 'p*(a) = 8. An object A e s(G)
 is called n-classifying if two conditions hold: First for every a E S(G) with

 dim M < n there exists a morphism (P: aw A. Second, any two such

 morphisms are homotopic through bundle maps. We do not require the
 homotopy to be via morphisms.
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 52 S-S CHERN AND J. SIMONS

 THEOREM 2.13 (Narasimhan-Ramanan). For each integer n there exists

 an n-classifying A e s(G).

 3. The forms TP(8)

 Let a = {E, M, 6} e s(G). The bundle {w*(E), E} is trivial as a principal

 G-bundle, and so all of its characteristic cohomology vanishes. Thus

 *(P(Q')) = P(Q1) is exact when considered as a form on E. Set qt-
 tQ + 1/2(t2 -t)[0, 8], and set

 (3.1) TP(8) = 1 \P(8 A :p-')dt .
 0

 P e 11(G), and TP(8) is a real-valued invariant (21 - 1)-form on E. It is of

 course not horizontal.

 PROPOSITION 3.2. dTP(8) = P(Q1).

 Proof. Set f(t) = P(qp). Then f(O) 0 and f(1) P(Q1). Thus

 (3.3) P(Ql) = f \ (t) dt .
 0

 We claim

 (3.4) f'(t) = 1dP(8 A q1)

 We first observe

 d ((Pt)= + (t 2 [ ' ]
 dt2

 Using (2.3)-(2.8) we have

 f = IP( d (Tt) A vT`l
 = dt t

 - IP(Q A vT-1) + I t- 1 P([01 01 A 9T1)

 On the other hand,

 1dP(8 A Tt"h) = 1P(d8 A ?t") - 1(1 - 1)P(8 A d99t A jt-2)

 = IP(Q A 'P') - 2lP([8, 81 A t-') - 1(1 - 1)P(8 A d~pt A vT-2)

 by the structural equation (2.10). Now using (2.10), (2.11), and (2.4)

 dqpt = t[ptg, 8]

 Plugging this into the formula above and using the invariance formula (2.9)

 on the last piece we get
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 ldP(O A 99-1) = lP(Q A 91-l) 2 - IP([8, 81 A P'-') + ltP([8, 8J A GTi) =

 by the computation above. This shows (3.4) and the proposition follows
 from (3.3).

 The form TP(O) can of course be written without the integral, and, in
 fact, setting

 Ai = (-l)il! (I - )!/2i(l + i)! (I - 1-i)!

 one computes

 (3.5) TP(O) = , AiP(o A [0, Q]$ A gl-t-i)

 The operation which associates to a e s(G) the form TP(8) is natural;

 i.e., if p: a-o a' is a morphism, since 'p*(d) = 0 and thus R*(f2) = Q, clearly

 q*(TP(8)) = TP(0). This naturality characterizes T up to an exact remainder:

 PROPOSITION 3.6. Given Pe 11(G), let S be another functor which

 associates to each a e s(0) a (21 - 1)-form in E, SP(6), which satisfies

 dSP(Q) = P(Ql). Then TP(Q) - SP(8) is exact.

 Proof. Let a = {E, M, 8} with dim M= n. Choose a' = {E, M, 0} e s(G) so
 that a' is m classifying with m sufficiently greater than n. Let p: a "a" be a
 morphism. Now in E we have dSP(s) = dTP(Q) - SP() - TP(0) is closed.
 But since E is an approximation to EG its 21 - 1 cohomology vanishes for

 sufficiently large m. Thus SP(8) = TP(8) + exact. So by the naturality

 assumption on S, SP(8) R*SP(8) =* TP(8) +? * exact =TP(6) + exact. D-

 PROPOSITION 3.7. Let Pe 11(G) and Q I' 1(G).

 (1) PQ(Ql+8) - P(Ql) A Q(Qs)

 (2) TPQ(8) = TP(8) A Q(Q8) + exact= TQ(8) A P(Q1) + exact.

 Proof. (1) is immediate. To prove (2) we may use naturality and work

 in a classifying bundle. But there, d(TP(0) A Q(Q8)) = P(Q1) A Q(Q8) =

 PQ(Ql+8) = d(TPQ(0)). Similarly d(TQ(0) A P(Q1)) = d(TPQ(0)). (2) then
 follows by low dimensional acyclicity of the total space of the classifying
 bundle. D

 We are interested in how the forms TP(0) change as the connection

 changes.

 PROPOSITION 3.8. Let 0(s) be a smooth 1-parameter family of connec-

 tions on {E, M} with se [0, 1]. Set 0 = 0(0) and 0' = (d/ds)(0(s)) S=0 For
 Pe 11(G)
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 ds ds( TP( (s))) |S=O = lP(0' A Ql-~1) + exact.

