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1 Motivation for differential cohomology
1.1 Observation (Simons–Sullivan [9, §1]). Let𝑀 be a manifold. Then we have exact
sequences

(1.2)

H𝑘−1(𝑀; 𝐑/𝐙) H𝑘(𝑀; 𝐙)

H𝑘−1dR (𝑀) Ĥ𝑘(𝑀; 𝐙) H𝑘dR(𝑀)

Ω𝑘−1(𝑀)/ im(𝑑) Ω𝑘cℓ(𝑀) ,

−𝛽

𝑑

where the top sequence is the Bockstein sequence associated to the short exact sequence

0 𝐙 𝐑 𝐑/𝐙 0 ,

andwe are identifying singular and deRhamcohomology via the deRham isomorphism
H⋆dR(𝑀) ≅ H⋆(𝑀; 𝐑).

The top sequence is ‘purely homotopy-theoretic’ in nature, while the bottom se-
quence is ‘purely geometric’ in nature (e.g., the functorΩ𝑘cℓ is not homotopy-invariant).

1.3 Question. Can we fill (1.2) in with an invariant Ĥ𝑘(𝑀; 𝐙) in red that better blends
homotopy theory and geometry, and makes the diagonals exact?

Now let us attempt to provide a satisfactory answer to Question 1.3 when 𝑘 = 1.
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1.4 Attempt (for 𝑘 = 1). Let𝑀 be a manifold. Consider the abelian group C∞(𝑀, 𝐑/𝐙)
of smooth functions to the circle (with the group structure defined pointwise). Recall
that the inclusion C∞(𝑀, 𝐑/𝐙) ⊂ Map(𝑀, 𝐑/𝐙) from the space of smooth maps to
the space of all maps is a homotopy equivalence. So since the circle is 1-truncated,
C∞(𝑀, 𝐑/𝐙) is also 1-truncated.

Since 𝐑/𝐙 is a K(𝐙, 1), we see that

𝜋0C∞(𝑀, 𝐑/𝐙) ≅ H1(𝑀; 𝐙) .

In particular, we have a surjection 𝜋0 ∶ C∞(𝑀, 𝐑/𝐙) ↠ H1(𝑀; 𝐙). Also notice that

𝜋1C∞(𝑀, 𝐑/𝐙) ≅ 𝜋0Map∗(𝑆1,C∞(𝑀, 𝐑/𝐙))
≅ 𝜋0Map∗(𝑆1,Map(𝑀, 𝐑/𝐙))
≅ 𝜋0Map(𝑀,Map∗(𝑆1, 𝐑/𝐙))
≅ 𝜋0Map(𝑀,𝛺(𝐑/𝐙))
≅ H0(𝑀; 𝐙) .

1.5 Construction. Define a curvature map curv ∶ C∞(𝑀, 𝐑/𝐙) → Ω1cℓ(𝑀) by

curv(𝑓) ≔ 𝑓⋆(vol) ,

where vol is the standard volume form on 𝑆1 ≅ 𝐑/𝐙.
The kernel of curv consists of the locally constant maps𝑀→ 𝐑/𝐙, i.e.,

ker(curv) ≅ H0(𝑀; 𝐑/𝐙) .

Note that the curvature map is not surjective:

im(curv) = { 𝛼 ∈ Ω1cℓ(𝑀) | ∫𝑆1 𝛼 ∈ 𝐙 for every embedding 𝑆1 ↪𝑀} .

That is, the image of curv is the group of closed 1-forms with integral periods

1.6 Definition. Let𝑀 be a manifold and 𝑘 ≥ 0 an integer. A closed 𝑘-form 𝜔 on𝑀
has integral periods if for every smooth 𝑘-cycle 𝑐 in𝑀 the integral ∫𝑐 𝜔 is an integer. We
write

Ω𝑘cℓ(𝑀)𝐙 ⊂ Ω𝑘cℓ(𝑀)
for the subgroup of 𝑘-forms with integral periods.

