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Introduction

Let G be a finite group, and let M be a spectrum equipped with an action of G. We let MhG denote the
homotopy fixed point spectrum for the action of G on M , and MhG the homotopy orbit spectrum for the
action of G on X. These spectra are related by a canonical norm map Nm : MhG → MhG. Our starting
point is the following result of Hovey and Sadofsky (see [9]):

Theorem 0.0.1. Let K(n) be a Morava K-theory, let M be a spectrum which is K(n)-local, and let G be a
finite group acting on M . Then the norm map

Nm : MhG →MhG

exhibits MhG as a K(n)-localization of MhG. In other words, the map Nm induces an isomorphism of
K(n)-homology groups K(n)∗MhG → K(n)∗M

hG.

Our goal in this paper is to place Theorem 0.0.1 into a larger context. The collection of all K(n)-local
spectra can be organized into an∞-category, which we will denote by SpK(n). If M is a K(n)-local spectrum
with an action of a finite group G, then M determines a diagram ρ : BG → SpK(n). The homotopy fixed

point spectrum MhG can be identified with a limit of the diagram ρ, and the localized homotopy orbit
spectrum LK(n)MhG can be identified with a colimit of the diagram ρ. The main result of this paper is the
following variant of Theorem 0.0.1:

Theorem 0.0.2. Let X be a Kan complex. Assume that, for every vertex x ∈ X, the sets πn(X,x) are finite
for every integer n, and trivial for n � 0. Let ρ : X → SpK(n) be a diagram of K(n)-local spectra, indexed
by X. Then there is a canonical homotopy equivalence

NmX : lim−→(ρ)
∼→ lim←−(ρ).

Remark 0.0.3. In the special case where X is the classifying space of a finite group G, and ρ : X → SpK(n)

classifies an action of G on a K(n)-local spectrum M , the map NmX : lim−→(ρ) → lim←−(ρ) we will construct

in our proof of Theorem 0.0.2 agrees with the K(n)-localization of the usual norm map MhG → MhG.
Consequently, Theorem 0.0.2 can be regarded as a generalization of Theorem 0.0.1.

Example 0.0.4. The simplest instance of Theorem 0.0.2 occurs when the Kan complex X is discrete. In
this case, Theorem 0.0.2 asserts that for any finite collection of objects M1, . . . ,Mk ∈ SpK(n), the product∏

1≤i≤kMi and the coproduct
∐

1≤i≤kMi are canonically equivalent.

Let us briefly outline our approach to Theorem 0.0.2. Our assumptions on X guarantee that there exists
an integer n ≥ 0 such that the homotopy groups πm(X,x) vanish for m > n. We proceed by induction on
n. The case n = 0 reduces to Example 0.0.4. The inductive step can be broken into two parts:

(a) The construction of the norm map NmX : lim−→(ρ)→ lim←−(ρ).

(b) The proof that NmX(ρ) is an equivalence.

To carry out (a), we note that a map from lim−→(ρ) to lim←−(ρ) can be identified with a collection of maps
φx,y : ρ(x) → ρ(y), depending functorially on the pair (x, y) ∈ X ×X. Note that every point e of the path

space Px,y = {x} ×X X∆1 ×X {y} determines an equivalence ρ(e) : ρ(x) → ρ(y) in the ∞-category C. We
will choose NmX to correspond to the family of maps φx,y given heuristically by the formula

φx,y =

∫
e∈Px,y

ρ(e)dµ,

where the integral is taken with respect to a “measure” µ which is defined using the inverse of the norm
map NmPx,y (which exists by virtue of our inductive hypothesis). Making this idea precise will require some
rather intricate categorical constructions, which we explain in detail in §4.
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The core of the proof is in the verification of (b). Using formal properties of the norm maps NmX , we
can reduce to proving that the map NmX : lim−→(ρ)→ lim←−(ρ) is an equivalence in the special case where X is
an Eilenberg-MacLane space K(Z /pZ,m), and ρ is the constant functor taking the value K(n) ∈ SpK(n).

After passing to homotopy groups, NmX induces a map of graded abelian groups ι : K(n)∗X → K(n)−∗X,
and we wish to show that ι is an isomorphism.

Here we proceed by explicit calculation. The groups K(n)∗K(Z /pZ,m) and K(n)∗K(Z /pZ,m) were
computed by Ravenel and Wilson in [18]. Their results are most neatly summarized using the language of
Dieudonne theory. Let κ = π0K(n), let G denote the formal group over κ given by Spf K(n)0 CP∞, and let
M be the covariant Dieudonne module of G (so that M is a module over the Dieudonne ring W (κ)[F, V ],
which is free of n as a module over W (κ)). For each d ≥ 1, the exterior power ∧dW (κ)M inherits an action

of W (κ)[F, V ], which is the covariant Dieudonne module of a smooth formal group G(d) of height
(
n
d

)
and

dimension
(
n−1
d−1

)
. We have a canonical isomorphism

K(n)∗K(Z /pZ,m) ' π∗K(n)⊗κ A,

where A is the ring of functions on p-torsion subgroup of G(m). We will give a proof of this result in §2
which is somewhat different from the proof given in [18]: it relies on multiplicative aspects of the theory of
Dieudonne modules, which we review in §1.

We can summarize the preceding discussion by saying that the group scheme SpecK(n)0K(Z /pZ,m)
behaves, in some sense, like an mth exterior power of the group scheme SpecK(n)0K(Z /pZ, 1). In §4, we
will make this idea more precise by introducing, for every integer m > 0 and every finite flat commutative

group scheme G over a commutative ring R, another group scheme Alt
(m)
G . We will see that the calculation

of Ravenel and Wilson yields an isomorphism of commutative group schemes

SpecK(n)0K(Z /pZ,m) ' Alt
(m)
G[p],

where G[p] denotes the p-torsion subgroup of the formal group G (Theorem 2.4.10). Moreover, this isomor-
phism can be lifted to characteristic zero: if E denotes the Lubin-Tate spectrum associated to the formal
group G, and G denotes the universal deformation of G over the Lubin-Tate ring R = π0E, then we have a
canonical isomorphism

SpecE∧0 K(Z /pZ,m) ' Alt
(m)

G[p]

of finite flat group schemes over R (Theorem 3.4.1). We will use this isomorphism to identify the bilinear
form β with (the reduction of) a certain multiple of the trace pairing on the algebra E∧0 K(Z /pZ,m). In §5,
we will use this identification to prove the nondegeneracy of β, and thereby obtain a proof of Theorem 0.0.2.

Remark 0.0.5. Most of the results proven in the first three sections of this paper have appeared elsewhere in
print, though with a somewhat different exposition. In particular, the material of §1 was inspired by [4] (see
also [2]). The calculations of §2 were originally carried out by in [18] (at least for odd primes; an extension to
the prime 2 is indicated in [12]). The algebraic results of §3 concerning alternating powers of finite flat group
schemes can be found in [8] (at least for odd primes), and the relationship with the generalized cohomology
of Eilenberg-MacLane spaces is described in [2] (for Morava K-theory) and [17] (for Morava E-theory).

Notation and Terminology

In the later sections of this paper, we will freely use the language of ∞-categories. We refer the reader to
[13] for the foundations of this theory, and to [14] for an exposition of stable homotopy theory from the
∞-categorical point of view. We will generally adopt the notation of [13] and [14]. This leads to a few
nonstandard conventions:

• If C is a monoidal ∞-category, we will generally let ⊗ : C×C→ C indicate the tensor product functor
on C. In particular, we will employ this notation when discussing the smash product of spectra (and
the K(n)-localized smash product of K(n)-local spectra). That is, if X and Y are spectra, we denote
their smash product by X ⊗ Y rather than X ∧ Y .
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• Let A be an associative ring spectrum (that is, an associative algebra object of the ∞-category Sp).
We let LModA and RModA denote the ∞-categories of left A-module spectra and right A-module
spectra, respectively. If A is a commutative algebra object of Sp (that is, an E∞-ring), then we will
simply right ModA in place of LModA and RModA.

• If A is an commutative ring, we let ModA denote the abelian category of A-modules. We will generally
abuse notation by identifying A with the corresponding (discrete) ring spectrum. In this case, the
notation ModA will always indicate the ∞-category of A-module spectra. This ∞-category is related
to (but larger than) ModA: more precisely, the homotopy category of ModA can be identified with
the unbounded derived category of ModA.

• More generally, we will use boldface notations such as CAlg, CoAlg, Hopf in cases where we consider
classical algebraic objects (commutative algebras, commutative coalgebras, and Hopf algebras, respec-
tively), which we will be our emphasis throughout §1. Later in this paper we will consider algebras,
coalgebras, and Hopf algebras over ring spectra. These are organized into ∞-categories which will be
denoted by CAlg, CoAlg, and Hopf (with additional subscripts indicating the ground ring).

Acknowledgements
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1 Multiplicative Aspects of Dieudonne Theory

Let κ be a field. In this section, we will study commutative and cocommutative Hopf algebras over κ, which
we shall henceforth refer to simply as Hopf algebras. We let Hopfκ denote the category of Hopf algebras
over κ. In this section, we will study the structure of the category Hopfκ.

If H is a Hopf algebra over κ, then the counit and comultiplication on H are given by maps

ε : H → κ ∆ : H → H ⊗κ H.

We let Prim(H) = {x ∈ H : ∆(x) = 1 ⊗ x + x ⊗ 1} denote the collection of primitive elements of H, and
GLike(H) = {x ∈ H : ∆(x) = x ⊗ x, ε(x) = 1} denote the collection of grouplike elements of H. Note that
Prim(H) is a vector space over κ, and that the multiplication on H makes GLike(H) into an abelian group.

Definition 1.0.6. LetH be a Hopf algebra over a field κ. We will say thatH is multiplicative if Prim(H) ' 0.
We let Hopfmκ denote the full subcategory of Hopfκ spanned by the multiplicative Hopf algebras over κ.

Let κ be an algebraic closure of κ, and let Hκ = κ⊗κH be the induced Hopf algebra over κ. We will say
that H is connected if the group GLike(Hκ) is trivial. We let Hopf cκ denote the full subcategory of Hopfκ
spanned by the connected Hopf algebras over κ.

Remark 1.0.7. The construction H 7→ SpecH determines a contravariant equivalence from the category
Hopfκ to the category of commutative affine group schemes over κ. A Hopf algebra H is multiplicative if
the group scheme SpecH is pro-reductive, and connected if the group scheme SpecH is pro-unipotent.

If the field κ is perfect, then every Hopf algebra H over κ admits an essentially unique factorization
H ' Hc⊗κHm, where Hc is connected and Hm is multiplicative. This induces an equivalence of categories
Hopfκ ' Hopf cκ×Hopfmκ , where Hopf cκ and Hopfmκ denote the full subcategories of Hopfκ spanned by
those Hopf algebras which are connective and multiplicative, respectively.

LetH be an arbitrary Hopf algebra over κ, and letM = GLike(Hκ) be the collection of group-like elements
of Hκ. Then M is an abelian group equipped with a continuous action of the Galois group Gal(κ/κ). Let
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κ[M ] denote the group algebra of M over κ. The inclusion M = GLike(Hκ) ⊆ Hκ extends uniquely to a
map κ[M ] → Hκ of Hopf algebras over κ, which is Gal(κ/κ)-equivariant. Restricting to fixed points, we
obtain a map µ : H0 → H of Hopf algebras over κ, where H0 denotes the algebra of Gal(κ/κ)-fixed points
on κ[M ]. One can show that µ is always injective, and is an isomorphism if and only if H is multiplicative.
Consequently, the construction

H 7→ GLike(Hκ)

determines an equivalence from the category Hopfmκ to the category of abelian groups equipped with a
continuous action of the Galois group Gal(κ/κ).

One can attempt to carry out a similar analysis in the setting of connected Hopf algebras, using primitive
elements rather than group-like elements. Let H be an arbitrary Hopf algebra over κ, and let V = Prim(H)
be the κ-vector space of primitive elements of H. The inclusion V ↪→ H extends uniquely to a map of Hopf
algebras ν : Sym∗ V → H (where we regard Sym∗ V as endowed with the unique Hopf algebra structure
compatible with its multiplication, having the property that the elements of V are primitive). If κ is a field
of characteristic zero, then the map ν is always an injection, and is an isomorphism if and only if the Hopf
algebra H is connected. In this case, the construction H 7→ Prim(H) determines an equivalence from the
category Hopf cκ to the category Vectκ of vector spaces over κ.

If κ is a perfect field of characteristic p > 0, the situation is much more complicated. The map ν :
Sym∗ Prim(H)→ H is generally neither injective nor surjective, even if we assume that H is connected. To
understand the structure of H, it is necessary to replace the vector space Prim(H) by a more sophisticated
invariant, called the Dieudonne module of H. Let W (κ) denote the ring of (p-typical) Witt vectors of κ,
let ϕ : W (κ) → W (κ) denote the automorphism induced by the Frobenius map from κ to itself, and let
Dκ = W (κ)[F, V ] denote the non-commutative ring obtained by adjoining to W (κ) a pair of elements F and
V satisfying the identities

V F = FV = p Fλ = ϕ(λ)F V ϕ(λ) = λV

where λ ranges over W (κ). The following is a foundational result of Dieudonne theory:

Theorem 1.0.8. Let κ be a perfect field of characteristic p > 0. Then there is a fully faithful embedding
DM from the category Hopf cκ of connected Hopf algebras over κ to the category of left Dκ-modules. The
essential image of this functor is the collection of those left Dκ-modules M having the property that each
element x ∈M is annihilated by V n, for some n� 0.

If H is a connected Hopf algebra over κ, we will refer to DM(H) as the Dieudonne module of H. It can
be regarded as an enlargement of the set Prim(H) of primitive elements of H, in the sense that there is a
canonical isomorphism Prim(H) ' {x ∈ DM(H) : V x = 0}.

As indicated in Remark 1.0.7, the category Hopfκ of Hopf algebras over κ can be identified with (the
opposite of) the category of commutative affine group schemes over κ. However, it has another algebro-
geometric interpretation which will play an important role throughout this section. Let CAlgfd

κ denote the
category of finite dimensional commutative algebras over κ, and let Ab denote the category of abelian groups.
A commutative formal group over κ is a functor G : CAlgfd

κ → Ab which preserves finite limits. If H is a Hopf
algebra over κ, then the construction R 7→ GLike(HR) is a formal group over κ (here HR denotes the Hopf
algebra R⊗κH over R), which we will denote by Spf H∨. One can show that the construction H 7→ Spf H∨

determines an equivalence from the category of Hopf algebras over κ to the category of commutative formal
groups over κ.

Suppose that G, G′, and G′′ are commutative formal groups over κ. We can then consider the notion of
a bilinear map G × G′ → G′′: that is, a natural transformation of functors G × G′ → G′′ which induces a
bilinear map

G(R)×G′(R)→ G′′(R)

for every R ∈ CAlgfd
κ . If G and G′ are fixed, then there is a universal example of a commutative formal

group G′′ equipped with a bilinear map G×G′ → G′′, which we will denote by G⊗G′. Writing G = Spf H∨
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and G′ = Spf H ′∨, we can write G′′ = Spf H ′′∨ for some Hopf algebra H ′′. We will indicate the dependence
of H ′′ on H and H ′ by writing H ′′ = H �H ′. The operation � determines a symmetric monoidal structure
on the category Hopfκ. If the Hopf algebras H and H ′ are connected, we will see that H � H ′ is also
connected. Consequently, H � H ′ is determined by its Dieudonne module DM(H � H ′). Our main goal
in this section is to prove the following result, which gives a linear-algebraic description of DM(H �H ′) in
terms of DM(H) and DM(H ′):

Theorem 1.0.9 (Goerss, Buchstaber-Lazarev). Let H and H ′ be connected Hopf algebras over κ. Then the
Diuedonne module DM(H �H ′) is characterized by the following universal property: for any left Dκ-module
M , there is a bijective correspondence between Dκ-module maps DM(H�H ′)→M and W (κ)-bilinear maps
λ : DM(H)×DM(H ′)→M satisfying the following identities

V λ(x, y) = λ(V x, V y) Fλ(V x, y) = λ(x, Fy) Fλ(x, V y) = λ(Fx, y).

Let us now outline the contents of this section. We will begin in §1.1 with some generalities on bialgebras
and Hopf algebras, and give a construction of the tensor product � : Hopfκ×Hopfκ → Hopfκ. In §1.3,
we will recall the definition of the Dieudonne module functor DM, and give a proof of Theorem 1.0.9. Both
the definition and the proof will require some general facts about Witt vectors, which we review in §1.2.
Finally, in §1.4, we describe some extensions of Theorem 1.0.9 to the case of Hopf algebras which are not
necessarily connected.

1.1 Tensor Products of Hopf Algebras

Let k be a commutative ring, which we regard as fixed throughout this section, and let Hopfk denote the
category of (commutative and cocommutative) Hopf algebras over k. In this section, we will introduce a
symmetric monoidal structure on the category Hopfk, which will play an important role throughout this
paper. When k is a field, the tensor product functor � : Hopfk ×Hopfk → Hopfk can be described by the
following universal property: given Hopf algebras H,H ′, H ′′ ∈ Hopfk, there is a bijective correspondence
between Hopf algebra homomorphisms H �H ′ → H ′′ and bilinear maps of formal k-schemes

Spf H∨ × Spf H ′∨ → Spf H ′′∨.

We begin with some general remarks. We let Modk denote the category of (discrete) k-modules. We
regard Modk as symmetric monoidal category by means of the usual tensor product (M,N) 7→M ⊗k N .

Definition 1.1.1. A k-coalgebra is an object C ∈ CoAlgk which is equipped with a comultiplication
∆C : C → C ⊗k C which is commutative, associative, and admits a counit εC : C → k.

Warning 1.1.2. The notion of k-coalgebra introduced in Definition 1.1.1 is more often referred to as a
cocommutative, coassociative, counital coalgebra. We will generally omit these adjectives: in this paper, we
will never consider coalgebras which are not cocommutative and coassociative.

If C and D are k-coalgebras, a coalgebra homomorphism from C to D is a map f : C → D for which the
diagram

k

id

��

C
εCoo ∆C //

f

��

C ⊗k C

f⊗f
��

k D
εDoo ∆D // D ⊗k D

commutes. The collection of k-coalgebras and coalgebra homomorphisms determines a category, which we
will denote by CoAlgk.

We will use the following category-theoretic fact:

Proposition 1.1.3. The category CoAlgk is locally presentable: that is, it admits small colimits and is
generated by a set of τ -compact objects, for some regular cardinal τ .

6



Proof. The existence of small colimits in CoAlgk follows immediately from the existence of small colimits in
Modk (note also that the forgetful functor CoAlgk →Modk preserves small colimits). The accessibility of
CoAlgk follows from the observation that CoAlg can be identified with a lax limit of accessible categories
(see, for example, [15]).

Corollary 1.1.4. The category CoAlgk admits small limits and colimits.

Example 1.1.5. Given a pair of k-coalgebras C and D, the tensor product C ⊗k D is a product of C and
D in the category CoAlgk.

Remark 1.1.6. Suppose that k is a field. We let CoAlgfd
k denote the full subcategory of CoAlgk spanned

by those coalgebras which are finite-dimensional when regarded as vector spaces over k. The objects of
CoAlgfd

k are compact when regarded as objects of CoAlgk, so that the inclusion CoAlgfd
k ↪→ CoAlgk

extends to a fully faithful embedding θ : Ind(CoAlgfd
k ) → CoAlgk. The functor θ is an equivalence of

categories: essentially surjectivity follows from the fact that every k-coalgebra can be written as a union
of its finite-dimensional subcoalgebras. Consequently, we obtain (in the case where k is a field) a stronger
version of Proposition 1.1.3: the category CoAlgk is compactly generated.

Notation 1.1.7. For every k-coalgebra C, we let hC : CoAlgop
k → Set denote the functor represented by

C, so that hC is described by the formula

hC(D) = HomCoAlgk(D,C).

According to Yoneda’s Lemma, the construction C 7→ hC determines a fully faithful embedding

CoAlgk → Fun(CoAlgop
k , Set).

Remark 1.1.8. Suppose that k is a field. Using Remark 1.1.6, we see that the Yoneda embedding C 7→ hC
induces a fully faithful embedding

CoAlgk → Fun((CoAlgfd
k )op, Set).

Let CAlgfd
k denote the category of (discrete) commutative algebras over k which are finite-dimensional when

regarded as vector spaces over k, so that vector space duality induces an equivalence of categories

(CoAlgfd
k )op ' CAlgfd

k .

We then obtain a fully faithful embedding

CoAlgk → Fun(CAlgfd
k , Set),

whose essential image consists of those functors CAlgfd
k → Set which preserve finite limits. We will sometimes

denote this latter embedding by C 7→ Spf C∨. Here we can regard C∨ as a topological ring, and Spf C∨

carries an object A ∈ CAlgfd
k to the set of continuous k-algebra homomorphisms C∨ → A.

Proposition 1.1.9. The Yoneda embedding h : CoAlgk → Fun(CoAlgop
k , Set) admits a left adjoint L :

Fun(CoAlgop
k , Set)→ CAlgk. Moreover, the functor L commutes with finite products.

Proof. The existence of L is a formal consequence of Proposition 1.1.3. Let us review a proof, since we
will need it to show that L commutes with finite products. We first note that the essential image of h
is the full subcategory E0 ⊆ Fun(CoAlgop

k , Set) spanned by those functors which carry small colimits in
CoAlgk to limits in Set. Choose a regular cardinal τ such that CoAlgop

k is τ -compactly generated, let C

be the category of τ -compact objects of CoAlgk, and let E1 be the full subcategory of Fun(CoAlgop
k , Set)

spanned by those functors which carry κ-filtered colimits to limits in Set. Since CoAlgop
k is τ -compactly

generated, a functor F ∈ E1 is determined by its restriction F |C. More precisely, E1 is the full subcategory
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of Fun(CoAlgop
k , Set) spanned by those functors F which are right Kan extensions of F |Cop. It follows that

the inclusion E1 ↪→ CAlgk admits a left adjoint, which is equivalent to the restriction functor

Fun(CoAlgop
k , Set)→ Fun(Cop, Set)

(and therefore commutes with all small limits). To complete the proof, it will suffice to show that the
inclusion E0 ↪→ E1 admits a left adjoint which commutes with finite products.

In what follows, let us identify E1 with the presheaf category Fun(Cop, Set). Under this identification,
the inclusion i : E0 ↪→ E1 is given by the restricted Yoneda embedding C 7→ hC |Cop. This functor obviously
preserves small limits and τ -filtered colimits. Using the adjoint functor theorem, we deduce that i admits a
left adjoint L0.

We will complete the proof by showing that L0 commutes with finite products. Fix a pair of functors
F, F ′ : Cop → Set; we wish to show that the canonical map θF,F ′ : L0(F × F ′) → L0(F ) ⊗k L0(F ′) is an
isomorphism. Note that if F ′ is fixed, the constructions F 7→ L0(F × F ′) and F 7→ L0(F ) ⊗k L0(F ′) carry
colimits in Fun(Cop, Set) to colimits in CoAlgk. We may therefore reduce to the case where F is the functor
represented by a coalgebra C. Similarly, we may suppose that F ′ is represented by a coalgebra C ′. In this
case, θF,F ′ is induced by the identity map from C ⊗k C ′ to itself.

Definition 1.1.10. Let C be a category which admits finite products. A commutative monoid object of C is
an object M ∈ C equipped with a multiplication map m : M ×M → M which is commutative, associative,
and unital. We let CMon(C) denote the category of commutative monoid objects in C.

Example 1.1.11. Let C be the category of sets. In this case, CMon(C) = CMon(Set) is the category of
commutative monoids. We will denote this category simply by CMon.

Example 1.1.12. Let C = CoAlgk be the category of k-coalgebras. In this case, we will denote CMon(C)
by BiAlgk. We will refer to BiAlgk as the category of k-bialgebras. By definition, an object of BiAlgk is a
k-module H which is equipped with a comultiplication ∆ : H → H ⊗kH and a multiplication H ⊗kH → H
which is a map of k-coalgebras. Here we always require the multiplication and comultiplication on H to be
commutative, associative, and unital.

Let h : CoAlgk → Fun(CoAlgop
k , Set) be the Yoneda embedding, and let L denote the left adjoint to h

supplied by Proposition 1.1.9. Since h and L commute with finite products, they determine an adjunction

CMon(Fun(CoAlgop
k , Set))

CMon(L)//CMon(CoAlgk),
CMon(h)
oo

which we will denote simply by

Fun(CoAlgop
k ,CMon)

L //BiAlgk .
h
oo

More concretely, we can summarize the situation as follows:

• Let H be a k-bialgebra. Then for every k-coalgebra C, the multiplication on H determines a commuta-
tive monoid structure on the set HomCoAlgk(C,H). Consequently, we can view hH as a contravariant
functor from CoAlgk to the category of commutative monoids.

• The functor h : BiAlgk → Fun(CoAlgop
k ,CMon) admits a left adjoint, given on the level of coalgebras

by the construction F 7→ L(F ) where L is defined as in Proposition 1.1.9.

Remark 1.1.13. Suppose that k is a field. Using Remark 1.1.8, we see that the Yoneda embedding
determines a fully faithful functor BiAlgk → Fun(CAlgfd

k ,CMon(Set)), whose essential image is spanned
by those functors X : CAlgfd

k → CMon(Set) which preserve finite limits.
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Construction 1.1.14. Let M , M ′, and M ′′ be commutative monoids (whose monoid structure will be
denoted additively). We will say that a map λ : M ×M ′ →M ′′ is bilinear if it satisfies the identities

λ(x+ x′, y) = λ(x, y) + λ(x′, y) λ(0, y) = 0 = λ(x, 0) λ(x, y + y′) = λ(x, y) + λ(x, y′).

Given commutative monoids M and M ′, there exists another commutative monoid M ⊗M ′ and a bilinear
map λu : M ×M ′ → M ⊗M ′ which is universal in the following sense: for every commutative monoid
M ′′, composition with λu induces a bijection from the set HomCMon(M ⊗M ′,M ′′) to the set of bilinear
maps M ×M ′ → M ′′. We will refer to M ⊗M ′ as the tensor product of M with M ′. The tensor product
of commutative monoids is commutative and associative up to coherent isomorphism, and the formation of
tensor products endows CMon with the structure of a symmetric monoidal category.

Remark 1.1.15. If M and M ′ are abelian groups, then the tensor product M ⊗M ′ in the category CMon
agrees with their tensor product in the category of abelian groups. However, the inclusion from the category
of abelian groups to the category CMon is not symmetric monoidal, because it does not preserve unit objects:
the unit object of CMon is not the free abelian group Z on one generator, but rather the free commutative
monoid Z≥0 on one generator.

Proposition 1.1.16. Let C denote the functor category Fun(CoAlgop
k ,CMon), and regard C as a symmetric

monoidal category using Construction 1.1.14 objectwise. L : C→ BiAlgk denote a left adjoint to the Yoneda
embedding. Then L is compatible with the symmetric monoidal structure on C. That is, if α : F → F ′ is a
morphism in C which induces an isomorphism of bialgebras L(F ) → L(F ′), and G is an arbitrary object of
C, then the induced map β : L(F ⊗G)→ L(F ′ ⊗G) is also an isomorphism of bialgebras.

Proof. Let H be a bialgebra over k; we wish to show that composition with β induces a bijection

θ : HomBiAlgk(L(F ′ ⊗G), H)→ HomBiAlgk(L(F ⊗G), H).

Unwinding the definitions, we can identify θ with a map

HomC(F ′ ⊗G, hH)→ HomC(F ⊗G, hH).

We can identify the left hand side with the set of bilinear maps F ′ ×G→ hH , and the right hand side with
the set of bilinear maps F ×G→ hH . Using the fact that the functor L commutes with finite products, we
can identify both sides with the same subset of the mapping set

HomCoAlgk(L(F ′)⊗k L(G), H) ' HomCoAlgk(L(F )⊗k L(G), H).

Corollary 1.1.17. The category BiAlgk inherits a symmetric monoidal structure from the symmetric
monoidal structure on C = Fun(CoAlgop

k ,CMon). That is, there is a symmetric monoidal structure on
BiAlgk (which is unique up to canonical isomorphism) for which the localization functor L : C → BiAlgk
is symmetric monoidal.

Notation 1.1.18. We will indicate the symmetric monoidal structure of Corollary 1.1.17 by

� : BiAlgk ×BiAlgk → BiAlgk .

Note that H �H ′ is very different from the k-linear tensor product H ⊗kH ′. Unwinding the definitions, we
see that giving a bialgebra map H �H ′ → H ′′ is equivalent to giving a coalgebra map λ : H ⊗k H ′ → H ′′

satisfying the identities
λ(1⊗ y) = εH′(y) λ(x⊗ 1) = εH(x)

λ(xx′ ⊗ y) =
∑

cαλ(x, zα)λ(x′, z′α) if ∆H′(y) =
∑

cαzα ⊗ z′α

λ(x⊗ yy′) =
∑

cαλ(zα ⊗ y)λ(z′α ⊗ y′) if ∆H′(x) =
∑

cαzα ⊗ z′α.

Concretely, we can describe H �H ′ as the quotient of the symmetric algebra Sym∗(H ⊗k H ′) by the ideal
which enforces these relations.
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Remark 1.1.19. We have a diagram of categories and functors

BiAlgk
h //

��

Fun(CoAlgop
k ,CMon)

��
CoAlgk // Fun(CoAlgop

k , Set)

which commutes up to canonical isomorphism; here the vertical maps are given by the forgetful functors.
Each of these functors admits a left adjoint. The left adjoint to the forgetful functor BiAlgk → CoAlgk
is given by the formation of symmetric algebras C 7→ Sym∗(C), while the left adjoint to the right vertical
map is given by pointwise composition with the free commutative monoid functor Set → CMon given by
S 7→ Z≥0[S]. We therefore obtain a diagram of left adjoints

BiAlgk Fun(CoAlgop
k ,CMon)

Loo

CoAlgk

Sym∗

OO

Fun(CoAlgop
k , Set)

OO

Loo

which commutes up to canonical isomorphism. The free commutative monoid functor Set → CMon is
symmetric monoidal: that is, it carries products of sets to tensor products of commutative monoids. It
follows that the functor Sym∗ : CoAlgk → BiAlgk is also symmetric monoidal. In particular, if C and D
are k-coalgebras, we have a canonical isomorphism of k-bialgebras Sym∗(C ⊗k D) ' (Sym∗ C) � (Sym∗D).

Example 1.1.20. Let us regard k as a coalgebra over itself. Then k is the unit object of CoAlgk (with
respect to the Cartesian product on CoAlgk, given by tensor product over k). It follows that Sym∗ k ' k[x]
is the unit object of BiAlgk with respect to the tensor product �. Here the polynomial ring k[x] is equipped
with its usual multiplication, and its coalgebra structure is determined by the relation ∆(x) = x⊗ x.

Notation 1.1.21. Let Z be the group of integers, which we regard as an object of the category CMon
of commutative monoids. We have an evident inclusion Z≥0 ↪→ Z, which induces a map of commutative
monoids

Z ' Z≥0⊗Z→ Z⊗Z .

A simple calculation shows that this map is an isomorphism: that is, we can regard Z as an idempotent
object in the symmetric monoidal category CMon. If follows that the category ModZ(CMon) of Z-module
objects of CMon can be identified with a full subcategory of CMon. Unwinding the definitions, we see that
a commutative monoid M ∈ CMon admits a Z-module structure if and only if M is an abelian group. Let
Ab denote the category of abelian groups, which we identify with a full subcategory of CMon. It follows
that Ab inherits a symmetric monoidal structure from the symmetric monoidal structure on CMon, with the
same tensor product (but a different unit object).

Let H be a k-bialgebra. We will say that H is a Hopf algebra if the functor hH : (CoAlgk)op → CMon
factors through the full subcategory Ab ⊆ CMon. Let Hopfk denote the full subcategory of BiAlgk spanned
by the Hopf algebras over k.

Let Z denote the constant functor CoAlgop
k → CMon taking the value Z, and let

L : Fun(CoAlgop
k ,CMon)→ BiAlgk

be a left adjoint to the Yoneda embedding. Unwinding the definitions, we can identify L(Z) with the ring
of Laurent polynomials k[Z] = k[t±1], with comultiplication given by ∆(t) = t ⊗ t. Since the functor L is
symmetric monoidal, we conclude that k[t±1] is an idempotent object of BiAlgk. Note that k[t±1] is a Hopf
algebra over k.
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For any bialgebra H, we have hH�k[t±1] ' hH ⊗hk[t±1] ∈ Fun(CoAlgop
k ,Ab) so that H �k[t±1] is a Hopf

algebra. Conversely, if H is a Hopf algebra, then we have

H ' L(hH) ' L(hH ⊗ Z) ' L(hH) � k[t±1] ' H � k[t±1].

It follows that we can identify Hopfk with the category of modules over the idempotent object k[t±1] in
BiAlgk. In particular, the category Hopfk of Hopf algebras over k inherits a symmetric monoidal structure
from that of BiAlgk, with tensor product given by (H,H ′) 7→ H �H ′ and unit object given by k[t±1].

We close this section with a few observations which will be helpful when computing with the tensor
product � on BiAlgk and Hopfk.

Definition 1.1.22. Let C be a k-coalgebra. A coaugmentation on C is a k-coalgebra morphism λ : k →
C. We let CoAlgaug

k denote the category (CoAlgk)k/ whose objects are k-coalgebras equipped with a
coaugmentation.

Remark 1.1.23. A coaugmentation λ : k → C is uniquely determined by the element λ(1) ∈ C. Conversely,
an arbitrary element x ∈ C determines a coaugmentation on C if and only if it is grouplike: that is, if and
only if it satisfies the equations

∆C(x) = x⊗ x εC(x) = 1.

Remark 1.1.24. Let C be a coaugmented k-coalgebra. Then, as a k-module, C splits as a direct sum
k ⊕ C0, where C0 denotes the kernel of the counit map εC : C → k.

Remark 1.1.25. Let Set∗ denote the category of pointed sets. The adjunction

Fun(CoAlgop
k , Set)

L //CoAlgk
h
oo

determines another adjunction

Fun(CoAlgop
k , Set∗)

L //CoAlgaug
k .

h
oo

We will regard Set∗ as a symmetric monoidal category via the smash product of pointed sets. If X is
a set, we let X∗ = X ∪ {∗} be the set obtained from X by adjoining a disjoint base point. We then have
canonical isomorphisms X∗ ∧ Y∗ ' (X × Y )∗, which exhibit the construction X 7→ X∗ as a symmetric
monoidal functor from (Set,×) to (Set∗,∧). The smash product induces a symmetric monoidal structure
on Fun(CoAlgop

k , Set∗), which is compatible with the localization functor L (as in the proof of Proposition
1.1.16). It follows that the category CoAlgaug

k inherits a symmetric monoidal structure, which we will denote
by ∧ : CoAlgaug

k ×CoAlgaug
k → CoAlgaug

k . More concretely, if C and D are coaugmented coalgebras, then
we can describe C ∧D as the quotient of the product C ⊗k D obtained by identifying the maps

C ' C ⊗k k → C ⊗k D ← k ⊗k D ' D

with those given by the coaugmentation on C∧D. Writing C ' k⊕C0, D ' k⊕D0, and C∧D = k⊕(C∧D)0

as in Remark 1.1.24, we obtain an isomorphism of k-modules (C ∧D)0 ' C0 ⊗k D0.

Remark 1.1.26. If H is a k-bialgebra, then we can regard H as a k-coalgebra with a coaugmentation given
by the unit map k → H. This construction determines a forgetful functor BiAlgk → CoAlg♥,aug

k , which fits
into a diagram

BiAlgk
h //

��

Fun(CoAlgop
k ,CMon)

��
CoAlgaug

k
// Fun(CoAlgop

k , Set∗)
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which commutes up to canonical isomorphism. Each of these functors admits a left adjoint. The left adjoint
to the forgetful functor BiAlgk → CoAlgaug

k is given by the reduced symmetric algebra construction

Sym∗red : CoAlgaug
k → BiAlgk,

which carries a coalgebra C with distinguished grouplike element x ∈ C to the quotient Sym∗(C)/(x − 1).
Writing C = k⊕C0 as in Remark 1.1.24, we have an isomorphism of k-algebras Sym∗red(C) ' Sym∗(C0). The
left adjoint to the right vertical map is induced by pointwise composition with the reduced free commutative
monoid functor F : Set∗ → CMon, given on objects by the formula F (S∗) = Z≥0[S]. We therefore obtain a
diagram of left adjoints

BiAlgk Fun(CoAlgop
k ,CMon)

Loo

CoAlgk

Sym∗red

OO

Fun(CoAlgop
k , Set∗)

OO

Loo

which commutes up to canonical isomorphism. Since the functor F is symmetric monoidal, it follows that
the functor Sym∗red is also symmetric monoidal. More concretely, if we are given coaugmented coalgebras
C ' k ⊕ C0, D ' k ⊕D0, then there is a canonical bialgebra isomorphism

Sym∗red(C) � Sym∗red(D) ' Sym∗red(C ∧D),

which we can write more informally as Sym∗(C0) � Sym∗(D0) ' Sym∗(C0 ⊗D0).

Example 1.1.27. Let us regard k[x] as a Hopf algebra over k, with comultiplication given by ∆(x) =
1⊗ x+ x⊗ 1. Then k[x] ' Sym∗red(C), where C is the subcoalgebra of k[x] generated by 1 and x. Note that
there is a canonical isomorphism C ∧ C ' C, given by x ⊗ x 7→ x. Applying Remark 1.1.26, we obtain an
isomorphism k[x] � k[x] ' k[x], given by x� x 7→ x.

1.2 Witt Vectors

In this section, we will review some aspects of the theory of Witt vectors which are needed in this paper.
For a more comprehensive discussion, we refer the reader to [7].