 Proof. Building on the theorem of Narasimhan-Ramanan it is not difficult

 to show that one can find a principal G-bundle {E, M} which classifies

 bundles over manifolds of dim > m > dim M, and to equip this bundle with

 a smooth family of connections s(s), and to find a bundle map p: {E, M}
 {E, M} such that p*(O(s)) = 0(s) se [0, 1]. It thus suffices to prove the
 theorem in {E, M}, and by choosing m large enough E will be acyclic in

 dimensions <21-1. We now drop all "hats" and simply assume H21-'(E, R) =

 0. Thus it is sufficient to prove both sides of the equation have the same

 differential. Now

 (d (+TP0(s)) =0) - d(dTP(0(s))) 1 =0

 d (P(Q(s)1) I 1=) =P(Q' A Ql-1) ds

 where Q' = (d/ds)(Q(s)) ,=O. Also

 d(lP(0' A Q1-1)) = lP(dO' A Q1-1) - 1(1 - 1)P(0' A dQ A Q1-2)

 - lP(d0' A Q`') - 1(1 - 1)P(0' A [Q, 0] A Ql-2) by (2.11)

 -P(dO' A Q1-') + 1P([0', 0] A Q1-1) by (2.9) .

 Now d0'=d((d/ds)(0(s))J,=o) = (d/ds)(d0(s))K.=o= (d/ds)(Q(s) - (1/2)[0(s), 0(s)]) =O=
 Q- [0', 0]. Putting this in the calculation above shows

 dlP(0' A Q1-1) = IP(Q' A Ql-1)

 and this with the first calculation completes the proof. D

 If Pe 11(G) and P(Q1) = 0 then TP(0) is closed in E and so defines

 a cohomology class in E. We denote this class by {TP(8)} e H21'-(E, R).

 THEOREM 3.9. Let a = {E, M, 8} with dim M = n. If 21 - 1 = n then

 TP(0) is closed and {TP(0)} e H"(E, R) depends on 0. If 21 -1 > n then

 TP(0) is closed and {TP(8)} e H21'-(E, R) is independent of 9.

 Proof. P(Q1) is a horizontal 21-form. If 21 - 1 > n then 21 > n and

 since the dimension of the horizontal space is exactly n, P(Q1) = 0. Thus

 TP(0) is closed, and {TP(0)} is defined. We will see in a later section that
 when 21-1 = n, {TP(0)} depends on the connection. However, suppose

 21 -1 > n. Since any two connections may be joined by a smooth 1-para-

 meter family, it is sufficient to show, using the notation of the previous
 proposition that
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 d-( TP( )) IsO exact ds

 By that proposition it is sufficient to show P(8' A Q'-') 0 O. Since 8' is the

 derivative of a family of connections, all of which must agree on vertical

 vectors, 0'(v) = 0 for v vertical. Thus P(8' A Q'-') is a horizontal (21 - 1)-

 form, and thus must vanish for 21 -1 > n. EZ

 The equation in E, d TP(0) = P(Q1), implies that TP(0) I Em is a closed
 form, where Em is the fibre over m e M. Formula (3.5) shows that TP(0) I Em
 is expressed purely in terms of 8 ] Em, which is independent of the connection.

 More specifically, let o denote the Maurer-Cartan form on G, which assigns

 to each tangent vector the corresponding Lie algebra element. Set

 (3.10) TP = (- i)1 P(o0 A [a), '4l") .
 21(21 - 1)

 TP is a real valued, bi-invariant (21-1)-form on G. It is closed and represents

 an element of H21-'(G, R). For m e M and e e Em let X: G>Em by X(g) =

 Rj(e). Then X*(O) = co, and (3.5) shows

 (3.11) X*(TP(o))= TP.

 The class {TP} e H21-'(G, R) is universally transgressive in the sense

 of [1]. In fact, recalling Borel's definition of transgressive ([1], p. 133), a

 class h e Hk(G, A) is called transgressive in the fibre space {E, M} if there

 exists C E Ck(G, A) so that c I G e h and &e is a lift of a cochain (and thus a
 cocycle) from the base. It is called universally transgressive if this happens

 in the classifying bundle. In this case the transgression goes from {TP} via

 TP(O) to P(Q1). One can do this over the integers as well as the reals, and

 if we set

 Il(G) = {P e 1(G) I W(P) e H21-'(BG, Z)}

 one can easily show

 (3.12) Pe Iol(G) {- TP} e H2`1(G, Z)

 and (3.11) shows this is equivalent to

 (3.13) P E Io(G) TP(O)I Em e H2'1-(Em Z)

 where in all these equations we mean the real image of the integral coho-

 mology. The following proposition will provide a proof of this, but also will

 give us some extra understanding of the form TP(0) when Pe Il(G).

 For a real number a let it e R/Z denote its reduction, and similarly for
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 any real cochain or cohomology class - will denote its reduction mod Z.