1.7 Remark. A closed 𝑘-form 𝜔 has integral periods if and only if the class of 𝜔 lies in
the image of the change-of-coefficients map

H𝑘(𝑀; 𝐙) → H𝑘(𝑀; 𝐑) ≅ H𝑘dR(𝑀) .

1.8. We also have a map

𝜄 ∶ Ω0(𝑀) = C∞(𝑀, 𝐑) → C∞(𝑀, 𝐑/𝐙)

given by post-composition with the quotient map 𝐑 ↠ 𝐑/𝐙. The map 𝜄 has kernel the
integer-valued smooth functions𝑀→ 𝐑, i.e., the locally constant functionswith integer
values. That is, im(𝜄) = Ω0cℓ(𝑀)𝐙.
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1.9. These maps give rise to a commutative diagram with exact diagonals

H0(𝑀; 𝐑/𝐙) H1(𝑀; 𝐙)

H0dR(𝑀) C∞(𝑀, 𝐑/𝐙) H1dR(𝑀)

Ω0(𝑀) Ω1cℓ(𝑀) .

−𝛽

𝜋0

curv

𝑑

𝜄

The diagonals become short exact sequences if we replace Ω0(𝑀) by Ω0(𝑀)/Ω0cℓ(𝑀)𝐙
andΩ1cℓ(𝑀) byΩ1cℓ(𝑀)𝐙:

0 0

H0(𝑀; 𝐑/𝐙) H1(𝑀; 𝐙)

H0dR(𝑀) C∞(𝑀, 𝐑/𝐙) H1dR(𝑀)

Ω0(𝑀)/Ω0cℓ(𝑀)𝐙 Ω1cℓ(𝑀)𝐙

0 0 .

−𝛽

𝜋0

curv

𝑑

𝜄

1.10. The takeaway is that in Question 1.3, we should really replaceΩ𝑘−1(𝑀)/ im(𝑑) by
Ω𝑘−1(𝑀)/Ω𝑘−1cℓ (𝑀)𝐙 and Ω𝑘cℓ(𝑀) by Ω0cℓ(𝑀)𝐙 and ask for the diagonal sequences to be
short exact.

2 Differential characters
We now present a unified approach to defining the ‘differential cohomology’ groups
Ĥ⋆(𝑀; 𝐙) due to Cheeger–Simons [3]. We follow Bär and Becker’s exposition on differ-
ential characters [1, Part I, §5].

2.1 Notation. Let𝑀 be a manifold and 𝑖 ≥ 0 an integer. We write Csm
𝑖 (𝑀; 𝐙) for the

abelian groupof smooth (integer-valued) chains on𝑀.Wewrite Zsm
𝑖 (𝑀; 𝐙) ⊂ Csm

𝑖 (𝑀; 𝐙)
for the subgroup of smooth cycles.

2.2 Definition (Cheeger–Simons [3, §1]). Let 𝑘 ≥ 1 be an integer and𝑀 a manifold. A
degree 𝑘 differential character on𝑀 is a homomorphism 𝜒∶ Zsm

𝑘−1(𝑀; 𝐙) → 𝐑/𝐙 such
that there exists a 𝑘-form 𝜔(𝜒) ∈ Ω𝑘(𝑀) with the property that

𝜒(𝜕𝑐) = ∫
𝑐
𝜔(𝜒) mod 𝐙
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for every 𝑐 ∈ Csm
𝑘 (𝑀; 𝐙). We write

Ĥ𝑘(𝑀; 𝐙) ⊂ Hom𝐙(Zsm
𝑘−1(𝑀; 𝐙), 𝐑/𝐙)

for the abelian group of degree 𝑘 differential characters on𝑀.
It follows that 𝜔(𝜒) is unique and closed. Morevoer, 𝜔(𝜒) has integral periods. The

form 𝜔(𝜒) is called the curvature of 𝜒, and we have a curvature map

curv ∶ Ĥ𝑘(𝑀; 𝐙) → Ω𝑘(𝑀)
𝜒 ↦ 𝜔(𝜒)

with imageΩ𝑘cℓ(𝑀)𝐙 those closed 𝑘-forms with integral periods.