Notation 1.2.1. For every commutative ring R, we let WBig(R) denote the subset of R[[t]] consisting of
power series of the form 1 + c1t+ c2t

2 + · · · (that is, power series with constant term 1). The set WBig(R)
has the structure of an abelian group, given by multiplication of power series. We will refer to WBig(R)
as the group of big Witt vectors of R (in fact, WBig(R) has the structure of a commutative ring, but the
multiplication on WBig(R) will not concern us in this section).

Let WtBig denote the polynomial ring Z[c1, c2, . . .] on infinitely many variables. For any commutative
ring R, we have a canonical bijection. WBig(R) ' HomRing(WtBig, R). Since the functor R 7→WBig(R) takes
values in the category of abelian groups, we can regard WtBig as a Hopf algebra over the ring of integers Z.

Unwinding the definitions, we see that the comultiplication on WtBig is given by

cn 7→
∑
i+j=n

ci ⊗ cj ,

where by convention we set c0 = 1.

Remark 1.2.2. We can identify the commutative ring WtBig with the cohomology ring H∗(BU; Z). Here
the identification carries each cn ∈WtBig to the nth Chern class of the tautological (virtual) bundle on BU.

Remark 1.2.3. Every formal power series 1 + c1t+ c2t
2 + · · · ∈ R[[t]] can be written uniquely in the form∏

n>0

(1− antn)
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for some an ∈ R. Here we can write each an as a polynomial (with integer coefficients) in variables
{cm}m>0, and each cm as a polynomial (with integer coefficients) in the variables {an}n>0. Applying
this to the universal case R = WtBig, we obtain elements {an ∈WtBig}n>0 which determine an isomorphism
Z[a1, a2, . . .] 'WtBig. The element an ∈WtBig is called the nth Witt component.

Notation 1.2.4. Let f(t) ∈ WtBig[[t]] denote the tautological element of W (WtBig), given by the formal
power series 1 + c1t+ c2t

2 + · · · . Write

tdlog(f(t)) =
tf ′(t)

f(t)
= w1t+ w2t

2 + w3t
3 + · · ·

for some elements w1, w2, . . . ∈WtBig. We will refer to wn as the nth ghost component. Note that each wn
is a primitive element of WtBig: that is, we have ∆(wn) = wn ⊗ 1 + 1⊗ wn.

Let WtQBig = Q[c1, c2, . . .] denote the tensor product of WtBig with the rational numbers. In the power

series ring WtQBig[[t]], we have the identity

log(f(t)) =
∑
n>0

wn
n
tn,

so that f(t) = exp(
∑ wn

n t
n). We therefore have a canonical isomorphism WtQBig ' Q[w1, w2, . . .]: in partic-

ular, each cn can be written as a polynomial in the ghost components {wn} with rational coefficients.

Remark 1.2.5. Writing f(t) =
∏
n>0(1− antn), we obtain the formula

∑
n>0

wn
n
tn = log f(t) =

∑
m>0

log(1− amtm) =
∑
m>0

∑
d>0

admt
md

d
=
∑
n>0

∑
d|n

adn/dt
n

d
.

Extracting coefficients, we obtain for each n > 0

wn =
∑
d|n

n

d
adn/d.

In particular, we see that each ghost component wn can be written as a polynomial in the Witt components
{am}m|n with integer coefficients. Conversely, each Witt component an can be written as polynomial in the
ghost components {wm}m|n with rational coefficients.

Remark 1.2.6. Let S be a set of positive integers which is closed under divisibility: that is, if n ∈ S and
d|n, then d|S. Let WtS denote the subalgebra of WtBig generated by the Witt components an for n ∈ S,

and WtQS the tensor product WtS ⊗Q. We make the following observations concerning WtS :

• An element of WtBig belongs to WtS if and only if, when written as a polynomial in the Witt com-
ponents {an}n>0, the only Witt components which appear (with nonzero coefficients) are those an for

which n ∈ S. In particular, we have WtS = WtQS ∩WtBig (where the intersection is formed in the

larger ring WtQBig ' Q[a1, a2, . . .]).

• For each n ∈ S, the ghost component wn is contained in WtS . Moreover, WtQS is a polynomial algebra
(over Q) on the ghost components {wn}n∈S (see Remark 1.2.5).

• Since the antipode of WtQBig carries each wn to −wn, it preserves the subalgebra WtQS and therefore

also the subalgebra WtS = WtQS ∩WtBig.

• If n ∈ S, then ∆(wn) = 1⊗ wn + wn ⊗ 1 belongs to WtS ⊗WtS ⊆WtBig⊗WtBig. It follows that the

comultiplication ∆ : WtQBig → WtQBig⊗Q WtQBig carries WtQS into WtQS ⊗Q WtQS . Since WtS ⊗WtS '
(WtQS ⊗Q WtQS ) ∩ (WtBig⊗WtBig), we conclude that the comultiplication on WtBig carries WtS into
WtS ⊗WtS : that is, WtS inherits the structure of a Hopf algebra from WtBig.
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Example 1.2.7. Let p be a prime number. We let Wtp∞ denote the subalgebra Z[a1, ap, ap2 , . . .] ⊆WtBig.
We refer to Wtp∞ as the Hopf algebra of p-typical Witt vectors.

We now study the relationship between Witt vectors and the Hopf algebra tensor product introduced in
§1.1.

Lemma 1.2.8. Let H1, H2, . . . ,Hn be a finite collection of bialgebras over Z which are free when regarded
as Z-modules. If each Hi is finitely generated as a commutative ring, then H1 � · · ·�Hn is finitely generated
as a commutative ring.

Proof. Let HQ
i denote the tensor product of Hi with the rational numbers. Then HQ

i is a coalgebra over Q,

and can therefore be written as a filtered colimit lim−→HQ
i,α of finite-dimensional subcoalgebras HQ

i,α ⊆ HQ
i .

For each index α, let Hi,α = HQ
α ∩ Hi (where we identify HQ

i,α and Hi with subsets of HQ
i ). Since Hi is

free as a Z-module, Hi,α is finitely generated as a Z-module. Note that Hi,α is a subcomodule of Hi. Since
Hi is finitely generated as a commutative ring, we may choose α so that Hi is generated (as a commutative
ring) by Hi,α. Set Ci = Hi,α, so that we have a surjective bialgebra map Sym∗(Ci) → Hi. We then
obtain a surjective bialgebra map Sym∗(C1) � · · · � Sym∗(Cn) → H1 � · · · � Hn. Using the isomorphism
Sym∗(C1) � · · ·� Sym∗(Cn) ' Sym∗(C1 ⊗ · · · ⊗ Cn), we deduce that H1 � · · ·�Hn is finitely generated as
a commutative ring.

Notation 1.2.9. Let H be a bialgebra over a commutative ring k. We let IH denote the augmentation
ideal of H: that is, the kernel of the counit map ε : H → k. We let Q(H) denote the quotient IH/I

2
H . Then

Q(H) is a k-module, which we will refer as the k-module of indecomposables of H. Note that if H is finitely
generated as a k-algebra, then Q(H) is finitely generated as a k-module.

Suppose we are given a bialgebra map φ : H → H ′. We let coker(φ) denote the quotient of H ′ by the
ideal generated by φ(IH). Then coker(φ) inherits the structure of a bialgebra: it is the cokernel of the map
φ in the (pointed) category of k-bialgebras. In the language of affine schemes, we can describe Spec coker(φ)
as the kernel of the map of commutative monoid schemes SpecH ′ → SpecH determined by φ. Note that
we have an exact sequence of k-modules

Q(H)→ Q(H ′)→ Q(coker(φ))→ 0.

Proposition 1.2.10. Let H be a Hopf algebra which is finitely generated over Z. Assume that for each
prime number p, the affine scheme SpecH/pH is connected. The following conditions are equivalent:

(1) The Hopf algebra H is smooth as an algebra over Z.

(2) The module of indecomposables Q(H) is free.

(3) For every prime number p, we have

dimQ(Q(H)⊗Z Q) ≥ dimFp(Q(H)⊗Z Fp).

Proof. Let ΩH/Z denote the module of Kähler differentials of H over Z. Then Q(H) ' ΩH/Z ⊗H Z, where
the tensor product is taken along the counit map H → Z. If H is smooth over Z, then ΩH/Z is a projective
H-module of finite rank, so that Q(H) is a projective Z-module of finite rank, and therefore free. This proves
(1)⇒ (2). The implication (2)⇒ (3) is obvious.

Let us now suppose that (3) is satisfied, and prove (1). We begin by showing that each fiber of the
map SpecH → Spec Z is smooth. For the generic fiber, this is clear (any algebraic group over a field of
characteristic zero is smooth). For the fiber over a prime number p, let Ω denote the sheaf of relative
Kähler differentials of the map G = SpecH/pH → Spec Fp. Then Ω is equivariant with respect to the
translation action of G on itself, and therefore a locally free sheaf of rank r = dimFp(Q(H)⊗Z Fp). To prove
that G is smooth, it will suffice to show r is equal to the Krull dimension d of G. Let d′ denote the Krull
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dimension of the generic fiber Spec(H ⊗Z Q), so that we have inequalities d′ ≤ d ≤ r. Condition (3) (and
the smoothness of H ⊗Z Q over Q) imply that equality holds throughout, so that G is smooth over Fp.

To complete the proof that H is smooth over Z, it will suffice to show that it is flat over Z: that is, that
H is torsion-free as an abelian group. Let I ⊆ H denote the torsion submodule of H. Then I is an ideal of
H, and therefore finitely generated as an H-module (since H is Noetherian). It follows that there exists an
integer n > 0 such that nI = 0. Choose n as small as possible. We wish to prove that n = 1 (so that I = 0
and therefore H is torsion-free). Assume otherwise; then we can write n = pn′ for some prime number p.
The minimality of n implies that n′I 6= 0 = nI = n′(pI), so that the quotient I/pI is nontrivial. Since H/I
is torsion-free, we have an exact sequence

0→ I/pI → H/pH → H/I ⊗Z Fp → 0.

Since G = SpecH/pH is a connected, smooth Fp-scheme of dimension d, any proper closed subscheme of G
has dimension < d. It follows that Spec(H/I ⊗Z Fp) has dimension < d. This is a contradiction, since the
generic fiber of SpecH/I coincides with the generic fiber of SpecH, which has dimension d.

Notation 1.2.11. Let R be a commutative ring, and let n ≥ 1 be an integer. There is a canonical group
homomorphism WBig(R)→ WBig(R), given on power series by f(t) 7→ f(tn). This homomorphism depends
functorially on R, and is therefore induced by a Hopf algebra homomorphism

Vn : WtBig →WtBig .

We will refer to Vn as the nth Verschiebung map. Concretely, it is given by

Vn(cm) =

{
cm/n if n|m
0 otherwise

or equivalently by

Vn(am) =

{
am/n if n|m
0 otherwise.

On ghost components, the Verschiebung map is given by Vn(wm) =

{
nwm/n if n|m
0 otherwise.

Let S and T be subsets of Z>0 which are closed under divisibility. Suppose that for every integer
d > 0 such that nd ∈ S, we have d ∈ T . Then the Verschiebung map Vn restricts to a Hopf algebra map
WtS →WtT , which we will also denote by Vn.

Remark 1.2.12. Let S be a set of integers which is closed under divisibility, and let n ∈ S be an element
which does not divide any other element of S, so that S′ = S−{n} is also closed under divisibility. Then the
Verschiebung map Vn : WtS → Wt{1} ' Z[c1] exhibits Wt{1} as a cokernel of the inclusion WtS′ → WtS ,
in the category of Hopf algebras over Z.

Proposition 1.2.13. Let S and T be finite subsets of Z>0 which are closed under divisibility. Then the
Hopf algebra WtS �WtT is smooth over Z.

Proof. Let s denote the cardinality of the set S, and t denote the cardinality of the set T . We may assume
without loss of generality that s, t > 0 (otherwise the result is vacuous). It follows from Lemma 1.2.8 that
H = WtS �WtT is finitely generated as a Z-algebra. Let us first describe the rationalization HQ = H⊗Z Q.

Let C denote the Q-submodule WtQS generated by the unit element 1 together with the ghost components

{wm}m∈S , and define C ′ ⊆WtQT similarly. Since each ghost component is a primitive element of WtQBig, C
and C ′ are coaugmented coalgebras over Q, with coaugmentation given by the unit element. It follows from
Remark 1.2.6 that the inclusions

C ↪→WtQS C ′ ↪→WtQT
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induce Hopf algebra isomorphisms Sym∗red(C) 'WtQS and Sym∗red(C ′) 'WtQT , so that

HQ 'WtQS �Q WtQT ' Sym∗red(C) �Q Sym∗red(C ′) ' Sym∗red(C ∧ C ′)

is a polynomial algebra on generators wm �wn, where m ∈ S and n ∈ T . In particular, we see that HQ is a
smooth Q-algebra of dimension st.

To complete the proof, it will suffice (by Proposition 1.2.10) to show that for each prime number p, the
affine scheme SpecH/pH is connected and has dimension st. We will proceed by induction on the product
st. If st = 1, then S = T = {1} and the desired result follows from Example 1.1.27. Let us therefore assume
that st > 1. We may assume without loss of generality that s > 1. Let n be the largest element of S and let
S′ = S − {n}, so that we have a cofiber sequence

WtS′ →WtS
Vn→Wt1

of Hopf algebras over Z. Set H ′ = WtS′ �WtT and H ′′ = Wt1 �WtT . We then have a cofiber sequence of
Hopf algebras over Fp

H ′/pH ′ → H/pH → H ′′/pH ′′.

Set G = SpecH/pH, G′ = SpecH ′/pH ′, and G′′ = SpecH ′′/pH ′′, so that we have an exact sequence of
commutative group schemes over Fp

0→ G′′ → G
u→ G′.

The inductive hypothesis implies that G′′ and G′ are connected smooth group schemes over Fp, having
dimensions t and (s− 1)t, respectively. Since the generic fiber of the map SpecH → Spec Z has dimension
st, it follows that the dimension of G is at least st. It follows that the image of u is a closed subgroup
G′0 ⊆ G′ of dimension at least dim(G) − dim(G′′) ≥ (s − 1)t. It follows that G′0 = G′: that is, the
map u is a flat surjection. Since G′′ is smooth, the map u is smooth, so that G is smooth of dimension
dim(G′) + dim(G′′) = st. The connectedness of G′ and G′′ now imply the connectedness of G.

Remark 1.2.14. The proof of Proposition 1.2.13 shows more generally that for any collection S1, . . . , Sk ⊆
Z>0 of finite sets which are closed under divisibility, the iterated Hopf algebra tensor product WtS1

� · · ·�
WtSk is smooth over Z.

Scholium 1.2.15. Let S′ ⊆ S ⊆ Z>0 and T ′ ⊆ T ⊆ Z>0 be subsets which are closed under divisibility.
Then the inclusion maps

WtS′ ↪→WtS WtT ′ ↪→WtT

induce a faithfully flat map
φ : WtS′ �WtT ′ →WtS �WtT .

Proof. Using a direct limit argument, we can reduce to the case where the sets S and T are finite. Note that
the map φ factors as a composition

WtS′ �WtT ′ →WtS′ �WtT →WtS �WtT .

We may therefore reduce to the case where either S = S′ or T = T ′. Let us assume T = T ′ (the proof in
the other case is the same). Working by induction on the number of elements in S − S′, we may reduce to
the case where S = S′ ∪ {n}, so that we have a cofiber sequence of Hopf algebras

WtS′ →WtS
Vn→Wt1 .

Set H = WtS �WtT , H ′ = WtS′ �WtT , and H ′′ = Wt1 �WtT , so that we have a cofiber sequence

H ′
φ→ H → H ′′.
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Note that H ⊗Z Q is a polynomial ring over Q with generators given by {wa � wb}a∈S,b∈T , and that φ
identifies H ′ ⊗Z Q with the algebra generated by {wa �wb}a∈S′,b∈T . It follows that φ is flat after tensoring
with Q. Using the fiber-by-fiber flatness criterion (Corollary 11.3.11 of [6]), it will suffice to show that φ
induces a flat map φp : H ′/pH ′ → H/pH for every prime number p. This was established in the proof of
Proposition 1.2.13.

Corollary 1.2.16. Let S be a set of positive integers which is closed under divisibility. Then the canonical
map WtS �WtS →WtBig �WtBig is injective. Moreover, WtS �WtS can be identified with the intersection

of WtQS �Q WtQS with WtBig �WtBig in WtQBig �Q WtQBig.

Proof. Using Scholium 1.2.15, we are reduced to verifying the following general assertion: if φ : A→ B is a
faithfully flat map between torsion free commutative rings, then we can identify A with the intersection of
B with AQ = A⊗Z Q inside BQ = B ⊗Z Q. To prove this, suppose we are given an element x ∈ AQ whose
image in BQ belongs to B. Choose n > 0 so that y = nx ∈ A. Then φ(y) ∈ nB, so that the image of y
vanishes under the map A/nA → B/nB. Since φ is faithfully flat, we conclude that y ≡ 0 mod n, so that
x ∈ A.

Remark 1.2.17. Let C denote the Z-submodule of WtBig generated by the elements {cn}n≥0. Using the
formulas

∆(cn) =
∑
i+j=n

ci ⊗ cj ε(cn) =

{
1 if n = 0

0 otherwise.

we see that C is a subcoalgebra over WtBig, equipped with a coaugmentation given by the grouplike element
1 = c0 ∈ C. The inclusion C ↪→ WtBig extends uniquely to a map Sym∗red(C) → WtBig, which is easily
seen to be an isomorphism. In other words, we can identify WtBig with the free bialgebra generated by the
coaugmented coalgebra C.

Notation 1.2.18. Let H and H ′ be bialgebras over Z, and let ν : H ⊗ H ′ → H � H ′ be the canonical
coalgebra map. For every pair of elements x ∈ H, y ∈ H ′, we let x�y denote the element ν(x⊗y) ∈ H�H ′.

Remark 1.2.19. Combining Remarks 1.2.17 and 1.1.26, we see that the Hopf algebra WtBig �WtBig is
freely generated (as a commutative ring) by the images of the elements {ci � cj ∈ WtBig⊗WtBig}i,j>0. In
particular, WtBig �WtBig is a polynomial algebra over Z.

Proposition 1.2.20. There exists a unique Hopf algebra map ι : WtBig →WtBig �WtBig with the property

that ι(wn) = wn�wn
n .

Proof. Let us first prove the analogous result working over the field Q, rather than over the integers. Let
�Q denote the tensor product operation on bialgebras over Q. Since WtQBig is a polynomial ring generated

by the ghost components {wn}n≥1, there is a unique ring homomorphism ιQ : WtQBig → WtQBig �Q WtQBig

satisfying ιQ(wn) = wn�wn
n . We claim that ιQ is a bialgebra homomorphism. To prove this, it will suffice to

show that ιQ carries each wn to a primitive element of WtQBig �Q WtQBig. Equivalently, we must show that
wn � wn is primitive for n ≥ 1. We now compute

∆(wn � wn) = (wn ⊗ 1 + 1⊗ wn) � (wn ⊗ 1 + 1⊗ wn)

= (wn � wn)⊗ (1 � 1) + (1 � 1)(wn � wn) + (1 � wn)⊗ (wn � 1) + (wn � 1)⊗ (1 � wn).

We now conclude by observing that 1 � wn = ε(wn) = 0 and 1 � 1 = ε(1) = 1.
Let us now work over the ring Z of integers. Since WtBig �WtBig is a polynomial ring over Z (Remark

1.2.19), it is torsion free. We may therefore identify WtBig �WtBig with its image in the Q-bialgebra

(WtBig �WtBig) ⊗ Q ' WtQBig �Q WtQBig. The first part of proof shows that there is a unique algebra

homomorphism ι : WtBig → WtQBig �Q WtQBig satisfying ι(wn) = wn�wn
n . We will complete the proof by

showing that ι factors through WtBig �WtBig.
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If R is a commutative ring and G(x, y) ∈ R[[x, y]] is a power series in two variables given by G(x, y) =∑
i,j≥0 λi,jx

iyj , we let Gδ(t) =
∑
i≥0 λi,it

i denote the “diagonal part” of G. Write f(t) = 1+c1t+c2t
2+· · · ∈

WtBig[[t]], so that log f(t) ∈WtQBig[[t]] is given by
∑
n≥1

wn
n t

n. It follows that

ιQ(log f(t)) =
∑
n≥1

ι(
wn
n

)tn =
∑
n≥1

(
wn
n

�
wn
n

)tn = F δ(t),

where F δ(x, y) = log f(x) � log f(y). Since ιQ is a ring homomorphism, we obtain

ι(f(t)) = ιQ(f(t)) = exp(ιQ log f(t)) = exp(F δ(t)).

We wish to show that each coefficient of this power series belongs to WtBig �WtBig.

Let I denote the augmentation ideal of WtQBig[[y]]. Since log f(x) is a primitive element of WtQBig[[x]], the

construction g(y) 7→ log f(x)� g(y) annihilates the ideal I2. Since f(y) ∈ 1 + I, we have log f(y) ≡ f(y)− 1
mod I2. It follows that log f(x)� log f(y) = log f(x)� (f(y)−1) = log f(x)�f(y). Since f(y) is a grouplike

element of WtQBig[[y]], the construction g(x) 7→ g(x) � f(y) is a ring homomorphism. It follows that

(log f(x)) � (log f(y)) = (log f(x)) � f(y) = log(f(x) � f(y)).

Note that the coefficients of the power series f(x) � f(y) belong to WtBig �WtBig. To complete the proof,
it will suffice to verify the following:

(∗) Let R be a torsion-free ring and let RQ = R ⊗ Q. Let H(x, y) ∈ R[[x, y]] be a power series with
constant term 1, let G(x, y) = logH(x, y) ∈ RQ[[x, y]], and let Gδ(t) ∈ RQ[[t]] be defined as above.
Then expGδ(t) ∈ R[[t]].

To prove (∗), we can write H(x, y) formally as a product
∏
i,j(1+λi,jx

iyj , where λi,j ∈ R and the product

is taken over all pairs (i, j) ∈ Z≥0×Z≥0 such that (i, j) 6= (0, 0). Then G(x, y) =
∑
i,j log(1 + λi,jx

iyj),

so that Gδ(t) =
∑
i>0 log(1 + λit

i). It follows that exp(Gδ(t)) =
∏
i>0(1 + λit

i) has coefficients in R, as
desired.

Corollary 1.2.21. Let S be a subset of Z>0 which is closed under divisibility. Then there exists a unique
Hopf algebra map ιS : WtS →WtS �WtS with the property that ιS(wn) = wn�wn

n for n ∈ S.

Proof. Since WtS �WtS is flat over Z (Scholium 1.2.15), the uniqueness can be checked after tensoring

with Q, where it follows from the observation that WtQS is a polynomial ring on generators {wn}n∈S .
Using Scholium 1.2.15, we can identify WtS �WtS with its image in WtBig �WtBig. Let ι : WtBig →
WtBig �WtBig be as in Proposition 1.2.20. To prove the existence of ιS , it will suffice to show that ι carries
WtS ⊆WtBig into WtS �WtS ⊆WtBig �WtBig. Using Corollary 1.2.16, we are reduced to proving that the

image of WtS in WtQBig �Q WtQBig is contained in WtQS �S WtQS , which follows immediately from the formula

ι(wn) = wn�wn
n .

Remark 1.2.22. Let S be a subset of Z>0 which is closed under divisibility. Then the diagram

WtS
ιS //

ιS

��

WtS �WtS

id�ιS
��

WtS �WtS
ιS�id //WtS �WtS �WtS

commutes. By virtue of Remark 1.2.14, it suffices to check this after tensoring with Q, where it follows from
the observation that both maps are given by

wn 7→
wn � wn � wn

n2
.
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Remark 1.2.23. Let S, T ⊆ Z>0 be subsets which are closed under divisibility, let n be a positive integer,
and suppose that whenever nm ∈ S, we have m ∈ T . Then the diagram of Hopf algebras

WtS
ιS //

Vn

��

WtS �WtS

ιS�ιS
��

WtT
ιT //WtT �WtT

commutes. To prove this, we may work rationally; it now suffices to observe that both compositions are
given by

wm 7→

{
n2

m (wm/n � wm/n) if n|m
0 otherwise.

Example 1.2.24. Let S = {1}. Then the map ιS : WtS → WtS �WtS can be identified with the
isomorphism Z[t] ' Z[t] � Z[t] of Example 1.1.27.

1.3 Dieudonne Modules

Throughout this section, we fix a field κ of characteristic p > 0. Recall that a Hopf algebra H over κ is said
to be connected if the Hopf algebra κ ⊗κ H does not contain any nontrivial grouplike elements, where κ is
an algebraic closure of κ (Definition 1.0.6). We let Hopf cκ denote the full subcategory of Hopfκ spanned by
the connected Hopf algebras over κ. In this section, we will review the theory of Dieudonne modules, which
provides a fully faithful embedding

DM : Hopf cκ ↪→ LModDκ ,

where LModDκ denotes the category of left modules over a certain noncommutative ring Dκ 'W (κ)[F, V ].
Our main goal is to prove a result of Goerss, which asserts that DM is a (nonunital) symmetric monoidal
functor (see Theorem 1.3.28).

Notation 1.3.1. For each integer n ≥ 0, let Wtκn denote the Hopf algebra over κ given by

κ⊗Z Wt{1,p,p2,...,pn−1},

where Wt{1,...,pn−1} is defined as in Remark 1.2.6. We will refer to Wtκn as the Hopf algebra of n-truncated
p-typical Witt vectors. We can write Wtκn = κ[a1, . . . , apn−1 ], where the Witt components ai are defined as
in Remark 1.2.3.

Notation 1.3.2. Let H be a Hopf algebra over κ. For every integer n, we let [n] : H → H be the Hopf
algebra homomorphism which classifies the map of group schemes SpecH → SpecH given by multiplication
by n. If n ≥ 0, this map is given by the composition

H → H⊗n → H,

where the first map is given by iterated comultiplication and the second by iterated multiplication.
We let H(p) ∈ Hopfκ denote the base change of H along the Frobenius isomorphism ϕ : κ → κ. Then

we have a canonical isomorphism of commutative rings H ' H(p), which we will denote by x 7→ x(p). The
κ-algebra structure on H(p) is then characterized by the formula λpx(p) = (λx)(p), where λ ∈ κ and x ∈ H.

There is a canonical Hopf algebra homomorphism F : H(p) → H, given by x(p) 7→ xp. We will refer to F
as the Frobenius map. A dual construction yields a Hopf algebra homomorphism V : H → H(p), called the
Verschiebung map. The composite maps

H
V→ H(p) F→ H

H(p) F→ H
V→ H(p)
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are given by the Hopf algebra homomorphisms [p] on H and H(p), respectively.
In the special case where H = Wtκn, we have a canonical isomorphism H ' H(p) (since H is defined

over the prime field Fp). Under this isomorphism, the Verscheibung map V : H → H agrees with the
Verscheibung map Vp of Notation 1.2.11. In particular, it is given by the formula

V (api) =

{
0 if i = 0

api−1 if i > 0.

Definition 1.3.3. Let H be a connected Hopf algebra over κ. For each integer n ≥ 1, we let DM(H)n
denote the set of all elements x ∈ H which satisfy the following condition: there exists a Hopf algebra
homomorphism f : Wtκn → H such that f(apn−1) = x. We let DM(H) denote the union

⋃
n>0 DM(H)n. We

will refer to DM(H) as the Dieudonne module of H.

Remark 1.3.4. Let H be a connected Hopf algebra over κ. By definition, evaluation at apn−1 ∈ Wtκn
induces a surjective map

HomHopfκ(Wtκn, H)→ DM(H)n.

In fact, this map is bijective: that is, a Hopf algebra homomorphism f : Wtκn → H is determined by the
element f(apn−1) ∈ H. This is clear, since Wtκn is generated as an algebra by the elements

apn−1 , V apn−1 = apn−2 , V 2apn−1 = apn−3 , . . . , V n−1apn−1 = a1.

Remark 1.3.5. Let H be a connected Hopf algebra over κ. Then we have inclusions

DM(H)1 ⊆ DM(H)2 ⊆ DM(H)3 ⊆ · · · .

To prove this, we note that if x ∈ DM(H)n, then there exists a Hopf algebra map f : Wtκn → H with
f(apn−1) = x. Then x is the image of apn ∈Wtκn+1 under the composite map

Wtκn+1

Vp→Wtκn
f→ H,

so that x ∈ DM(H)n+1.

Remark 1.3.6. Let H be a connected Hopf algebra over κ. For each n ≥ 1, the identification DM(H)n '
HomHopfκ(Wtκn, H) determines an abelian group structure on DM(H)n. Moreover, the inclusions

DM(H)1 ⊆ DM(H)2 ⊆ . . .

are group homomorphisms, so that the union DM(H) inherits the structure of an abelian group.

Example 1.3.7. Let H be a connected Hopf algebra over κ. Then DM(H)1 is the subset Prim(H) ⊆ H
consisting of primitive elements. Consequently, we can identify Prim(H) with a subset of the Dieudonne
module DM(H). Moreover, this identification is additive: that is, the addition on DM(H)1 described in
Remark 1.3.6 agrees with the usual addition in H.

Remark 1.3.8. Let H be a connected Hopf algebra over κ. If f : Wtκn → H is a Hopf algebra homomor-
phism, then f induces another Hopf algebra homomorphism

f (p) : Wtκn ' (Wtκn)(p) → H(p),

satisfying f (p)(apn−1) = f(apn−1)(p). It follows that the construction x 7→ x(p) determines a bijection

DM(H)→ DM(H(p)).

We now investigate the structure of the Dieudonne module DM(H).
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Construction 1.3.9. The construction H 7→ DM(H) is functorial in H: that is, if f : H → H ′ is a map of
Hopf algebras over κ, then f induces a group homomorphism from DM(H) to DM(H ′). In particular, the
Frobenius and Verschiebung maps

F : H(p) → H V : H → H(p)

induce maps
DM(H) ' DM(H(p))→ DM(H) DM(H)→ DM(H(p)) ' DM(H),

which we will also denote by F and V , respectively.
More concretely, for x ∈ DM(H) ⊆ H, we have Fx = xp ∈ DM(H) ⊆ H. If x = f(apn−1) for some Hopf

algebra homomorphism f : Wtκn → H, then V x = f(V apn−1) = f(apn−2).

Remark 1.3.10. Let H be a connected Hopf algebra over κ, and let x ∈ DM(H) be represented by a Hopf
algebra homomorphism f : Wtκn → H. For m ≤ n, we have an exact sequence of Hopf algebras over κ

Wtκn−m ↪→Wtκn
V n−m→ Wtκm .

Note that x belongs to DM(H) if and only if f factors through the map V n−m : Wtnκ → Wtκm, which is
equivalent to the requirement that the restriction f |Wtκn−m is trivial. In other words, x ∈ DM(H) if and
only if f(apn−m−1) = 0. Since f(apn−m−1) = V mf(apn−1) = V mx, we conclude that DM(H)m is the kernel
of the map V m : DM(H)→ DM(H). In particular, we can identify Prim(H) = DM(H)1 with the kernel of
the map V : DM(H)→ DM(H).

Notation 1.3.11. Let W (κ) denote the ring of p-typical Witt vectors of the field κ. For each x ∈ κ, we let
τ(x) ∈ W (κ) denote its Teichmüller representative. Let ϕ : W (κ)→ W (κ) denote the Frobenius map: that
is, the unique ring homomorphism from W (κ) to itself satisfying ϕ(τ(x)) = τ(xp).

Construction 1.3.12. For each integer n ≥ 1, the affine scheme Spec Wtκn is a ring-scheme, whose ring of
κ-points is given by the quotient W (κ)/pn. In particular, the commutative ring W (κ)/pn acts on the Hopf
algebra Wtκn (as an object of the abelian category Hopfκ). We will regard Wtκn as a module over the ring
W (κ) via the composite map

W (κ)
φn−1

→ W (κ)→W (κ)/pnW (κ).

For each a ∈ W (κ), we let [a] : Wtκn → Wtκn denote the corresponding endomorphism of Wtκn (note that
when λ is an integer, this agrees with Notation 1.3.2). The action of W (κ) on Wtκn is uniquely characterized
by the formula

[τ(λ)](api) = λp
1+i−n

api

for λ ∈ κ.
For every connected Hopf algebra H, the action of W (κ) on Wtκn determines an action of W (κ) on the

abelian group
DM(H)n ' HomHopfκ(Wtκn, H).

This action is normalized so that for each λ ∈ κ, the map τ(λ) : DM(H)n → DM(H)n is given by multipli-
cation by λ. Note that the inclusions DM(H)n ↪→ DM(H)n+1 are W (κ)-linear, so that DM(H) inherits the
structure of a W (κ)-module.

Remark 1.3.13. The action of W (κ)/pn on Wtκn determines, by composition with the Teichmüller map
τ : κ→W (κ)/pn, an action of the multiplicative group κ× on Wtκn. Unwinding the definitions, we see that
this action is determined by the grading of Wtκn, where we regard api as a homogeneous element of degree
pi.
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Notation 1.3.14. We let Dκ denote the associative ring generated by W (κ) together with symbols F and
V , subject to the relations

Fλ = ϕ(λ)F V ϕ(λ) = λV FV = V F = p,

where λ ranges over W (κ). We will refer to Dκ as the Dieudonne ring. We let LModDκ denote the category
of (discrete) left modules over Dκ.

We will say that a left Dκ-module M is V -nilpotent if, for every element x ∈ M , we have V nx = 0 for
n� 0. Let LModNil

Dκ denote the full subcategory of LModDκ spanned by the V -nilpotent Dκ-modules.

Proposition 1.3.15. Let H be a connected Hopf algebra over κ. Then the maps F, V : DM(H)→ DM(H)
and the action of W (κ) on DM(H) exhibit DM(H) as a V -nilpotent left module over the Dieudonne ring Dκ

of Notation 1.3.14.

Proof. If x ∈ DM(H), the equalities V Fx = px = FV x follow from Notation 1.3.2. It follows from Remark
1.3.10 that if x ∈ DM(H)n, then x is annihilated by V n. Let λ ∈W (κ); we wish to show that

F (λx) = ϕ(λ)Fx V ϕ(λ)x = λV x.

We will prove the first equality; the proof of the second is similar. Assume that x ∈ DM(H)n, so that x
is annihilated by V n and therefore also by pn. To verify the equality F (λx) = ϕ(λ)Fx, we may replace
λ by any element of λ + pnW (κ). We may therefore assume without loss of generality that λ has a finite
Teichmüller expansion

λ =
∑

0≤i<n

piτ(ai)

for some ai ∈ κ. We may therefore reduce to the case where λ = τ(a) for some a ∈ κ. In this case, we have
ϕ(λ) = τ(ap), and the desired equality reduces to the formula (ax)p = apxp.

We refer the reader to [3] for a proof of the following result:

Theorem 1.3.16. The construction H 7→ DM(H) determines an equivalence of categories DM : Hopf cκ →
LModNil

Dκ .

Remark 1.3.17. For each n ≥ 0, the functor DM carries Wtκn to the module Dκ /Dκ V
n. Since the category

of V -nilpotent left Dκ-modules is generated under small colimits by the objects Dκ /Dκ V
n, Theorem 1.3.16

implies that Hopf c(κ) is generated under small colimits by the Hopf algebras Wtκn.

Corollary 1.3.18. Let H be a connected Hopf algebra over κ. Then H is generated as an algebra by the
subset DM(H) ⊆ H.

Proof. Let H ′ denote the subalgebra of H generated by DM(H). We first claim that the comultiplication of
H restricts to a comultiplication on H ′. To prove this, we let A ⊆ H denote the inverse image of H ′ ⊗H ′
under the comultiplication map ∆ : H → H ⊗H. Then A is a subalgebra of H. Consequently, to prove that
H ′ ⊆ A, it will suffice to show that DM(H) ⊆ A. Let x ∈ DM(H)n, so that x is the image of apn−1 ∈Wtκn
under some Hopf algebra homomorphism φ : Wtκn → H. Then ∆(x) = (φ ⊗ φ)∆(apn−1). Consequently, to
show that ∆(x) ∈ H ′⊗H ′, it will suffice to show that φ carries Wtκn into H ′. Since Wtκn is generated by the
elements api for 0 ≤ i < n, we are reduced to proving that φ(api) ∈ H ′ for 0 ≤ i < n. This is clear, since
φ(api) = V n−1−ix ∈ DM(H).

Since DM(H) is closed under the antipodal map from H to itself, the subalgebra H ′ is also invariant under
the antipodal map, and is therefore a sub-Hopf algebra of H. By construction, we have DM(H ′) = DM(H).
It follows from Theorem 1.3.16 that the inclusion H ′ ↪→ H is an isomorphism, so that H is generated by
DM(H).
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Remark 1.3.19. Let H be a Hopf algebra over κ. The inclusion ρH : DM(H) ↪→ H is generally not
additive. Given classes x, x′ ∈ DM(H), represented by Hopf algebra homomorphisms φ, φ′ : Wtκn → H, we
can identify ρH(x+ x′) with the image of apn−1 under the composite map

ψ : Wtκn
∆→Wtκn⊗κ Wtκn

φ⊗φ′−→ H ⊗κ H
m→ H.

Let mH denote the augmentation ideal of H, and let n denote the augmentation ideal of DM(H). Then
∆(apn−1) − apn−1 ⊗ 1 − 1 ⊗ apn−1 ∈ n ⊗ n, we have ρH(x + y) − ρH(x) − ρH(y) ∈ m2

H . Consequently, ρH
induces an additive map DM(H)→ mH/m

2
H . Note that if x ∈ DM(H), then ρH(Fx) = ρH(x)p ∈ mpH ⊆ m2

H .
Consequently, ρH descends to a map

ρH : DM(H)/F DM(H)→ mH/m
2
H .