 The Bockstein exact sequence

 (3.14) ' Hi(X, Z) ) Hi(X, R) ?2`4 H'(X, R/Z) Hi+'(X, Z)

 shows that a real class, U, is an integral class if and only if U = 0. For X any
 manifold and A any coefficient group we let C(X, A) denote the cochain group

 with respect to the group of smooth singular chains. If 9 is a differential

 form on X then p e C(X, R), and by '9 e C(X, R/Z) we mean its reduction
 mod Z as a real cochain.

 PROPOSITION 3.15. Let a = {E, M,0 } es(G). Then if Pe IJ(G) there

 exists u e C21-'(M, R/Z) so that

 TP(0) = ir*(u) + coboundary.

 Proof. Let a' = {E, M, d} e s(G) be k-classifying with k sufficiently

 large. Since Pe I' we know that P(iEl) represents an integral class in M.

 Thus the R/Z cocycle P(&:2') vanishes on all cycles in M, and so is an R/Z

 coboundary; i.e., there exists u e C 2-1(M, R/Z) such that 3i = P(Q2). Thus

 USr()= 7 *(8) = *(Q)

 = 7c*(P(fii1)) = dTP(0) = 3TP(6) = 3(TP(0))-

 So w7r*(i) = 3(iA )). Since we have chosen k large, E is acyclic in dim 21-1,
 and so

 TP(Q) = w*(i) + coboundary.

 The proposition then follows in general by choosing a morphism p: c a'
 and taking u = *(u). F

 We note that (3.13) and hence (3.12) follow directly from this. We

 also note that for these special polynomials, the classes {TP(0)}, when they
 exist, have the property that their mod Z reductions are already lifts. That
 is

 THEOREM 3.16. Let a = {E, M, 6} e s(G) and let Pe IJ(G). Suppose

 P(Q1) = 0. Then there exists Ue H2-'(M, R/Z) so that

 {TP(06)} =*(U)

 Proof. Choose u e C2-1'(M, R/Z) as in Proposition 3.14. The assump-

 tion P(Ql) = 0 implies 7r*(3u) = 0. Since every chain in M comes from
 one in E this means t3u = 0. Thus u is an R/Z cocycle in M, and Proposi-
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 tion 3.14 shows z*(u) 0 TP(0). Letting Ue H21-'(M, R/Z) denote the class

 represented by u the theorem follows.

 Characteristic numbers in R/Q. An interesting special case of this

 theorem occurs when M is compact, oriented, and dim M = 21 - 1. Then

 for each P e I,(G) we know that P(Q1) = 0 and {TP(0)} e H21-'(E, R) depends
 on the connection. On the other hand, reducing mod Z, {TP(0)} = w*(U)

 for some Ue H21-'(M, R/Z) - R/Z. Thus U is determined up to an element

 of ker 7r*. Now, either ker 7r* = H21-'(M, R/Z), or ker 7r* is a finite sub-

 group of H2-'(M, R/Z). In the second case, since all finite subgroups of

 R/Z lie in Q/Z, U is determined uniquely in R/ZIQ/Z -R/Q. Let At denote
 the fundamental cycle of M. Define SP(6) e R/Q by

 SP(6) = 0 if ker 7r* = H2-'(M, R/Z)

 SP(6) = u(tt)/Q otherwise .

 Examples in the last section will show that these numbers are nontrivial

 invariants. *

 COROLLARY 3.17. Suppose dim M < 21 - 1. Then for P e IJ(G)

 {TP(0)} e H21-(E, Z)

 Proof. Since dim M < 21 - 1, H21-'(M, R/Z) = 0 and so {TP(0)} = 0.
 Thus from (3.14) {TP(0)} is the image of an integral class.

 4. Conformal invariance

 In this section we suppose G = Gl(n, R). 9 consists of all n x n matrices,

 and we define the basic invariant polynomials Q1, Qn,

 Qj(Aj (D) ... ($ Al)= !, tr A, lA~r ***A ...A

 It is well known that the Qj generate the ring of invariant polynomials on
 9. If a = {E, M, 6} is a principal G bundle then 0 = {60j} and Q = jQj},
 matrices of real valued 1 and 2-forms respectively. One verifies directly that

 for any q' = {q'j} e Akl(E)

 (4.1) QQ(Q1) = . 1j'2 A '2't3 A ... A Qjjj1

 (4.2) Qj(q A Q1')= n I = 1'52 A Q A2,3 A A
 These polynomials have different properties. In particular the Weil map

 * This construction was made in discussion with J. Cheeger. It is an easy way of
 producing the mod Q reductions of R/Z invariants developed in [3].
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 (see (2.2)) takes the ring generated by {Q21} isomorphically onto the real

 cohomology of BGl(n,R) = B,(n), while the kernel of the Weil map is the ideal
 generated by the {Q21,1}.

 PROPOSITION 4.3. Let a = {E, M, 6}e s(Gl(n, R)). Suppose 0 restricts

 to a connection on an 0(n) subbundle of E. Then Q21 (Q"21+1) - 0, and

 TQ21+1(0) is exact.