2.3 Warning. The indexing convention used here is off by 1 from the indexing conven-
tion in [3, §1]. However, this indexing convention is better and is what was later adopted
by Simons–Sullivan [9, §1].

2.4 Remark. When 𝑘 = 0, the diagram (1.2) is quite degnerate, and it will be convenient
to define Ĥ0(𝑀; 𝐙) ≔ H0(𝑀; 𝐙).

Now let us constrct maps to fill in the ‘differential cohomology’ diagram (1.2).

2.5 Construction. There is a characteristic class map ch ∶ Ĥ𝑘(𝑀; 𝐙) → H𝑘(𝑀; 𝐙) de-
fined as follows. Since Zsm

𝑘−1(𝑀; 𝐙) is a free 𝐙-module and the quotient map 𝐑 ↠ 𝐑/𝐙
is an epimorphism, any homomorphism 𝜒∶ Zsm

𝑘−1(𝑀; 𝐙) → 𝐑/𝐙 lifts to a homomor-
phism �̃� ∶ Zsm

𝑘−1(𝑀; 𝐙) → 𝐑. Now define a homomorphism 𝐼(�̃�) ∶ Csm
𝑘 (𝑀; 𝐙) → 𝐙 by

the assignment
𝑐 ↦ −�̃�(𝜕𝑐) + ∫

𝑐
curv(𝜒) .

Since curv(𝜒) is closed, 𝐼(�̃�) defines a cocycle. Moreover, 𝐼(�̃�) takes integral values,
and the cohomology class [𝐼(�̃�)] ∈ H𝑘(𝑀; 𝐙) does not depend on the choice of lift �̃�.
We define ch by the assignment

ch ∶ Ĥ𝑘(𝑀; 𝐙) → H𝑘(𝑀; 𝐙)
𝜒 ↦ [𝐼(�̃�)] .

2.6 Construction. Consider the universal coefficient sequence

0 Ext1𝐙(H𝑖−1(𝑀; 𝐙), 𝐑/𝐙) H𝑖(𝑀; 𝐑/𝐙) Hom𝐙(H𝑖(𝑀; 𝐙), 𝐑/𝐙) 0 ,⟨−,−⟩

where the morphism ⟨−, −⟩ is given by sending a the class of a cocycle 𝑢 to the homo-
morphism

⟨𝑢, −⟩∶ H𝑖(𝑀; 𝐙) → 𝐑/𝐙
[𝑧] ↦ 𝑢(𝑧) .

Since the circle 𝐑/𝐙 is an injective 𝐙-module, for any 𝐙-module𝐴 and integer 𝑗 > 0, we
have Ext𝑗𝐙(𝐴, 𝐑/𝐙) = 0. In particular, ⟨−, −⟩ is an isomorphism.
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Setting 𝑖 = 𝑘 − 1, precomposition with the quotient map Zsm
𝑘−1(𝑀; 𝐙) ↠ H𝑘−1(𝑀; 𝐙)

defines an injection

H𝑖(𝑀; 𝐑/𝐙) Hom𝐙(H𝑖(𝑀; 𝐙), 𝐑/𝐙) Hom𝐙(Zsm
𝑘−1(𝑀; 𝐙), 𝐑/𝐙) .

∼

It follows from the definitions that this factors through Ĥ𝑘(𝑀; 𝐙).We simply denote this
composite by ⟨−, −⟩∶ H𝑘−1(𝑀; 𝐑/𝐙) ↪ Ĥ𝑘(𝑀; 𝐙).