Using the description of the action of τ(κ) ⊆W (κ) on DM(H) supplied by Construction 1.3.12, we see that
ρ is κ-linear.

Proposition 1.3.20. Let H be a connected Hopf algebra over κ. Then the map ρH : DM(H)/F DM(H)→
mH/m

2
H of Remark 1.3.19 is an isomorphism of vector spaces over κ.

Proof. Let C denote the full subcategory of LModNil
Dκ spanned by those Dieudonne modules M for which

there exists a connected Hopf algebra H with DM(H) ' M and ρH : DM(H)/F DM(H) → mH/m
2
H an

isomorphism. Using Theorem 1.3.16, we see that C is closed under the formation of colimits. Consequently,
it will suffice to show that C contains every Dieudonne module of the form Dκ /V

n Dκ. In other words, it
suffices to treat the case where H = Wtκn. In this case, DM(H) is generated by an element x (corresponding to
identity map in HomHopfκ(Wtκn, H)) satisfying V nx = 0, and DM(H)/F DM(H) has a basis (as a κ-vector
space) given by the images of the elements x, V x, V 2x, . . . , V n−1x. Unwinding the definitions, we ahve
ρH(V ix) = apn−1−i ∈ H, from which we immediately deduce that ρH carries the images of x, V x, . . . , V n−1x
to a basis for mH/m

2
H .

We now investigate the relationship between the theory of Dieudonne modules and the Hopf algebra
tensor product introduced in §1.1.

Proposition 1.3.21. Let H and H ′ be connected Hopf algebras over κ. Then H �H ′ is connected.

Proof. Without loss of generality, we may assume that κ is algebraically closed. In this case, every Hopf
algebra K over κ splits as a tensor product Kc ⊗κ Kd, where Kc is connected and Kd ' κ[M ] is the group
algebra of some abelian group M . Consequently, if H�H ′ is not connected, then there exists an abelian group
M and a nontrivial Hopf algebra homomorphism H �H ′ → κ[M ]. In particular, there must be a nontrivial
coalgebra map H ⊗κ H ′ → κ[M ]. It follows that the formal scheme Spf(H ⊗κ H ′)∨ ' Spf H∨ × Spf H ′∨ is
disconnected, contracting our assumption that H and H ′ are connected.

Notation 1.3.22. Let Hopf cκ denote the full subcategory of Hopfκ spanned by the connected Hopf algebras
over κ. It follows from Proposition 1.3.21 that Hopf cκ has the structure of a nonunital symmetric monoidal
category, with tensor product given by �.

Warning 1.3.23. The unit object for the operation � on Hopfκ is the Hopf algebra of Laurent polynomials
κ[t±1], which is not connected.

Definition 1.3.24. Let M , M ′, and M ′′ be left Dκ-modules. A pairing of M and M ′ into M ′′ is a W (κ)-
bilinear map

µ : M ×M ′ →M ′′

satisfying the identities

V µ(x, y) = µ(V x, V y) Fµ(x, V y) = µ(Fx, y) Fµ(V x, y) = µ(x, Fy).
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Remark 1.3.25. Let M and M ′ be left Dκ-modules. Then there exists a left Dκ-module M⊗̃M ′ and
a pairing µ0 : M × M ′ → M⊗̃M ′ with the following universal property: for every left Dκ-module M ′′,
composition with µ0 induces a bijection from the set HomLModDκ

(M⊗̃M ′,M ′′) to the set of pairings M ×
M ′ →M ′′.

Note that the module M⊗̃M ′ depends functorially on M and M ′. Moreover, the construction (M,M ′) 7→
M⊗̃M ′ preserves small colimits in each variable (in particular, it is right exact in each variable).

Construction 1.3.26. For each n ≥ 0, let ιn : Wtκn → Wtκn�Wtκn be the map given by Corollary 1.2.21.
Given a pair of objects H,H ′ ∈ Hopf cκ, we let

µn : HomHopfκ(Wtκn, H)×HomHopfκ(Wtκn, H
′)→ HomHopfκ(Wtκn, H �H ′)

denote the composition of the evident map

HomHopfκ(Wtκn, H)×HomHopfκ(Wtκn, H
′)→ HomHopfκ(Wtκn�WtκnH �H ′)

with the map HomHopfκ(Wtκn�WtκnH � H ′) → HomHopfκ(Wtκn, H � H ′) given by composition with ιn.
Let V : Wtκn+1 → Wtκn be the Verschiebung map (see Notation 1.2.11). Using Remark 1.2.23, we see that
the diagram

HomHopfκ(Wtκn, H)×HomHopfκ(Wtκn, H
′)

µn //

◦V×V
��

HomHopfκ(Wtκn, H �H ′)

◦V
��

HomHopfκ(Wtκn+1, H)×HomHopfκ(Wtκn+1, H
′)

µn+1 // HomHopfκ(Wtκn+1, H �H ′)

commutes. Consequently, the maps {µn} determine a map µ : DM(H)×DM(H ′)→ DM(H �H ′).

Proposition 1.3.27. Let H and H ′ be Hopf algebras over κ. Then the map µ : DM(H) × DM(H ′) →
DM(H �H ′) of Construction 1.3.26 is a pairing, in the sense of Definition 1.3.24.

Proof. We first show that µ is W (κ)-bilinear. Choose x ∈ DM(H), y ∈ DM(H ′), and λ ∈ W (κ); we wish
to show that µ(λx, y) = λµ(x, y) = µ(x, λy). Write λ =

∑
i≥0 τ(λi)p

i for λi ∈ κ. Choose an integer n such
that V nx = 0 = V ny. Then x, y, and µ(x, y) are annihilated by pn. We may therefore replace λ by the
finite sum τ(λ0) + · · ·+ pn−1τ(λn−1). Since µ is Z-bilinear, we are reduced to proving the identity

µ(τ(z)x, y) = τ(z)µ(x, y) = µ(x, τ(z)y)

for z ∈ κ. Since V nx = 0, x and y determine a Hopf algebra homomorphisms Wtκn → H. We may
therefore reduce to the universal case where H = H ′ = Wtκn, in which case µ(x, y) is given by the map
ιn : Wtκn →Wtκn�Wtκn. Unwinding the definitions, we must show that the diagram

Wtκn

ι

��

Wtκn
[zp

1−n
]oo [zp

1−n
] //

ιn

��

Wtκn

ιn

��
Wtκn�Wtκn Wtκn�Wtκn

[zp
1−n

]�idoo id�[zp
1−n

] //Wtκn�Wtκn

commutes. This follows from the observation that the map ιn : Wtκn → Wtκn�Wtκn carries homogeneous
elements of degree m to homogeneous elements of bidegree (m,m) (see Remark 1.3.13).

We next prove that V µ(x, y) = µ(V x, V y) for x ∈ DM(H) and y ∈ DM(H ′). As above, we may assume
that V nx = 0 = V ny for some n, and then reduce to the universal case H = H ′ = Wtκn. Unwinding the
definitions, we must show that the diagram

Wtκn
V //

ιn

��

Wtκn

ιn

��
Wtκn�Wtκn

V�V //Wtκn�Wtκn
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commutes. To prove this, we may assume without loss of generality that κ = Fp. It will then suffice to
show that the bottom horizontal map V � V : Wtκn�Wtκn → Wtκn�Wtκn coincides with the (absolute)
Verschiebung map V ′ of Wtκn�Wtκn. Let ξ : Wtκn⊗Wtκn → Wtκn�Wtκn be the canonical coalgebra map.
Since the image of ξ generates Wtκn�Wtκn as an algebra, it will suffice to show that the composite maps

Wtκn⊗Wtκn
ξ→Wtκn�Wtκn

V�V→ Wtκn�Wtκn

Wtκn⊗Wtκn
ξ→Wtκn�Wtκn

V ′→Wtκn�Wtκn .

coincide. This is clear, since both maps are obtained by precomposing ξ with the Verschiebung map on the
coalgebra Wtκn⊗Wtκn.

We now complete the proof by showing that Fµ(V x, y) = µ(x, Fy) and Fµ(x, V y) = µ(Fx, y) for
x ∈ DM(H) and y ∈ DM(H ′). By symmetry, it will suffice to prove the first of these identities. As above,
we may suppose that V nx = V ny = 0, and reduce to the universal case where H = H ′ = Wtκn. Unwinding
the definitions, we must prove that the diagram

Wtκn

ιn

��

F //Wtκn

(V�id)◦ιn
��

Wtκn�Wtκn
id�F //Wtκn�Wtκn

commutes. As before, we may reduce to the case κ = Fp, so that F and V coincide with the absolute
Frobenius and Verschiebung maps on Wtκn, respectively. Let F (2) be the Frobenius map from Wtκn�Wtκn
to itself, so that F (2) ◦ ιn = ιn ◦ F . Consequently, we are reduced to proving the identity

(V � id) ◦ F (2) ◦ ιn = (id�F ) ◦ ιn.

In fact, we claim that (V � id) ◦ F (2) and id�F coincide as Hopf algebra homomorphisms from Wtκn�Wtκn
to itself. To prove this, it will suffice to show that both homomorphisms agree on u � v, for every pair of
elements u, v ∈Wtκn. In other words, we must verify the identity (V (u) � v)p = u� vp, which follows from
the identities given in Notation 1.1.18.

We are now ready to state the main result of this section.

Theorem 1.3.28 (Goerss, Buchstaber-Lazarev). Let H and H ′ be connected Hopf algebras over κ. Then
the pairing µ : DM(H) × DM(H ′) → DM(H � H ′) of Proposition 1.3.27 induces an isomorphism of left
Dκ-modules

θH,H′ : DM(H)⊗̃DM(H ′)→ DM(H �H ′).

Proof. As functors of H and H ′, both the domain and codomain of θ preserve small colimits in each variable.
Using Remark 1.3.17, we can reduce to the case where H = Wtκm and H ′ = Wtκn for some integers m and
n. We now proceed by induction on m. The case m = 0 is trivial. If m > 0, we have an exact sequence of
Hopf algebras

κ→Wtκ1 →Wtκm
T→Wtκm−1 → κ,

giving rise to a commutative diagram of exact sequences

DM(Wtκ1 )⊗̃DM(Wtκn) //

θ′

��

DM(Wtκm)⊗̃DM(Wtκn)

θ

��

// DM(Wtκm−1)⊗̃DM(Wtκn)

θ′′

��

// 0

DM(Wtκ1 �Wtκn)
φ // DM(Wtκm�Wtκn) // DM(Wtκm−1 �Wtκn) // 0.
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It follows from Theorem 1.3.16 and Scholium 1.2.15 that the map φ is injective, and from the inductive
hypothesis that θ′′ is an isomorphism. Consequently, to prove that θ is an isomorphism, it will suffice to
show that θ′ is an isomorphism. That is, we may reduce to the case where m = 1. Similarly, we may reduce
to the case n = 1. In this case, DM(H) and DM(H ′) can be identified with the free Dκ-module M generated
by a single element e satisfying V e = 0. The map ι1 : Wtκ1 → Wtκ1 �Wtκ1 is an isomorphism (Example
1.2.24). We may therefore identify θ with a map M⊗̃M →M , induced by a bilinear map µ : M ×M →M
satisfying µ(e, e) = e. Let µ0 : M×M →M⊗̃M be the universal pairing. Then V µ0(e, e) = µ0(V e, V e) = 0,
so there is a unique map of left Dκ-modules ψ : M → M⊗̃M satisfying ψ(e) = µ0(e, e). It is clear that
θ ◦ ψ = idM . To complete the proof that θ is an isomorphism, it will suffice to show that ψ is surjective.
Since the image of ψ is a left Dκ-submodule of M⊗̃M , it will suffice to show that the image of ψ contains
µ0(x, y) for all x, y ∈M . As a κ-vector space, M has a basis given by F ie for i ≥ 0. It will therefore suffice
to show that µ0(F ix, F jy) belongs to the image of ψ for i, j ≥ 0. For i = j = 0, this is clear from the
construction. If i > 0, we have

µ0(F ix, F jy) = Fµ0(F i−1x, V F jy) = Fµ0(F i−1x, 0) = 0.

Similarly, if j > 0, we have µ0(F ix, F jy) = 0.

Remark 1.3.29. It is not hard to see that the operation ⊗̃ endows LModDκ with the structure of a
symmetric monoidal category. The unit object of LModDκ is given by W (κ), where the action of F and V
are given by the formulas

F (x) = pϕ(x) V (x) = ϕ−1(x).

Corollary 1.3.30. The functor DM : Hopf cκ → LModDκ is a (nonunital) symmetric monoidal functor.

Proof. For every pair of connected Hopf algebras H and H ′ over κ, Theorem 1.3.28 provides a canonical
isomorphism θH,H′ : DM(H)⊗̃DM(H ′) → DM(H � H ′). To show that this data endows DM with the
structure of a (nonunital) symmetric monoidal functor, it will suffice to show that the diagrams

DM(H)⊗̃DM(H ′)
∼ //

θH,H′

��

DM(H ′)⊗̃DM(H)

θH′,H

��
DM(H �H ′)

∼ // DM(H ′ �H)

DM(H)⊗̃(DM(H ′)⊗̃DM(H ′′))
∼ //

θH′,H′′

��

(DM(H)⊗̃DM(H ′))⊗̃DM(H ′′)

θH,H′

��
DM(H)⊗̃DM(H ′ �H ′′)

θH,H′

��

DM(H �H ′)⊗̃DM(H ′′)

θH�H′,H′′

��
DM(H � (H ′ �H ′′))

∼ // DM((H �H ′) �H ′′)

commute. In the first case this is obvious, and in the second it follows from Remark 1.2.22.

Notation 1.3.31. Let M , M ′, and M ′′ be left Dκ-modules, and suppose we are given a pairing λ : M×M ′ →
M ′′. Using the relation V λ(x, y) = λ(V x, V y), we deduce that λ carries {x ∈ M : V x = 0} ×M ′ into
{z ∈M ′′ : V z = 0}. Moreover, if V x = 0, then

λ(x, Fy) = Fλ(V x, y) = Fλ(0, y) = 0,

so that λ induces a map λ : {x ∈M : V x = 0} ×M ′/FM ′ → {z ∈M ′′ : V z = 0}.
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Remark 1.3.32. Let H, H ′, and H ′′ be connected Hopf algebras over κ and let µ : H ⊗κ H ′ → H ′′ be a
bilinear map of Hopf algebras. If x ∈ H is primitive and y ∈ mH′ , then µ(x⊗y) ∈ H ′′ is primitive. Moreover,
for y, y′ ∈ mH′ , we have

µ(x⊗ yy′) = µ(x⊗ y)µ(1⊗ y′) + µ(1⊗ y)µ(x⊗ y′) = 0.

It follows that µ induces a map

µ : Prim(H)⊗κ mH′/m2
H′ → Prim(H ′′).

We will need the following compatibility between the constructions described in Notation 1.3.31 and
Remark 1.3.32:

Proposition 1.3.33. Let H, H ′, and H ′′ be Hopf algebras over κ, let µ : H ⊗H ′ → H ′′ be a bilinear map,
and let λ : DM(H) × DM(H ′) → DM(H ′′) be the induced pairing. Let ρH : DM(H) → H be the inclusion,
and let ρH′ : DM(H ′)/F DM(H ′)→ mH′/m

2
H′ be the isomorphism of Proposition 1.3.20. Then the diagram

{x ∈ DM(H) : V x = 0} ×DM(H ′)/F DM(H ′)

ρH×ρH′
��

λ // {z ∈ DM(H ′′) : V z = 0}

��
Prim(H)⊗κ mH′/m2

H′
µ // Prim(H ′′)

commutes, where λ and µ are defined as in Notation 1.3.31 and Remark 1.3.32, respectively.

The proof of Proposition 1.3.33 will require the following preliminary result:

Lemma 1.3.34. For each n ≥ 0, the elements {(a1 ◦ api)p
j}0≤i<n,0≤j form a basis for the vector space

Prim(Wtκ1 �Wtκn).

Proof. We proceed by induction on n, the case n = 0 being trivial. Assume that n > 0. We have an exact
sequence of Hopf algebras

κ→Wtκn−1 ↪→Wtκn
V n−1

→ Wtκ1 → κ.

Using Scholium 1.2.15, we deduce that the induced sequence

κ→Wtκ1 �Wtκn−1 →Wtκ1 �Wtκn →Wtκ1 �Wtκ1 → κ

is also exact, so that we have an exact sequence of κ-vector spaces

0→ Prim(Wtκ1 �Wtκn−1)→ Prim(Wtκ1 �Wtκn)
q→ Prim(Wtκ1 �Wtκ1 ).

The inductive hypothesis implies that the collection of elements {(a1 ◦ api)p
j}0≤i<n−1 forms a basis for

Prim(Wtκ1 �Wtκn−1). To complete the proof, it will suffice to show that that the elements {q((a1 �

apn−1)p
j

)}j≥0 form a basis for Wtκ1 �Wtκ1 . We now observe that Wtκ1 �Wtκ1 is isomorphic to a polyno-
mial ring κ[x], with comultiplication given by ∆(x) = x⊗ 1 + 1⊗ x; the collection of primitive elements in

κ[x] has a basis given by the monomials {xpj}j≥0.

Proof of Proposition 1.3.33. Fix n ≥ 1, and consider the composite map

φ : Wtκn
ιn−→Wtκn�Wtκn

Tn−1�id−→ Wtκ1 �Wtκn .

It follows from Notation 1.3.31 that φ(apn−1) is a primitive element of Wtκ1 �Wtκn. Using Lemma 1.3.34, we

can write φ(apn−1) as a linear combination of elements (a1 � api)
pj . Let us regard Wt1 �Wtn as bigraded

(where ai�aj has bidegree (i, j)), so that φ carries elements of degree d to elements of bidegree (p1−nd, d). In
particular, φ(apn−1) has bidegree (1, pn−1). It follows that φ(apn−1) = cn(a1�apn−1) for some constant cn ∈ κ.
It then follows that for every V -torsion element x ∈ DM(H) and every V n-torsion element y ∈ DM(H ′), we
have ρH′′λ(x, y) = cnµ(ρH(x), ρH′(y)). Since this equation holds for every bilinear map µ : H ⊗H ′ → H ′′,
we conclude that cn is independent of n. To complete the proof, it will suffice to show that cn = 1 for all n.
Since cn does not depend on n, it suffices to show that c1 = 1, which is clear (note that ι1(a1) = a1�a1).
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1.4 Disconnected Formal Groups

Let κ be a perfect field of characteristic p > 0, which we regard as fixed throughout this section. The
Dieudonne module functor H 7→ DM(H) determines a fully faithful embedding from the category Hopf cκ
of connected Hopf algebras over κ to the category LModDκ of Dieudonne modules. For many applications,
it is useful to extend this construction to a somewhat larger class of Hopf algebras: namely, those Hopf
algebras H for which multiplication by p is locally nilpotent on the formal group Spf H∨. In this section,
we will prove an analogue of Theorem 1.3.28 in this more general context.

We begin with some general remarks about adjoining units to symmetric monoidal categories.

Notation 1.4.1. Let Ab denote the category of abelian groups, and let A be an abelian category which
admits small colimits. Then there exists a unique functor ⊗ : Ab × A → A which preserves small colimits
separately in each variable, having the property that the functor C 7→ Z⊗C is the identity functor from A

to itself. This functor exhibits A as tensored over the category of abelian groups.
We will say that A is Z /pn Z-linear if, for every pair of objects C,D ∈ A, the abelian group HomA(C,D)

is annihilated by pn. In this case, for every abelian group M and every object C ∈ A, the canonical
epimorphism

M ⊗ C → (M/pnM)⊗ C
is an isomorphism. It follows that the functor ⊗ : Ab×A→ A factors as a composition

Ab×A→ModZ /pn Z×A
⊗Z /pn Z−→ A .

The functor ⊗Z /pn Z exhibits A as tensored over the symmetric monoidal category ModZ /pn Z of (discrete)
Z /pn Z-modules.

Construction 1.4.2. Suppose that A is an abelian category which admits small colimits and is Z /pn Z-
linear. Suppose further that A is equipped with a nonunital symmetric monoidal structure for which the
tensor product functor ⊗ : A×A→ A preserves colimits separately in each variable. We let A+ denote the
product category ModZ /pn Z×A. We let ⊗+ : A+×A+ → A+ denote the functor given by

(M,C)⊗+ (M ′, C ′) = (M ⊗Z /pn Z M
′, (M ⊗Z /pn Z C

′)⊕ (M ′ ⊗Z /pn Z C)⊕ (C ⊗ C ′)).

It is not difficult to show that the tensor product functor ⊗+ exhibits A+ as a symmetric monoidal category,
with unit object given by (Z /pn Z, 0).

Remark 1.4.3. In the situation of Construction 1.4.2, the symmetric monoidal category A+ has the fol-
lowing universal property: for any Z /pn Z-linear abelian category B equipped with a symmetric monoidal
structure for which the tensor product preserves small colimits in each variable, composition with the inclu-
sion functor A ↪→ A+ induces an equivalence from the category of colimit-preserving symmetric monoidal
functors from A+ to B to the category of colimit-preserving nonunital symmetric monoidal functors from A

to B.

Notation 1.4.4. Let n ≥ 0 be an integer. We will say that a Hopf algebra H over κ is pn-torsion if it is
annihilated by pn, when regarded as an object of the abelian category Hopfκ. We let Hopfκ,n denote the
the full subcategory of Hopfκ spanned by the pn-torsion Hopf algebras, and Hopf cκ,n = Hopf cκ ∩Hopfκ,n
the full subcategory of Hopfκ spanned by the connected pn-torsion Hopf algebras.

Remark 1.4.5. The inclusion functor Hopfκ,n ↪→ Hopfκ admits a left adjoint, which carries each Hopf al-
gebra H to the cokernel (in the abelian category Hopfκ of the map [pn] : H → H representing multiplication
by pn. Consequently, we may view Hopfκ,n as a localization of the category Hopfκ.

Remark 1.4.6. Let H and H ′ be Hopf algebras over κ. If either H or H ′ is pn-torsion, then the Hopf algebra
H�H ′ is pn-torsion. It follows that the full subcategories Hopfκ,n,Hopf cκ,n ⊆ Hopfκ are closed under the
functor �, and therefore inherit the structure of nonunital symmetric monoidal categories. In fact, Hopfκ,n
is even symmetric monoidal: it has a unit object, given by the group algebra κ[Z /pn Z] = κ[x]/(xp

n − 1).
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Let n ≥ 0. It follows from Remark 1.4.3 that the inclusion Hopf cκ,n ↪→ Hopfκ,n admits an essentially
unique extension to a symmetric monoidal functor θ : (Hopf cκ,n)+ → Hopfκ,n.

Proposition 1.4.7. Suppose that the field κ is algebraically closed. Then for each n ≥ 0, the functor
θ : (Hopf cκ,n)+ → Hopfκ,n is an equivalence of categories.

Proof. Since κ is algebraically closed, every Hopf algebra H over κ can be written canonically as a tensor
product Hc ⊗κ κ[M ], where Hc is a connected Hopf algebra over κ, and M is an abelian group (which we
can identify with the collection of group-like elements of H). This observation determines an equivalence
of categories Hopfκ ' Ab ×Hopf cκ, which restricts to an equivalence Hopfκ,n ' ModZ /pn Z×Hopf cκ,n.
Under this equivalence, θ corresponds to the identity functor from ModZ /pn Z×Hopf cκ,n to itself.

For n ≥ 0, we let Dκ /p
n denote the quotient of Dκ by the (two-sided) ideal generated by pn. We will

identify LModDκ /pn with the full subcategory of LModDκ spanned by those left Dκ-modules which are

annihilated by pn, and we let LModNil
Dκ /pn denote the full subcategory spanned by those left Dκ-modules which

are annihilated by pn on which the action of V is locally nilpotent. Note that LModDκ /pn and LModNil
Dκ /pn

are closed under the tensor product ⊗̃, and therefore inherit the structure of nonunital symmetric monoidal
∞-categories. Moreover, LModDκ /pn has a unit object, given by the quotient W (κ)/pnW (κ) (where the
actions of F and V are given by F (x) = pϕ(x) and V (x) = ϕ−1(x), as in Remark 1.3.29). Proposition 1.4.7
implies that the formation of Dieudonne modules defines a nonunital symmetric monoidal functor

DM : Hopf cκ,n ' LModNil
Dκ /pn ↪→ LModDκ /pn .

This extends uniquely to a symmetric monoidal functor θ′ : (Hopf cκ,n)+ → LModDκ /pn .

Proposition 1.4.8. Let n ≥ 0. Then the functor θ′ : (Hopf cκ,n)+ → LModDκ /pn is fully faithful.

Proof. We can identify objects of (Hopf cκ,n)+ with pairs (M,H), where M is an abelian group which is
annihilated by pn, and H is a connected pn-torsion Hopf algebra over κ. Unwinding the definitions, we see
that the functor θ+ is given by

θ+(M,H) = (W (κ)⊗Z M)⊕DM(H),

where the actions of F and V on the first factor are given by

F (λx) = pϕ(λ)x V (λx) = ϕ−1(λ)x

for λ ∈W (κ), x ∈M . Since the functor DM is fully faithful, the assertion that θ′ is fully faithful is equivalent
to the following:

(1) For every abelian group M which is annihilated by pn and every connected Hopf algebra H which is
annihilated by pn, there are no nonzero left Dκ-module homomorphisms from W (κ)⊗ZM to DM(H).

(2) For every abelian group M which is annihilated by pn and every connected Hopf algebra H which is
annihilated by pn, there are no nonzero left Dκ-module homomorphisms from DM(H) to W (κ)⊗ZM .

(3) For every pair of abelian groups M and N which are annihilated by pn, the canonical map

HomAb(M,N)→ HomDκ(W (κ)⊗Z M,W (κ)⊗Z, N)

is bijective.

To prove (1), suppose we are given a map of left Dκ-modules λ : W (κ) ⊗Z M → DM(H). For each
x ∈M , we have V (1⊗ x) = 1⊗ x in W (κ)⊗Z M , so that

V mλ(1⊗ x) = λ(V n(1⊗ x)) = λ(1⊗ x)
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for all m. Since the action of V on DM(H) is locally nilpotent, we conclude that λ(1⊗x) = 0 for all x ∈M .
Since λ is W (κ)-linear, we conclude that λ = 0.

The proof of (2) is similar. Let λ : DM(H)→W (κ)⊗Z M be a left Dκ-module homomorphism, and let
x ∈ DM(H). Then V mx = 0 for m� 0. It follows that

V mλ(x) = λ(V mx) = λ(0) = 0.

Since ϕ−1 is an automorphism of W (κ), the action of V on W (κ)⊗ZM is invertible, from which we deduce
that λ(x) = 0.

We now prove (3). Let M and N be abelian groups which are annihilated by pn. Let us identify
M and N with their images in W (κ) ⊗Z M and W (κ) ⊗Z N , respectively. The map HomAb(M,N) →
HomDκ(W (κ)⊗ZM,W (κ)⊗ZN) is evidently injective. To prove the surjectivity, it will suffice to show that
every left Dκ-module homomorphism λ : W (κ) ⊗Z M → W (κ) ⊗Z N carries M into N . For this, it will
suffice to show that if y ∈W (κ)⊗Z N satisfies V (y) = y, then y ∈ N . In other words, we wish to show that
the sequence

0→ N →W (κ)⊗Z N
(ϕ−1−id)⊗id−→ W (κ)⊗Z N

is exact. Writing N as a filtered colimit of finitely generated submodules, we may assume that N is a finitely
generated abelian group. Writing N as a direct sum of indecomposable summands, we can reduce to the
case where N = Z /pm Z for m ≤ n. In this case, we must prove the exactness of the sequence

0→ Z /pm Z→W (κ)/pmW (κ)
ϕ−1−id→ W (κ)/pmW (κ).

At the level of Witt components, this amounts to the observation that every element x ∈ κ satisfying
xp
−1

= x must belong to the prime field Fp.

Proposition 1.4.9. Suppose that κ is algebraically closed, and let n ≥ 0. Then the essential image of the
functor θ′ : (Hopf cκ,n)+ → LModDκ /pn is the full subcategory spanned by those left Dκ /p

n-modules N
which satisfy the following condition:

(∗) For each element x ∈ N , there is a finite length W (κ)-submodule of N which contains x and is closed
under the action of V .

Lemma 1.4.10. Let ϕ : W (κ)→W (κ) be the Frobenius map, let N be a W (κ)-module which is annihilated
by pn for some n, let V : N → N be a ϕ−1-semilinear map, and set M = {x ∈ N : V x = x}. Then the
canonical map W (κ)⊗M → N is injective.

Proof. It will suffice to show that for every finitely generated submodule M0 ⊆M , the induced map W (κ)⊗
M0 → N is injective. Write M0 as a direct sum

⊕
1≤i≤d Z /pti Z, so that the inclusion of M0 into M

determines a collection of elements x1, . . . , xd ∈ N satisfying V xi = xi and ptixi = 0. Suppose we are given
a dependence relation

c1x1 + · · ·+ cdxd = 0

in N , where ci ∈W (κ)/ptiW (κ). We wish to prove that each ci vanishes. Suppose otherwise. Without loss
of generality, we can choose a counterexample with d as small as possible, so that none of the coefficients
ci vanish. Multiplying each ci by an invertible element of W (κ), we may assume without loss of generality
that c1 = pk for some integer k.

Let ϕ : W (κ)→W (κ) denote the Frobenius morphism. We then have

0 = V (c1x1 + · · ·+ cdxd) = ϕ−1(c1)x1 + · · ·+ ϕ−1(cd),

so that
∑

1≤i≤d(ci − ϕ−1ci)xi = 0. Since c1 = ϕ−1(c1), the minimality of d guarantees that ci = ϕ−1ci for

1 ≤ i ≤ d. That is, we can identify each ci with an element of Z /pti Z ⊆ W (κ)/ptiW (κ). In this case, the
sum c1x1 + · · ·+ cdxd can be identified with an element of M , and the composite map

M →M ⊗W (κ)→ N

is injective by construction.
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Lemma 1.4.11. Assume that κ is algebraically closed. Let N be a finite dimensional vector space over κ,
and let F be a ϕ-semilinear automorphism of N . If N 6= 0, then N contains a nonzero element which is
fixed under the action of F .

Proof. Choose a nonzero element v ∈ N . Since V is finite-dimensional, the elements {v, F (v), F 2(v), . . .}
cannot all be linearly independent. Thus there exists a nonzero dependence relation∑

0≤i≤n

λiF
i(v) = 0.

Replacing v by F i(v) if necessary, we may assume that the coefficient λ0 is nonzero. Dividing by λ0, we may
assume that λ0 = 1: that is, we have

v =
∑

1≤i≤n

−λiF i(v).

We may assume that n is chosen as small as possible: it follows that the set {v, F (v), . . . , Fn−1(v)} is linearly
independent, and therefore λn 6= 0. Since v 6= 0, we must have n > 0.

Note that
f(x) = xp

n

+ λp
n−1

1 xp
n−1

+ λp
n−2

2 xp
n−2

+ · · ·+ λnx

is a separable polynomial of degree pn > 1, and therefore has pn distinct roots in the field κ. Consequently,
there exists a nonzero element a ∈ κ such that f(a) = 0. Let

w = av + (ap + aλ1)F (v) + (ap
2

+ apλp1 + aλ2)F 2(v) + · · ·+ (ap
n−1

+ ap
n−2

λp
n−2

1 + · · ·+ aλn−1)Fn−1(v).

Since the elements {F i(v)}0≤i<n are linearly independent and a 6= 0, w is a nonzero element of N . An
explicit calculation gives

w − F (w) = av +
∑

0<i<n

aλiF
i(v) + (aλn − f(a))Fn(v) = a(v + λ1F (v) + · · ·+ λnF

n(v)) = 0,

so that w is fixed by F .

Lemma 1.4.12. Let ϕ : W (κ)→W (κ) be the Frobenius map, let N be a W (κ)-module of finite length, and
let V : N → N be a ϕ−1-semilinear map. Suppose that V is injective and that κ is algebraically closed. Then
N is generated by M = {x ∈ N : V x = x} as a module over W (κ).

Proof. Let N ′ denote the W (κ)-submodule of N generated by W (κ) and set N ′′ = N/N ′; we wish to show
that N ′′ ' 0. We have a diagram of short exact sequences

0 // N ′ //

V−1

��

N

V−1

��

// N ′′

V−1

��

// 0

0 // N ′ // N // N ′′ // 0.

Since κ is algebraically closed, the Artin-Schreier map x 7→ x−xp is a surjection from κ to itself. Composing
with ϕ−1, we deduce that ϕ−1− id : κ→ κ is surjective. It follows by induction on t that the map ϕ−1− id is
a surjection from W (κ)/ptW (κ) to itself for all t. Consequently, ϕ−1−id induces a surjection from W (κ)⊗M
to itself for every finite abelian p-group M , and therefore for every pn-torsion abelian group M . Combining
this observation with Lemma 1.4.10, we deduce that the map V − 1 : N ′ → N ′ is surjective. We therefore
obtain a short exact sequence

0→ ker(V − 1 : N ′ → N ′)→ ker(V − 1 : N → N)→ ker(V − 1 : N ′′ → N ′′)→ 0.

By construction, the first map is an isomorphism, so that V − 1 is an injection from N ′′ to itself. Let N ′′0
denote the p-torsion subgroup of N ′′. Since N is a W (κ)-module of finite length, the injectivity of V implies
that V : N → N is an isomorphism. Then V induces an isomorphism from N ′′0 to itself having no fixed
points. Applying Lemma 1.4.11 to the inverse isomorphism, we conclude that N ′′0 = 0, so that N ′′ = 0 as
desired.
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Proof of Proposition 1.4.9. Let us identify objects of (Hopf cκ,n)+ with pairs (M,H) as in the proof of Propo-
sition 1.4.8. We first show that every object belonging to the essential image of θ′ satisfies condition (∗). We
have θ′(M,H) ' θ′(M,κ)⊕DM(H). Since the action of V on DM(H) is locally nilpotent, it automatically
satisfies (∗). It will therefore suffice to show that θ′(M,κ) 'W (κ)⊗M satisfies (∗), which is clear.

Conversely, suppose that N is a left Dκ-module which annihilates pn and satisfies condition (∗). We
wish to show that N belongs to the essential image of θ′. Let N0 denote the subset of N consisting of those
elements x ∈ N which are annihilated by some power of V , let M = {x ∈ N : V x = x}, and let N1 be the
W (κ)-submodule of N which is generated by M . Note that the action of F on M is given by multiplication
by p, so we have a surjective map of Dκ-modules M ⊗W (κ) → N1. Since the action of V on N0 is locally
nilpotent, we can write N0 ' DM(H) for some connected Hopf algebra H over κ. Lemma 1.4.10 implies
that N1 'W (κ)⊗M . We therefore have θ′(M,H) ' N0⊕N1. To complete the proof, it will suffice to show
that the direct sum N0 ⊕N1 is isomorphic to N .

Since V acts by an isomorphism on N1 and the action of V on N0 is locally nilpotent, we have N0∩N1 = ∅.
It will therefore suffice to show that every element x ∈ N can be written in the form x0 +x1, where x0 ∈ N0

and x1 ∈ N1. Using condition (∗), we can choose a finite length W (κ)-submodule N ′ ⊆ N which contains x
and is closed under the action of V . It follows that there exists an integer m such that ker(V m

′
: N ′ → N ′)

is independent of m′ for m′ ≥ m. Let N ′0 = ker(V m : N ′ → N ′) and let N ′1 = im(V m : N ′ → N ′). Note
that if y ∈ N ′0 ∩ N ′1, then we can write y = V mz for some z ∈ N ′ satisfying V 2mz = V my = 0. Then
z ∈ ker(V 2m) = ker(V m), so that y = V mz = 0. It follows that N ′0 ∩N ′1 = 0. We have an exact sequence

0→ N ′0 → N ′
Vm→ N ′1 → 0,

so that the length of N ′ over W (κ) is the sum of the lengths of N ′0 and N ′1 over W (κ). It follows that N ′ is
the direct sum of the submodules N ′0 and N ′1. In particular, we can write x = x0 + x1, where x0 ∈ N ′0 and
x1 ∈ N ′1. It is clear that x0 belongs to N0, and Lemma 1.4.12 implies that x1 belongs to N1.

We now prove (b). It will suffice to show that for every finitely generated submodule M0 ⊆ M , the
induced map W (κ)⊗M0 → N is injective. Write M0 as a direct sum

⊕
1≤i≤d Z /pti Z, so that the inclusion

of M0 into M determines a collection of elements x1, . . . , xd ∈ N satisfying V xi = xi and ptixi = 0. Suppose
we are given a dependence relation

c1x1 + · · ·+ cdxd = 0

in N , where ci ∈W (κ)/ptiW (κ). We wish to prove that each ci vanishes. Suppose otherwise. Without loss
of generality, we can choose a counterexample with d as small as possible, so that none of the coefficients
ci vanish. Multiplying each ci by an invertible element of W (κ), we may assume without loss of generality
that c1 = pk for some integer k.

Let ϕ : W (κ)→W (κ) denote the Frobenius morphism. We then have

0 = V (c1x1 + · · ·+ cdxd) = ϕ−1(c1)x1 + · · ·+ ϕ−1(cd),

so that
∑

1≤i≤d(ci − ϕ−1ci)xi = 0. Since c1 = ϕ−1(c1), the minimality of d guarantees that ci = ϕ−1ci for

1 ≤ i ≤ d. That is, we can identify each ci with an element of Z /pti Z ⊆ W (κ)/ptiW (κ). In this case, the
sum c1x1 + · · ·+ cdxd can be identified with an element of M , and the composite map

M →M ⊗W (κ)→ N1 ⊆ N

is injective by construction.