 Proof. The first fact is well known and is one way to prove Q21+, e Ker W.

 Our assumption on 0 is that there is an 0(n) subbundle F z E such that

 at each f e F, H(E)f 9 T(F)f, or equivalently that at all x tangent to F,

 6 j(x) = - Odj(x). It easily implies that at all points of F. Qij = - Qj as a
 form on E. Now if A is a skew symmetric matrix then tr (A2"+') - 0 and

 by polarization we see Q21+?(A, (? ... ?( A2,1,) = 0 when all Ai are skew
 symmetric. Since Q21?1(Q21+') is invariant, we need only show it vanishes at

 points in F, but at these points the range of Q21+' lies in the kernel of

 Q21+1. Thus Q21+?(Q21+') - 0. The same argument shows that TQ21+1(0) IF =
 0. (Here we mean the form restricted to the submanifold, F, and not

 simply as a form on E considered at points of F.) Thus TQ21+1(0) is a

 closed form in E whose restriction to F is 0. Since E is contractible to

 F, TQ21+?(0) can carry no cohomology on E and hence must be exact. D

 Let us now specialize to the case where E = E(M), the bundle of bases

 of the tangent bundle of M. Points in E are (n + 1)-tuples of the form

 (m; e1, * *, en) where m e M and e1, * , en is a basis of T(M)m. E comes
 equipped with a natural set of horizontal, real valued forms oil, , (, n,
 defined by

 dic(x) = c>(x)e

 where x e T(E)e, and e = (m; e1, ... , en). Now let g be a Riemannian metric
 on M, and let 6 be the associated Riemannian connection of E(M). Let

 E19 ... , En be horizontal vector fields which are a dual basis to oil, ..., n.
 Let F(M) denote the orthonormal frame bundle. F(M) Z E(M) is the

 0(n) subbundle consisting of orthonormal bases, and since 0 is the Riemannian
 connection, 0 restricts to a connection on F(M).

 Let h be a C- function on M, and consider the curve of conformally

 related metrics

 g(s) = e2shg, s e [0, 1].

 Let 6(s) denote the curve of associated Riemannian connections on E(M).

 Let 0 = 0(0), 6' = (d/ds)(6(s)) Is=oq and F(M) the frame bundle with respect
 to g.= g(0).
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 LEMMA 4.4. At points in F(M)

 Tj= 38id(ho7) + Ei(how)()j -Ej(ho ir)(ot

 Proof. This is a standard computation, and is perhaps most easily done

 by using the formula for the Riemannian connection in terms of covariant

 differentiation (cf. [7]). It is easily seen how the connection changes under

 conformal change of metric, and one then translates this result back into

 bundle terminology.

 THEOREM 4.5. Let g and g be conformally related Riemannian metrics

 on M, and let 0, Q, 0, &2 denote the corresponding connection and curvature

 forms. Then for any PE IV(Gl(n, R))

 (1) TP(Q) = TP(6) + exact,

 (2) p(51)= P(Qt)
 COROLLARY. P(Q1) = 0 implies that the cohomology class {TP(0)} e

 H21-1(E(M), R) is a conformal invariant.

 The corollary follows immediately from the theorem, and (2) follows

 immediately from (1) and Proposition 3.2. So it remains to prove (1). Since

 the Qi generate I(Gl(n, R)) we can assume P is a monomial in the Qu.
 Using Proposition 3.7, an inductive argument shows that it is sufficient to

 prove (1) only in the case P = Qu. Proposition 4.3 shows that for any

 Riemannian connection Q21?1(Q2t+') - 0 and TQ21+I(0) is exact, so we can
 assume 1 is even.

 Any two conformally related metrics can be joined by a curve of such

 metrics, with associated connections 6(s). By integration it is sufficient to

 prove

 (*) d =TQ21(0(s))) = exact .

 Since each point on the curve is the initial point of another such curve, it is

 enough to prove (*) at s = 0. By Proposition 3.8 it will suffice to prove

 (**) Q21(6' A Q21-1) - 0 . We use the notation and formula of Lemma 4.4, and work at f e F(M). Set

 a = (aijd(f o i))
 ,= (Ei(f o 7r)oj- Ej(f o mw)a,).

 Then 6' = a + R. Now (4.2) shows

 Q21(a A Q2b-1) = d(fo 2r) A Q21- (Q21-') = 0

 by Proposition 4.3. Also using (4.2),
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 Q21(9 A Q21-1) = -i ; El(fo 7r))2 A Qi2,i3 A A Qi21,1

 But, since 0 is a Riemannian connection, the Jacobi identity holds. This

 states

 n=, t-)i A Qtj = 0,

 and shows Q21(8 A Q21-1) = 0. Thus at points in F(M), Q21(0' A Q211) = 0
 and (**) follows by invariance. D

 5. Conformal immersions

 Let G = U(n). Let A be a skew Hermitian matrix and define the ith

 Chern polynomial C E Ie ( U(n))

 (5.1) det (XI - A) = Ej=O C(A X * - * A)X;n-i

 where Ci is extended by polarization to all tensors. Let ci denote the ith
 integral Chern class in BU(fl). Then ci e H2i(BG, Z), and letting r(c) e
 H2i(BG, R) denote its real image,

 (5.2) W(Cj) = r(c)

 We also define the inverse Chern polynomials and classes Cl and c?