2.7 Construction. Define a map 𝜄 ∶ Ω𝑘−1(𝑀) → Ĥ𝑘(𝑀; 𝐙) by setting

𝜄(𝜔)(𝑧) ≔ exp (2𝜋𝑖 ∫𝑧 𝜔)

for every smooth (𝑘 − 1)-cycle 𝑧. By Stokes’ Theorem, we see that curv(𝜄(𝜔)) = 𝑑𝜔.
We have an 𝐑-valued lift of 𝜄(𝜔) given by setting

̃𝜄(𝜔)(𝑧) ≔ ∫
𝑧
𝜔

for every smooth (𝑘 − 1)-cycle 𝑧. So by Stokes’ Theorem we have

𝐼( ̃𝜄(𝜔))(𝑐) = − ̃𝜄(𝜔)(𝜕𝑐) + ∫
𝑐
curv(𝜄(𝜔))

= −∫
𝜕𝑐
𝜔 + ∫
𝑐
𝑑𝜔 = 0

for every smooth 𝑘-chain 𝑐. Hence ch ∘𝜄 = 0.
We see that 𝜄 ∶ Ω𝑘−1(𝑀) → Ĥ𝑘(𝑀; 𝐙) has kernel those closed forms 𝜔 such that ∫𝑧 𝜔

is an integer for all 𝑧 ∈ Zsm
𝑘−1(𝑀; 𝐙). That is,

ker(𝜄) = Ω𝑘−1cℓ (𝑀)𝐙

is the groupof closed (𝑘−1)-formswith integral periods.Hence 𝜄descends to an injection

𝜄 ∶ Ω𝑘−1(𝑀)/Ω𝑘−1cℓ (𝑀)𝐙 ↣ Ĥ𝑘(−; 𝐙) .

2.8 Notation. Write Man for the cateogry of smooth manifolds and GrAb for the cate-
gory of graded abelian groups.

2.9Theorem (Simons–Sullivan [9, Theorem 1.1]). There is an essentially unique functor
Ĥ∗(−; 𝐙)∶ Manop → GrAb equipped with natural transformations

(2.9.1) ⟨−, −⟩∶ H∗−1(−; 𝐑/𝐙) → Ĥ∗(−; 𝐙),

(2.9.2) 𝜄 ∶ Ω∗−1(𝑀)/Ω∗−1cℓ (𝑀)𝐙 → Ĥ∗(−; 𝐙),

(2.9.3) ch ∶ Ĥ∗(−; 𝐙) → H∗(−; 𝐙),

(2.9.4) and curv ∶ Ĥ∗(−; 𝐙) → Ω∗cℓ(−)𝐙
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filling in the ‘differential cohomology diagram’

0 0

H∗−1(𝑀; 𝐑/𝐙) H∗(𝑀; 𝐙)

H∗−1dR (𝑀) Ĥ∗(𝑀; 𝐙) H∗dR(𝑀)

Ω∗−1(𝑀)
Ω∗−1cℓ (𝑀)𝐙

Ω∗cℓ(𝑀)𝐙

0 0

−𝛽

𝑑

so that the diagonal sequences are exact.

Any functor Ĥ∗(−; 𝐙)∶ Manop → GrAb satisfying these properties is called ordinary
differential cohomology.

2.10 Remark (Deligne’s model). Motivated by Deligne cohomology in Hodge theory
[12, §12.3], we can consider the smooth version of the Deligne complex on a manifold
𝑀. Write 𝐙𝐷(𝑘) for the complex of sheaves on𝑀

0 𝐙 Ω0 Ω1 ⋯ Ω𝑘−1 0 ,𝑑 𝑑

where𝛺𝑖 is in degree 𝑖 + 1. The 𝑘th smooth Deligne cohomology group of𝑀 is the hyper-
cohomology group𝐇𝑘(𝑀; 𝐙𝐷(𝑘)). We will see later in the seminar that smooth Deligne
cohomology agrees with ordinary differential cohomology [2, §4.3; 6, §3].

2.11 Questions.

(2.11.1) Is there differential K-theory?
Yes! Simons–Sullivan tell a similar story, and define differential K-theory in
terms of vector bundles with connection [10; 11].

(2.11.2) What about differential [favorite cohomology theory]?
Also yes, but the theory is more complicated. The fundamental obeservation
is that everything we’ve considered comes from a sheaf of abelian groups or
chain complexes (which we regard as spectra) on the category of all smooth
manifolds.
The category Sh(Man; Sp) has rich structure that gives rise to a ‘differential
cohomology diagram’ associated to every object (see [2, §3; 4]).