Remark 1.4.13. Let κ be a perfect field of characteristic p > 0, let κ be an algebraic closure of κ, and let
Gal(κ/κ) denote the Galois group over κ over κ. Let Dκ denote the Dieudonne ring of κ, so that the Galois
group Gal(κ/κ) acts on Dκ and therefore also on the category LModDκ /pn . Let (LModDκ /pn)Gal(κ/κ)

denote the category of homotopy fixed points for this action. More concretely, (LModDκ /pn)Gal(κ/κ) is
the category whose objects are left Dκ /p

n-modules equipped with a compatible action of the Galois group
Gal(κ/κ). The construction M 7→ W (κ) ⊗W (κ) M ' W (κ)/pn ⊗W (κ)/pn M determines a fully faithful
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embedding LModDκ /pn → (LModDκ /pn)Gal(κ/κ). The essential image of this functor is the full subcategory

of (LModDκ /pn)Gal(κ/κ) spanned by those Dκ /p
n-modules M on which the action of Gal(κ/κ) is continuous

(meaning that every element x ∈M is stabilized by an open subgroup of Gal(κ/κ).
Similarly, the Galois group Gal(κ/κ) acts on the category Hopfκ,n of pn-torsion Hopf algebras over κ,

and we have a fully faithful embedding Hopfκ,n → Hopf
Gal(κ/κ)
κ,n .

Propositions 1.4.7 and 1.4.8 determine a fully faithful embedding Hopfn,κ → LModDκ /pn , which induces
a fully faithful embedding

DM+ : Hopf
Gal(κ/κ)
n,κ → LMod

Gal(κ/κ)
Dκ /pn

.

Proposition 1.4.14. For each integer n ≥ 0, the composite functor

Hopfκ,n → Hopf
Gal(κ/κ)
κ,n

DM+−→ LMod
Gal(κ/κ)
Dκ /pn

factors through the essential image of the fully faithful embedding LModDκ /pn → LMod
Gal(κ/κ
Dκ /pn

. Conse-

quently, we obtain a fully faithful symmetric monoidal functor

DM+ : Hopfκ,n → LModDκ /pn .

Proof. Let H be a pn-torsion Hopf algebra over κ, let H = κ⊗κH, and let M = DM(H) be the associated Dκ-
module. Then M is acted on by the Galois group Gal(κ/κ); we wish to show that this action is continuous.
Since the field κ is perfect, we can write H as a tensor product Hc ⊗κ Hd, where Hc is connected and
Hd is diagonalizable over κ. It will therefore suffice to prove the result under the assumption that H is
either connected or diagonalizable over κ. In the connected case, the continuity of the action of Gal(κ/κ)
on DM(H) ⊆ H follows immediately from the continuity of the action of Gal(κ/κ) on H.

Now suppose that H is diagonalizable over κ and let N be the collection of grouplike elements of H,
so that we have a Hopf algebra isomorphism κ[N ] ' H. Since Gal(κ/κ) acts continuously on H, it acts
continuously on N , and therefore also on the tensor product W (κ)/pn⊗Z /pn ZN ' DM+(H). This completes
the proof that DM+ is well-defined.

Corollary 1.4.15. For each n ≥ 0, the nonunital symmetric monoidal equivalence DM : Hopf cn,κ →
LModNil

Dκ /pn extends to a fully faithful symmetric monoidal functor DM+ : Hopfκ,n → LModDκ /pn . The
essential image of this functor is the full subcategory of LModDκ /pn consisting of those modules which satisfy
condition (∗) of Proposition 1.4.9.

Proof. The only nontrivial point is to describe the essential image of DM+. We first note that for any
pn-torsion Hopf algebra H over κ, the Dκ-module W (κ)⊗W (κ) DM+(H) satisfies (∗) by Proposition 1.4.12,
so that DM+(H) also satisfies (∗). Conversely, suppose that M is a left Dκ /p

n-module satisfying (∗). Then
M = W (κ) ⊗W (κ) M is a left Dκ /p

n-module satisfying (∗), so that Proposition 1.4.12 implies that we can

write M = DM+(H) for some Hopf algebra H over κ equipped with a semilinear action of Gal(κ/κ). To
complete the proof, we must show that the action of Gal(κ/κ) on H is continuous. As above, it will suffice
to prove this in the special cases where H is assumed either to be connected or diagonalizable.

If H is diagonalizable, we can write H = κ[N ] for some Z /pn Z-module N , and we are reduced to
showing that the action of Gal(κ/κ) on N is continuous. This is clear, since N can be identified with the
set of V -fixed elements of DM+(H).

If H is connected, then we can identify DM+(H) with a subset of H, and the action of Gal(κ/κ) on that
subset is continuous. Since H is generated by DM(H) as an algebra over κ (Corollary 1.3.18), we conclude
that the action of Gal(κ/κ) on H is continuous.

Remark 1.4.16. Unwinding the definitions, we see that if H is a Hopf algebra over κ which is diagonalizable
over κ, then DM+(H) can be identified (W (κ)⊗Z GLike(Hκ))Gal(κ/κ). The map V : DM+(H)→ DM+(H)
is induced by the automorphism ϕ−1 of W (κ), and the map F : DM+(H) → DM+(H) is induced by the
map λ 7→ pϕ(λ) from W (κ) to itself.
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Let us say that a Hopf algebra H over κ is p-nilpotent if it is the union of the subalgebas {H[pn]}n≥0.

Let Hopfp−nilκ denote the full subcategory of Hopfκ spanned by the p-nilpotent Hopf algebras over κ. Then
the construction H 7→ {H[pn]}n≥0 determines an equivalence from Hopfp−nilκ to the homotopy inverse limit
of the tower of categories {Hopfκ,n}n≥0. Passing to the limit over n, we obtain the following version of
Corollary 1.4.15:

Corollary 1.4.17. The nonunital symmetric monoidal equivalence DM : Hopf cκ → LModNil
Dκ extends to a

fully faithful nonunital symmetric monoidal functor DM+ : Hopfp−nilκ → LModDκ . The essential image
of this functor is the full subcategory of LModDκ consisting of those modules which satisfy condition (∗) of
Proposition 1.4.9.

Example 1.4.18 (Cartier Duality). Let κ be a field, let G = SpecH be a finite flat commutative group
scheme over κ, and let D(G) = SpecH∨ be its Cartier dual. We then have a bilinear map µ : G ×Specκ

D(G) → Gm. Suppose that G is annihilated by pn, so that µ factors through the subscheme µpn ⊆ Gm.
Then µ is given by a map of Hopf algebras

H∨ �H → κZ /p
n Z,

and therefore induces a pairing of Dieudonne modules

ν : DM(H∨)×DM(H)→ DM(κZ /p
n Z).

Note that we can identify DM(κZ /p
n Z) with the quotient p−nW (κ)/W (κ). The bilinear pairing therefore

induces a map

θH : DM(H∨)→ HomW (κ)(DM(H), p−nW (κ)/W (κ)) ' HomW (κ)(DM(H),W (κ)[p−1]/W (κ)).

Note that the automorphism ϕ : W (κ) → W (κ) induces an automorphism of W (κ)[p−1]/W (κ), which
we will also denote by ϕ. The action of F on DM(κZ /p

n Z) ' p−nW (κ)/W (κ) is then given by ϕ, while the
action of V is given by z 7→ pϕ−1(z). Since ν is a pairing of Dκ-modules, we obtain the identities

ϕ(ν(x, V y)) = ν(Fx, y) ν(V x, V y) = pϕ−1(ν(x, y)) ϕ(ν(V x, y)) = ν(x, Fy).

Note that the second identity is superfluous (it follows from either of the other identities). The first and third
identities imply that θH is a map of Dκ-modules, where we regard HomW (κ)(DM(H),W (κ)[p−1]/W (κ)) as
a left Dκ-module via the action given by

(Fλ)(y) = ϕ(λ(V y)) (V λ)(y) = ϕ−1(λ(Fy)).

It follows that the kernel of θH is a Dκ-submodule of DM(H∨), which classifies a closed subgroup of G on
which the pairing µ vanishes. Such a subgroup is automatically trivial, so that θH is injective. Since the
domain and codomain of θH have the same length as W (κ)-modules, θH is an isomorphism. That is, we
have a canonical isomorphism of Dκ-modules

DM(H∨) ' HomW (κ)(DM(H),W (κ)[p−1]/W (κ)),

where the action of F and V on the right hand side are given as above.

2 The Morava K-Theory of Eilenberg-MacLane Spaces

Let κ be a perfect field of characteristic p > 0, and let G0 be a 1-dimensional formal group of height
0 < n <∞ over κ. To the pair (G0, κ) one can associate a cohomology theory K(n), called the nth Morava
K-theory. The Morava K-groups K(n)∗K(Z /pt Z, d) were computed by Ravenel-Wilson in [18] (in the case
p > 2) and Johnson-Wilson in [12] (in the case p = 2). Their results are conveniently stated in the language
of Dieudonne modules:
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Theorem 2.0.1. For each t ≥ 0 and d > 0, the canonical map

(π∗K(n))⊗κ K(n)0K(Z /pt Z, d)→ K(n)∗K(Z /pt Z, d)

is an isomorphism (that is, the K(n)-homology groups K(n)∗K(Z /pt Z, d) are concentrated in even degrees).
The group K(n)0K(Z /pt Z, d) is a finite-dimensional connected Hopf algebra over κ, which is determined by
its Dieudonne module M(d) = DM(K(n)0K(Z /pt Z, d)) (Definition 1.3.3). Moreover, we have an isomor-

phism of Dieudonne modules M(d) '
∧d
κM(1), where the action of F and V on

∧d
κM(1) are determined

by the formulas
V (x1 ∧ · · · ∧ xd) = V x1 ∧ · · · ∧ V xd

F (V x1 ∧ · · · ∧ V xi−1 ∧ xi ∧ V xi+1 ∧ · · · ∧ xd) = x1 ∧ · · · ∧ xi−1 ∧ Fxi ∧ xi+1 ∧ · · · ∧ xd.

We will give the proof of Theorem 2.0.1 in §2.4. Our strategy is to verify the following three assertions,
using induction on d:

(a) The ring R(d) = K(n)0K(Qp /Zp, d) is isomorphic to a formal power series ring over κ.

(b) The formal group Spf R(d) is p-divisible, and its Dieudonne module is given by the dth exterior power
of the Dieudonne module of the formal group G0 ' Spf R(1).

(c) The group scheme SpecK(n)0K(Z /ptZ, d) can be identified with the pt-torsion subgroup of the formal
group Spf R(d).

To carry out the inductive step, we use the Rothenberg-Steenrod spectral sequence to compute the K(n)-
cohomology groups of K(Qp /Zp, d) in terms of the K(n)-homology groups of K(Qp /Zp, d − 1). We will
review the definition of this spectral sequence in §2.3, since the precise construction plays an important role
in our proof. The other main ingredient is a purely algebraic result about the cohomology of p-divisible
groups (Theorem 2.2.10), which we prove in §2.2.

For the reader’s convenience, we include in §2.1 a brief review of some aspects of chromatic homotopy
theory that are relevant to this paper, such as the theory of Lubin-Tate spectra and Morava K-theories, and
the associated localizations of stable homotopy theory.

2.1 Lubin-Tate Spectra

In this section, we briefly review some concepts from stable homotopy theory which will play an essential
role in this paper: specifically, the theory of Lubin-Tate spectra, their associated Morava K-theories, and
the corresponding localizations of the stable homotopy category. Our exposition is rather terse, and for the
most part proofs have been omitted.

We begin with some general remarks about localization in the setting of stable homotopy theory.

Proposition 2.1.1. Let Sp denote the ∞-category of spectra, and let C ⊆ Sp be a full subcategory. The
following conditions are equivalent:

(1) The inclusion ι : C ↪→ Sp admits a left adjoint F . Moreover, the composite functor L = ι ◦ F is
accessible and exact.

(2) The full subcategory C ⊆ Sp is presentable, stable, closed under small limits, and closed under κ-filtered
colimits for some sufficiently large regular cardinal κ.

Proof. If (1) is satisfied, then the exactness of L implies that C ' LSp is a stable ∞-category; the re-
maining conditions are established in §HTT.5.5.4. Conversely, suppose that C satisfies (2). Using Corollary
HTT.5.5.2.9, we deduce that the inclusion ι : C ↪→ Sp admits a left adjoint F . Since C and Sp are presentable
and stable, the functors ι and F are exact and accessible (Proposition HTT.5.4.7.7), so that the composition
L = ι ◦ F is also accessible and exact.
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In the situation of Proposition 2.1.1, the localization functor L is automatically compatible with the
symmetric monoidal structure on the ∞-category Sp:

Proposition 2.1.2. Let L : Sp → Sp be as in Proposition 2.1.1. Then L is compatible with the smash
product of spectra. That is, if X is a spectrum and f : Y → Z is an L-equivalence of spectra, then the
induced map

X ⊗ Y → X ⊗ Z

is also an L-equivalence.

Proof. The collection of L-equivalences is closed under small colimits. Since the ∞-category Sp is generated
(under small colimits) by the collection of spheres Sn, we may reduce to the case where X = Sn. In other
words, we are reduced to proving that if f : X → Y is an L-equivalence, then the induced map ΣnX → ΣnY
is an L-equivalence. This follows immediately from the exactness of L.

Corollary 2.1.3. Let C ⊆ Sp be a full subcategory satisfying the requirement of Proposition 2.1.1. Then
the smash product of spectra induces a symmetric monoidal structure on the ∞-category C. Moreover, the
inclusion C ↪→ Sp is lax symmetric monoidal, and its left adjoint L : Sp→ C is symmetric monoidal.

Proof. Combine Propositions 2.1.2 and HA.2.2.1.9.

Notation 2.1.4. In the situation of Corollary 2.1.3, we will sometimes denote the tensor product on the
∞-category C by ⊗̂ (to avoid confusion with the smash product on the ambient ∞-category of spectra).
Concretely, this operation is given by

X⊗̂Y = L(X ⊗ Y ).

Proposition 2.1.5. Let C ⊆ Sp be the essential image of an accessible exact localization functor L. Then
the localized smash product functor ⊗̂ : C×C → C determines a fully faithful embedding α : C → Fun(C,C).
The essential image of this embedding is the full subcategory of Fun(C,C) spanned by those functors which
preserve small colimits.

Proof. Let Fun′(C,C) denote the full subcategory of Fun(C,C) spanned by those functors which preserve
small colimits. It is clear that α factors through Fun′(C,C). Let S ∈ Sp denote the sphere spectrum. Then
evaluation on LS ∈ C induces a functor β : Fun′(C,C) → C, and the composition β ◦ α is homotopic to the
identity functor idC. To prove that α is an equivalence, it will suffice to show that β is fully faithful. Note
that β is given by a composition

Fun′(C,C)
◦L→ Fun′(Sp,C)

β′→ C,

where Fun′(Sp,C) is the full subcategory of Fun(Sp,C) spanned by those functors which preserve small
colimits, and β′ is given by evaluation at the sphere spectrum. The map β′ is an equivalence of∞-categories
(Corollary HA.1.4.4.6), and the first map is fully faithful by virtue of our assumption that L is a localization
functor.

Remark 2.1.6. In the situation of Proposition 2.1.5, the equivalence C ' Fun′(C,C) is a monoidal func-
tor (where we regard C as endowed with the symmetric monoidal structure given by Corollary 2.1.3, and
Fun′(C,C) with the monoidal structure given by composition of functors).

In this paper, we will be most interested in the localization of the stable homotopy category with respect
to Morava K-theory spectra.

Notation 2.1.7. We define a category FG as follows:

(1) The objects of FG are pairs (R,G), where R is a commutative ring and G is a 1-dimensional formal
group over R.

(2) A morphism from (R,G) to (R′,G) is given by a pair (φ, α), where φ : R→ R′ is a ring homomorphism
and α : φ∗G ' G′ is an isomorphism of formal groups of R′.
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We will refer to FG as the category of formal groups. We let FGpf denote the full subcategory of FG spanned
by those pairs (R,G) where R is a perfect field of characteristic p > 0 and G is a formal group of finite
height over R.

Definition 2.1.8. Let E be an E∞-ring spectrum. We will say that E is a Lubin-Tate spectrum if the
following conditions are satisfied:

(1) As a ring spectrum, E is even periodic. That is, the homotopy groups πiE vanish when i is odd, and
there exists an element β ∈ π−2E such that multiplication by β induces isomorphisms πnE → πn−2E.

(2) The ring R = π0E is a complete local Noetherian ring having maximal ideal m, whose residue field
κ(E) = R/m is perfect of characteristic p > 0.

(3) Let G denote the formal group Spf π0E
CP∞ over the commutative ring R, and let G0 denote the

induced formal group over the residue field κ(E). Then G0 has finite height, and G is a universal
deformation of G0.

In this case, we define the height of E to be the height of the formal group G0.
Let CAlg denote the ∞-category of E∞-rings, and CAlgLT the full subcategory of CAlg spanned by the

Lubin-Tate spectra.

Theorem 2.1.9 (Goerss-Hopkins-Miller). The construction E 7→ (κ(E),G0) determines an equivalence
from the ∞-category CAlgLT of Lubin-Tate spectra to the (nerve of the) category FGpf of one-dimensional
formal groups of finite height over perfect fields.

Notation 2.1.10. Let κ be a perfect field of characteristic p > 0, let G0 be a smooth 1-dimensional formal
group over κ of height 0 < n <∞. According to Theorem 2.1.9, there exists an (essentially unique) Lubin-
Tate spectrum E = E(κ,G0) for which the formal group Spf π0E

CP∞ is the universal deformation of G0.
We will refer to E as the Lubin-Tate spectrum associated to the pair (κ,G0). Note that R = π0E is the
Lubin-Tate deformation ring of the formal group G0, which is non-canonically isomorphic to the formal
power series ring W (κ)[[u1, . . . , un−1]]. Set u0 = p, and for 0 ≤ i < n let M(i) denote the cofiber of the map
of E-module spectra ui : E → E. We let K(n) denote the E-module

⊗
0≤i<nMi (where the smash product

is formed in the symmetric monoidal ∞-category ModE of E-module spectra). We will refer to K(n) as
the Morava K-theory spectrum associated to the pair (κ,G0). One can show that the homotopy equivalence
class of K(n) is independent of system of generators (u1, . . . , un−1) chosen for R. It is an E-module spectrum
whose homotopy groups are given by

πiK(n) '

{
κ if i = 2j

0 if i = 2j + 1.

Remark 2.1.11. Lubin-Tate spectra are often referred to in the literature as Morava E-theories.

Warning 2.1.12. Our terminology is somewhat nonstandard. Many authors use the notation K(n) to
indicate a summand of the spectrum introduced in Notation 2.1.10, whose associated homology theory is
periodic of period 2(pn−1). In this paper, we work exclusively with 2-periodic versions of Morava K-theory.

Definition 2.1.13. Let κ be a perfect field of characteristic p > 0, let G0 be a smooth 1-dimensional formal
group of height 0 < n < ∞ over κ, and let K(n) denote the associated Morava K-theory. We will say that
a spectrum X is K(n)-acyclic if the K(n)-homology groups K(n)∗X vanish. We will say that a spectrum Y
is K(n)-local if the mapping space MapSp(X,Y ) is contractible whenever X is K(n)-acyclic. We let SpK(n)

denote the full subcategory of Sp spanned by the K(n)-local spectra. We refer to SpK(n) as the ∞-category
of K(n)-local spectra.

Remark 2.1.14. In the situation of Definition 2.1.13, the spectrum K(n) depends on the perfect field κ and
the formal group G0. However, the full subcategory SpK(n) ⊆ Sp is mostly independent of those choices: it
depends only on the characteristic p of the field κ, and the height n of the formal group G0.
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Proposition 2.1.15. Let E be a Lubin-Tate spectrum of height n. Then SpK(n) is the essential image of an
accessible exact localization functor LK(n) : Sp → Sp. Moreover, SpK(n) depends only on the integer n > 0
and on the characteristic p of the residue field κ(E).

We now discuss the multiplicative structures on Morava K-theories.

Proposition 2.1.16. Let E be a Lubin-Tate spectrum and let K(n) be the associated Morava E-theory.
Then K(n) admits the structure of an E1-algebra object of ModE.

Remark 2.1.17. The E1-algebra structure on K(n) is not unique. In fact, one can show that K(n) admits
uncountably many pairwise inequivalent E1-algebra structures.

Notation 2.1.18. Let E be an E∞-ring, and let A be an E1-algebra over E. We let ABModA(ModE)
denote the∞-category of A-A bimodule objects of ModE . Then ABModA(ModE) is a presentable monoidal
∞-category (with monoidal structure given by the relative smash product ⊗A), and the tensor product
on ABModA(ModE) preserves small colimits separately in each variable. It follows that there is a unique
monoidal functor S→ ABModA(ModE) which preserves small colimits (here we regard S as a monoidal ∞-
category via the Cartesian product). We will denote this functor by X 7→ A[X]. Note that, as a spectrum,
we can identify A[X] with the smash product A ⊗ Σ∞+ X. In particular, the homotopy groups π∗A[X] can
be identified with the A-homology groups A∗(X).

Remark 2.1.19. In the situation of Notation 2.1.18, the construction M 7→ π∗M determines a lax monoidal
functor from the ∞-category of A-A bimodule objects of ModE to the (nerve of the) ordinary category of
graded (π∗A)-π∗A bimodules in Modπ∗E . That is, for every pair of objects M,N ∈ ABModA(ModE), we
have a canonical map

Torπ∗E0 (π∗M,π∗N)→ π∗(M ⊗A N).

This map is an isomorphism if π∗M is flat as a right π∗A-module, or if π∗N is flat as a left π∗A-module (see
Proposition HA.8.2.1.19).

In particular, suppose that E is the Lubin-Tate spectrum associated to a perfect field κ of characteristic
p > 0 and a one-dimensional formal group G0 of finite height over κ, and let A = K(n) be the associated
Morava K-theory spectrum. Let us regard K(n) as an E1-algebra over E (Proposition 2.1.16). Since the
map π∗E → π∗K(n) is surjective, the category of graded π∗K(n)-bimodule objects of Modπ∗E is equivalent
to the category of graded modules over π∗K(n). Combining this observation with Notation 2.1.18, we can
regard the construction

X 7→ π∗K(n)[X] ' K(n)∗(X)

as a monoidal functor from the ∞-category S of spaces to (the nerve of) the ordinary category of graded
modules over π∗K(n).

Definition 2.1.20. Let E be a Lubin-Tate spectrum, and let K(n) be the associated Morava K-theory
spectrum. We will say that an object M ∈ K(n)BModK(n)(() ModE) is even if the homotopy groups πdM
vanish when d is odd. We let K(n)BModevK(n)(ModE) denote the full subcategory of K(n)BModK(n)(ModE)
spanned by the even objects.

We will say that a space X is K(n)-even if the bimodule K(n)[X] is even. We let Se denote the full
subcategory of S spanned by the K(n)-even spaces.

Remark 2.1.21. In the situation of Definition 2.1.20, let M,N ∈ K(n)BModK(n)(ModE). From the isomor-

phism π∗(M ⊗K(n) N) ' Tor
π∗K(n)
0 (π∗M,π∗N), we deduce that if M and N are even, then M ⊗K(n) N is

even. It follows that the full subcategory K(n)BModevK(n)(E) inherits the structure of a monoidal∞-category.
Since the functor X 7→ K(n)[X] is monoidal, it follows that Se is closed under finite products in S.

Remark 2.1.22. Let K(n) be the Morava K-theory spectrum associated to a formal group of height n <∞
over a perfect field κ, and let C be the category of graded π∗K(n)-modules which are concentrated in even
degrees. Then there is a monoidal equivalence of categories C → Vectκ, given by M∗ 7→ M0 (an inverse
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equivalence Vectκ → C is given by V 7→ (π∗K(n)) ⊗κ V ). Applying Remark 2.1.19, we deduce that the
construction

X 7→ K(n)0(X)

is a monoidal functor from the ∞-category Se to (the nerve of) the category Vectκ.

Proposition 2.1.23. Let K(n) be the Morava K-theory spectrum associated to a formal group G0 of height
n <∞ over a perfect field κ. Then the monoidal functor

X 7→ K(n)0X

of Remark 2.1.22 is symmetric monoidal. That is, for every pair of K(n)-even spaces X,Y ∈ Se, the diagram

K(n)0(X)⊗κ K(n)0(Y ) //

��

K(n)0(Y )⊗κ K(n)0(X)

��
K(n)0(X × Y ) // K(n)0(Y ×X)

commutes.

The proof of Proposition 2.1.23 will require a few preliminaries.

Notation 2.1.24. Let E be a Lubin-Tate spectrum. For every space X, we let E∧∗ (X) denote the homotopy
groups of the spectrum LK(n)(E ⊗ Σ∞+ X).

Lemma 2.1.25. Let E be a Lubin-Tate spectrum and let K(n) denote the associated Morava K-theory.
Suppose that N is an E-module spectrum. Assume that N is K(n)-local and the homotopy groups πd(N ⊗E
K(n)) vanish when d is odd. Then the homotopy groups πdN vanish when d is odd, and the canonical map

π0N → π0(N ⊗E K(n))

is surjective.

Proof. Let R = π0E, write R = W (κ)[[u1, . . . , un−1]], and set u0 = p. For 0 ≤ i < n, let M(i) denote the
cofiber of the map ui : E → E. For 0 ≤ j ≤ n, let N(j) denote the tensor product N⊗

⊗
0≤i<jM(i) (formed

in the symmetric monoidal ∞-category ModE), so that we have a sequence of maps

N = N(0)→ N(1)→ · · · → N(n) = N ⊗E K(n).

We will prove the following assertions using descending induction on j:

(aj) The homotopy groups πdN(j) vanish when d is odd.

(bj) The map π0N(j)→ π0N(n) is surjective.

Assume that j < n and that assertions (aj+1) and (bj+1) have been verified. For each integer m ≥ 0, let
T (m) denote the cofiber of the map umj : N(j)→ N(j). We have fiber sequences

N(j + 1)→ T (m+ 1)→ T (m).

It follows by induction on m that the homotopy groups πdT (m) vanish when d is odd, and that the maps
π∗T (m + 1) → π∗T (m) are surjective. Let T (∞) = lim←−T (m). It follows that the groups πdT (∞) vanishes
when d is odd, and that the map π0T (∞) → π0T (1) = π0N(j + 1) is surjective. To complete the proofs of
(aj) and (bj), it will suffice to show that the canonical map θ : N(j)→ T (∞) is an equivalence. Note that θ
becomes an equivalence after tensoring with M(j), and is therefore an equivalence after K(n)-localization.
Since both N(j) and T (∞) are K(n)-local, we conclude that θ is an equivalence as desired.
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Example 2.1.26. Let X be a space and set N = LK(n)E[X]. Then N is K(n)-local, and N ⊗E K(n) '
LK(n)(K(n)[X]) ' K(n)[X]. Consequently, if X is K(n)-even, then N satisfies the hypotheses of Lemma
2.1.25, so that the homology groups E∧∗ (X) are concentrated in even degrees, and the canonical map
E∧0 (X)→ K(n)0(X) is a surjection.

Remark 2.1.27. It follows from Lemma 2.1.25 that the monoidal structure on the functor

Se → Vectκ

X 7→ K(n)0X

is independent of our choice of ring structure on K(n). That is, if X and Y are K(n)-even spaces, then the
isomorphism

K(n)0X ⊗κ K(n)0Y → K(n)0(X × Y )

does not depend on the multiplication chosen on K(n). To prove this, it will suffice (by virtue of Example
2.1.26) to show that the composite map

Torπ0E
0 (E∧0 (X), E∧0 (Y ))→ K(n)0X ⊗κ K(n)0Y → K(n)0(X × Y )

does not depend on the multiplication of K(n). But this map can also be written as a composition

Torπ0E
0 (E∧0 (X), E∧0 (Y ))→ E∧0 (X × Y )→ K(n)0(X × Y )

of maps which do not depend on the E1-algebra structure of K(n).

Proof of Proposition 2.1.23. Let E be the Lubin-Tate spectrum associated to (κ,G0), and let R = π0E.
Since E is an E∞-ring, the construction X 7→ E∧0 (X) is a lax symmetric monoidal functor from the ∞-
category of spaces to the (nerve of the) ordinary category of discrete R-modules. It follows that the diagram

TorR0 (E∧0 (X), E∧0 (Y )) //

��

TorR0 (E0(Y ), E0(X))

��
E0(X × Y ) // E0(Y ×X)

commutes. From this, we deduce the commutativity of the outer rectangle in the diagram

TorR0 (E∧0 (X), E∧0 (Y )) //

��

TorR0 (E∧0 (Y ), E∧0 (X))

��
K(n)0(X)⊗κ K(n)0(Y ) //

��

K(n)0(Y )⊗κ K(n)0(X)

��
K(n)0(X × Y ) // K(n)0(Y ×X).

The desired result now follows from Example 2.1.26.

Warning 2.1.28. Remark 2.1.27 and Proposition 2.1.23 are generally false if we do not restrict our attention
to K(n)-even spaces. More precisely, let C denote the category of graded modules over π∗K(n), and let let
F : S→ C be the functor of Remark 2.1.19. We will regard C as a symmetric monoidal category (using the
usual sign conventions for the tensor product of graded vector spaces). Then:
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• Every E1-structure on K(n) determines a monoidal structure on the functor F : that is, it determines
an isomorphism

K(n)∗(X)⊗π∗K(n) K(n)∗(Y ) ' K(n)∗(X × Y )

for every pair of spaces X and Y . However, these isomorphisms depend on the multiplication chosen
on K(n).

• Choose an E1-algebra structure on K(n), and regard F as a monoidal functor. Then F is symmetric
monoidal if and only if the multiplication m : K(n) ⊗E K(n) → K(n) is homotopy commutative. If
p = 2, the latter condition is never satisfied, so the functor F is never symmetric monoidal.

Construction 2.1.29. Let E be a Lubin-Tate spectrum with residue field κ, and let K(n) denote the
associated Morava K-theory. Every K(n)-even space X can be regarded as a commutative coalgebra object
of the∞-category Se. It follows from Proposition 2.1.23 that the vector space K(n)0(X) inherits the structure
of a commutative coalgebra object of Vectκ. In particular, the dual space K(n)0(X) ' Homκ(K(n)0(X), κ)
inherits the structure of a linearly compact topological κ-algebra. We let KSpec(X) denote the formal scheme
Spf K(n)0(X).

Remark 2.1.30. The construction X 7→ KSpec(X) determines a functor from the homotopy category of
K(n)-even spaces to the category of formal schemes over κ, which preserves finite products. In particular, if
X is an K(n)-even space which has the structure of a group object in the homotopy category hS of spaces,
then KSpec(X) is a formal group over κ. If the multiplication on X is homotopy commutative, then the
formal group KSpec(X) is commutative.

2.2 Cohomology of p-Divisible Groups

Let κ be a perfect field of characteristic p > 0, fixed throughout this section. Our goal is to study the
cohomology of p-divisible groups over κ. We begin with some general definitions.

Definition 2.2.1. Let A be an associative algebra over κ, equipped with an augmentation ε : A → κ. For
each n ≥ 0, we let ExtnA denote the Ext-group ExtnA(κ, κ), where we regard κ as an A-module via ε. Then
Ext∗A is a graded algebra over κ, which we will refer to as the cohomology ring of A.

Example 2.2.2. For any Hopf algebra A over κ, the unit map κ→ Ext0
A is an isomorphism.

Remark 2.2.3. For our applications in this paper, we are interested only in the special case of Definition
2.2.1 where A is a commutative and cocommutative Hopf algebra, and the augmentation ε : A → κ is the
counit map of A. In this case, the algebra Ext∗A is graded-commutative: that is, for homogeneous elements
x ∈ ExtmA , y ∈ ExtnA, we have xy = (−1)mnyx ∈ Extm+n

A . One can think of Ext∗A as the cohomology of the
formal group G = Spf A∨ (with coefficients in the trivial representation of G).

Remark 2.2.4. Let A be an augmented κ-algebra, and let mA be its augmentation ideal. Then the
Ext-groups ExtnA can be computed as the cohomology of the reduced cobar complex C∗A, where CmA =
Homκ(m⊗mA , κ), and the differential d : CmA → Cm+1

A is given by

(dλ)(a0, . . . , am) =
∑

1≤i≤m

(−1)i+1λ(a0, a1, . . . , ai−1ai, ai+1, . . . , am).

In particular, the differential C0
A → C1

A vanishes, and the kernel of the differential C1
A → C2

A consists of
those functionals on mA which vanish on m2

A. In particular, we obtain a canonical isomorphism of Ext1
A with

the dual of mA/m
2
A. If A is a connected Hopf algebra, this is also the dual of the quotient DM(A)/F DM(A)

(Proposition 1.3.20).

Remark 2.2.5. Let A be a connected Hopf algebra over κ, and assume that the relative Frobenius map
F : A(p) → A is trivial. Then A is annihilated by p, and therefore has dimension pe over κ for some integer
e. Then DM(A)/F DM(A) ' DM(A) has dimension e as a vector space over κ, so that e = dimκ Ext1

A.
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Definition 2.2.6. Let A be a (commutative and cocommutative) Hopf algebra over κ. We will say that A
is F -divisible if the following conditions are satisfied:

(a) The relative Frobenius map F : A(p) → A is an epimorphism of Hopf algebras over κ.

(b) Let A[F ] denote the kernel of the map F : A(p) → A (formed in the abelian category Hopfκ of Hopf
algebras over κ). Then A[F ] is finite-dimensional (as a vector space over κ.

Example 2.2.7. Let A be a Hopf algebra over κ. We will say that A is p-divisible if it satisfies the following
variants of conditions (a) and (b) of Definition 2.2.6:

(a′) The Hopf algebra homomorphism [p] : A→ A is an epimorphism (see Notation 1.3.2).

(b′) Let A[p] denote the kernel of [p] (formed in the abelian category Hopfκ). Then A[p] is a finite-
dimensional vector space over κ.

Every p-divisible Hopf algebra is F -divisible, in the sense of Definition 2.2.6.

Construction 2.2.8. Given a short exact sequence of Hopf algebras

κ→ A′ → A→ A′′ → κ,

we obtain a quasi-isomorphism

RHomA(κ, κ) ' RHomA′′(κ,RHomA(A′′, κ)) ' RHomA′′(κ,RHomA′(κ, κ)).

The Postnikov filtration on RHomA′(κ, κ) determines a spectral sequence of algebras {Es,tr , dr}r≥2 converging
to Ext∗(A), whose second page is given by

Es,t2 ' ExtsA′′(κ,ExttA′).

Here the action of A′′ on ExttA′ is induced by the conjugation action of A′′ on A′. Since the comultiplication
on A is cocommutative, this action is trivial, so that the action of A′′ on ExttA′ factors through the counit
map A′′ → κ. If we further assume that A′ is Noetherian, then each Ht(A′) is a finite dimensional vector
space over κ, so that the canonical map ExtsA′′ ⊗κ ExttA′ → ExtsA′′(κ,ExttA′) is an isomorphism and we obtain
a canonical isomorphism

Es,t2 ' ExtsA′′ ⊗κ ExttA′ .

In particular, we have an exact sequence of low-degree terms

0→ Ext1
A′′ → Ext1

A → Ext1
A′

ψ→ Ext2
A′′ → Ext2

A .

Remark 2.2.9. For later use, it will be helpful to have an explicit description of the map ψ : Ext1
A′ → Ext2

A′′

appearing in Construction 2.2.8. Let λ : mA′ → κ be a vector space homomorphism which annihilates m2
A′ ,

so that we can identify λ with an element of Ext1
A′ (see Remark 2.2.4). Since A is faithfully flat as an

A′-algebra, the quotient mA/mA′ ' A/A′ is a flat A′-module. It follows that the sequence

0→ mA′ → mA′ → mA/mA′ → 0

remains exact after tensoring with A′/mA′ . In particular, the canonical map mA′/m
2
A′ → mA/mAmA′ is

injective, so that λ can be extended to a linear map λ : mA → κ which vanishes on mAmA′ . Let µ = dλ ∈ C2
A:

that is, µ is the linear map mA ⊗κ mA → κ given by µ(x, y) = λ(xy). Since λ vanishes on mAmA′ , the map
µ factors (uniquely) as a composition

mA ⊗κ mA → mA′′ ⊗κ mA′′
µ→ κ.

Unwinding the definitions, we see that µ ∈ C2
A′′ is a cocycle representing ψ(λ) ∈ Ext2

A′′ .
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We can now state our main result.

Theorem 2.2.10. Suppose we are given an exact sequence of Hopf algebras over κ

κ→ A′ → A
u→ A′′ → κ.

Assume that A is connected and F -divisible, that A′ is finite-dimensional, and that the map u factors through
the relative Frobenius A′′(p) → A′′. Let ψ : Ext1

A′ → Ext2
A′′ be defined as in Construction 2.2.8. Then:

(1) The Hopf algebra A′′ is connected and F -divisible.

(2) The map ψ induces an isomorphism Sym∗(Ext1
A′)→ Ext∗A′′ .

(3) Let y1, . . . , ym form a basis for Ext1
A′ . For each I = {i1 < . . . < ik} ⊆ {1, . . . ,m}, let yI = yi1 · · · yik ∈

ExtkA′ . Then Ext∗A′ is freely generated by the elements yI as a module over Ext∗A.

Remark 2.2.11. In the situation of Theorem 2.2.10, the hypothesis that u factors through the relative
Frobenius map A′′(p) → A′′ is automatically satisfied if, for example, the kernel of the map u(p) : A(p) → A′′(p)

contains A[F ] = ker(F : A(p) → A).