 (5.3) (1 + C1 + + Q + (1 + C1 + + CO = 1
 (1 + Cl + ***+ C& + * )U (1 + Cl + ***+ C") =1

 These formulae uniquely determine Cl and cl, and since W is a ring

 homomorphism

 (5.4) W(Ci) = C

 The inverse classes are so named because, for vector bundles, they are the

 classes of an inverse bundle. That is, if V, W are complex vector bundles

 over M with Ve W trivial, then using the product formula for Chern
 class, cf. [9], one knows

 (5.5) ci(W) = cl(V)

 Let Gnk(c) denote the Grassmann manifold of complex n-planes in C"+k,

 and let E.,k(c) denote the Stiefel manifold of orthonormal n-frames in Cn+k,
 with respect to the Hermitian metric. Then {E.,k(C), Gnk()} is a principal
 U(n) bundle. There is a natural connection in this bundle most easily
 visualized by constructing it in the associated canonical n-dim vector bundle

 over Gn,k(c). Let -(t) be a curve in Gf,k(c) and let p(t) be a curve in the
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 vector bundle with w o p = v. So for each t, v(t) is an n-plane in C"+k, and
 p(t) is a vector in Cn+k with p(t) e 7(t). Then p'(t) = (d/dt)(p(t)) is a vector

 in Cn+k, and the covariant derivative of p(t) along y is obtained by

 orthogonally projecting p'(t) into v(t). We let 0 denote this connection and

 set

 a., k(C) = {En,k(), Gn,k(C), 6}

 PROPOSITION 5.6. For i > k

 (1) Ci(Qi) = 0

 (2) { TCiL(0)} e H2i1 (Enk (C) Z)

 Proof. Since the n-dim vector bundle associated to {E,,k(c), G.,k(c)} has
 a k-dim inverse, (5.5) shows that ct(afl k(c)) = 0 for i > k. Thus the form

 Cl(Q) is exact on G.,k(c). Now Gf,k(c) is a compact, irreducible Riemannian
 symmetric space, and it is easily checked that the forms P(Q1) are invariant

 under the isometry group. Thus Ctl(Qi) is invariant and exact, and there-
 fore must vanish. So the class {TC (6)} e H2i-1(Enk(C), R) is defined.
 Since W(Cl) = cl e H2i(BU(n,, Z) we see that C2l e Io(U(n)). Using Theorem
 3.16 we see that {TC-'(0)} is a lift of a 2i - 1 dimensional R/Z cohomology

 class of G.,k(c). But the odd dimensional cohomology of this space is zero

 (for any coefficient group), and thus {TCQ(0)} = 0. The Bockstein sequence
 (3.14) then shows that {TCQL(6)} e H2i1-(Enk(c), Z). LII

 Now let G = 0(n). Let A be a skew symmetric matrix and define for

 i=1,** , [n/2] the ith Pontrjagin polynomial Pi e Io2i(O(n))
 2i

 (5.7) det (XI - (1/27r)A) = Adj/0] P(A ? **. ? A)>"2X + Q(vA0-')
 where we ignore the terms involving the n-odd powers of %. Also let

 pi e H4i(BO(,,, Z) denote the ith integral Pontrjagin class. Then

 W(Pi) = r(pi) .

 Let p: 0(n) U(n) be the natural map. Then p induces p*: I(U(n))
 I(O(n)), p*: H*(U(n)) H*(O(n)), and p: B(c-, BUc,(). Using Theorem 2.12
 one easily sees

 W(p*(Q)) = p*(W(Q))

 for any Q e Il(U(n)). The definitions of Pi and pi are such that

 (5.8) p*(C2i) = (-1)iPi, P*(C2i) = (-l)p

 We also define the inverse Pontrjagin polynomials Pi-

 (5.9) (1 + P1 + ** + P[n/2])(1 + P1 + * * * + PL +
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 and note that Pi e IJ2'(0(n)) since p*(cf) e H2i(BO(), Z), and one easily sees
 that

 W(P,#) = (-1)ir(p*(c2))

 Formula (5.9) shows Pi = -P - P._1Pf-, - PiPL1. Proposition 3.7
 shows that TP1(6) = - TPi(0) + terms involving curvature. Thus for any
 a = {E, M, d} e (O(n))

 (5.10) TP-(6) Em = TP (0) I Em.

 We now define the real Grassmann manifold, Gn,k, the real Stiefel

 manifold E,,k, and the canonical connection 0 on {El,k, Gn,k} exactly as in
 the complex case. We set al,k = {Enk, Gn,k, 60} es(O(n)).