2.12 Remark. The category Sh(Man; Set) is really the right place for moduli spaces of
manifolds to live, and both Banach [5] and Fréchet manifolds [7; 8, Theorem 3.1.1; 13,
Theorem A.1.5] embed as full subcategories of Sh(Man; Set).
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2.13 Applications. The following are some applications we will study throughout the
semester.

(2.13.1) Lifting characteristic classes to differential cohomology. In particular, there are
applications to the existence of conformal immersions [3, §6].

(2.13.2) Work of Freed–Hopkins–Teleman on the Virasoro group.

References
1. C. Bär and C. Becker, Differential characters, Lecture Notes in Mathematics. Springer,

Cham, 2014, vol. 2112, pp. viii+187, isbn: 978-3-319-07033-9; 978-3-319-07034-6. doi:
10.1007/978­3­319­07034­6.

2. U. Bunke, T. Nikolaus, and M. Völkl,Differential cohomology theories as sheaves of spectra,
J. Homotopy Relat. Struct., vol. 11, no. 1, pp. 1–66, 2016. doi: 10.1007/s40062­014­0092­5.

3. J. Cheeger and J. Simons,Differential characters and geometric invariants, inGeometry and
topology (College Park, Md., 1983/84), Lecture Notes in Math. Vol. 1167, Springer, Berlin,
1985, pp. 50–80. doi: 10.1007/BFb0075216.

4. D. S. Freed andM. J. Hopkins,Chern-Weil forms and abstract homotopy theory, Bull. Amer.
Math. Soc. (N.S.), vol. 50, no. 3, pp. 431–468, 2013. doi: 10.1090/S0273­0979­2013­01415­0.

5. R. M. Hain, A characterization of smooth functions defined on a Banach space, Proc. Amer.
Math. Soc., vol. 77, no. 1, pp. 63–67, 1979. doi: 10.2307/2042717.

6. M. J. Hopkins and I. M. Singer, Quadratic functions in geometry, topology, and M-theory,
J. Differential Geom., vol. 70, no. 3, pp. 329–452, 2005.

7. M. V. Losik, Fréchet manifolds as diffeological spaces, Izv. Vyssh. Uchebn. Zaved. Mat.,
no. 5, pp. 36–42, 1992.

8. , Categorical differential geometry, Cahiers Topologie Géom. Différentielle Catég.,
vol. 35, no. 4, pp. 274–290, 1994.

9. J. Simons and D. Sullivan, Axiomatic characterization of ordinary differential cohomology,
J. Topol., vol. 1, no. 1, pp. 45–56, 2008. doi: 10.1112/jtopol/jtm006.

10. , Structured vector bundles define differential 𝐾-theory, in Quanta of maths, Clay
Math. Proc. Vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 579–599.

11. , Differential characters for 𝐾-theory, in Metric and differential geometry, Progr.
Math. Vol. 297, Birkhäuser/Springer, Basel, 2012, pp. 353–361. doi: 10.1007/978­3­0348­
0257­4_12.

12. C. Voisin, Hodge theory and complex algebraic geometry. I, English, Cambridge Studies in
AdvancedMathematics. CambridgeUniversity Press, Cambridge, 2007, vol. 76, pp. x+322,
Translated from the French by Leila Schneps, isbn: 978-0-521-71801-1.

13. K. Waldorf, Transgression to loop spaces and its inverse, I: Diffeological bundles and fusion
maps, Cah. Topol. Géom. Différ. Catég., vol. 53, no. 3, pp. 162–210, 2012.

7

https://doi.org/10.1007/978-3-319-07034-6
https://doi.org/10.1007/s40062-014-0092-5
https://doi.org/10.1007/BFb0075216
https://doi.org/10.1090/S0273-0979-2013-01415-0
https://doi.org/10.2307/2042717
https://doi.org/10.1112/jtopol/jtm006
https://doi.org/10.1007/978-3-0348-0257-4_12
https://doi.org/10.1007/978-3-0348-0257-4_12

	Motivation for differential cohomology
	Differential characters