Example 2.2.12. Let A be a connected p-divisible Hopf algebra over κ. Then for every integer t ≥ 1, the
exact sequence

κ→ A[pt]→ A
[pt]→ A→ κ

satisfies the hypotheses of Theorem 2.2.10. It follows that Ext∗A is canonically isomorphic to the symmetric
algebra on the vector space Ext1

A[pt]. This statement remains valid without the connectedness hypothesis on
A, but the connected case will be sufficient for our applications in this paper.

The proof of Theorem 2.2.10 will require some preliminaries.

Proposition 2.2.13. Let A be a Hopf algebra over κ, and let F : A(p) → A denote the relative Frobenius
map. Then, for each n > 0, F induces the zero map ExtnA → ExtnA(p) .

Proof. Note that ExtnA is the κ-linear dual of the nth homotopy group of the E∞-algebra given by κ⊗A κ.
The Frobenius map F on A induces a map from the underlying spectrum of κ ⊗A κ to itself which agrees
with the power operation P 0 of Construction SAG.8.4.2.6, and therefore annihilates the positive homotopy
groups of κ⊗A κ.

Corollary 2.2.14. Suppose we are given an exact sequence of Hopf algebras over κ

κ→ A′ → A
u→ A′′ → κ,

where A is F -divisible and A′ is finite-dimensional. Then:

(1) The Hopf algebra A′′ is F -divisible.

(2) The Hopf algebras A[F ] and A′′[F ] have the same dimension over κ.

(3) We have Ext1
A ' 0 ' Ext1

A′′ .

(4) Suppose that u factors through the relative Frobenius map Frobenius map F : A′′(p) → A′′. Then the
map ψ : Ext1

A′ → Ext2
A′′ is an isomorphism.

Proof. We have a commutative diagram

A(p) u(p)
//

��

A′′(p)

��
A

u // A′′.
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Since the left vertical map and the bottom horizontal maps are Hopf algebra epimorphisms, the right vertical
map is likewise a Hopf algebra epimorphism. We have a commutative diagram of short exact sequences

κ // A′(p) //

��

A(p) //

��

A′′(p)

��

// κ

κ // A′ // A // A′′ // κ.

Applying the snake lemma, we obtain an exact sequence

κ→ A′[F ]→ A[F ]→ A′′[F ]→ coker(F : A′(p) → A′)→ κ.

It follows immediately that A′′[F ] is finite-dimensional as a vector space over κ, which proves (1). Moreover,
we have

dimκ(A′′[F ]) =
dimκ(A[F ]) dimκ(coker(F : A′(p) → A′))

dimκA′[F ]
.

The short exact sequence

κ→ A′[F ]→ A′(p) → A′ → coker(F : A′(p) → A′)→ κ

gives an equality
dimκ coker(F : A′(p) → A′)

dimκA′[F ]
=

dimκA
′

dimκA′(p)
= 1,

so that dimκ(A′′[F ]) ' dimκ(A[F ]), thereby proving (2).
Assertion (3) follows from Remark 2.2.4. To prove (4), we note that the spectral sequence of Construction

2.2.8 yields an exact sequence of low degree terms

0→ Ext1
A′′

α→ Ext1
A → Ext1

A′
ψ→ Ext2

A
β→ Ext2

A .

If u factors through the relative Frobenius map of A′′, the maps α and β are zero by Proposition 2.2.13.
Since Ext1

A ' 0, we conclude that ψ is an isomorphism.

Example 2.2.15. Let A be a connected F -divisible Hopf algebra over κ. Then A(p) is also connected and
F -divisible, and the exact sequence

κ→ A[F ]→ A(p) F→ A→ κ

satisfies the hypotheses of Corollary 2.2.14. It follows that we have a canonical isomorphism Ext2
A ' Ext1

A[F ].

Using Remark 2.2.5, we deduce that dimκA[F ] = pe, where e = dimκ Ext2
A.

Remark 2.2.16. Suppose we are given an exact sequence of connected Hopf algebras

κ→ A′ → A→ A′′ → κ

satisfying the hypotheses of Corollary 2.2.14. Then dimκA[F ] ' dimκA
′′. It follows from Example 2.2.15

that dimκ Ext2
A = dimκ Ext2

A′′ .

Lemma 2.2.17. Let B be a finite-dimensional Hopf algebra over κ. Assume that B is local and connected.
Then, as an algebra over κ, B is isomorphic to a tensor product of algebras of the form κ[T ]/(T p

e

).

Proof. Let M = DM(B) be the Dieudonne module of B. Since B is local, the action of F on M is locally
nilpotent. For each m ≥ 0, let W (m) denote the quotient FmM/Fm+1M . For each m ≥ 0, let dm denote the
dimension of W (m) as a vector space over κ. Since B is finite dimensional, we have W (m) ' 0 for m� 0,
and dimκB = p

∑
dm . Let ϕ : κ → κ be the Frobenius map, so that F induces a ϕ-semilinear surjection of
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κ-vector spaces θm : W (m)→W (m+ 1) for m� 0. We may therefore choose a basis {v(m)1, . . . , v(m)dm}
for each W (m) with the property that

θmv(m)i =

{
v(m+ 1)i if 1 ≤ i ≤ dm+1

0 otherwise.
.

Let d = d0, and let v1, . . . , vd ∈ M be a collection of representatives for v(0)1, . . . , v(0)d ∈ W (0) =
M/FM . For 1 ≤ i ≤ d, let ei be the smallest integer such that i > dei . Then the image of F eivi vanishes in
W (ei), so that F eivi ∈ F ei+1M . Altering our choice of vi, we may assume that F eivi = 0. We will identify

M with a subset of B, so that each vi is an element of B satisfying vp
ei

i = 0. Consequently, there is a unique
map of commutative rings

θ :
⊗

1≤i≤m

κ[Ti]/(T
pei

i )→ B

carrying each Ti to the element vi ∈ B. We will complete the proof by showing that θ is an isomorphism.
Since the domain and codomain of θ have the same dimension (as vector spaces over κ), it will suffice to
show that θ is surjective. For this, it suffices to show that θ induces a surjection on Zariski cotangent spaces,
which follows from Proposition 1.3.20.

Lemma 2.2.18. Let B be a finite-dimensional connected Hopf algebra over κ, and let d = dimκ Ext1
B. Then,

for each integer m ≥ 0, we have dimκ ExtmB =
(
m+d−1
m

)
(in other words, the Poincare series of the graded

ring Ext∗B is equal to the Poincare series for a polynomial ring in d-variables over κ). Moreover, Ext∗B is
generated (as a ring) by elements of degree ≤ 2.

Proof. Since κ is perfect, we can write B as a tensor product of Hopf algebras B0⊗κB1, where B0 is a local
ring and B1 is étale over κ. Since there is a canonical isomorphism Ext∗B ' Ext∗B0

, we may replace B by B0

and thereby reduce to the case where B is a local ring.
According to Lemma 2.2.17, B is isomorphic to a tensor product of algebras of the form κ[T ]/(T p

e

). The
result now follows from the observation that Ext∗κ[T ]/(Tpe )(κ, κ) ' H∗(B Z /pe Z;κ) is either a polynomial

ring on a single class in degree 1 (if pe = 2) or the tensor product of an exterior algebra on a class of degree
1 and a polynomial algebra on a class of degree 2 (if pe > 2).

Proof of Theorem 2.2.10. Let {Es,tr , dr}r≥2 be the spectral sequence associated to the short exact sequence
of Hopf algebras

κ→ A′ → A
u→ A′′ → κ,

so that Es,t2 ' Hs(A′′) ⊗κ Ht(A′). Let W ⊆ H2(A′) be the image of the restriction map Ext2
A → Ext2

A′ , so
that we can identify W with the subspace of E0,2

2 consisting of permanent cycles. Choose a basis y1, . . . , yn
for the vector space Ext1

A′ ' E
0,1
2 over κ. For each subset I = {i1 < . . . < ik} ⊆ {1, . . . , n}, we let yI denote

the product yi1yi2 · · · yik ∈ ExtkA′ .
According to Corollary 2.2.14, the differential d2 induces an isomorphism ψ : Ext1

A′ → Ext2
A′′ , and Ext1

A′′

vanishes. It follows that E1,1
2 ' E2,0

3 ' 0, so that the restriction map Ext2
A → E0,2

2 ' Ext2
A′ is injective, and

therefore induces an isomorphism from Ext2
A to W . Using Remark 2.2.16, we obtain

dimκ(W ) = dimκ Ext2
A = dimκ Ext2

A′′ = dimκ Ext1
A′ = n.

The elements ψ(y1), . . . , ψ(yn) form a basis for Ext2
A′′ . The differential d2 also induces a map ψ′ : Ext2

A′ →
Ext1

A′ ⊗κ Ext2
A′′ . Since d2 is a derivation with respect to the algebra structure on E∗,∗2 , we obtain

ψ′(yiyj) = yi ⊗ ψ(yj)− yj ⊗ ψ(yi).

The collection of elements {yi ⊗ ψ(yj)− yj ⊗ ψ(yi)}1≤i<j≤n are linearly independent in Ext1
A′ ⊗κ Ext2

A′′ . It
follows that the elements {yiyj}1≤i<j≤n form a basis for a subspace W ′ ⊆ Ext2

A′ , and that ψ′|W ′ is injective.

Since W consists of permanent cycles, we have W ∩W ′ = {0}. The dimension of W ′ is n2−n
2 . Applying

45



Lemma 2.2.18, we deduce that dimκ Ext2
A′ = n2+n

2 = dimκW + dimκW
′. From this, we deduce that Ext2

A′

is a direct sum of W and W ′. Since ψ′ is injective when restricted to W ′, we conclude that W = ker(ψ′).
We next prove the following:

(∗) As a module over Sym∗W , Ext∗A′ is freely generated by the elements {yI}I⊆{1,...,n}.

To prove this, let us regard Sym∗W as a graded ring (with elements of W regarded as homogeneous of
degree 2), and let M∗ denote the graded Sym∗W -module freely generated by elements {YI}I⊆{1,...,n}, where
we regard YI as being of degree |I|. There is a unique homomorphism of graded Sym∗(W )-modules ν :
M∗ → Ext∗A′ , given on generators by ν(YI) = yI . We wish to show that ν is an isomorphism. Using Lemma
2.2.18, we see that dimκM

m = dimκ Ext∗A′ for each m ≥ 0. Consequently, it will suffice to show that ν is
surjective. It is evident from the construction that ν induces a surjection Mm → Ext∗A′ for m ≤ 2. Since
Ext∗A′ is generated (as a ring) by elements of degree ≤ 2, we are reduced to proving that the image of ν is a
subring of Ext∗A′ .

Fix an element x ∈ im(ν) ⊆ Ext∗A′ belonging to the image of ν. We wish to show that for all x′ ∈ im(ν),
we have xx′ ∈ im(ν). It clearly suffices to prove this in the special case where x′ ∈ Sym∗W or x′ = yi
for some i. The first case is obvious (since ν is a Sym∗ V -module homomorphism). In the second case,
we may assume that x = x0yI for some x0 ∈ Sym∗W and some I ⊆ {1, . . . , n}. If i /∈ I, we have
xx′ = ±x0yI∪{i} = ±ν(x0YI∪{i}). We may therefore suppose that i ∈ I, so that x = x1yi for some
x1 ∈ im(ν). Note that ψ′(y2

i ) = yi ⊗ ψ(yi)− yi ⊗ ψ(yi) = 0, so that y2
i ∈ ker(ψ′) = W . Since the image of ν

is stable under multiplication by Sym∗W , we conclude that xx′ = x1y
2
i ∈ im(ν), as desired. This completes

the proof of (∗).
We now construct some auxiliary spectral sequences. We let {E(0)s,tr , dr} be the spectral sequence given

by

E(0)s,tr =

{
Symm(W ) if s = 0, t = 2m

0 otherwise,

with all differentials trivial. For 1 ≤ i ≤ n, let {E(i)s,tr , dr} be the spectral sequence given by

E(i)s,tr =


κ if s = t = 0

κYi if s = 0, t = 1, r = 2

κZi if s = 2, t = 0, r = 2

0 otherwise,

where the differential d2 carries Yi to Zi. The inclusion W ↪→ E0,2
2 induces a map of spectral sequences

E(0)s,tr → Es,tr . Similarly, for 1 ≤ i ≤ n we have a map of spectral sequences E(i)s,tr → Es,tr , given by Yi 7→ yi
and Zi 7→ ψ(yi). Since {Es,tr , dr} is a spectral sequence of algebras, we can tensor these maps together to
obtain a map of spectral sequences ξ : {E′s,tr , dr} → {Es,tr , dr}, where E′s,tr is the tensor product of the
spectral sequences E(i)s,tr . Note that E′∗,02 is a polynomial algebra on the classes {Zi}1≤i≤n. Consequently,

to prove (1), it will suffice to show that ξ induces an isomorphism E′∗,02 → E∗,02 ' Ext∗A′′ . In fact, we will
show that ξ is an isomorphism of spectral sequences. For this, it suffices to verify the following assertion for
each m ≥ 0:

(?m) The map ξ induces an isomorphism E′s,t2 → Es,t2 when s+t < m, and a monomorphism when s+t = m.

Note that (?m) is equivalent to the apparently weaker assertion that E′s,02 → Es,02 ' ExtsA′′ is bijective
for s < m and injective for s = m. This condition is evidently satisfied for m ≤ 3. We will prove it
in general using induction on m. Assume that m ≥ 3 and that condition (?m) holds; we wish to verify
(?m+1). We first show that the map E′m,02 → Em,02 is surjective. Suppose otherwise: then there exists a class
η ∈ Em,02 ' ExtmA′′ which does not belong to the image of ξ. Using the inductive hypothesis, we see that
the image of η in Em,0r cannot be a coboundary for any r ≥ 2, so that η has nontrivial image η ∈ Em,0∞ . It
follows that η has nonzero image under the pullback map ExtmA′′ → ExtmA , contradicting Proposition 2.2.13.
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We now show that ξ induces an injection E′m+1,0
2 → Em+1,0

2 . If m is even, then E′m+1,0
2 ' 0 and there

is nothing to prove. Assume therefore that m is odd, and let η ∈ E′m+1,0
2 lies in the kernel of ξ. Note that

the differential d2 : E′m−1,1
2 → E′m+1,0

2 is surjective, so we can write η = d2(α) for some α ∈ E′m−1,1
2 . Then

ξ(α) ∈ Em−1,1
2 lies in the kernel of the map d2 : Em−1,1

2 → Em+1,0
2 , and is therefore a permanent cycle.

Since the map 0 ' E′m,02 → Em,02 is surjective, we have ExtmA′′ ' 0. It follows that the image of α must
be trivial in Em−1,1

∞ . Note that condition (?m) implies ξ induces a surjection E′s,tr → Es,tr for s + t < m.
Since the differential dr on E′s,tr is trivial for r > 2, we conclude that the differential dr : Es,tr → Es+r,t−r+1

r

vanishes for s + t < m, so that Em−1,1
∞ ' Em−1,1

3 = coker(d2 : Em−3,2
2 → Em−1,1

2 ). Then ξ(α) = d2(β) for
some β ∈ Em−3,2

2 . Using (?m), we can write β = ξ(β) for some β ∈ E′m−3,2
2 . Then ξ(d2(β)) = ξ(α), so that

condition (?m) implies that α = d2(β). Then η = d2(d2(β)) = 0, as desired. This completes the proof of (1).
Assertion (2) follows from (1) and (∗).

2.3 The Spectral Sequence of a Filtered Spectrum

Let K(n) denote the Morava K-theory spectrum associated to a formal group G0 of finite height over a
perfect field κ of characteristic p > 0. Let X be an Eilenberg-MacLane space K(Z /pZ,m). Our goal in
§2.4 is to compute the Morava K-theory K(n)∗(X). The basic strategy is to use induction on m. Let
G = K(Z /pZ,m − 1), so that (without loss of generality) we can regard G as a topological abelian group
whose classifying space BG is homotopy equivalent to X. Then X is equipped with the corresponding
Milnor filtration, given by partial realizations of the standard simplicial topological space with geometric
realization BG. This filtration determines a spectral sequence converging to K(n)∗(X), whose second page
can be calculated in terms of the Morava K-homology groups K(n)∗(G). For our applications, we will need
to know not only that such a spectral sequence exists, but the exact details of its construction. Our goal in
this section is to review the relevant details.

We begin with a more general construction: the spectral sequence associated to a filtered spectrum.
Our exposition will be somewhat terse; for a more detailed account (with more proofs and slightly different
notational conventions), we refer the reader to §HA.1.2.2.

Definition 2.3.1. Let Sp denote the ∞-category of spectra, and let Z denote the linearly ordered set of
integers (regarded as a category). A filtered spectrum is a functor X : N(Z)op → Sp.

In other words, a filtered spectrum is a diagram of spectra

· · · → X(2)→ X(1)→ X(0)→ X(−1)→ X(−2)→ · · ·

Notation 2.3.2. Let X be a filtered spectrum. We let X(∞) denote the limit lim←−nX(n). For m ≤ n ≤ ∞,

we let X(n,m) denote the fiber of the canonical map X(n)→ X(m).

Construction 2.3.3. Given a filtered spectrum X and integers s, t, and r with r ≥ 1, we define subgroups

Bs,tr (X) ⊆ Zs,tr (X) ⊆ πt−sX(s, s− 1)

as follows:

• Zs,tr (X) is the image of the map πt−sX(s+ r − 1, s− 1)→ πt−sX(s, s− 1)

• Bs,tr (X) is the kernel of the composite map

Zs,tr (X) ↪→ πt−sX(s, s− 1)→ πt−sX(s, s− r).

We let Es,tr (X) denote the quotient Zs,tr (X)/Bs,tr (X). The fiber sequence of spectra

X(s+ r, s+ r − 1)→ X(s+ r, s− 1)→ X(s+ r − 1, s− 1).
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determines a boundary map δ : πs−tX(s+ r − 1, s− 1)→ Zs+r,t+r−1
r (X) ⊆ πs−tX(s+ r, s+ r − 1). There

is a unique map dr : Es,tr (X)→ Es+r,t+r−1
r (X) which fits into a commutative diagram

πs−tX(s+ r − 1, s− 1) //

δ

��

Zs,tr (X) // Es,tr (X)

dr
��

Zs+r,t+r−1
r (X) // Es+r,t+r−1

r (X).

The collection {Es,tr , dr}r≥1 is a spectral sequence of abelian groups, which depends functorially on the
filtered spectrum X.

Note that we can identify Es,tr (X) with the image of the map πt−sX(s+ r− 1, s− 1)→ πt−sX(s, s− r).
In particular, if X(i) ' 0 for i < 0, then for r > s we can identify Es,tr (X) with the subgroup of πt−sX(s)
given by the image of πt−sX(s+ r − 1, s− 1). We therefore have canonical monomorphisms

· · · ↪→ Es,ts+2(X) ↪→ Es,ts+1(X).

We let Es,t∞ (X) denote the inverse limit of this diagram.

Let X be a filtered spectrum. In good cases, one can show that the spectral sequence of Construction
2.3.3 converges to the homotopy groups of the spectrum X(∞). For example, we have the following result:

Proposition 2.3.4. Let X : N(Z)op → Sp be a filtered spectrum. Suppose that the following conditions are
satisfied:

(a) The spectrum X(s) vanishes for s < 0.

(b) For every pair of integers s, t ∈ Z, we have Es,tr ' E
s,t
r+1 for r � 0.

For each s ≥ 0, let F sπnX(∞) denote the kernel of the map πnX(∞)→ πnX(s). Then:

(1) For each integer n, the abelian group lim←−
1{πnX(s)}s≥0 is trivial.

(2) The canonical map πnX(∞)→ lim←−{πnX(s)}s≥0 is an isomorphism.

(3) The canonical map πnX(∞)→ lim←−πnX(∞)/F sπnX(∞) is an isomorphism.

(4) We have canonical isomorphisms F sπnX(∞)/F s+1πnX(∞) ' Es,n+s
∞ (X).

Proof. Fix an integer n ≥ 0. For a ≤ b, let φa,b : πnX(b) → πnX(a) be induced by the spectrum map
X(b)→ X(a). We first prove the following:

(∗) For each s ∈ Z, there exists another integer s′ ≥ s with the following property: for s′′ ≥ s′, the maps
φs,s′ and φs,s′′ have the same image in πnX(s).

The proof of (∗) proceeds by induction on s, the case s < 0 being vacuous by virtue of assumption (a).
To handle the inductive step, choose s′ ≥ s with the property that im(φs−1,s′) = im(φs−1,s′′) for s′′ ≥ s′.
Condition (b) implies that there exists r > s such that Es,n−sr ' Es,n−sr′ for r′ ≥ r. Enlarging s′ if necessary,
we may suppose that s′ ≥ s + r − 1. We now claim that s′ satisfies the requirements of (∗). To prove
this, suppose that η ∈ πnX(s) lies in the image of the map φs,s′ , and let s′′ ≥ s′. We wish to show that
η ∈ im(φs,s′′). Note that φs−1,s(η) belongs to the image of φs−1,s′ , so we can write φs−1,s(η) = φs−1,s′′(η)
for some η ∈ πnX(s′′). Replacing η by η − φs,s′′(η), we can reduce to the case where φs−1,s(η) = 0. Write
η = φs,s′(η

′). Then η′ belongs to the kernel of the map πnX(s′) → X(s − 1), and therefore to the image
of the map πnX(s′, s − 1) → πnX(s′). It follows that η ∈ Es,n−sr′ ⊆ πnX(s) for r′ = s′ + 1 − s. Since

r′ ≥ r, we have Es,n−sr′ = Es,n−sr′′ , where r′′ = s′′ + 1− s. It follows that η belongs to the image of the map
πnX(s′′, s− 1)→ πnX(s), and in particular to the image of φs,s′′ .
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For each s ≥ 0, let Ts denote the intersection
⋂
s′≥s im(φs,s′) ⊆ πnX(s). We claim that for a ≤ b, the

map φa,b induces a surjection Tb → Ta. To prove this, suppose that η ∈ Ta. Using (∗), we deduce that
Tb = im(φb,b′) for some b′ ≥ a. Then η = φa,b′(η) for some η ∈ πnX(b′). Then η = φa,b(φb,b′(η) ∈ φa,b(Tb).

For each s ≥ 0, condition (∗) implies that there exists s′ ≥ s such that the map φs,s′ carries πnX(s′)
into Ts. It follows that φs,s′ induces the zero map from πnX(s′)/Ts′ to πnX(s)/Ts. We have a short exact
sequence of towers of abelian groups

0→ {Ts}s≥0 → {πnX(s)}n≥0 → {πnX(s)/Ts}s≥0 → 0,

giving rise to exact sequences

0→ lim←−{Ts}s≥0 → lim←−{πnX(s)}s≥0 → lim←−{πnX(s)/Ts}s≥0

lim←−{πnX(s)/Ts}s≥0 → lim←−
1{Ts}s≥0 → lim←−

1{πnX(s)}s≥0 → lim←−
1{πnX(s)/Ts}s≥0.

The above argument shows that {πnX(s)/Ts}s≥0 is a zero object in the category of pro-abelian groups, so
that lim←−

i{πnX(s)/Ts}s≥0 ' 0 for i = 0, 1. We therefore obtain isomorphisms

lim←−{Ts}s≥0 → lim←−{πnX(s)}s≥0 lim←−
1{Ts}s≥0 → lim←−

1{πnX(s)}s≥0.

Since each of the maps Ts+1 → Ts is surjective, we have lim←−
1{Ts}s≥0 ' 0. This proves (1), which immediately

implies (2).
Note that πnX(∞)/F sπnX(∞) can be identified with the image of the map φs,∞ : πnX(∞)→ πnX(s−

1). To prove (3), it will therefore suffice to show that Ts = im(φs,∞). The containment im(φs,∞) ⊆⋂
s′≥s im(φs,s′) = Ts is clear. To prove the converse, it suffices to prove that the map

πnX(∞) = lim←−{Ta}a≥0 → Ts

is surjective, which follows from the surjectivity of the maps Ta+1 → Ta.
We now prove (4). Note that φs,∞ induces a bijection from F sπnX(∞)/F s+1πnX

∞ to the kernel of the
map Ts → πnX(s − 1). On the other hand, Es,n−s∞ can be identified with the subgroup of πnX(s) given
by the intersection of the images of the maps πnX(s′, s − 1) → πnX(s). The inclusion Es,n−s∞ ⊆ ker(Ts →
πnX(s−1)) is clear. To prove the reverse inclusion, suppose that η ∈ Ts and φs−1,s(η) = 0; we wish to prove
that η ∈ Es,n−s∞ . Choose s′ ≥ s; we will show that η belongs to the image of the map πnX(s′, s−1)→ πnX(s).
Since η ∈ Ts, we can write η = φs,s′(η

′) for some η′ ∈ X(s′). Then η′ ∈ ker(φs−1,s′), so that η′ belongs to
the image of the map πnX(s′, s− 1)→ πnX(s′), from which we conclude that η belongs to the image of the
composite map

πnX(s′, s− 1)→ πnX(s′)→ πnX(s).

Example 2.3.5. Let G be a topological group, let BG be its classifying space, and let K(n) be a Morava
K-theory. The classifying space BG can be described as the geometric realization of a simplicial space Y•,
with Ys = Gs. The construction [s] 7→ K(n)Ys determines a cosimplicial spectrum with totalization K(n)BG.
In particular, we can identify K(n)BG with the limit of a tower of spectra

· · · → X(2)→ X(1)→ X(0)

with X(s) = TotsK(n)Y• . Let {Es,tr , dr}r≥1 be the spectral sequence associated to this tower of spectra (see
Construction 2.3.3). The second page of this spectral sequence is given by the cohomology of the (normalized
or unnormalized) cochain complex associated to the cosimplicial graded abelian group π∗K(n)Y• .

Now suppose that the topological group G is K(n)-even, in the sense of Definition 2.1.20, and let A =
K(n)0(G). Then the group structure on G exhibits A as a cocommutative (but generally non-commutative)
Hopf algebra over κ (Remark 2.1.30). For each s ≥ 0, Remark 2.1.19 supplies a canonical equivalence

π∗K(n)Ys ' π∗K(n)⊗κ Homκ(A⊗s, κ).
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Consequently, we obtain a canonical isomorphism

Es,t2 ' πtK(n)⊗κ ExtsA,

where ExtsA is as in Definition 2.2.1 (see Remark 2.2.4).

Remark 2.3.6. In the situation of Example 2.3.5, the spectral sequence {Es,tr , dr}r≥1 is automatically
convergent, since it can be identified with the κ-linear dual of the Eilenberg-Moore spectral sequence

TorK(n)∗G
s (π∗K(n), π∗K(n))⇒ K(n)∗+sBG

obtained from the equivalence of spectra

K(n)⊗K(n)[G] K(n) ' K(n)[BG].

We will not need this observation: in the applications we describe in §2.4, it is easy to verify that the
hypotheses of Proposition 2.3.4 are satisfied.

Remark 2.3.7. In the situation of Example 2.3.5, {Es,tr , dr}r≥2 is a spectral sequence of algebras. That
is, each E∗,∗r has the structure of a bigraded ring, each differential dr satisfies the Leibniz rule, and each
identification of E∗,∗r+1 with the cohomology of the differential dr is an isomorphism of bigraded algebras.
Moreover, the identification

Es,t2 ' πtK(n)⊗κ ExtsA

is an isomorphism of bigraded rings.

2.4 The Main Calculation

Throughout this section, we fix a perfect field κ of characteristic p > 0, and a one-dimensional formal group
G0 over κ of height n < ∞. Let E denote the associated Lubin-Tate spectrum and K(n) the associated
Morava K-theory. Our goal is to compute the Morava K-groups K(n)∗(X), where X is an Eilenberg-
MacLane space of the form K(Z /pt Z,m) or K(Qp /Zp,m), for m > 0.

Definition 2.4.1. Let X be a topological abelian group. We will say that X is K(n)-good if the following
conditions are satisfied:

(a) The space X is K(n)-even, so that K(n)0(X) can be regarded as a Hopf algebra over κ (Remark
2.1.30).

(b) The action of p is locally nilpotent on the Hopf algebra K(n)0(X). That is, K(n)0(X) can be written
as the colimit of a sequence of Hopf algebras H(t) which are annihilated by pt (when regarded as
objects of the abelian category Hopfκ).

If X is K(n)-good, we let D(X) denote the Dieudonne module DM+(K(n)0(X)), where DM+ is the
functor of Corollary 1.4.15. Then D(X) is a left module over the Dieudonne ring Dκ = W (κ)[F, V ], and
in particular a module over the ring W (κ) of Witt vectors of κ. We will refer to D(X) as the Dieudonne
module of X.

Warning 2.4.2. The condition that a topological abelian group X be K(n)-good depends on the group
structure of X, and not only on the underlying topological space.

If X is a topological abelian group which is K(n)-good, then the following algebraic data are interchange-
able:

• The Morava K-theory K(n)∗(X), regarded as a graded Hopf algebra over π∗K(n).

• The homology group K(n)0(X), regarded as a Hopf algebra over κ.
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• The formal group Spf K(n)0(X) over κ.

• The Dieudonne module D(X).

We will describe the relevant calculations using the language of Dieudonne modules, where the answer
seems to admit the cleanest formulation.

Notation 2.4.3. Let H denote the Hopf algebra K(n)0K(Qp /Zp, 1) ' K(n)0 CP∞. For each t ≥ 0,
we let H[pt] denote the kernel of the map [pt] : H → H (formed in the abelian category Hopfκ). Since
G0 = Spf H∨ is a smooth 1-dimensional formal group of height n, each H[pt] is a Hopf algebra of dimension
pnt <∞ over κ. We let M denote the Dκ-module given by the inverse limit of the tower

· · · → DM(H[p2])→ DM(H[p])→ DM(H[p0]) ' 0,

so that M is a free module of rank n over the ring of Witt vectors W (κ).

When m = 1, the calculation of the Morava K-groups K(n)∗K(Z /pt Z,m) is contained in the following
standard result:

Proposition 2.4.4. Let t ≥ 0 be an integer. The space K(Z /pt Z, 1) is K(n)-good. Moreover, the fiber
sequence of topological abelian groups

K(Z /pt Z, 1)→ K(Qp /Zp, 1)
pt→ K(Qp /Zp, 1)

induces a short exact sequence of Hopf algebras

κ→ K(n)0K(Z /pt Z, 1)→ H
[pt]→ H → κ.

In particular, we obtain an isomorphism of Hopf algebras K(n)0K(Z /pt Z, 1) ' H[pt] and of Dieudonne
modules D(K(Z /pt Z, 1)) 'M/ptM .

Proof. Let BS1 denote the Kan complex K(Z, 2), so that there is a canonical map K(Qp /Zp, 1) → BS1

which induces an isomorphism on K(n)-homology. Fix an invertible element β ∈ π−2K(n), and let η ∈
K(n)2

redBS
1 ⊆ K(n)2BS1 be a complex orientation of K(n), so that H∨ = K(n)0BS1 is isomorphic to a

power series ring κ[[x]], where x = β−1η ∈ K(n)0BS1.
For every Kan complex X, let K(n)

X
denote the constant local system of spectra on X with value

K(n). Choose a contractible space ES1 equipped with a Kan fibration q : ES1 → BS1. We can identify
the complex orientation of K(n) with a class η ∈ K(n)2

red(BS1). Any such class determines a map of local
systems Σ−2K(n)

BS1
→ K(n)

BS1
together with a nullhomotopy of the composite map

Σ−2K(n)
BS1
→ K(n)

BS1
→ q∗K(n)

ES1
.

The assumption that η is a complex orientation guarantees that the above maps form a fiber sequence. We
have a homotopy pullback diagram

K(Z /pt Z, 1) //

q′

��

ES1

q

��
K(Z, 2)

r // BS1,

where r is induced by multiplication by pt. It follows that

r∗η = r∗(βx) = βr∗(x) = β[pt](x) ∈ K(n)2K(Z, 2).
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Pulling back, we obtain a fiber sequence

Σ−2K(n)
K(Z,2)

→ K(n)
K(Z,2)

→ q′∗K(n)
K(Z /pt Z,1)

of local systems of spectra on K(Z, 2). Taking global sections, we obtain a long exact sequence

K(n)∗−2K(Z, 2)
φ→ K(n)∗K(Z, 2)→ K(n)∗K(Z /pt Z, 2)→ K(n)∗−1K(Z, 2)

φ→ K(n)∗+1K(Z, 2),

where φ is given by multiplication by β[pt](x).
Since the formal group G0 has finite height, [pt](x) is not a zero divisor in K(n)0K(Z, 2). It follows that

our long exact sequence reduces to a short exact sequence

0→ K(n)∗−2K(Z, 2)
β[pt](x)→ K(n)∗K(Z, 2)→ K(n)∗K(Z /pt Z, 1)→ 0.

In particular, we deduce that K(n)∗K(Z /pt Z, 1) vanishes in odd degrees, and that K(n)0K(Z /pt Z, 1) is
isomorphic to the the quotient κ[[x]]/([pt](x)). Passing to κ-linear duals, we obtain the desired result.

We will attempt to understand other Eilenberg-MacLane spaces by relating them to classifying spaces of
cyclic p-groups.

Remark 2.4.5. Let X1, X2, . . . , Xm, and Y be K(n)-good topological abelian groups, and suppose we are
given a multilinear map

φ : X1 × · · · ×Xm → Y.

Then φ induces a multilinear map of Hopf algebras, which we can identify with a Hopf algebra homomorphism

ψ : K(n)0(X1) � · · ·�K(n)0(Xm)→ K(n)0(Y ).

If we assume that the spaces X1, . . . , Xm, and Y are K(n)-good, we can use Corollary 1.4.15 to identify ψ
with a map of Dieudonne modules

D(X1)⊗̃ · · · ⊗̃D(Xm)→ D(Y ).

In particular, we obtain a W (κ)-multilinear map

D(X1)× · · · ×D(Xm)→ D(Y ).

Construction 2.4.6. Fix m ≥ 0, and let Y = K(Qp /Zp,m). Assume that Y is good. Writing Y as a
filtered colimit of spaces of the form K(p−t Zp /Zp,m), we deduce that Y is K(n)-good, so that the Hopf
algebra K(n)0(Y ) is determined by its Dieudonne module D(Y ).

For each t ≥ 0, consider the map

φt : K(Z /pt Z, 1)m → K(Z /pt Z,m)→ Y

where the first map is given by the iterated cup product, and the second is given by the inclusion Z /pt Z '
p−t Zp /Zp ⊆ Qp /Zp. Using Remark 2.4.5, we see that φt induces a W (κ)-multilinear map

θmt : M/ptM × · · · ×M/ptM → D(Y ).

Remark 2.4.7. In the situation of Construction 2.4.6, the antisymmetry of the cup product shows that the
map

θmt : (M/ptM)m → D(Y )

is antisymmetric: that is, for any permutation σ of {1, . . . ,m}, we have

θmt (x1, . . . , xm) = sn(σ)θmt (xσ(1), . . . , xσ(m)),

where sn(σ) denotes the sign of the permutation σ.
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Remark 2.4.8. Let Y be as in Construction 2.4.6, and let ξ : K(Z /pt Z, 1) → K(Z /pt+1 Z, 1) denote the
map induced by multiplication by p. The diagram of spaces

K(Z /pt+1, 1)m−1 ×K(Z /pt) //

id×ξ
��

K(Z /pt, 1)m−1 ×K(Z /pt, 1)

φt

��
K(Z /pt+1, 1)m−1 ×K(Z /pt+1, 1) // Y

commutes up to homotopy. It follows that if we are given elements x1, . . . , xm−1 ∈ M/tp+1M with images
x1, . . . , xm−1 ∈M/tpM , and y ∈M/tpM , then we have

θmt (x1, . . . , xm−1, y) = θmt+1(x1, . . . , xm−1, ty).

Lemma 2.4.9. In the situation of Construction 2.4.6, the multilinear map

θmt : (M/ptM)× · · · × (M/ptM)→ D(Y )

is strictly alternating. That is, we have θmt (x1, . . . , xm) = 0 whenever xi = xj for i 6= j.

Proof. Suppose that we are given a sequence of elements x1, . . . , xm ∈ M/ptM such that xi = xj for some
i 6= j. Choose elements y1, . . . , ym ∈ M/pt+1M lifting the elements xi, so that yi = yj . The antisymmetry
of Remark 2.4.7 guarantees that 2θmt+1(y1, . . . , ym) = 0. Using Remark 2.4.8, we obtain

θmt (x1, . . . , xm) = θmt+1(y1, . . . , ym−1, pym) = pθmt+1(y1, . . . , ym).

This completes the proof when p = 2. If p is odd, the desired result follows immediately from Remark
2.4.7.

Let
∧m

M denote the mth exterior power of M , regarded as a module over W (κ). Then each quotient
Z /pt Z⊗

∧m
M can be identified with the mth exterior power of M/ptM as a module over W (κ)/ptW (κ).

It follows from Lemma 2.4.9 that θmt induces a map of W (κ)-modules Z /pt Z⊗
∧m

M → D(Y ), which we
will also denote by θmt . Remark 2.4.8 guarantees the commutativity of the diagrams

Z /pt Z⊗
∧m

M

p

��

θmt // D(Y )

id

��
Z /pt Z⊗

∧m
M

θmt+1 // D(Y ).

Together, these assemble to give a map

θm : Qp /Zp⊗
m∧
M → D(Y ).

We can now state the main result of this section:

Theorem 2.4.10 (Ravenel-Wilson). Let m > 0 be an integer, and let Y = K(Qp /Zp,m). Then:

(a) The ring K(n)0(Y ) is isomorphic to a power series algebra over κ on
(
n−1
m−1

)
variables.

(b) The groups K(n)i(Y ) vanish when i is odd. In particular, Y is K(n)-good.

(c) The map θm : Qp /Zp⊗
∧m

M → D(Y ) is an isomorphism.