 PROPOSITION 5.11. For i > [k/2]

 (1) PI(Q2i) = 0

 (2) {(1/2) TPf- (0)} e H4i-' (En, k, Z)

 Proof. The natural map R" CO induces the commutative diagram

 En,,k -1 En, k (C)

 Efn,k-i-* GE,k(C)

 It is straightforward to check that

 Pi(Q2i) = (-1)iq,*(C2(Q2i))

 TPi (0) = (-1)* (TC21 (0)) .

 Since i > [k/2] 2i > k, (1) follows from Proposition 5.6, and from (2) of
 that proposition we see that

 {TPt (0)} = (_J)i, eTC21i(Q2i)) e H4i-1(E,,k Z)

 We will be finished when we show

 LEMMA 5.12. Let r e H*(En,k(c), Z). Then qp*(7) is an even integral

 class in H*(En,k, Z).

 Proof. For any Lie group G and any coefficient group A we want to
 consider the inverse transgression map r: Hi(BG, A) H'-'(G, A). This map

 is defined as follows. Let u e Hi(BG, A) be given and choose ' e Z'(B,, A)

 with i eu and with YI 1{m} = 0 for all me B,. Letting z: EG -BG be the
 projection map, and recalling that EG is acyclic, we see that r*(y) = 3,8,
 where S9 e Ci-'(EG, A). Since vy {m} = 0, 8 I G is closed, and thus defines
 r(u) e H-'(G, A). Acyclicity of EG guarantees the map independent of
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 choice of ,8, and it is easy to check it is also independent of choice of Y.
 Thus z: H$(BG, A) Hi-'(G, A) is well-defined. z is in fact the inverse of

 the transgression mapping considered in [1]. We remark that if A is a ring

 then T(u U u) = 0. This follows since if y e u with wr*(y) = 5,9, then
 wr*(y U -i) = a(,8 U w*(Y)), and ,8 U wr* (y) I G = 0.

 We first consider the case k = 0, i.e., E,,o = 0(n), EnO(c) = U(n), and
 ga: 0(n) U(n) is the natural map. We consider the diagram

 H*(U(n)) 90* H*(O(n))

 H * (Bu()) P) H * (Bo*))
 and note that it is commutative. The Bockstein exact sequence of cohomo-

 2
 logy corresponding to the coefficient sequence 0 -Z- Z-) Z, ? 0 shows
 that an integral class is even if and only if its mod 2 reduction is zero.

 Thus it is sufficient to show that for any u e H*(U(n), Z2), q*(u) = 0. Let

 c? e Ht( U(n), Z2) denote the mod 2 reduction of c?. Now it is well-known that

 P*(C?) = Wi U W?

 where Wi is the jth Stiefel-Whitney class. Thus

 = T(p*(c)) = T(Wi U Wi) = 0 .
 On the other hand, H*(U(n), Z2) is generated by the set {z(C8)}, and thus
 q,*(u) = 0 for any u e H*(U(n), Z2).

 To do the general case consider the commutative diagram

 H*(Enk(C), Z2) H*(Enk, Z2)

 I7T* I7T*

 H*(U(n + k), Z2) H* (O(n + k), Z2)

 where w: U(n+k) - U(n+1)/U(k) = Enk(c), and w: 0(n+k)-0(n+k)/0(k) =
 Enk are the quotient maps. It is known, cf. [2], that the w* on the right
 is injective. Thus, since the image of the lower Ap* is zero from our special
 case, so is that of the upper A*. This completes the proof of the lemma and
 the proposition follows. D

 By restricting this proposition to the fibre and using (5.10) and (3.11)

 we obtain the well-known fact that

 (5.13) 1 { TP,} E H"t-(O(n), Z)
 2

 The polynomials Pi and P~ were considered on the Lie algebra of 0(n),
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 but they also live on that of Gl(n, R), and pull back under 0(n) Gl(n, R).

 We will also denote these by Pi, Pi e I,'(Gl(n, R)).

 THEOREM 5.14. Let Ma be an n-dim Riemannian manifold. Let

 a(M) = {E(M"), M?, 6} denote the Gl(n, R) basis bundle of M equipped with

 the Riemannian connection 6. A necessary condition that Ml admit a

 global conformal immersion in Rn+k is that Pt(Q2i) = 0 and {(1/2) TP1(6)} e

 H 4i-(E(M), Z) for i > [k/2].