(d) The formal group Spf K(n)0(Y ) is p-divisible of height
(
n
m

)
and dimension

(
n−1
m−1

)
.
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(e) For each t ≥ 0, the space Yt = K(Z /pt Z,m) is good. Moreover, the canonical map

Yt ' K(p−t Zp /Zp,m)→ Y

induces a monomorphism of Hopf algebras K(n)0Yt → K(n)0Y , which exhibits K(n)0Yt as the kernel
of the map [pt] : K(n)0Y → K(n)0Y (in the abelian category of Hopf algebras over κ).

We will prove Theorem 2.4.10 using induction on m. In the case m = 1, the desired results follow from
Proposition 2.4.4 (and from the definition of Morava K-theory and the Dieudonne module M). To carry out
the inductive step, it will suffice to prove the following three results:

Proposition 2.4.11. Let m > 1 be an integer. Suppose that K(Qp /Zp,m− 1) is K(n)-even and that the
formal group

Spf K(n)0K(Qp /Zp,m− 1)

is connected and p-divisible of height
(

n
m−1

)
and dimension

(
n−1
m−1

)
. Then K(Qp /Zp,m) is K(n)-even, and

K(n)0K(Qp /Zp,m) is isomorphic to a formal power series ring on
(
n−1
m

)
variables.

Proposition 2.4.12. Let m > 1 be an integer. Suppose that K(Qp /Zp,m − 1) and K(Z /pZ,m − 1) are

K(n)-good, that Spf K(n)0K(Qp /Zp,m− 1) is a connected p-divisible group of height
(

n
m−1

)
and dimension(

n−1
m−1

)
, that the sequence of Hopf algebras

κ→ K(n)0K(p−1 Zp /Zp,m− 1)→ K(n)0K(Qp /Zp,m− 1)→ K(n)0K(Qp /p
−1 Zp,m− 1)→ κ

is exact, and that the map θm−1 is an isomorphism. Then:

(i) The map θm : Qp /Zp⊗
∧m

M → D(K(Qp /Zp,m)) is an isomorphism.

(ii) The formal group Spf K(n)0K(Qp /Zp,m) is p-divisible, with height
(
n
m

)
and dimension

(
n−1
m−1

)
.

Proposition 2.4.13. Let m > 1 be an integer. Suppose that K(Qp /Zp,m− 1) and K(Z /pc Z,m− 1) are

K(n)-even, that Spf K(n)0K(Qp /Zp,m−1) is a connected p-divisible group of height
(

n
m−1

)
and dimension(

n−1
m−1

)
, and that the sequence of Hopf algebras

κ→ K(n)0K(p−c Zp /Zp,m− 1)→ K(n)0K(Qp /Zp,m− 1)→ K(n)0K(Qp /p
−c Zp,m− 1)→ κ

is exact. Then K(p−c Zp /Zp,m) is K(n)-even, and the sequence of Hopf algebras

κ→ K(n)0K(p−c Zp /Zp,m)→ K(n)0K(Qp /Zp,m)→ K(n)0K(Qp /p
−c Zp,m)→ κ

is exact.

Proof of Proposition 2.4.11. Let G = K(Qp /Zp,m − 1). Then G can be realized as a topological abelian
group, whose classifying space BG is a model for K(Qp /Zp,m), and set A = K(n)0(G). Then the function

spectrum K(n)BG can be written as the limit of a tower of spectra

· · · → X(2)→ X(1)→ X(0),

where each X(s) is given by the sth partial totalization of the cosimplicial spectrum [j] 7→ K(n)G
j

. Let
{Es,tr , dr}r≥1 be the spectral sequence of Example 2.3.5, whose second page is given by

Es,∗2 = ExtsA⊗κπ∗K(n).

Since the formal group Spf A∨ is p-divisible, we have an exact sequence of Hopf algebras

κ→ A[p]→ A
[p]→ A→ κ,
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where A[p] is finite-dimensional as a vector space over κ. Note that the kernel and cokernel of the Frobenius
map on A[p] have the same rank, which is the rank of the kernel of the Frobenius map ϕ : A(p) → A.
Since Spf A∨ has height

(
n

m−1

)
and dimension

(
n−1
m−1

)
, we conclude that dimκ Ext1

A[p] =
(

n
m−1

)
−
(
n−1
m−1

)
=(

n−1
m

)
< ∞. Applying Theorem 2.2.10, we see that Es,t2 vanishes when s is odd, and E2s,t

2 is given by

Syms
κ(Ext1

A[p])⊗κπtK(n). Since Es,t2 vanishes unless s and t are both even, we conclude that the differentials

dr vanish for r ≥ 2, so that Es,t2 ' Es,t∞ . In particular, the filtered spectrum {X(s)} satisfies the hypotheses
of Proposition 2.3.4. It follows that each πmK(n)BG = K(n)−mBG admits a filtration

K(n)−mBG = F 0K(n)−mBG ⊇ F 1K(n)−mBG ⊇ · · · ,

where K(n)−mBG ' lim←−sK(n)−mBG/F sK(n)−mBG, whose associated graded is given by

F sK(n)−mBG/F s+1K(n)−mBG ' Es,m+s
∞ ' ExtsA⊗κπm+sK(n).

It follows immediately that the space BG is K(n)-even. Let B = K(n)0BG, and let I(s) = F sK(n)0BG for
s ≥ 0. Note that this filtration is multiplicative: that is, we have I(s)I(s′) ⊆ I(s + s′). In particular, each
I(s) is an ideal in B. We have B ' lim←−sB/I(s); let us regard B as endowed with the inverse limit topology.
There is an isomorphism of associated graded rings

gr(B) ' Sym∗κ(Ext1
A[p]⊗κπ2K(n)).

Let t1, . . . , tk be a basis for the vector space Ext1
A[p]⊗κπ2K(n), where k =

(
n−1
m

)
. For 1 ≤ i ≤ k, choose

ti ∈ I(2) having image ti in gr2(B) = I(2)/I(3). We then have a unique continuous ring homomorphism
κ[[T1, . . . , Tk]] → B, carrying each Ti to ti. This map induces an isomorphism of associated graded rings,
and is therefore an isomorphism.

Remark 2.4.14. In the situation of Proposition 2.4.11, let B = K(n)0K(Qp /Zp,m), and let mB denote
its augmentation ideal. The proof of Proposition 2.4.12 shows that the filtration

B = I(0) ⊇ I(1) ⊇ I(2) ⊇ · · ·

is a reindexing of the mB-adic filtration. More precisely, we have

I(s) =

{
mkB if s = 2k

mkB if s = 2k − 1.

In particular, we have an isomorphism mB/m
2
B ' I(2)/I(3).

Let H = K(n)0K(Qp /Zp,m), so that B is the κ-linear dual of H and the sequence of ideals {I(s)}s≥0

is dual to an increasing filtration
κ ' F 0H ⊆ F 1H ⊆ · · · .

Dualizing the above reasoning, we conclude that Prim(H) ⊆ F 2H, and that the composite map Prim(H) ↪→
F 2H → F 2H/F 1H is an isomorphism of κ-vector spaces.

Proof of Proposition 2.4.12. We will prove assertion (i); assertion (ii) is an immediate consequence of (i) and
Proposition 2.4.11. Replacing κ by its algebraic closure if necessary, we may assume that M is generated
over Dκ by an element x satisfying Fx = V n−1x, so that M is freely generated as a W (κ)-module by
x, V x, V 2x, . . . , V n−1x with V nx = px. Given a subset I = {i1 < . . . < im} ⊆ {0, . . . , n − 1}, we let
V Ix = V i1x ∧ . . . ∧ V imx ∈

∧m
M . Note that the action of V on M induces a Verschiebung map V :∧m

M →
∧m

M , given on generators by

V (λV i1x ∧ . . . ∧ V imx) =

{
ϕ−1(λ)V i1+1x ∧ . . . ∧ V im+1x if im < n− 1

(−1)m−1pϕ−1(λ)x ∧ V i1+1 ∧ . . . ∧ V im−1+1x otherwise.
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Applying the snake lemma to the diagram

0 // ∧mM
V

��

// Q⊗
∧m

M //

V

��

Qp /Zp⊗
∧m

M

V

��

// 0

0 // ∧mM // Q⊗
∧m

M // Qp /Zp⊗
∧m

M // 0,

we deduce that V induces a surjection from
∧m

M ⊗Qp /Zp to itself, and obtain an isomorphism

ker(V : Qp /Zp⊗
m∧
M → Qp /Zp⊗

m∧
M) ' coker(V :

m∧
M →

m∧
M).

By inspection, the right hand side has basis (as a κ-vector space) given by elements of the form V i1x∧ . . .∧
V imx with i1 = 0. It follows that the left hand side has dimension

(
n−1
m−1

)
as a vector space over κ.

Set Y = K(Qp /Zp,m), and note that the map θm :
∧m

M ⊗Qp /Zp → D(Y ) is V -linear. We will prove
the following:

(∗) The map θm induces a surjection

ker(V : Qp /Zp⊗
m∧
M → Qp /Zp⊗

m∧
M)→ ker(V : D(Y )→ D(Y )).

Assume (∗) for the moment. Proposition 2.4.11 implies that the map V : D(Y )→ D(Y ) is surjective, and that
its kernel has dimension

(
n−1
m−1

)
over κ. It follows that θ induces an isomorphism ker(V : Qp /Zp⊗

∧m
M →

Qp /Zp⊗
∧m

M)→ ker(V : D(Y )→ D(Y )), so that θm is injective when restricted to the kernel of V . We
claim that θm is injective. To prove this, suppose that 0 6= z ∈ Qp /Zp⊗

∧m
M . Note that V tz = 0 for

sufficiently large values of t. Choose a minimal value of t such that V tz = 0. Since z 6= 0, we have t > 0.
Then 0 6= V t−1z ∈ ker(V ), so that V t−1θ(z) = θ(V t−1z) 6= 0 and therefore θ(z) 6= 0.

We now prove the surjectivity of θm. Let y ∈ D(Y ); we wish to show that y belongs to the image of θm.
Using Proposition 2.4.11, we see that the formal group Spf K(n)0(Y ) is connected so that the action of V
on D(Y ) is locally nilpotent. It follows that there exists t such that V ty = 0. We now proceed by induction
on t. If t = 0, then y = 0 and there is nothing to prove. Otherwise, V t−1y ∈ ker(V ). Using (∗), we deduce
that there exists z ∈ Qp /Zp⊗

∧m
M with θm(z) = V t−1y. Since V is surjective on Qp /Zp⊗

∧m
M , we

can write y = V t−1y for some Qp /Zp⊗y ∈M . Then z− θm(y) is annihilated by V t−1. Using the inductive
hypothesis, we see that z − θm(y) belongs to the image of θm, so that z also belongs to the image of θ.

It remains to prove (∗). Let c : K(Z /pZ, 1)×K(Z /pZ,m−1)→ Y be the composition of the cup product
map with the inclusion K(Z /pZ,m) ' K(p−1 Zp /Zp,m) → K(Qp /Zp,m). Set B = K(n)0K(Z /pZ, 1)
and B′ = K(n)0K(Z /pZ,m − 1). Since θm−1 is an isomorphism and B′ is the kernel of [p] on the Hopf
algebra K(n)0K(Qp /Zp,m − 1), the canonical map (M/pM)⊗m−1 → DM(B′) induces an isomorphism

Z /pZ⊗
∧m−1

M ' DM(B′). The map c induces a bilinear map of Hopf algebras

µ : B ⊗κ B′ → K(n)0(Y ),

hence a pairing of Dieudonne modules λ : M/pM × (Z /pZ⊗
∧m−1

M)→ D(Y ). Consider the map

λ : ker(V : M/pM →M/pM)⊗κ DM(B′)/F DM(B′)→ ker(V : D(Y )→ D(Y ))

introduced in Notation 1.3.31. To prove (∗), it will suffice to show that λ is surjective.
Let A = K(n)0K(Qp /Zp,m − 1), let mB′ denote the augmentation ideal of B′, and let µ : Prim(B) ×

mB′/m
2
B′ → Prim(K(n)0(Y )) be as in Remark 1.3.32. According to Proposition 1.3.33, we have a commu-
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tative diagram

ker(V : M/pM →M/pM)⊗κ DM(B′)/F DM(B′)

∼
��

λ // ker(V : DM(A)→ DM(A))

∼
��

Prim(B)⊗κ mB′/m2
B′

µ // Prim(A).

It will therefore suffice to show that µ is surjective.
Let X• denote the simplicial space given by the Čech nerve of the base point inclusion ∗ → K(Z /pZ, 1)

(so that X• can be identified with the simplicial set given by Kt = (Z /pZ)t). Associated to this simplicial
space is a spectral sequence {E′s,tr , dr}r≥1 converging to K(n)∗K(Z /pZ, 1). From the second page onward,
this spectral sequence can be identified with the Atiyah-Hirzebruch spectral sequence for the spectrum K(n):
in particular, we have a canonical isomorphism E′s,t2 ' Hs(K(Z /pZ, 1);πtK(n)). We have an associated
filtration

0 = gr−1B ↪→ gr0B ↪→ gr1 ↪→ · · · ,

with grsB/ grs−1B ' E′s,−s∞ . Note that Prim(B) is contained in gr2B, and that the projection map
Prim(B)→ gr2B/ gr1B is an isomorphism.

Let Y• denote the simplicial space appearing in the proof of Proposition 2.4.11. Associated to Y• is another
spectral sequence {Es,tr , dr}r≥1 converging to a filtration of K(n)∗K(Qp /Zp,m), which is a κ-linear predual
of the spectral sequence appearing in the proof of Proposition 2.4.12. We have a homotopy commutative
diagram

∗ ×K(Z /pZ,m− 1) //

��

∗

��
K(Z /pZ, 1)×K(Z /pZ,m− 1)

c // K(Qp /Zp,m).

which induces a map of simplicial spaces α : X• ×K(Z /pZ,m− 1)→ Y• and therefore a map

grsB ⊗κ B′ → grsK(n)0(Y ).

We have a commutative diagram

Prim(B)⊗κ mB′ //

��

Prim(K(n)0(Y ))

��
gr2B/ gr 1B ⊗κ mB′ // gr2K(n)0(Y )/ gr1K(n)0(Y ),

where the vertical maps are isomorphisms (see Remark 2.4.14). Consequently, to show that µ is surjective,
it will suffice to show that the induced map of spectral sequences {E′s,tr ⊗κ B′, dr} → {Es,tr , dr} induces a
surjection E′2,−2

∞ ⊗κ mB′ → E2,−2
∞ . Because E′2,−2

2 consists of permanent cycles, it suffices to show that the
map of second pages E′2,−2

2 ⊗κmB′ → E2,−2
2 is surjective. Using the 2-periodicity of the graded ring π∗K(n),

we are reduced to showing that the map

ψ : E′2,02 ⊗κ mB′ ' H2(K(Z /pZ, 1); Z /pZ)⊗Z /pZ mB′ → TorA2 (κ, κ) ' E2,0
2

is surjective.
Our assumptions allow us to identify B′ with the kernel (in the abelian category Hopfκ) of the map

[p] : A → A. Note that H2(K(Z /pZ, 1); Z /pZ) is a free module of rank one over Z /pZ with a canon-
ical generator (dual to the generator of H2(K(Z /pZ, 1); Z /pZ) classifying the extension 0 → Z /pZ →

57



Z /p2 Z → Z /pZ → 0). Using this generator, we can identify ψ with a map ψ′ : mB′ → TorA2 (κ, κ). The
surjectivity of ψ now follows from the commutativity of the diagram

mB′

��

ψ′ // TorA2 (κ, κ)

��
mB′/m

2
B′

∼ // TorB
′

1 (κ, κ),

since the right vertical map is the κ-linear dual of the isomorphism Ext1
B′ → Ext2

A of Theorem 2.2.10.

Proof of Proposition 2.4.13. Set

G′ = K(Zp /p
c Zp,m− 1) G = K(Qp /p

c Zp,m− 1) G′′ = K(Qp /Zp,m− 1),

so that we have a fiber sequence of topological abelian groups G′ → G → G′′. Set A′ = K(n)0G
′ and

A = K(n)0G, so that the map G′ → G induces a Hopf algebra homomorphism A′ → A. Moreover, we
can also identify K(n)0G

′ with A, so that the map G → G′ induces the Hopf algebra homomorphism
[pc] : A→ A.

We will identify K(Z /pc Z,m) with the classifying space of the group G′, and let {Es,tr , dr}r≥1 be the
spectral sequence of Example 2.3.5, whose second page is given by

Es,∗2 = ExtsA′ ⊗κπ∗K(n).

Let R = K(n)0K(Qp /Zp,m), and let mR denote its maximal ideal, so that the proof of Proposition

2.4.10 supplies canonical isomorphisms msR/m
s+1
R ' Ext2s

A ⊗κπ2sK(n) (see Remark 2.4.14). By assumption,
the fiber sequence

G′ → G→ G′′

induces an exact sequence of connected Hopf algebras

κ→ A′ → A
[pc]→ A→ κ.

Let ψ : Ext1
A′ → Ext2

A be the isomorphism of Theorem 2.2.10, and let v ∈ π2K(n) be a nonzero element.
The main ingredient in our proof is the following assertion:

(∗) Suppose we are given an element x ∈ E1,0
2 and an element y ∈ mR representing

ψ(x)⊗ v ∈ Ext2
A⊗κπ2K(n) ' mR/m

2
R

Suppose furthermore that the Hopf algebra homomorphism [pc] : R → R carries y to an element
y′ ∈ msR, and let x′ ∈ E2s,2s−2

2 denote the image of y′ under the composite map

msB/m
s+1
B ' Ext2s

A ⊗κπ2sK(n)→ Ext2s
A′ ⊗κπ2sK(n) = E2s,2s

2
−v−1

→ E2s,2s−2
2

Then x and x′ survive to the (2s − 1)st page of the spectral sequence {Es,tr , dr}r≥1. That is, there
exist elements {xr ∈ E1,0

r , x′r ∈ E2s,2s−2
r }2≤r≤2s−1 such that x2 = x, x′2 = y, drxr = drx

′
r = 0 for

2 ≤ r < 2s−1, each xr is a cycle representing xr+1, and each x′r is a cycle representing x′r+1. Moreover,

we have vd2s−1(x2s−1) = x′2s−1 in E2s,2s−2
2s−1 .

Let us now explain how to complete the proof, assuming (∗). We first treat the case where m = n. Then
Spf R is a 1-dimensional p-divisible group of height 1 over κ. Replacing κ by its algebraic closure if necessary,
we may assume that Spf R is the formal multiplicative group, so that there exists an isomorphism R ' κ[[y]],
where the p-series [pc] is given by [pc](y) = yp

c

. Then the image of y in mR/m
2
R ' Ext2

A⊗κπ2K(n) has the
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form ψ(x)⊗ v, for a unique element x ∈ E1,0
2 . It follows from (∗) that x survives to the (2pc − 1)st page of

the spectral sequence, and that the differential d2pc−1 carries (the residue class of) x to (the residue class
of) v−1yp

c

, where y denotes the image of y in the graded ring gr(R) =
⊕

msR/m
s+1
R .

We now define an auxiliary spectral sequence {E′s,tr , d′r}r≥2 as follows: for r ≤ 2pc−1, we let E′∗,∗r denote
the free (π∗K(n))[Y ]-module on generators 1 and X, where X has bidegree (1, 0) and Y has bidegree (2, 2).

For r ≥ 2pc, we let E′∗,∗r denote the quotient (π∗K(n))[Z]/(Zp
t

). Finally, the differentials d′r vanish unless
r = pt − 1, in which case d′r is the unique (π∗K(n))[Y ]-linear map satisfying

d′r(1) = 0 d′r(X) = −v−1Y p
c

.

Using (∗), we deduce that there is a map of spectral sequences {E′s,tr , d′r} → {Es,tr , dr}, given on the second
page by

Y a 7→ ya XY a = xya.

By inspection, this map induces an isomorphism on the second page, and is therefore an isomorphism of
spectral sequences. In particular, the spectral sequence {Es,tr , dr}r≥2 stabilizes after a finite number of steps,
and its final page is given by

E∗,∗∞ ' E
∗,∗
2pc ' (π∗K(n))[y]/(yp

c

),

where each yI has bidegree (2, 2).
Using Proposition 2.3.4, we deduce that each group K(n)iK(Z /pc Z, n) admits a filtration

K(n)iK(Z /pc Z, n) = F 0K(n)iK(Z /pc Z, n) ⊇ F 1K(n)iK(Z /pc Z, n) ⊇ · · ·

with
K(n)iK(Z /pc Z, n) ' lim←−K(n)iK(Z /pc Z, n)/F sK(n)iK(Z /pc Z, n)

and F sK(n)iK(Z /pc Z, n)/F s+1K(n)iK(Z /pc Z, n) ' Es,s−i∞ . Since Es,t∞ ' 0 unless both s and t are even,
we immediately deduce that K(n)iK(Z /pc Z, n) vanishes when i is odd: that is, the space K(Z /pc Z, n)
is K(n)-even. Moreover, the associated graded ring gr∗K(n)0K(Z /pc Z,m) is isomorphic to a truncated
polynomial algebra κ[y]/yc.

Since multiplication by pc on K(Z /pc Z,m) is nullhomotopic, the canonical map

θ : R→ K(n)0K(Z /pc Z, n)

annihilates yp
c

= [pc](y). We now complete the proof by observing that θ determines an isomorphism
R/(yp

c

)→ K(n)0K(Z /pc Z, n) (since the induced map of associated graded rings is an isomorphism).
We now treat the case m 6= n. Here the argument is similar, but the details are more complicated because

we do not have a simple formula for the map [pc] : R→ R. Let mR denote the maximal ideal of R and let N
denote the dual of the Dieudonne module DM(K(n)0K(Qp /Zp,m)). As a W (κ)-module, we will identify
N with

HomW (κ)(DM(K(n)0K(Qp /Zp,m)),W (κ)[p−1]/W (κ))

equipped with the action of Dκ described in Remark 1.4.18. Using Proposition 2.4.12, we can identify N with
the dual HomW (κ)(∧mM,W (κ)). Replacing κ by its algebraic closure if necessary, we may assume that M is
generated (as a Dκ-module) by an element γ satisfying Fγ = V n−1γ, so that M is freely generated as a W (κ)-
module by the elements γ, V γ, . . . , V n−1γ with V nγ = pγ. For every subset I = {i1, . . . , im} ⊆ {0, . . . , n−1},
we let V I(γ) = V i1γ ∧ . . . ∧ V imγ ∈ ∧mM . The elements V Iγ form a basis for

∧m
M as a W (κ)-module.

We let {δI}I⊆{0,...,n−1} denote the dual basis for N . Unwinding the definitions, we see that the action of F
on N is given on this basis by the formula

Fδ{i1<...,<im} =

{
δ{i1−1,...,im−1} if i1 > 0

(−1)m−1pδ{i2−1,...,im−1,n−1} if i1 = 0.
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Since m 6= n, the action of V on N is topologically nilpotent. We may therefore write R as an inverse
limit of finite-dimensional connected Hopf algebras Hα over κ. Then N ' lim←−DM(Hα), so that the inclusions
DM(Hα) ↪→ Hα determine a map ρR : N → R. Let J denote the collection of all subsets of {0, . . . , n−1} which
have cardinality m and contain the element n−1. For each I ∈ J, let yI = ρR(δI) ∈ R. The elements {δI}I∈J
form a basis for N/FN , so that the images of the elements {yI}I∈J form a basis for mR/m

2
R (see Proposition

1.3.20). It follows that R can be identified with the formal power series ring generated by the elements yI .
For each I = {i1 < · · · < im} ∈ J, let eI = im−1 − im−2, and let I+ = {eI − 1 < eI + i1 < . . . , < eI + im−2},
so that pδI = (−1)m−1F eI δI+ . We define I(k) for k ≥ 0 by the recursion

I(0) = 0 I(k + 1) = I(k)+,

and we let e
(k)
I = eI + eI(1) + · · ·+ eI(k−1), so that pkδI = (−1)k(m−1)F e

(k)
I δI(k). Let σ : R → R denote the

antipodal map if k(m− 1) is odd, and the identity map otherwise. Then the map [pc] : R→ R carries σ(yI)
to

[pc]ρR((−1)c(m−1)δI) = ρR((−1)c(m−1)pcδI) = (F e
(c)
I δI(t)) = σyp

e
(c)
I

I(t) .

For each I ∈ J, we define a spectral sequence {Es,tr (I), dr}r≥2 as follows. For r ≤ 2peI − 1, we let E∗,∗r (I)
denote the free (π∗K(n))[ZI ]-module on generators 1 and XI , where XI has bidegree (1, 0) and ZI has

bidegree (2, 2). For r ≥ 2peI , we let E∗,∗r (I) be the quotient (π∗K(n))[ZI ]/(Z
pe

(c)
I

I ). Finally, the differential

dr vanishes unless r = 2pe
(c)
I − 1, in which case dr is the unique (π∗K(n))[ZI ]-linear map given by

d
2pe

(c)
I −1

(1) = 0 d
2pe

(c)
I −1

(XI) = v−1(−1)t(m−1)Zp
e
(c)
I

I .

Let yI denote the image of yI in mR/m
2
R ' E2,2

2 , and choose an element xI ∈ E1,0
2 such that ψ(xI) = yI .

Using (∗), we obtain a map of spectral sequences Es,tr (I)→ Es,tr , given on the second page by

ZaI 7→ yaI(t) XIZ
a
I 7→ xIy

a
I(t).

Since {Es,tr , dr}r≥2 is a spectral sequence of algebras, we can tensor these maps together (over the graded
ring π∗K(n)) to obtain a map of spectral sequences⊗

I∈J

{Es,tr (I), dr}r≥2 → {Es,tr , dr}r≥2.

By inspection, this map is an isomorphism on the second page, and therefore an isomorphism. In particular,
the spectral sequence {Es,tr , dr}r≥2 stabilizes after a finite number of steps, and its final page is given by

E∗,∗∞ ' (π∗K(n))[yI ]/(y
e
(c)
I

I(t)),

where each yI has bidegree (2, 2).
Using Proposition 2.3.4, we deduce that each group K(n)iK(Z /pc Z,m) admits a filtration

K(n)iK(Z /pc Z,m) = F 0K(n)iK(Z /pc Z,m) ⊇ F 1K(n)iK(Z /pc Z,m) ⊇ · · ·

with
K(n)iK(Z /pc Z,m) ' lim←−K(n)iK(Z /pc Z,m)/F sK(n)iK(Z /pc Z,m)

and F sK(n)iK(Z /pc Z,m)/F s+1K(n)iK(Z /pc Z,m) ' Es,s−i∞ . Since Es,t∞ ' 0 unless both s and t are even,
we immediately deduce that K(n)iK(Z /pc Z,m) vanishes when i is odd: that is, the space K(Z /pc Z,m)

is K(n)-even. Moreover, K(n)0K(Z /pc Z,m) is a vector space over κ of dimension
∏
I∈J p

e
(c)
I , and its

associated graded ring gr∗K(n)0K(Z /pc Z,m) is isomorphic to a truncated polynomial algebra κ[yI ]/(y
e
(c)
I

I(t)).
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Let K ⊆ R denote the ideal defining the kernel of the map [pc] : Spf R→ Spf R. Since multiplication by pc

on K(Z /pc Z,m) is nullhomotopic, the canoncial map θ : R→ K(n)0K(Z /pc Z,m) annihilates the ideal K.
To complete the proof, it will suffice to show that θ induces an isomorphism R/K → K(n)0K(Z /pc Z,m).
It is clear that the map θ is surjective (in fact, it is surjective at the level of associated graded rings, where
R is equipped with the filtration appearing in the proof of Proposition 2.4.11). It will therefore suffice to

show that dimκR/K ≤
∏
I∈J p

e
(c)
I . This is clear, since

∏
I∈J p

e
(c)
I is the dimension of the truncated power

series ring κ[[yI ]]/(y
pe

(c)
I

I(t) ), and each yp
e
(c)
I

I(t) belongs to the ideal K.

It remains to prove (∗). Let Y• and Y ′′• be the simplicial spaces obtained by applying the bar construction
to the topological abelian groups G = K(Qp /p

c Zp,m− 1) and G′′ = K(Qp /Zp,m− 1), and let X and X ′′

denote the filtered spectra given by the partial totalizations

X(s) = TotsK(n)Y• X ′′(s) = TotsK(n)Y
′′
• .

Finally, let W denote the constant tower of spectra

· · · →W (2)→W (1)→W (0)

where each W (s) is equal to K(n). The pullback square of topological abelian groups

G′ Goo

∗

OO

G′′oo

OO

determines a commutative diagram of filtered spectra

X ′′ //

��

X

��
W // X ′.

We let X(∞) denote the inverse limit lim←−sX(s) ' K(n)K(Qp /p
c Zp,m), and define X ′(∞), X ′′(∞), and

W (∞) similarly. For 0 ≤ a ≤ b ≤ ∞ we let X(b, a) denote the fiber of the map X(b) → X(a), and define
X ′(b, a), X ′′(b, a), and W (b, a) similarly (so that W (b, a) ' 0).

Let x ∈ E1,0
2 be as in (∗). Remark 2.4.14 supplies an isomorphism Ext2

A ' im(π−2X
′′(∞, 0) →

π−2X
′′(2, 0)). We will abuse notation by identifying ψ(x) with the element of π−2X

′′(2, 0) given by its
image under this isomorphism, and x with an element of π−1X

′(1) belonging to the image of the map
π−1X

′(2, 0)→ π−1X
′(1). We will need the following assertion:

(∗′) There exists an element z ∈ π−2 fib(X ′′(2, 0) → X(2, 0)), whose image in π−2X
′′(2, 0) coincides with

−ψ(x), and whose image in under the composite map

π−2 fib(X ′′(2, 0)→ X(2, 0))→ π−2 fib(W (2, 0)→ X ′(2, 0)) ' π−1X
′(2, 0)→ π−1X

′(1)

coincides with x.

Assuming (∗′) for the moment, let us prove (∗). Choose y ∈ mR ' π0X
′′(∞, 0) representing vψ(x), and

let z be as in (∗). Since the map

π−2 fib(X ′′(∞, 0)→ X(2, 0))→ π−2X
′′(∞, 0)×π−2X′′(2,0) π−2 fib(X ′′(2, 0)→ X(2, 0))

is surjective, we can choose an element z ∈ π−2 fib(X ′′(∞, 0) → X(2, 0)) whose image in π−2X
′′(∞, 0) is

v−1y, and whose image in π−2 fib(X ′′(2, 0) → X(2, 0)) coincides with z. By assumption, we have [pc](y) ∈
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msR, so that the image of v−1y in π−2X(∞, 0) lifts to an element y ∈ X(∞, 2s − 1). Let y′ and z′ denote
the images of y and z in π−2 fib(X(∞, 0) → X(2, 0)) ' π−2X(∞, 2). The y and z have the same image
in π−2X(∞, 0), so that the difference y − z belongs to the image of the boundary map π−1X(2, 0) →
π0 fib(X(∞, 0) → X(2, 0)). The proof of Proposition 2.4.11 shows that the map π−1X(2, 0) → π−1X(1, 0)
vanishes. Using the commutativity of the diagram

π−1X(2, 0) //

��

π−2 fib(X(∞, 0)→ X(2, 0))

��
π−1X(1, 0) // π−2 fib(X(∞, 0)→ X(1, 0)),

we see that y and z have the same image in π−2X(∞, 1). Let z0 denote the image of z in π−2 fib(X ′′(∞, 0)→
X(1)), so that the pair (z0, y) lifts to an element w of

π−2(fib(X ′′(∞, 0)→ X(1, 0))×fib(X(∞,0)→X(1,0) fib(X(∞, 0)→ X(2s− 1, 0)),

which we will identify with π−2(X ′′(∞)×X(∞) X(∞, 2s− 1)). Let x denote the image of w in

π−2(W (∞)×X′(∞) X
′(∞, 2s− 1)) ' π−1X

′(2s− 1, 0).

By construction, x is a preimage of x under the canonical map π−1X
′(2s − 1, 0) → π−1X

′(1). This proves
that x survives to the (2s − 1)st page of our spectral sequence. Moreover, d2s−1(x) can be identified with
the image of x under the composite map

π−1X
′(2s− 1, 0) ' π−2 fib(0→ X ′(2s− 1, 0))→ π−2 fib(X ′(2s, 0)→ X ′(2s− 1, 0)) ' π−2X

′(2s, 2s− 1).

Equivalently, d2s−1(x) is represented by the image of w under the composite map

π−2(X ′′(∞)×X(∞) X(∞, 2s− 1))→ π−2X(∞, 2s− 1)→ π−2X(2s, 2s− 1)→ π−2X
′(2s, 2s− 1),

which coincides with the element x′ appearing in (∗).
We now prove (∗′). If Z is a pointed space, we let K(n)∗red(Z) denote the reduced K(n)-cohomology of

Z: that is, the kernel of the map K(n)∗(Z)→ K(n)∗(red) given by evaluation at the base point. Unwinding
the definitions, we obtain canonical isomorphisms

π∗X(d, d− 1) ' K(n)−∗−dred (G∧d) ' Homκ(m⊗dA , κ)⊗κ πd+∗K(n)

π∗X
′(d, d− 1) ' K(n)−∗−dred (G′∧d) ' Homκ(m⊗dA′ , κ)⊗κ πd+∗K(n).

Using the fiber sequences
X(1, 0)→ ΣX(2, 1)→ ΣX(2, 0)

X ′(1, 0)→ ΣX ′(2, 1)→ ΣX ′(2, 0),

we deduce the existence of exact sequences

0→ π−1X(2, 0)→ Homκ(mA, κ)
ν→ Homκ(m⊗2

A , κ)→ π−2X(2, 0)→ 0,

where ν is dual to the multiplication map m⊗2
A → mA. The kernel of ν can be identified with Ext1

A (Remark
2.2.4), which vanishes by Theorem 2.2.10. It follows that the homotopy groups of X(2, 0) are concentrated
in even degrees. We have a diagram of short exact sequences

0 // Homκ(mA, κ) //

α

��

Homκ(m⊗2
A , κ) //

α′

��

π−2X
′′(2, 0) //

β

��

0

0 // Homκ(mA, κ) // Homκ(m⊗2
A , κ) // π−2X(2, 0) // 0.
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Here the maps α and α′ are induced by the Hopf algebra homomorphism [pc] : A → A. Since Spf A∨ is
p-divisible, these maps are injective. The snake lemma provides an exact sequence

0→ ker(β)
µ→ coker(α)→ coker(α′)→ coker(β)→ 0

Since π−1X(2, 0) ' 0, we the canonical map π−2 fib(X ′′(2, 0) → X(2, 0)) → ker(β) is an isomorphism.
Moreover, the canonical map π−2 fib(X ′′(2, 0)→ X(2, 0))→ π−1X

′(1, 0) is given by the composition

π−2 fib(X ′′(2, 0)→ X(2, 0)) ' ker(β)
−µ→ coker(α)→ π−1X

′(1, 0).

Consequently, to prove (∗′), it will suffice to show that for each x ∈ E1,0
2 , the element ψ(x) ∈ π−2X(2, 0)

belongs to the kernel of β, and µ(ψ(x)) ∈ coker(α) is a preimage of x under the canonical map coker(α)→
X ′(1, 0). This follows immediately from the description of ψ(x) supplied by Remark 2.2.4.

3 Alternating Powers of p-Divisible Groups

Let κ be a perfect field of characteristic p > 0, let G0 be a smooth connected 1-dimensional formal group
of height n < ∞ over κ, and let K(n) denote the associated Morava K-theory spectrum. In §2.4, we
reviewed the Ravenel-Wilson calculation of the groups K(n)∗K(Z /pt Z, d). In the language of Dieudonne
modules, this calculation can be summarized as follows: K(n)0K(Z /pt Z, d) is a connected Hopf algebra
over κ, whose Dieudonne module can be identified with the dth exterior power of the Dieudonne module of
K(n)0K(Z /pt Z, 1).

Our goal in this section is to describe the passage from G0 to K(n)0K(Z /pt Z, d) in a purely algebro-
geometric way, which does not make reference to Dieudonne theory. To this end, we introduce a general
construction, which associates to each finite flat commutative group scheme G over a commutative ring R a

collection of group schemes {Alt
(d)
G }d≥1. Our main results can be summarized as follows:

(a) Let R be a perfect field of characteristic p > 0, let G be a truncated connected p-divisible group of
dimension 1 over κ (see Definition 3.1.1), and write G = SpecH∨ for some Hopf algebra H over κ.

Then Alt
(d)
G = SpecA, where the Dieudonne module of A is the dth exterior power of the Dieudonne

module of H (Theorem 3.3.1).

(b) In the special case where R = κ, we will show that Theorem 2.4.10 supplies a canonical isomorphism

SpecK(n)0K(Z /pt Z, d) ' Alt
(d)
G0[pt] (Corollary 3.3.3).

(c) Let E denote the Lubin-Tate spectrum determined by κ and G0, and let G be the formal group
Spf E0(CP∞) over R = π0E. Then the isomorphism appearing in (b) lifts to an identification R-
schemes

SpecE∧0 K(Z /pt Z, d) ' Alt
(d)
G[pt]

(see Theorem 3.4.1).

(d) Let G be a truncated p-divisible group of dimension 1 over an arbitrary commutative ring R. Then

each Alt
(d)
G is also a truncated p-divisible group over R (Theorem 3.5.1). In particular, it is a finite flat

group scheme over R.