 Proof. Let qA: M" - Rn+k be a conformal immersion. By Theorem 4.5
 we may assume 9 is an isometric immersion. Let F(M") denote the

 orthonormal frame bundle of M", and consider the Gauss map $

 F(M") > E, k

 which is defined as usual by mapping a point into the tangent plane at its
 image. Letting 0 denote the canonical connection on Elks it is a standard

 fact that <*(6) = 6, the Riemannian connection on F(M?); i.e.,

 AD: {F(M ), M, 6} -1 cxlk

 is a morphism. Thus by naturality and the previous proposition, in F(M"),

 Pi(Q2') = 0 and {(1/2) TPt (6)} e H'4-'(F(MI), Z) for i > [k/2]. By invariance,
 P (Q'i)= 0 in all of E(M"), and since {(1/2) TPt(6)} e H'i-'(E(M"'), R) it
 must actually be an integral class there since its restriction to the retract

 F(M") is integral. F2

 Remark. This theorem is probably of interest only for the codimension

 k < n/2. This is because if k > n/2 our condition i > [k/2] already implies
 Pi (Q2") = 0 for dimension reasons, and the corresponding class, { TPt' (a)}, is
 independent of connection (see Theorem 3.9). At the same time Corollary

 3.17 already shows that {TP1(6)} e H'i-'(E(M), Z), and it seems likely that

 the same is true for {(1/2) TPt (6)}.

 6. Applications to 3-manifolds

 In this section M will denote a compact, oriented, Riemannian 3-manifold,

 and F(M) -r* M will denote its SO(3) oriented frame bundle equipped with
 the Riemannian connection 6 and curvature tensor Q. For A, B skew
 symmetric matrices, the specific formula for P1 shows P1(A (0 B) =
 - (1/8z2) tr AB. Calculating from (3.5) shows
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 (6.1) TP1(0) = - 0{012 A 013 A 023 + 012 A Q12 + 013 A Q13 + 023 A Q23}
 472~

 Since dim M = 3, dTP1 = 0. By (5.13), (1/2) TP1(0) IF(M)m G H3(F(M)m, Z).
 We will thus be interested in the class

 { TP1(0)} e H3(F(M), R)

 From the general considerations at the end of ? 3 this data is enough to

 produce an R/Q invariant of M, but since M is an oriented 3-manifold,

 F(M) is trivial; and we define the R/Z invariant,* 4!(M), as follows: Let

 X: M-u F(M) be any cross-section. Then set

 (6.2) 4D(M) = |2ITP1(0) e R/Z.

 If Z' were another such, then homologically X' = X + nF(M)m + torsion,
 where n is an integer. Thus since (1/2) TP1(0) I F(M)m is integral, and forms
 integrated over torsion classes give 0, 4D(M) is well-defined. Recalling that

 Pi- = -P1 we immediately get the following two special cases of Theorems
 4.5 and 5.14.

 THEOREM 6.3. 4!(M) is a conformal invariant of M.

 THEOREM 6.4. A necessary condition that M admit a conformal im-

 mersion in R4 is that 4D(M) = 0.

 Example 1. Let M = RP3 = SO(3) together with the standard metric

 of constant curvature 1. Let E1, E2, E3 be an orthonormal basis of left

 invariant fields on SO(3), oriented positively. Then it is easily seen that

 VE1E2 = E3, VE1E3 =-E2, and VE2E3 = E1. Let X: M-*F(M) be the cross-

 section determined by this frame. The above equations and (6.1) show

 X*( ? TPl(0) = ()= 1a

 where a is the volume form on SO(3). Thus from (6.1)

 PD(SO(3)) = 1 2 Vol (SO(3)) = I
 272r 2

 since Vol (SO(3)) = (1/2) Vol (S3) = r2. Using Theorem 6.4 we see that SO(3)
 admits no global conformal immersion in R'. This is interesting since, being

 parallelizable, it certainly admits a Coo immersion in R4, and locally it is
 isometrically imbeddable in R4.

 * Atiyah has subsequently shown that 2@(M) is the mod Z reduction of a real class.
 This will be discussed further in [3].
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 Example 2. Again let M = SO(3), but this time with the left invariant

 metric, g, with respect to which XE1, E2, E3 is an orthonormal frame.

 Direct calculation shows

 (D(SO(3), go) = 2X2 1

 and this can take any value in R/Z.

 Let M be a fixed 3-manifold and let C(M) denote the space of conformal

 structures on M. Since q1 is a conformal invariant we may regard

 (D: C(M) > RIZ e

 If gt is a Co curve of conformal structures then <>(g,) is a Co R/Z valued
 function (we shall see this below). We are interested in calculating the

 critical points of the map (D.

 Let g = <, > be a fixed metric on M. With respect to this we let V, Y
 and Rx ,Z denote covariant differentiation and curvature; i.e.,

 RX'yZ= VXVYZ - VYVXZ -VxYz

 where X, Y, Z are vector fields. The operator Vx extends as a derivation
 to all tensors, and all tensors have a natural inner product induced by <, >.
 We make the usual identification of A2 with skew symmetric linear trans-

 formations and so for x, y G T(M)m we often regard

 (6.5) Ry G A2T(M)m .

 Because we are working on an oriented 3-manifold there is an identification

 of T(M)m with A2T(M)m given by the metric. We denote this by

 (6.6) * : T(M) m > A2T(M)m .