If G is a finite flat group scheme which is annihilated by some odd integer n, then the group schemes

Alt
(d)
G are easy to describe: they classify skew-symmetric multilinear maps from the d-fold product G×SpecR

· · ·×SpecRG into the multiplicative group Gm. In the general case, the appropriate definition was suggested
to us in a correspondence with Johan de Jong, and will be explained in detail in §3.2. We will discuss (a)
and (b) in §3.3, (c) in §3.4, and (d) in §3.5. We note that for p 6= 2, these results appear elsewhere in the
literature. We refer the reader to [17] for a proof of (c), and to [8] for proofs of (a) and (d).

Note that assertions (a) and (d) make reference the theory of truncated p-divisible groups. For the
reader’s convenience, we summarize the relevant definitions in §3.1.
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3.1 Review of p-Divisible Groups

In this section, we briefly review the theory of p-divisible groups and of truncated p-divisible groups, em-
phasizing those aspects which will be needed in this paper. For more detailed accounts, we refer the reader
to [3], [16], and [11].

Definition 3.1.1. Let R be a commutative ring, let CAlgR denote the category of (discrete) commutative
R-algebras, let p be a prime number, and let Ab denote the category of abelian groups. A p-divisible group
of height n over R is a functor G : CAlgR → Ab satisfying the following conditions:

(a) For every integer t ≥ 0, the functor A 7→ {x ∈ G(A) : ptx = 0} is representable by a finite flat group
scheme of rank pnt over R, which we will denote by G[pt].

(b) The union
⋃
t≥0G[pt] is equal to G: that is, for every A ∈ CAlgR, the action of p on G(A) is locally

nilpotent.

It follows from (a) and (b) that the functor A 7→ G(A) is a sheaf for the fpqc topology on CAlgR.

(c) The map [p] : G → G is an epimorphism of sheaves for the fpqc topology. That is, we have a short
exact sequence

0→ G[p]→ G→ G→ 0

of fpqc sheaves.

Remark 3.1.2. Let κ be a field, and let H be a p-divisible Hopf algebra over κ (Definition 2.2.6). Then
the functor

Spf H∨ : CAlgκ → Ab

A 7→ GLike(H ⊗κ A)

is a p-divisible group of height n over R. The construction H 7→ Spf H∨ determines an equivalence from the
category of p-divisible Hopf algebras over κ to the category of p-divisible groups over κ.

Definition 3.1.3. Let R be a commutative ring and let G be a finite flat commutative group scheme over R.
We will say that G is a truncated p-divisible group of height n and level t over R if the following conditions
are satisfied:

(a) The rank of G is equal to pnt.

(b) The finite flat group scheme G is annihilated by pt.

(c) Suppose we are given a ring homomorphism φ : R → κ, where κ is an algebraically closed field of
characteristic different from p. Then the finite abelian group G(κ) is isomorphic to (Z /pt Z)n.

(d) Suppose we are given a ring homomorphism R→ κ, where κ is a perfect field of characteristic p. Write
G×SpecR Specκ = SpecH for some finite-dimensional Hopf algebra H over κ, and let M = DM+(H)
be its Dieudonne module. Then

dimκ ker(V : M →M) + dimκ ker(F : M →M) = n.

Proposition 3.1.4. Let R be a commutative ring and let G be a p-divisible group over R of height n. For
each t ≥ 0, the subgroup G[pt] is a truncated p-divisible group over R of height n and level t.
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Proof. We will show that G satisfies conditions (a) through (d) of Definition 3.1.3. Conditions (a) and (b)
are obvious. To prove (c), let κ be an algebraically closed field of characteristic different from p. Then
G[pt](κ) = {x ∈ G(κ) : ptx = 0} is a Z /pt Z-module of cardinality pnt. Since G is p-divisible, we have short
exact sequences

0→ G[pa](κ)→ G[pa+1](κ)→ G[p](κ)→ 0,

so the cardinality of G[pt](κ) is the tth power of the cardinality of G[p](κ). It follows that G[p](κ) has
cardinality pn. Using the structure theory for finitely generated abelian groups, we deduce that G[pt](κ) is
a direct sum of exactly n cyclic groups, each of which has order at most pt. Since G[pt](κ) has cardinality
pnt, each of these groups must have order pt, so that G[pt](κ) is a free Z /pt Z-module of rank n.

It remains to verify condition (d). Suppose we are given a map R → κ, where κ is a perfect field of
characteristic p > 0. Write G = Spf H∨ for some Hopf algebra H over κ, and let M = DM+(H). Let M [F ],
M [V ], and M [p] denote the kernels of F , V , and p on M , respectively. We have an exact sequence

0→M [F ]→M [p]
F→M [V ],

which yields an inequality
dimκM [F ] + dimκM [V ] ≥ dimκM [p] = n.

To show that equality holds, it will suffice to verify that the above sequence is exact on the right. Choose an
element x ∈ M [V ]; we wish to show that x = Fy for some y ∈ M satisfying py = 0. Since G is p-divisible,
we can write x = px′ for some x′ ∈M . Then y = V x′ has the desired properties.

Proposition 3.1.5. Let R be a commutative ring, and let G be a finite flat commutative group scheme of
rank pnt over R, and suppose that G is annihilated by pt. Then:

(1) If t ≥ 2, then G is a truncated p-divisible group of height n and level t if and only if the map [p] : G→
G[pn−1] is a surjection of fpqc sheaves. Moreover, if this condition is satisfied, then G[pk] is a finite
flat group scheme for 0 ≤ k ≤ n.

(2) Suppose that t = 1, let R′ = R/pR, let G′ = G×SpecR SpecR′ be the reduction of G modulo p, let G′(p)

denote the pullback of G along the Frobenius map ϕ : R′ → R′, and let

F : G′ → G′(p) V : G′(p) → G′

denote the relative Frobenius and Verschiebung maps, respectively. Then the following conditions are
equivalent:

(i) The group scheme G is a truncated p-divisible group of height n and level 1 over R.

(ii) The map F induces an epimorphism G′ → ker(V ) of fpqc sheaves.

(iii) The map V induces an epimorphism G′(p) → ker(F ) of fpqc sheaves.

Moreover, if these conditions are satisfied, then ker(F ) and ker(V ) are finite flat group schemes over
R′.

The proof of Proposition 3.1.5 will require the following observation:

Lemma 3.1.6. Let R be a commutative ring, let φ : G → H be a map of group schemes which are finite
and of finite presentation over R, and assume that G is flat over R. Then there exists a quasi-compact open
subset U ⊆ SpecR with the following property: a map of schemes X → SpecR factors through U if and only
if the induced map X ×SpecR G→ X ×SpecR H is faithfully flat. Moreover, H ×SpecR U is flat over U .
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Proof. Since G and H are of finite presentation over R, we can find a finitely generated subring R0 ⊆ R,
group schemes G0 and H0 which are of finite presentation over R0, and a map of group schemes φ0 : G0 → H0

such that φ is isomorphic to the induced map SpecR ×SpecR0 G0 → SpecR ×SpecR0 H0. Enlarging R0 if
necessary, we may suppose that G0 and H0 are finite over R0, and that G0 is flat over R0. Replacing R by
R0, we can reduce to the case where R is a finitely generated commutative ring, and in particular Noetherian.

For each point x ∈ SpecR, let κ(x) denote the associated residue field. Let U denote the subset of
SpecR consisting of those points x for which the induced map Specκ(x)×SpecRG→ Specκ(x)×SpecRH is
faithfully flat. The main point is to establish the following:

(∗) Suppose that x ∈ U . Then there exists an open subset V ⊆ SpecR containing x, such that V ×SpecRH
is flat over V .

Assume that (∗) is satisfied. Let x be a point of SpecR and choose V satisfying (∗). Note that the fiber-by-
fiber flatness criterion (Corollary 11.3.11 of [6]) implies that the map V ×SpecR G→ V ×SpecR H is flat. In
particular, its image is an open subset of V ×SpecRH, with closed complement K. Since the projection map
V ×SpecRH → V is finite, the image of K is a closed subset of V , which does not contain the point x. We may
therefore shrink V if necessary to reduce to the case where K = ∅, so that the map V ×SpecRG→ V ×SpecRH
is faithfully flat. It follows that V ⊆ U . It follows that U is open (since it contains an open neighborhood of
each point x ∈ U), that the fiber product U ×SpecR H is flat over U (since this can be tested locally on U),
and that the induced map U ×SpecR G→ U ×SpecR H is faithfully flat. It is clear that any map of schemes
X → SpecR for which the induced map X ×SpecR G→ X ×SpecR H much factor through U , so that U has
the desired properties (the quasi-compactness of U is automatic, since R is Noetherian).

It remains to prove (∗). Choose a point x ∈ U , and let Rx denote the corresponding localization of R.
We will prove that SpecRx ×SpecRH is flat over Rx. Writing Rx as a direct limit of R-algebras of the form
R[a−1], we will then deduce that SpecR[a−1] ×SpecR H is flat over R[a−1] for some element a ∈ R which
does not vanish in κ(x), so that V = SpecR[a−1] has the desired properties.

Replacing R by Rx, we may reduce to the case where R is a local Noetherian ring with maximal ideal m
and residue field κ = R/m, and that the map Specκ×SpecR G→ Specκ×SpecRH is faithfully flat. We will
complete the proof of by showing that H is flat over R.

Write H = SpecA and G = SpecB, for some finite R-algebras A and B. We wish to prove that A is flat
over R. Choose elements a1, . . . , an ∈ A whose images form a basis for A/mA as a vector space over κ. This
determines a map of finitely generated R-modules θ : Rn → A; we claim that θ is an isomorphism. Since R
is a Noetherian local ring, it will suffice to show that θ induces an isomorphism after m-adic completion. In
fact, we claim that θ induces an isomorphism

(R/mt)n → A/mtA

for each t ≥ 0. This is equivalent to the requirement that A/mtA is flat as an R/mt-module. We may
therefore replace R by R/mt, and thereby reduce to the case where R is a local Artin ring.

For every finitely generated R-module M , let l(M) denote the length of M . By Nakayama’s lemma,
we have a surjection of R-modules Rn → A, and we wish to show that this map is an isomorphism. Let
K denote the kernel of the epimorphism of group schemes Specκ ×SpecR G → Specκ ×SpecR H, and let r
denote the rank of K over κ. Then Specκ×SpecR G has rank nr over κ.

Since A is a finite R-algebra, it is an Artinian ring. It therefore admits a finite filtration by ideals

0 = I(0) ⊂ I(1) ⊂ · · · ⊂ I(k) = A,

where each quotient I(j)/I(j − 1) is isomorphic (as a A-module) to some residue field κj of A, which is a
finite extension of κ. Then I(j)B/I(j−1)B is a quotient of the tensor product I(j)/I(j−1)⊗AB ' κj⊗AB.
Note that κj⊗AB is a torsor for the group scheme Specκj×SpecκK over κ, so that κj⊗AB has dimension r
as a vector space over κj , and length r dimκ(κj) as an R-module. Since G is flat over R, B is a free R-module
of rank nr, so we have

nrl(R) = l(B) =
∑

1≤j≤k

l(I(j)B/I(j − 1)B) ≤
∑

1≤j≤k

r dimκ(κj) = rl(A).
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Dividing by r, we deduce that nl(R) ≤ l(A), so that any surjection of R-modules Rn → A is automatically
an isomorphism.

Corollary 3.1.7. Let R be a commutative ring and let φ : G → H be a map of group schemes which are
of finite presentation over R. Assume that G and H are finite over R, that G is flat over R, and that the
induced map Specκ(x) ×SpecR G → Specκ(x) ×SpecR H is faithfully flat, for each point x ∈ SpecR. Then
φ is faithfully flat, and H is flat over R.

Proof of Proposition 3.1.5. Suppose first that G is a truncated p-divisible group over R of height n and level
t ≥ 2. We will show that the map [p] : G → G[pt−1] is faithfully flat, and that G[pt−1] is flat over R
(repeating this argument, we may deduce that G[pa] is flat over R for 0 ≤ a ≤ t). Using Corollary 3.1.7, we
can reduce to the case where R is a field κ. Without loss of generality, we may assume that κ is algebraically
closed. If the characteristic of κ is different from p, the desired result follows immediately from condition (c)
of Definition 3.1.3.

Suppose therefore that κ has characteristic p. For each 0 ≤ a ≤ t, let ra denote the rank of the group
scheme G[pa] over κ. Using the exact sequence

0→ G[F ]→ G
F→ G[V ](p),

and condition (d) of Definition 3.1.3, we deduce that r1 ≤ pn. Using the exact sequence

0→ G[p]→ G[pa]
p→ G[pa−1],

we obtain the inequality ra ≤ r1ra−1, so by induction we have ra ≤ ra1 ≤ pan. Since G has rank pnt, each
of these inequalities must be an equality. In particular, the maps p : G[pa] → G[pa−1] are surjective for
0 < a ≤ t, as desired.

Conversely, suppose that t ≥ 2 and that the map p : G→ G[pt−1] is an epimorphism for the flat topology;
we wish to prove that G is a truncated p-divisible group of height n and level t. Conditions (a) and (b) of
Definition 3.1.3 are automatic. To verify (c), let κ be an algebraically closed field of characteristic different
from p. The surjectivity of the map p : G → G[pt−1] implies the surjectivity of the maps G[pa] → G[pa−1]
for 0 < a ≤ t, so that G is a successive extension of t copies of G[p]. It follows that G[p](κ) has order pn,
and is therefore an n-dimensional vector space over Z /pZ. It follows that the group G(κ) is a direct sum
of n cyclic groups of order ≤ pt. Since G(κ) has order pnt by assumption, we conclude that G(κ) is a free
Z /pt Z-module of rank n.

Now suppose that t = 1. We will show that conditions (i) and (ii) are equivalent; the equivalence of (i)
and (iii) then follows by the same argument. Suppose first that (i) is satisfied; we wish to prove that the
sequence

0→ ker(F )→ G′ → ker(V )

is exact on the right (and that, in this case, ker(V ) and ker(F ) are flat over R/pR). Using Corollary 3.1.7,
we can reduce to the case where R = κ is a field of characteristic p. In this case, it suffices to show that the
rank of G′ is equal to the sum of the ranks of ker(F ) and ker(V ), which follows immediately from condition
(d) of Definition 3.1.3.

Now suppose that (ii) is satisfied; we will show that G is a truncated p-divisible group of height n and
level 1. By assumption, G satisfies conditions (a) and (b) of Definition 3.1.3, and condition (c) is automatic
(since every Z /pZ-module is free). It remains to verify condition (d). Without loss of generality, we may
assume that R = κ is a perfect field of characteristic p. Write G = Spf H∨ and let M = DM(H). Condition
(ii) gives an exact sequence

0→ ker(F : M →M)→M → ker(V : M →M)→ 0,

so that dimκ ker(F ) + dimκ ker(V ) = dimκM = n.
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Corollary 3.1.8. Let R be a commutative ring, let G be a finite flat commutative group scheme of rank
pnt over R, and suppose that G is annihilated by pt. Then there exists a quasi-compact open subscheme
U ⊆ SpecR with the following property: for any commutative R-algebra A, the map SpecA → SpecR
factors through U if and only if GA = G×SpecR SpecA is a truncated p-divisible group of height n and level
t over A.

Proof. If t ≥ 2, the desired result follows by applying Lemma 3.1.6 to the map of group schemes p : G →
G[pt−1] and invoking Proposition 3.1.5. If t = 1, we apply Lemma 3.1.6 to the map F : G′ → ker(V :
G′(p) → G′) appearing in Proposition 3.1.5 (note that if U is a quasi-compact open subset of SpecR/pR,
then U ∪ SpecR[p−1] is a quasi-compact open subset of SpecR).

Remark 3.1.9. Let R be a commutative ring, and let G be either a p-divisible group over R, or a truncated

p-divisible group of level t ≥ 1 over R. Let G0 = SpecR/pR ×SpecR G and let G
(p)
0 denote its pullback

along the Frobenius map ϕ : R/pR → R/pR, and let F : G0 → G
(p)
0 denote the relative Frobenius map.

Proposition 3.1.5 implies that G0[F ] = ker(F ) ⊆ G0[p] is a finite flat group scheme over SpecR/pR. It follows
that the rank of G0[F ] is a locally constant function on SpecR/pR. We will say that G has dimension d if
the G0[F ] has rank pd over R/pR.

Warning 3.1.10. Let G be a p-divisible group (or a truncated p-divisible group of level t ≥ 1) over a
commutative ring R. If p is invertible in R, then the dimension of G is not uniquely determined: according
to our definition, G has dimension d for every integer d ≥ 0.

We will need the following converse of Proposition 3.1.4:

Theorem 3.1.11 (Grothendieck). Let κ be a perfect field of characteristic p > 0, and let R be a complete
local Noetherian ring with residue field κ. Let G be a truncated p-divisible group of height n and level t over
R. Then there exists a p-divisible group H over R and an isomorphism G ' H[pt]

For a proof, we refer the reader to [11].

3.2 Group Schemes of Alternating Maps

Let G be an abelian group and BG its classifying space. We have canonical isomorphisms

H1(BG; Z) ' G H2(BG; Z) ' ∧2G.

If A is another abelian group, the universal coefficient theorem gives an exact sequence

0→ Ext1(G,A)→ H2(BG;A)
β→ Hom(∧2G,A)→ 0. (1)

Here H2(G;A) can be interpreted as the set of isomorphism classes of central extensions

0→ A→ G̃→ G→ 0

and the map β assigns to every such extension the associated commutator pairing G × G → A. From this
description, it is obvious that the kernel of β can be identified with the set Ext1(G,A) of isomorphism classes
of extensions of G by A in the category of abelian groups. However, the exactness of the sequence 1 on the
right is more subtle: it depends crucially on the vanishing of the group Ext2(G,A).

If we work in the setting of group schemes rather than ordinary groups, the analogue of the sequence (1)
need not be exact. For example, let k be a field of characteristic 2, and let α2 denote the group scheme over
k representing the functor α2(A) = {x ∈ A : x2 = 0} (regarded as a group with respect to addition). Then
there is an alternating bilinear map

b : α2 ×Spec k α2 → Gm,
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given on points by the formula
(x, y) 7→ 1 + xy.

However, we will see below that b cannot arise as the commutator pairing for any central extension

0→ Gm → α̃2 → α2 → 0

(see Example 3.2.7).

Definition 3.2.1. Let R be a commutative ring, and let CAlgR denote the category of commutative R-
algebras. Let G be a commutative group scheme over R and let c : G×SpecRG→ Gm be a map of R-schemes.
If A in CAlgR and we are given points x, y ∈ G(A), we let c(x, y) ∈ Gm(A) = A× denote the image of (x, y)
under c. We say that c is:

• bilinear if c(x, y + z) = c(x, y)c(x, z) and c(x+ y, z) = c(x, z)c(y, z) for all x, y, z ∈ G(A).

• skew-symmetric if c is bilinear and c(x, y) = c(y, x)−1 for all x, y ∈ G(A)).

• a 2-cocycle if c(x, y)c(x+ y, z) = c(x, y + z)c(y, z) for all x, y ∈ G(A).

• a symmetric 2-cocycle if it is a 2-cocycle and c(x, y) = c(y, x) for all x, y ∈ G(A).

For each A ∈ CAlgR, we let GA denote the fiber product G×SpecR SpecA, regarded as a group scheme
over A. We let CoCycG(A) denote the set of all 2-cocycles c : GA × GA → Gm, CoCycsG(A) the set of

all symmetric 2-cocycles c : GA ×SpecA GA → Gm, and Skew
(2)
G (A) the set of all skew-symmetric maps

b : GA ×SpecA GA → Gm. We regard CoCycG, CoCycsG, and Skew
(2)
G as functors from CAlgR to the

category of sets.
If G is a finite flat group scheme over R, then each of these functors is representable by an affine scheme of

finite presentation over R (they can be described as a closed subschemes of the affine scheme parametrizing
all maps from c : G×SpecRG→ Gm). The collection of 2-cocycles (symmetric 2-cocycles, alternating maps)

is closed under multiplication, so that we can regard CoCycG, CoCycsG, and Skew
(2)
G as commutative group

schemes over R.
Every 2-cocycle c : G ×SpecR G → Gm determines an alternating bilinear map b : G ×SpecR G → Gm,

given on A-valued points by the formula b(x, y) = c(x, y)c(y, x)−1. Note that b(x, y) is trivial if and only if
c is symmetric. We therefore have an exact sequence of group-valued functors

0→ CoCycsG → CoCycG → Skew
(2)
G .

Notation 3.2.2. Let G be a finite flat commutative group scheme over a commutative ring R. For every
A ∈ CAlgR, we let GG

m(A) denote the set of all morphisms of schemes GA → Gm. Then A 7→ GG
m(A) is

a functor from CAlgA to the category of sets. Note that GG
m is representable by a group scheme over R.

Every map of schemes λ : G→ Gm determines a symmetric 2-cocycle c : G×SpecRG→ Gm, given on points
by

c(x, y) = λ(x+ y)− λ(x)− λ(y).

This construction determines a map of functors GG
m → CoCycsG. The kernel of this map is the Cartier dual

D(G) of G: that is, the finite flat group scheme parametrizing group homomorphisms from G into Gm.

Proposition 3.2.3. Let G be a finite flat commutative group scheme over a commutative ring R. Then the
complex of group schemes

0→ D(G)→ GG
m → CoCycsG → 0

is exact for the fppf topology.
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Proof. The exactness of the sequence

0→ D(G)→ GG
m → CoCycGs

is clear. To prove the exactness on the right, it will suffice to show that every symmetric 2-cocycle c :
G×SpecR G → Gm arises from a map λ : G → Gm, at least locally in the fppf topology. Let G̃ denote the

product G×Gm, and equip G̃ with the structure of a group scheme via the formula

(x, y)(x′, y′) = (xx′, yy′c(x, x′)).

We have a sequence of group schemes

0→ Gm → G̃
π→ G→ 0

which is exact (even as a sequence of presheaves). Since c is a symmetric 2-cocycle, G̃ is a commutative group

scheme. We can think of G̃ as the space of nonzero sections of a line bundle L over G. Write G = SpecA,
so that L determines an invertible A-module M . The group structure on G̃ determines a comultiplication
M →M ⊗RM , which determines a commutative ring structure on the R-linear dual M∨ of M . Unwinding
the definitions, we see that the affine scheme SpecM∨ parametrizes splittings of the sequence

0→ Gm → G̃
π→ G→ 0.

Since M∨ is faithfully flat over R, we deduce that this sequence splits locally for the fppf topology. We may
therefore assume (after changing R if necessary) that there is a map of group schemes φ : G→ G̃ such that
π ◦ φ = idG. Then we can write φ = idG×λ for some map λ : G→ Gm, which clearly satisfies

λ(x) + λ(y) + c(x, y) = λ(x+ y).

Corollary 3.2.4. Let G be a finite flat commutative group scheme over a commutative ring R. Then
CoCycsG is a smooth affine group scheme over R.

Proof. The assertion is local on R; we may therefore assume that G = SpecA where A is a finite free
R-module. Write A ' Rm. Then GG

m can be identified with an open subscheme of the affine space Am

of dimension m over R. In particular, GG
m is a smooth R-scheme. Proposition 3.2.3 implies that the map

GG
m → CoCycsG is faithfully flat. The group scheme GG

m is flat over R, so that CoCycsG is likewise flat over
R.

The scheme CoCycsG is also of finite presentation over R. Consequently, to verify its smoothness, we may
reduce to the case where R is an algebraically closed field κ. Then CoCycsG is an affine group scheme over
κ, which is smooth if and only if it is reduced. Because the map GG

m → CoCycsG is faithfully flat, it suffices
to check that GG

m is reduced, which follows immediately from the fact that GG
m is smooth over κ.

Definition 3.2.5. Let G be a finite flat commutative group scheme over a commutative ring R. We let Alt
(2)
G

denote the quotient of CoCycG by the subgroup CoCycsG (in the category of fppf sheaves on CAlgR). Since

CoCycsG is a smooth group scheme, we can regard Alt
(2)
G as an algebraic space over R (which is separated,

since CoCycsG is a closed subgroup of CoCycG).

In the situation of Definition 3.2.5, the exact sequence

0→ CoCycsG → CoCycG → Skew
(2)
G

induces a monomorphism Alt
(2)
G ↪→ Skew

(2)
G . In particular, we see that the map Alt

(2)
G → Skew

(2)
G is quasi-

finite and therefore quasi-affine. It follows that Alt
(2)
G is representable by a quasi-affine scheme over R.
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Proposition 3.2.6. Let G be a finite flat group scheme over a commutative ring R. If there exists an odd

integer n such that multiplication by n annihilates G, then the map Alt
(2)
G → Skew

(2)
G is an isomorphism.

Proof. We wish to prove that the sequence

0→ CoCycsG → CoCycG → Skew
(2)
G → 0

is exact. In fact, we will prove that is exact as a sequence of presheaves: that is, that the sequence of groups

0→ CoCycsG(A)→ CoCycG(A)→ Skew
(2)
G (A)→ 0

is exact for every R-algebra A. Replacing R by A, we are reduced to proving that for every alternating bilinear
map b : G×SpecRG→ Gm has the form b(x, y) = c(x, y)c(y, x)−1, for some 2-cocycle c : G×SpecRG→ Gm.
Write n = 2m− 1 for some integer m, and define c by the formula c(x, y) = b(x,my). Since c is bilinear, it
is a 2-cocycle. We now compute

c(x, y)c(y, x)−1 = b(x,my)b(y,mx)−1 = b(x,my)b(y, x)−m = b(x,my)b(x, y)m = b(x, 2my) = b(x, y).

Example 3.2.7. Let R be a commutative ring in which 2 = 0 and let G = α2 be the finite flat group
scheme over κ given by the functor G(A) = {x ∈ A : x2 = 0} (regarded as a group under addition). Then

Skew
(2)
G is isomorphic to the additive group Ga, where the isomorphism carries a scalar λ ∈ Ga(A) to the

skew-symmetric map
GA ×SpecA GA → Ga

given by (x, y) 7→ 1 + λxy. However, the group scheme Alt
(2)
G is trivial. To prove this, it will suffice to show

that the map CoCycsG → CoCycG is an isomorphism of group schemes. Let A ∈ CAlgR and let c by an
A-point of CoCycG. Write GA = SpecA[x]/(x2), so that we can identify c with an invertible element c(x, y)
of the ring A[x, y]/(x2, y2) satisfying the equation

c(x, y)c(x+ y, z) = c(x, y + z)c(y, z). (2)

Write c(x, y) = λ0 + λ1x+ λ2y + λ3xy. Comparing the coefficients of x in (2), we obtain

λ0λ1 + λ1λ0 = λ1λ0.

Since λ0 is invertible, we deduce that λ1 = 0. Similarly, comparing the coefficients of z in 2, we obtain
λ2 = 0. It follows that the cocycle c is symmetric.

Remark 3.2.8. The construction G 7→ Skew
(2)
G is contravariantly functorial in G. Moreover, for every map

q : G → G′ of finite flat commutative group schemes over R, the induced map Skew
(2)
G′ → Skew

(2)
G carries

Alt
(2)
G′ into Alt

(2)
G . If q is faithfully flat, we can say a bit more: the diagram

Alt
(2)
G′

//

��

Alt
(2)
G

��
Skew

(2)
G′

// Skew
(2)
G

is a pullback square. To prove this, we must verify the following:

(∗) Suppose that b : G′ ×SpecR G
′ → Gm is a skew-symmetric bilinear map and that the induced map

b : G×SpecR G→ Gm is the commutator pairing associated to a central extension

0→ Gm → G̃→ G→ 0.

Then, locally for the fppf topology, the map b0 has the same property.
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To prove (∗), set G′′ = ker(q) and let G̃′′ denote the fiber product G̃ ×G G′′, so that we have a central
extension

0→ Gm → G̃′′ → G′′ → 0.

Since the pairing b vanishes on G′′, this extension is abelian. Passing to an fppf covering of R, we may
suppose that this sequence splits (see the proof of Proposition 3.2.3). A choice of splitting gives a closed

embedding of group schemes φ : G′′ → G̃. For x ∈ G′′(A), ỹ ∈ G̃(A), we have

φ(x)ỹφ(x)−1ỹ−1 = b(x, y) = 1,

where y denotes the image of ỹ in G(A). It follows that the image of φ is a central subgroup of G̃. We then
have a central extension

0→ Gm → G̃/φ(G′′)→ G′ → 0,

whose commutator pairing is given by b0.

We now generalize the above discussion to multilinear functions of several variables.

Definition 3.2.9. Let R be a commutative ring and G a finite flat commutative group scheme over R. For
each integer d ≥ 1, we let Gd denote the dth power of G in the category of R-schemes. We will say that
a map b : Gd → Gm is skew-symmetric if it is multilinear and, for every commutative R-algebra A, every
tuple of points x1, . . . , xd ∈ G(A), and every pair 1 ≤ i < d, we have

b(x1, . . . , xd) = b(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xd)
−1 ∈ Gm(A).

For each A ∈ CAlgR, we let Skew
(d)
G (A) denote the set of all skew-symmetric maps GdA → Gm. We

regard Skew
(d)
G as a functor from CAlgR to the category of abelian groups. It is easy to see that Skew

(d)
G is

representable by an affine group scheme of finite presentation over R.

Notation 3.2.10. Let R be a commutative ring, let X be a finite flat R-scheme, and let Y be an arbitrary
R-scheme. We let Y X denote the Weil restriction of X ×SpecR Y along the projection map X → SpecR.
That is, Y X denotes the functor CAlgR → Set given by

Y X(A) = Hom(XA, Y ),

where the Hom-set on the left hand side is computed in the category of R-schemes. This construction has
the following properties:

(a) If Y is affine, then Y X is representable by an affine R-scheme.

(b) If Y is quasi-affine, then Y X is representable by a quasi-affine R-scheme.

(c) In cases (a) or (b), if Y is of finite presentation over R, then so is Y X .

Construction 3.2.11. Let R be a commutative ring and let G be a finite flat commutative group scheme

over R. For each integer d ≥ 2, we have a canonical isomorphism GGd

m ' (GG2

m )G
d−2

which restricts to a

closed immersion Skew
(d)
G ↪→ (Skew

(2)
G )G

d−2

. We let Alt
(d)
G denote the fiber product

(Alt
(2)
G )G

d−2

×
(Skew

(2)
G )Gd−2 Skew

(d)
G

If d = 1, we simply set Alt
(d)
G = Skew

(d)
G .

Remark 3.2.12. In the situation of Construction 3.2.11, Alt
(d)
G is a quasi-affine group scheme over R

equipped with a quasi-finite monomorphism Alt
(d)
G ↪→ Skew

(d)
G . Note that Skew

(d)
G is a closed subscheme of

GGd

m , and therefore of finite type over R. It follows that Alt
(d)
G is also of finite type over R.
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Remark 3.2.13. The isomorphism GGd

m ' (GG2

m )G
d−2

depends on a choice of a pair of elements of the set

{1, . . . , d}. However, the subscheme Alt
(d)
G of Skew

(d)
G given in Construction 3.2.11 is independent of this

choice.

Remark 3.2.14. When d = 1, we have Alt
(d)
G ' Skew

(d)
G ' D(G), where D(G) denotes the Cartier dual

group scheme of G.

Remark 3.2.15. When d = 2, the group scheme Alt
(d)
G of Construction 3.2.11 agrees with the group scheme

Alt
(2)
G introduced in Definition 3.2.1.

Remark 3.2.16. Suppose that the finite flat group scheme G is annihilated by multiplication by n, for some

odd integer n. Using Proposition 3.2.6, we see that the map Alt
(d)
G → Skew

(d)
G is an isomorphism.

Example 3.2.17. Let G be a finite flat commutative group scheme over R which is annihilated by some

odd number n. Then the monomorphism Alt
(d)
G ↪→ Skew

(d)
G is an isomorphism; this follows immediately from

Proposition 3.2.6.

We conclude this section by analyzing the behavior of the construction G 7→ Alt
(d)
G with respect to

products. First, we need to introduce a bit of notation.

Definition 3.2.18. Let G0 and G1 be finite flat commutative group schemes over a commutative ring R,

and let d0 and d1 be nonnegative integers. For every R-algebra A, we let Skew
(d0,d1)
G0,G1

(A) denote the set of
all maps of A-schemes

(G0)d0A ×SpecA (G1)d1A → Gm

which are multilinear and skew-symmetric in each variable. We regard the construction A 7→ Skew
(d0,d1)
G0,G1

(A)

as a functor from CAlgR to the category of abelian groups, which we will denote by Skew
(d0,d1)
G0,G1

. Note that

since G0 and G1 are finite and flat over R, the functor Skew
(d0,d1)
G0,G1

is representable by an affine scheme of
finite presentation over R.

There are evident closed immersions

(Skew
(d0)
G0

)G
d1
1 ←↩ Skew

(d0,d1)
G0,G1

↪→ (Skew
(d1)
G1

)G
d0
0 .

We let Alt
(d0,d1)
G0,G1

denote the fiber product

(Alt
(d0)
G0

)G
d1
1 ×

(Skew
(d0)

G0
)G
d1
1

Skew
(d0,d1)
G0,G1

×
(Skew

(d1)

G1
)G
d0
0

(Alt
(d1)
G1

)G
d0
0 .

Construction 3.2.19. Let G0 and G1 be finite flat commutative group schemes over a commutative ring
R, and let G = G0 ×SpecR G1, which we also regard as a commutative group scheme over R. Let d0, d1 ≥ 0
be nonnegative integers, and let d = d0 + d1. The inclusion maps G0 ↪→ G←↩ G1 induce a closed immersion

j : Gd00 ×SpecR G
d1
1 → Gd. Composition with j induces a map of R-schemes γd0,d1 : Skew

(d)
G → Skew

(d0,d1)
G0,G1

.

Proposition 3.2.20. Let G0 and G1 be finite flat commutative group schemes over a commutative ring R,
and let d be a positive integer. Then the maps γd0,d1 constructed above induce an isomorphism

γ : Skew
(d)
G →

∏
d=d0+d1

Skew
(d0,d1)
G0,G1

in the category of R-schemes. Moreover, γ restricts to an isomorphism

Alt
(d)
G →

∏
d=d0+d1

Alt
(d0,d1)
G0,G1

.
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Proof. It is easy to see that γ is an isomorphism which carries Alt
(d)
G into the product

∏
d=d0+d1

Alt
(d0,d1)
G0,G1

(which we will identify with a closed subscheme of the product
∏
d=d0+d1

Skew
(d0,d1)
G0,G1

). To complete the

proof, it will suffice to show that if A ∈ CAlgR and b is an A-valued point of Skew
(d)
G such that γd0,d1(b) ∈

Alt
(d0,d1)
G0,G1

(A) for all d0, d1 with d0 + d1 = d, then b ∈ Alt
(d)
G (A). We may assume without loss of generality

that A = R and d = 2. Since composition with the projection map G→ G0 carries Alt
(2)
G0

to Alt
(2)
G , we may

(after modifying b by a point in the image of this map) assume that γ2,0(b) = 1. Similarly, we may assume
γ0,2(b) = 1. It will therefore suffice to verify the following:

(∗) Let b : G ×SpecR G → Gm be a skew-symmetric bilinear map which vanishes on G0 ×SpecR G0 and
G1 ×SpecR G1. Then b arises as the commutator pairing of a central extension

0→ Gm → G̃→ G→ 0.

To prove this, we take G̃ to be the product G0 ×SpecR G1 ×SpecR Gm, equipped with the group structure
given on points by the formula

(x, y, t)(x′, y′, t′) = (x+ x′, y + y′, tt′b(x, y′)).

Remark 3.2.21. Let R be a commutative ring, and let G denote the commutative group scheme over R
associated to the finite abelian group Z /nZ. Then every central extension

0→ Gm → G̃→ G→ 0.

is commutative. It follows that the group scheme Alt
(d)
G is trivial for d ≥ 2. More generally, if H is a finite

flat group scheme over R, we have canonical isomorphisms

Alt
(d,d′)
G,H '


Alt

(d′)
H if d = 0

Alt
(d′)
H [n] if d = 1

0 if d ≥ 2,

where Alt
(d′)
H [n] denotes the subscheme of n-torsion points of Alt

(d′)
H . Consequently, if H is annihilated by

n, we Proposition 3.2.20 supplies isomorphisms Proposition 3.2.20 supplies isomorphisms

Alt
(d)
G×SpecRH

'

{
Alt

(d)
H ×SpecR Alt

(d−1)
H ifd ≥ 2.

D(H)×SpecR µn if d = 1.

3.3 The Case of a Field

In this section, we will study the construction G 7→ Alt(d)(G) in the case where G is a finite flat group scheme
over a perfect field κ of characteristic p > 0. Our main result is conveniently stated using the language of
Dieudonne modules:

Theorem 3.3.1. Let κ be a perfect field of characteristic p > 0 and let G be a truncated p-divisible group

over κ of height n, level t, and dimension 1. Write G = SpecH∨ and write Alt
(d)
G = SpecA for some Hopf

algebras H and A over κ. Then there is a surjective map of Dieudonne mdoules

DM+(H)⊗̃DM+(H)⊗̃ · · · ⊗̃DM+(H)→ DM+(A),

which induces an isomorphism
∧dW (κ)/ptW (κ) DM+(H)→ DM+(A)

of modules over W (κ)/ptW (κ).
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From Theorem 3.3.1, we immediately deduce the following special case of Theorem 3.5.1:

Corollary 3.3.2. Let κ be a field, and let G be a truncated p-divisible group over κ of height n, level t, and

dimension 1. Then Alt
(d)
G is a truncated p-divisible group of height

(
n
d

)
, level t, and dimension

(
n−1
d

)
.