 Let el, e2, e3 be an orthonormal basis of T(M)m and define

 6R: T(M),m A2T(M)m m

 (6.7) 3R(x) = 3= Vei(R)eix.
 This definition is independent of choice of frame. Combining (6.6) and (6.7)

 we define the symmetric bilinear form &R on T(M)m by

 (6.8) aR(x, y) = <&R(x), y*> + <&R(y), x*> .

 Now let B = B(, ) be a Co field of symmetric bilinear forms on M and
 consider the curve of metrics

 gt(x, y) = <x, y> + tB(x, y).

 For small t these are Riemannian.
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 THEOREM 6.9. Let Mt = {M, gt}. Then for small t, PD(Mt) e C-(t) and

 dt )(Mt)) t=0 = 16W 2 M<Bq &R> .

 Proof. The invariant (D was defined by choosing a cross-section in

 F(M), but we would clearly get the same value by choosing one in E(M),
 the full Gl(3, R) basis bundle. This is more convenient. So let Ot denote the

 curve of connections in E(M) corresponding to the metrics gt, and let 0 =

 O0, Q = QO, and 0' = (d/dt)(0t) It=o The general variation formula in Theorem
 3.8 shows

 (6.10) dt(P(Mt)) t= = P A Q)
 dt =

 where this makes sense since the forms P(0' A Ql-1) all are horizontal and

 invariant. The definition of Pi given in (5.7) works as well for general
 matrices and one easily sees

 (6.11) P1(A, B) = 12[tr A tr B - tr AB] .
 8w

 Now if we work at points in F(M), range Q is skew symmetric matrices,

 and so the first term vanishes, to give

 (6.12) P1(0' A Q) = -? j=l 0t. A Qjj
 8W2

 at points of F(M).

 Let x e T(M)m, Y a local vector field, and let Vt Y denote covariant

 differentiation with respect to the connection at time t. Differentiating we

 get a tensor, A, defined by

 (6.13) AXy = d (V% Y) (i)
 dt t=o

 where y = Y(m). At f = (m; fi, f2, f3) e F(M) the following hold

 0i (x) = <Adr(x~i fj>

 Qij(X, Y) = <?dr(x),dr(yfi fj>

 where x e T(E(M))f and R is the curvature of {M, g}. Now regarding
 P1(6' A Q) as a form on M, (6.12) gives

 P1(0' A Q)(x, Y, Z) = f rKA ', - <Ay, Rx,> + <Aq, RIy>]

 - 1-A, Ro *>o0(x, y, z) 8 Z
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 (a) = volume form on {M, g}). Combining this with (6.10) gives

 (6.13) dt (Mt)) = 872 3M Ro *>.
 Since the range of R o * is skew symmetric linear transformations, we

 may as well project A to have the same range; i.e., set

 <Azy, z> = -<Aiy, z> - -!<Adz, y> .
 2 2

 Then

 (6.14) <A, Ro *> = <A, RO *>

 Finally, using the definition of Riemannian connection in terms of covariant

 derivatives (cf. [7]), and setting

 <DBxy, z> =1 [Vy(B)(z, x) - Vz(B)(y, x)]
 2

 equation (6.13) shows

 A= DB

 and thus from (6.13)

 KDB, Ro *> = <B1 aR> dt(D(Mt))tO 82r2 JM 1672 JM

 where the last equation used Stokes' theorem and integration by parts. D

 We should note from the definition of &R that tr &R = 0, and this is

 as it should be since if B = Xg, where X is a function on M, our metric is

 changing conformally, PD(Mt) should be constant, and <B, &R> should vanish,
 which is implied by tr &R = 0. More importantly, the bilinear form 5R is

 itself a conformal invariant (this can be directly checked), and it has been

 shown by Schouten, cf. [6], that &R 0_ if and only if {M, g} is locally con-

 formally flat; i.e., if and only if each point of M has a neighborhood con-
 formally equivalent to R3. For example, S3 is locally conformally flat. This

 fact is peculiar to 3-manifolds, since the integrability condition for local con-

 formal flatness in higher dimensions involves no derivatives of curvature.

 We, therefore, conclude

 COROLLARY 6.14. g e C(M) is a critical point of JD if and only if {M, g}

 is locally conformally flat.

 Kuiper, in [8], has shown that compact {M, g} is locally conformally
 flat and simply connected if and only if {M, g} is conformally equivalent to

 Sn with the usual metric. We, therefore, conclude
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 COROLLARY 6.15. Suppose M is a simply connected compact oriented

 3-manifold. Then either <) has exactly one critical point and M is diffeo-

 morphic to S3 or 1D has no critical points and M is not diffeomorphic to S3.

 We do not see how this helps to settle the Poincare conjecture.

 UNIVERSITY OF CALIFORNIA AT BERKELEY

 UNIVERSITY OF NEW YORK AT STONY BROOK
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