Proof. Without loss of generality, we may assume that κ is algebraically closed. We proceed by induction

on n. Note that if d = 1, then Alt
(d)
G is the Cartier dual of G, and the result is obvious. We will therefore

assume that d ≥ 2.
Suppose first that G is disconnected. Then (since κ is algebraically closed) we can write G = G′ ×Specκ

Z /pt Z, where Z /pt Z denotes the constant group scheme associated to the cyclic group Z /pt Z. Since d ≥ 2,

Remark 3.2.21 supplies an isomorphism Alt
(d)
G ' Alt

(d)
G′ ×Specκ Alt

(d−1)
G′ . From the inductive hypothesis, we

deduce that Alt
(d)
G′ and Alt

(d−1)
G′ are truncated p-divisible groups of heights

(
n−1
d

)
and

(
n−1
d−1

)
, level t, and

dimensions
(
n−2
d

)
and

(
n−2
d−1

)
. It follows that Alt

(d)
G is a truncated p-divisible group of height

(
n−1
d

)
+
(
n−1
d−1

)
=(

n
d

)
, level t, and dimension

(
n−2
d

)
+
(
n−2
d−1

)
=
(
n−1
d

)
.

We now treat the case where G is connected. If κ has characteristic different from p, then G ' 0 and there
is nothing to prove. We may therefore assume that κ has characteristic p. Write G = SpecH∨ for some Hopf
algebra H over κ, and let M = DM+(H) be its Dieudonne module. Then M is a free W (κ)/ptW (κ)-module

of rank n. Theorem 3.3.1 implies that Alt
(d)
G = SpecA, with DM+(A) ' ∧dW (κ)/ptW (κM , so that DM+(A) is

a free W (κ)/ptW (κ)-module of rank
(
n
d

)
. If t ≥ 2, this implies that Alt

(d)
G is a truncated p-divisible group of

height
(
n
d

)
and level t (Proposition 3.1.5). Moreover, to show that it has dimension

(
n−1
d

)
, we may replace

G by G[p] and thereby reduce to the case where t = 1.
Since G has dimension 1, the quotient M/VM is a 1-dimensional vector space over κ. Choose an

element x ∈ M having nonzero image in M/VM . Let m be the largest integer for which the elements
x, V x, . . . , V m−1x ∈ M are linearly independent, and let M ′ ⊆ M be the subspace they span. Note that
since we can write V mx as a linear combination of the elements V ix for 0 ≤ i < m, the subspace M ′ ⊆ M
is closed under the action of V . We claim that M ′ = M (so that m = dimκ(M) = n). We will prove that
V aM ⊆ M ′ for all a ≥ 0, using descending induction on a. Since G is connected, the action of V on M is
locally nilpotent, hence nilpotent (since M is finite-dimensional), so that V aM = 0 ⊆M ′ for a� 0. Assume
now that a > 0 and that V aM ⊆ M ′; we wish to prove that V a−1M ⊆ M ′. Fix y ∈ M ; we will show that
V a−1y ∈M ′. Since the image of x generates M/VM , we can write y = cx+ V y′ for some y′ ∈M and some
scalar c ∈ κ. Then V a−1y = cV a−1x+ V ay′. Since V a−1x and V ay′ belong to M , so does V a−1y.

We next claim that V nx = 0. Suppose otherwise, write V nx =
∑

0≤i<n ciV
ix, and let k be the smallest

integer such that ck 6= 0. Let N ⊆ M be the linear subspace spanned by V ix for k ≤ i < n. Then N is
stable under the action of V . Moreover, if y =

∑
k≤i<n aiV

ix, then we have

V y = ckϕ
−1(an−1)V kx+

∑
k<i<n

(ciϕ
−1(an−1) + ϕ−1(ai−1))V ix.

Suppose that V y = 0. Examining the coefficient of V kx in the above expression, we deduce that an−1 = 0.
Examining the coefficient of V ix for k < i < n, we deduce that ai−1 = 0. It follows that y = 0: that is, the
restriction of V to N is injective. Since V is locally nilpotent on M , we conclude that N = 0 and obtain a
contradiction.

Since V nx = 0, the element V n−1x is a nonzero element of ker(V ). Since G is 1-dimensional, ker(V ) is a
1-dimensional vector space over κ, and is therefore spanned by V n−1x. In particular, we have Fx = λV n−1x
for some scalar λ ∈ κ. Note that Fx spans the image of F (since F annihilates V ix for i > 0). The equality
im(F ) = ker(V ) (Proposition 3.1.5) implies that λ is nonzero.

For each subset I = {i1 < i2 < . . . < id} ⊆ {0, . . . , n − 1}, let V Ix denote the image of V i1x ∧ V i2x ∧
· · · ∧ V idx in DM+(A) ' ∧dκM , so that the elements V Ix form a basis for DM+(A). We then have

V (V Ix) =

{
V {i1+1<...<id+1}x if id < n

0 otherwise.
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F (V Ix) =

{
±λV {i2−1<i3−1<...<id−1<n−1} if i1 = 0

0 otherwise.

It follows that the kernel of V on DM+(A) has dimension
(
n−1
d−1

)
over κ, and the kernel of F on DM+(A) has

dimension
(
n−1
d

)
. We have (

n− 1

d− 1

)
+

(
n− 1

d

)
=

(
n

d

)
= dimκ DM+(A),

so that SpecA is a truncated p-divisible group of height
(
n
d

)
and level 1. The dimension of SpecA is given

by dimκ DM+(A)[F ] =
(
n−1
d

)
.

Corollary 3.3.3. Let G0 be a smooth connected 1-dimensional formal group over a perfect field κ of char-
acteristic p > 0, and let X = K(Z /pt Z, d). Then we have a canonical isomorphism

SpecK(n)0(X) ' Alt
(d)
G0[pt]

of group schemes over κ.

Proof. Combine Theorem 3.3.1 with Theorem 2.4.10.

The proof of Theorem 3.3.1 will occupy our attention for the rest of this section. Our strategy is roughly

as follows. First, let M = DM+(G) and write Alt
(d)
G = SpecA. We will show by explicit construction that

the exterior power ∧dW (κ)/ptW (κ) admits the structure of a Dieudonne module, and construct a surjective map

DM+(A)→ ∧dW (κ)/ptW (κ). The main step of the proof is to show that DM+(A) is an Artinian W (κ)-module

having length ≤ t
(
n
d

)
. We can rephrase this assertion as follows:

Proposition 3.3.4. Let κ be a field of characteristic p > 0 and let G be a truncated p-divisible group of

height n, level t, and dimension 1 over κ. For each d ≥ 1, Alt
(d)
G is a finite flat group scheme over κ rank

≤ pt(
n
d).

We first prove Proposition 3.3.4 in the simplest nontrivial case.

Lemma 3.3.5. Let κ be a field of characteristic p > 0 and let G be a connected truncated p-divisible group

of height n, level 1, and dimension 1 over κ. For each d ≥ 1, Alt
(d)
G is a finite flat group scheme over κ rank

≤ p(
n
d).

Proof. We may assume without loss of generality that κ is perfect. Write G = SpecH∨ for some Hopf
algebra H over κ, and let M = DM+(H) denote the Dieudonne module of H. The proof of Corollary 3.3.2
shows that there exists an element x ∈M such that the elements x, V x, . . . , V n−1x form a basis for M as a
vector space over κ. Moreover, we have V nx = 0, and Fx = λV n−1x for some nonzero scalar λ ∈ κ.

Let X denote the scheme parametrizing multilinear maps Gd → Gm, so that X ' SpecH�d (here H�d

denotes the dth tensor power of H, with respect to the tensor product � of §1.1. Write Alt
(d)
G = SpecA for

some Hopf algebra A over κ. We have a monomorphism of group schemes Alt
(d)
G → X, which induces an

epimorphism of Hopf algebras H�d → A, hence a surjection of Dieudonne modules

ρ : M⊗̃M⊗̃ · · · ⊗̃M → DM+(A)

(Proposition 1.4.14), which we can identify with a κ-multilinear map

θ : M ×M × · · · ×M → DM+(A).

Since Alt
(d)
G ⊆ Skew

(d)
G , the map θ is antisymmetric in its arguments.
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Let N ⊆ DM+(A) be the linear subspace spanned by elements of the form θ(V i1x, V i2x, . . . , V idx), where
0 ≤ i1 < i2 < . . . < id < n. Using the formulas

V θ(V i1x, V i2x, . . . , V idx) =

{
θ(V i1+1x, . . . , V id+1x) if id < n− 1

0 if id = n− 1.

Fθ(V i1x, V i2x, . . . , V idx) ==

{
0 if i1 > 0

(−1)d−1λθ(V i2−1x, . . . , V id−1x, V n−1x) if i1 = 0.

we deduce that N is a Dκ-submodule of DM+(A). By construction, N has dimension ≤
(
n
d

)
as a vector

space over κ. Consequently, to show that Alt
(d)
G has rank ≤ p(

n
d), it will suffice to show that N = DM+(A).

Because ρ is surjective, DM+(A) is generated by the image of θ as a Dκ-module. It is therefore generated
as a Dκ-module by elements of the form θ(V i1x, . . . , V idx). It will therefore suffice to show that each of these
elements belongs to N . If the integers i1, . . . , id are distinct, this follows from the definition of N (and the
antisymmetry of θ). We will complete the proof by showing that θ(V i1x, . . . , V idx) = 0 whenever ij = ij′

for j 6= j′. Using the antisymmetry of θ, we may assume that i1 = i2. The vanishing of θ(V i1x, . . . , V idx)
follows by antisymmetry if p 6= 2; let us therefore assume that p = 2.

By construction, the map Gd ×Specκ Alt
(d)
G → Gm induces a map

ν : Gd−2 ×Specκ Alt
(d)
G → Alt

(2)
G .

Write Alt
(2)
G = SpecB, so that the above construction yields a κ-linear map θ′ : M ×M → DM+(B). Then

ν determines a map of Hopf algebras
B �H�d−2 → A,

hence a κ-multilinear map
θ′′ : DM+(B)×M × · · · ×M → DM+(A).

satisfying
θ(y1, . . . , yd) = θ′′(θ′(y1, y2), y3, . . . , yd).

Consequently, to prove that θ(V i1x, . . . , V idx) = 0 when i1 = i2, it will suffice to prove that θ′(V i1x, V i2x) =
0. We may therefore reduce to the case where d = 2.

Using Corollary 1.4.15, we see that the epimorphism of Dieudonne modules DM+(A) → DM+(A)/N
induces an epimorphism of Hopf algebras A→ C, which classifies a bilinear map of group schemes

µ : GC ×SpecC GC → Gm

over C. We will complete the proof by showing that µ is trivial.
For 0 ≤ m ≤ n, let M(m) denote the κ-linear subspace of M spanned by {V ix}m≤i<n, so that

0 = M(n) ⊂M(n− 1) ⊂ · · · ⊂M(0) = M.

Using Corollary 1.4.15, we can write M(m) as DM+(H(m)) for some Hopf subalgebra H(m), so that
SpecH(m)∨ is a closed subgroup G(m) ⊆ G. Let µm denote the restriction of µ to the product G(m)C×SpecC

GC . We will prove that each of the maps µm vanishes, using descending induction on m. If m = n, the
result is obvious. To carry out the inductive step, let us suppose that µm+1 vanishes. We can identify µm
with a trilinear map of group schemes over κ

G(m)×Specκ G×Specκ SpecC → Gm,

which is classified by a map of Hopf algebras H(m)�H → C. To show that this map is trivial, it will suffice
to show that the composite map

M(m)×M ↪→M ×M θ→ DM+(A)→ DM+(A)/N
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vanishes. That is, it suffices to show that θ(V ix, V jx) ∈ N whenever i ≥ m. This follows from the inductive
hypothesis if i > m, and follows from the definition of N if i 6= j. We are therefore reduced to proving that
θ(V mx, V mx) = 0. For this, it suffices to show that the composite map

M(m)×M(m) ↪→M ×M θ→ DM+(A)→ DM+(A)/N

vanishes: that is, that the map µ vanishes when restricted to G(m)C ×SpecC G(m)C .
Let µ′ denote the restriction of µ to G(m)C ×SpecC G(m)C . We have an exact sequence of finite flat

group schemes over C

0→ G(m+ 1)C → G(m)C → (G(m)/G(m+ 1))C → 0.

Since µ′ vanishes on G(m+ 1)C ×SpecC G(m)C , it descends to a skew-symmetric pairing

µ′′ : (G(m)/G(m+ 1))C ×SpecC (G(m)/G(m+ 1))C → Gm,

classifies by a map of group schemes SpecC → Skew
(2)
G(m)/G(m+1). Using Remark 3.2.8, we see that this map

factors through the subscheme Alt
(2)
G(m)/G(m+1). But this map is automatically trivial, because the group

scheme Alt
(2)
G(m)/G(m+1) is trivial (this follows from Example 3.2.7, since G(m)/G(m + 1) is isomorphic to

the group scheme α2 = ker(F : Ga → Ga) ).

We now discuss some general principles which will allow us to reduce Proposition 3.3.4 to Lemma 3.3.5.

Construction 3.3.6. Let G be a finite flat commutative group scheme over a commutative ring R. Let
n > 0 be an integer, and suppose that the map n : G→ G factors as a composition

G
q→ G′

j→ G,

where G′ is a finite flat group scheme over R, the map q is faithfully flat, and j is a closed immersion. Let
d ≥ 1 be an integer. Given a-skew symmetric map b : Gd → Gm, we can define a new skew-symmetric map
b′ : G′d → Gm by the formula

b′(q(x1), q(x2), . . . , q(xd)) = b(x1, . . . , xd)
n

for all x1, . . . , xd ∈ G(A), A ∈ CAlgR. The well-definedness of b′ follows from the fact that q is a surjection
for the fppf topology, and the observation that q(xi) = q(x′i) implies that xi − x′i is annihilated by n (so
that b(x1, . . . , xn)n = b(x1, . . . , xi−1, x

′
i, xi+1, . . . , xd)

n for any multilinear b). The construction b 7→ b′ is

functorial, and determines a map of schemes ψn : Skew
(d)
G → Skew

(d)
G′ .

Proposition 3.3.7. Let G be a finite flat group scheme over a commutative ring R and n > 0 an integer
satisfying the requirements of Construction 3.3.6, so that G fits into a short exact sequence

0→ G′
j→ G

u→ G′′ → 0

where G′ is the image of the map [n] : G→ G as an fppf sheaf. Let d ≥ 1 be an integer. Then:

(1) We have a short exact sequence

0→ Skew
(d)
G′′

γ→ Skew
(d)
G

ψn→ Skew
(d)
G′ ,

where γ is determined by the functoriality of the construction H 7→ Skew
(d)
H and αn is defined as in

Construction 3.3.6.

(2) The map ψn restricts to a morphism βn : Alt
(d)
G → Alt

(d)
G′ .
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(3) The exact sequence of (1) restricts to an exact sequence

0→ Alt
(d)
G′ → Alt

(d)
G

βn→ Alt
(d)
G′ .

Proof. Since G → G′′ is an epimorphism of fppf sheaves, it is clear that the restriction map γ : Skew
(d)
G′′ →

Skew
(d)
G is a monomorphism. Let b : G′′d → Gm be a skew-symmetric map, and let

G
q→ G′

j→ G

be the factorization appearing in Construction 3.3.6. We then have

(ψn ◦ γ)(b)(q(x1), . . . , q(xd)) = γ(b)(x1, . . . , xd)
n

= γ(b)(nx1, x2, . . . , xd)

= γ(b)((j ◦ q)x1, x2, . . . , xd)

= b((u ◦ j ◦ q)x1, u(x2), . . . , u(xd))

= 1

since u ◦ j = 0. Since q is an fppf surjection, this proves that ψn ◦ γ is trivial.
To complete the proof of (1), it will suffice to show that the kernel of βn is contained in the image of γ.

To this end, suppose we are given a skew-symmetric map b : Gd → Gm such that ψn(b) is trivial. Then for
each x1, . . . , xd ∈ G(A), we have

b((j ◦ q)x1, x2, . . . , xd) = b(x1, x2, . . . , x)n = (ψnb)(q(x1), . . . , q(xd)) = 1.

Since the map q is an fppf surjection, we deduce that

b(j(y), x2, . . . , xd) = 1

for all y ∈ G′(A), x2, . . . , xd ∈ G(A). It follows that the map b(x1, x2, . . . , xd) depends only on the image of
x1 in G′′(A). The same argument shows that b(x1, . . . , xd) depends only on the image of each xi in G′′(A):
that is, b is given by the composition

Gd → G′′d
b′→ Gm

for some map b′. Since b is skew-symmetric, it is easy to see (using the faithful flatness of the map G→ G′′)
that b′ is also skew-symmetric, so that b = γ(b′) lies in the image of γ.

We now prove (2). Suppose that R′ ∈ CAlgR and that b ∈ Alt
(d)
G (R′), which we will identify with a

subset of Skew
(d)
G (A). We wish to show that ψn(b) ∈ Alt

(d)
G′ (R

′) ⊆ Skew
(d)
G′ (R

′). Replacing R by R′, we
may assume that R = R′. If d = 1, there is nothing to prove; let us therefore assume that d ≥ 1. The

skew-symmetric map ψn(b) determines a map G′d−2 → Skew
(2)
G′ , and we wish to show that this map factors

through Alt
(2)
G′ . Since the map j : G→ G′, it will suffice to show that the composite map

Gd−2 → G′d−2 → Skew
(2)
G′

factors through Alt
(2)
G′ . By construction, this map is given by the composition

Gd−2 → Skew
(2)
G

ψ′n→ Skew
(2)
G′ ,

where ψ′n is obtained by applying Construction 3.3.6 in the case d = 2. We are therefore reduced to proving
(2) in the case d = 2.

Suppose that b : G×SpecRG→ Gm is an alternating bilinear map which arises as the commutator pairing
of a central extension

0→ Gm → G̃→ G→ 0.
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Let us regard µn as a closed subgroup of G̃, and let G denote the quotient G̃/µn. We have another central
extension

0→ Gm → G→ G→ 0,

whose commutator pairing is given by bn. Let K denote the kernel of the multiplication map n : G → G,
and let K denote the inverse image K ×G G. For x, y ∈ K(A), we have b(x, y)n = b(nx, y) = b(0, y) = 1. It
follows that K is an abelian extension of K by Gm. Passing to a finite flat covering of R, we may suppose
that this extension splits (as in the proof of Proposition 3.2.3). A choice of splitting gives a closed embedding
of group schemes φ : K → G. If x ∈ K(A) and y ∈ G(A), then we have

φ(x)yφ(x)−1y−1 = b(x, y)n = b(nx, y) = b(0, y) = 1

where y ∈ G(A) denotes the image of y. It follows that the image of K is a central subgroup over G. Let

G
′′

denote the quotient G/φ(K). We then have a central extension

0→ Gm → G
′′ → G′′ → 0,

and a simple calculation shows that the commutator pairing of this extension coincides with ψn(b).
We now prove (3). Using (1) and (2), we are reduced to proving the following assertion:

(∗) LetR′ ∈ CAlgR. Then the inverse image of Alt
(d)
G (R′) ⊆ Skew

(d)
G (R′) under the map γ : Skew

(d)
G′′(R

′)→
Skew

(d)
G (R′) is given by Alt

(d)
G′′(R

′) ⊆ Skew
(d)
G′′(R

′).

Replacing R by R′, we may reduce to the case where R = R′. We may also assume d ≥ 2 (otherwise there

is nothing to prove). Let b0 ∈ Skew
(d)
G′′(R) and let b = γ(b0) ∈ Skew

(d)
G (R), and assume that b ∈ Alt

(d)
G (R).

Note that b and b0 determine maps

φ : Gd−2 → Skew
(2)
G φ0 : G′′d−2 → Skew

(2)
G′′ .

Moreover, φ is given by the composition

Gd−2 → G′′d−2 φ0→ Skew
(2)
G′′

γ′→ Skew
(2)
G ,

where γ′ is the map given by composition with u. Since φ factors through Alt
(2)
G and the map u is faithfully

flat, we conclude that γ′ ◦ φ0 factors through Alt
(2)
G (see Remark 3.2.8).

Proof of Proposition 3.3.4. We proceed by induction on t. Since G is a truncated p-divisible group of level
t, we have an exact sequence

0→ G[p]→ G
[p]→ G[pt−1]→ 0

Applying Proposition 3.3.7, we obtain a short exact sequence

0→ Alt
(d)
G[pt−1] → Alt

(d)
G → Alt

(d)
G[p] .

The inductive hypothesis implies that Alt
(d)
G[pt−1] is a finite flat group scheme over κ of rank ≤ p(t−1)(nd).

Consequently, to prove that Alt
(d)
G is a finite flat group scheme of rank ≤ pt(

n
d), it will suffice to show that

Alt
(d)
G[p] is a finite flat group scheme of rank ≤ p(

n
d). Replacing G by G[p], we may reduce to the case where

t = 1.
Without loss of generality, we may suppose that κ is algebraically closed. We now proceed by induction

on the height of G. If G is connected, the desired result follows from Lemma 3.3.5. Otherwise, we can write
G = G′×Z /pZ, where G′ has height n− 1 and Z /pZ denotes the constant group scheme over κ associated
to the finite group Z /pZ. In this case, Remark 3.2.21 supplies an isomorphism

Alt
(d)
G ' Alt

(d)
G′ ×Specκ Alt

(d−1)
G′ .
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The inductive hypothesis implies that Alt
(d)
G′ and Alt

(d−1)
G′ are finite flat group schemes over κ of rank at

most p(
n−1
d ) and p(

n−1
d−1), respectively. It follows that Alt

(d)
G is a finite flat group scheme over κ of rank at

most p(
n−1
d )+(n−1

d−1) = p
(
n
d

)
, as desired.

Lemma 3.3.8. Let G be a finite flat commutative group scheme over a commutative ring R, and suppose
that the map [2] : G→ G factors as a composition

G
q→ G′

j→ G

where G′ is a finite flat group scheme over R, q is faithfully flat, and j is a closed immersion. For each d ≥ 1,

the map ψ2 : Skew
(d)
G → Skew

(d)
G′ of Construction 3.3.6 factors through the closed subscheme Alt

(d)
G′ ⊆ Skew

(d)
G′ .

Proof. Fix a skew-symmetric multilinear map b : Gd → Gm, and let b′ : G′d → Gm be defined as in

Construction 3.3.6. We wish to prove that b′ determines an R-point of Alt
(d)
G′ . If d = 1 there is nothing to

prove; let us therefore assume that d ≥ 2. Let A ∈ CAlgR and suppose we are given points x3, . . . , xd ∈
G′(A); we wish to show that the map

b′(•, •, x3, . . . , xd) : G′A ×SpecA G
′
A → Gm

determines an A-point of Skew
(d)
G′ . The assertion is local on A with respect to the flat topology. We may

therefore suppose that xi = q(yi) for some A-points yi ∈ G(A). Replacing R by A, we may suppose that
A = R. Replacing b by the map G×SpecR G → Gm given by (u, v) 7→ b(u, v, y3, . . . , yd), we may reduce to
the case d = 2.

Let H = G×SpecR Gm. We regard H as a group scheme, with the multiplication given on points by the
formula (z, t)(z′, t′) = (z + z′, tt′b(z, z′)). Let K = G[2] denote the kernel of q. We note that K is a central

subgroup of H. Let G̃ denote the quotient H/K. We then have an exact sequence

0→ Gm → G̃→ G′ → 0

which exhibits G̃ as a central extension of G′ by Gm. A simple calculation shows that the commutator
pairing of this extension is given by b′.

Proof of Theorem 3.3.1. Without loss of generality, we may assume that the field κ is algebraically closed.
According to Theorem 3.1.11, there exists a p-divisible group G over κ of height n and an isomorphism
G ' G[pt]. For each integer m, write G[pm] = SpecH(m)∨ for some finite-dimensional Hopf algebra H(m)
over κ, and let M denote the inverse limit lim←−{DM+(H(m))}m≥0. Then M is a left Dκ-module which is free

of rank n as a module over W (κ), and we can identify M with the quotient M/ptM .
We first claim the following: for every sequence of elements y1, . . . , yd ∈M , the wedge product

Fy1 ∧ · · · ∧ Fyd

is divisible by pd−1 in ∧dW (κ)M . To prove this, we write G as the product of a connected p-divisible group G0

with a constant p-divisible group (Qp /Zp)
a, so that we have a corresponding decomposition of Dκ-modules

M = M0 ×W (κ)a. Let z1, . . . , za be the standard basis for W (κ)a, so that the action of F on W (κ)a is
given by Fzi = pzi. The proof of Corollary 3.3.2 shows that there exists an element x0 ∈ M/pM such
that x0, V x0, . . . , V

n−a−1x0 form a basis for M0/pM0 as a vector space over κ. Let x be an element of
M0 representing x0, so that the elements x, V x, . . . , V n−a−1x form a basis for M0 over W (κ). Then the
set S = {x, V x, . . . , V n−a−1x, z1, . . . , za} freely generates M as a W (κ)-module. We may therefore assume
without loss of generality that y1, . . . , yd is a collection of distinct elements of S. Note Fy is divisible by p
for every element y ∈ S − {x}, so that Fy1 ∧ . . . ∧ Fyd is divisible by pd−1.

Let ϕ : W (κ) → W (κ) denote the Frobenius map. It follows from the preceding argument that the
construction

y1 ∧ · · · ∧ yd 7→ p1−dFy1 ∧ · · · ∧ Fyd
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determines a ϕ-semilinear endomorphism of M . Similarly, the construction

y1 ∧ · · · ∧ yd 7→ V y1 ∧ · · · ∧ V yd
determines a ϕ−1-semilinear automorphism of M . These endomorphisms evidently commute, and their
composition is the W (κ)-linear map given by multiplication by p. It follows that these endomorphisms
determine the structure of a Dκ-module on the exterior power N = ∧dW (κ)M .

For each integer m ≥ 0, let X(m) = SpecH(m)�d denote the scheme parametrizing multilinear maps
G[pm]d → Gm. Choose a Hopf algebra A(m) over κ with DM+(A(m)) ' N/pmN . Using Corollary 1.4.15,
we see that the W (κ)-multilinear map

vm : M/pmM × · · · ×M/pmM → N/pmN

determines a multilinear map of Hopf algebras

H(m)⊗κ · · · ⊗κ H(m)→ A(m),

hence a map um : SpecA(m) → X(m). Since v is skew-symmetric, we can regard um as a map from

SpecA(m) to the closed subscheme Skew
(d)
G[pm] ⊆ X(m).

For m ≥ 0, multiplication by p induces an injective map M/pmM →M/pm+1M , hence a monomorphism
of Hopf algebras A(m)→ A(m+1). The induced map of affine group schemes fits into a commutative diagram

SpecA(m+ 1)
um+1 //

��

Skew
(d)
G[pm+1]

ψp

��
SpecA(m)

um // Skew
(d)
G[pm],

where ψp is defined as in Construction 3.3.6. When p = 2, it follows from Lemma 3.3.8 that the composite
map

SpecA(m+ 1)→ SpecA(m)→ Skew
(d)
G[pm]

factors through the closed subscheme Alt
(d)
G[pm] ⊆ Skew

(d)
G[pm]. In the case p > 2, the existence of this

factorization is automatic (since Alt
(d)
G[pm] = Skew

(d)
G [pm]; see Example 3.2.17). It follows that we may

identify um with a map of group schemes from SpecA(d) to Alt
(d)
G[pm].

To complete the proof, it will suffice to show that the map ut : SpecA(t) → Alt
(d)
G[pt] = Alt

(d)
G is an

isomorphism. Note that ∧dW (κ)/ptW (κ) is generated (as a module overW (κ)) by the image of vt. Consequently,
vt induces a surjection of Dκ-modules

M⊗̃ · · · ⊗̃M → N/ptN,

and therefore an epimorphism of Hopf algebras H(t)�d → A(t). It follows that the map ut : SpecA(t) →
Alt

(d)
G is a monomorphism of group schemes over κ. By construction, SpecA(t) is a finite flat group scheme

of rank pt(
n
d) over κ. Consequently, to prove that ut is an isomorphism, it will suffice to show that Alt

(d)
G is

a finite flat group scheme of rank ≤ pt(
n
d), which follows from Proposition 3.3.4.

3.4 Lubin-Tate Cohomology of Eilenberg-MacLane Spaces

Throughout this section, we fix a perfect field κ of characteristic p > 0 and a smooth connected 1-dimensional
formal group G0 of height n <∞ over κ. Let E denote Lubin-Tate spectrum corresponding to (κ,G0), and
let K(n) denote the associated Morava K-theory. Corollary 3.3.3 asserts that for each d ≥ 1, the Morava

K-theory K(n)0K(Z /pt Z, d) can be described as the ring of functions on the (affine) group scheme Alt
(d)
G0[pt].

Our goal in this section is to prove an analogous result for the Lubin-Tate spectrum E:
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Theorem 3.4.1. Let d ≥ 1 and t ≥ 0 be integers, and let X = K(Z /pt Z, d). Then E0(X) and E∧0 (X) are

free modules of rank pt(
n
d) over the Lubin-Tate ring R = π0E 'W (κ)[[v1, . . . , vn−1]]. Let G = Spf E0(CP∞)

denote formal group over R given by the universal deformation of G0. Then we have a canonical isomorphism

SpecE∧0 (X) ' Alt
(d)
G[pt]

of group schemes over R. In particular, Alt
(d)
G[pt] is a finite flat group scheme of rank pt(

n
d).

Though Theorem 3.4.1 is a statement about homotopy theory, it has purely algebraic consequences:

Corollary 3.4.2. Let A be a complete local Noetherian ring with perfect residue field κ, and let GA be a

p-divisible group over A lifting G0. Then, for each t ≥ 0, Alt
(d)
GA[pt] is a finite flat group scheme of rank pt(

n
d)

over A.

Proof. Let R = π0E. Since the formal group G = Spf E0(CP∞) is a universal deformation of G0, the
quotient map R → κ lifts uniquely to a ring homomorphism R → A such that GA ' SpecA ×SpecR G. It

will therefore suffice to show that Alt
(d)
G[pt] is a finite flat group scheme of rank pt(

n
d) over R, which follows

immediately from Theorem 3.4.1.

The first part of Theorem 3.4.1 is an immediate consequence of Theorem 2.4.10 together with the following
standard result:

Proposition 3.4.3. Let X be a space. Suppose that K(n)1X ' 0 and that K(n)0X is a vector space of
dimension m <∞ over κ. Then:

(1) There is an equivalence of E-module spectra LK(n)E[X] ' Em.

(2) There is an equivalence of E-module spectra EX ' Em.

(3) The modules E∧0 (X) and E0(X) are free of rank m over the Lubin-Tate ring R = π0E, canonically
dual to one another, and we have E∧i (X) ' 0 ' Ei(X) when i is odd.

(4) The canonical maps

κ⊗R E∧0 (X)→ K(n)0X κ⊗R E0(X)→ K(n)0X

are isomorphisms.

Proof. Choose a basis x1, . . . , xm for K(n)0X as a vector space over κ. According to Lemma 2.1.25, we can
lift these to classes x1, . . . , xm ∈ E∧0 (X) = π0(LK(n)E[X]). The choice of such elements determines a map
of E-module spectra θ : Em → LK(n)E[X]. After smashing over E with K(n), θ reduces to a map

θ0 : K(n)m → K(n)⊗E LK(n)E[X] ' K(n)⊗E E[X] ' K(n)[X].

By construction, θ0 induces an isomorphism on homotopy groups, and is therefore an equivalence. Since
the domain and codomain of θ are K(n)-local, we conclude that θ is also an equivalence. This proves (1).
Moreover, it shows that the elements x1, . . . , xm freely generate E∧0 (X) as a module over R, so that the
reduction map κ ⊗R E∧0 (X) → K(n)0X is an isomorphism. This proves half of (3) and (4); the remaining
assertions now follow by duality.

Notation 3.4.4. Let X be a space satisfying the hypotheses of Proposition 3.4.3. We let ESpec(X) denote
the π0E-scheme SpecE0(X).
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Remark 3.4.5. Let X and Y be spaces satisfying the hypotheses of Proposition 3.4.3. It follows from
Remark 2.1.22 that X × Y also satisfies the hypotheses of Proposition 3.4.3. In particular, E0(X), E0(Y ),
and E0(X × Y ) are free modules of finite rank over R = π0E. Moreover, the canonical map

E0(X)⊗R E0(Y )→ E0(X × Y )

induces an isomorphism after tensoring with the residue field κ of R, and is therefore an isomorphism of
R-modules. It follows that the canonical map

ESpec(X × Y ) = ESpecX ×SpecR ESpecY

is an isomorphism of R-schemes.

Now suppose that X is a space satisfying the hypotheses of Proposition 3.4.3, and that X is equipped
with a multiplication map m : X ×X → X endowing it with the structure of a commutative group object
in the homotopy category of spaces. The construction Y 7→ ESpecY commutes with products, we conclude
that ESpecX has the structure of a commutative group object in the category of R-schemes: that is, it is a
finite flat commutative group scheme over X.

Example 3.4.6. Let G = Spf E0(CP∞) be the universal deformation of G0, regarded as a formal group over
R = π0E. The canonical map K(Z /pt Z, 1) ↪→ CP∞ induces a map of R-schemes ESpecK(Z /pt Z, 1) →
G[pt]. This map is an isomorphism on special fibers (Proposition 2.4.4), and therefore an isomorphism (since
the domain and codomain and finite and flat over R).

Construction 3.4.7. Fix integers t ≥ 0 and d ≥ 1, and consider the iterated cup product map

K(Z /pt Z, 1)d → K(Z /pt Z, d).

Since K(Z /pt Z, 1) and K(Z /pt Z, d) satisfy the hypotheses of Proposition 3.4.3 (see Theorem 2.4.10), we
obtain a map of R-schemes

c : (G[pt])d(ESpecK(Z /pt Z, 1))d → ESpecK(Z /pt Z, d).

Since the cup product is multilinear and skew-symmetric up to homotopy, the map c has the same properties.
Passing to Cartier duals, we obtain a map of R-schemes

θt : SpecE∧0 K(Z /pt Z, d)→ Skew
(d)
G[pt] .

Proposition 3.4.8. Let d ≥ 1 and t ≥ 0 be integers. Then the map

θt : SpecE∧0 K(Z /pt Z, d)→ Skew
(d)
G[pt]

of Construction 3.4.7 factors through the subscheme Alt
(d)
G[pt] ⊆ Skew

(d)
G[pt] introduced in Construction 3.2.11.

Proof. If p is odd, there is nothing to prove (Proposition 3.2.17). Assume therefore that p = 2, and consider
the map γ : SpecE∧0 K(Z /pt+1 Z, d)→ SpecE∧0 K(Z /pt Z, d) induces by the multiplication-by-p map

K(Z /pt Z, d)→ K(Z /pt+1 Z, d).

We have a commutative diagram of R-schemes

SpecE∧0 K(Z /pt+1 Z, d) //

γ

��

Skew
(d)
G[pt+1]

ψp

��
SpecE∧0 K(Z /pt Z, d) // Skew

(d)
G[pt]
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where ψp is defined as in Construction 3.3.6. Using Lemma 3.3.8, we deduce that the composite map

SpecE∧0 K(Z /pt+1 Z, d)
γ→ SpecE∧0 K(Z /pt Z, d)→ Skew

(d)
G[pt]

factors through Alt
(d)
G[pt]. To complete the proof, it will suffice to show the E∧0 K(Z /pt+1 Z, d) is faithfully flat

over E∧0 K(Z /pt Z, d). Using the fiber-by-fiber flatness criterion (Corollary 11.3.11 of [6]) and Proposition
3.4.3, we are reduced to proving that the map K(n)0K(Z /pt+1 Z, d)→ K(n)0K(Z /pt Z, d) is faithfully flat,
or equivalently that it induces a surjection of Dieudonne modules

DM+(K(n)0K(Z /pt+1 Z, d)→ K(n)0K(Z /pt Z, d).

This follows immediately from Theorem 2.4.10.

The final ingredient we will need for our proof of Theorem 3.4.1 is the following purely algebraic fact:

Proposition 3.4.9. Let R be a Noetherian local ring with maximal ideal m and residue field κ, and suppose
we are given a map of R-schemes f : X → Y satisfying the following conditions:

(a) The map X → SpecR is finite flat of rank r, for some integer r ≥ 0.

(b) For every map from R to a field k, the fiber product Spec k ×SpecR Y is a finite flat k-scheme of rank
r.

(c) The map Y → SpecR is separated and of finite type.

(d) The map of closed fibers f0 : Specκ×SpecR X → Specκ×SpecR Y is an isomorphism.

Then f is an isomorphism.

Proof. Conditions (b) and (c) imply that Y is quasi-finite over SpecR. Using Zariski’s main theorem, we
deduce that there is a finite R-scheme Z = SpecR′ and an open immersion j : Y → Z. Condition (a) implies
that X = SpecA for some finite flat R-algebra A of rank r. Let i = j ◦ f be the resulting map from X to
Z, and let φ : R′ → A be the corresponding map of R-algebras. Using (d), we see that the induced map
i0 : Specκ×SpecRX → Specκ×SpecRZ is an open immersion. Since both sides are finite over the field κ, the
map i0 is also a closed immersion. Since i0 is a closed immersion, φ induces a surjection R′/mR′ → A/mA.
Using Nakayama’s lemma, we deduce that φ is surjective: that is, the map i is a closed immersion. It follows
that f is a closed immersion.

Let x ∈ SpecR be a point and let k denote the residue field of R at x. Then f induces a closed immersion

fx : Spec k ×SpecR X → Spec k ×SpecR Y.

Using (a) and (b), we see that the domain and codomain of fx are finite flat κ-schemes of the same rank. It
follows that fx is an isomorphism. It follows that the map f is a bijection at the level of topological spaces.

Let OY denote the structure sheaf of Y , and let I ⊆ OY denote the quasi-coherent ideal sheaf defining the
closed immersion f . Since f is bijective, every local section of I is nilpotent. Since Y is Noetherian, it follows
that I is a nilpotent ideal sheaf. Since (Y,OY / I) ' (X,OX) is affine, we conclude that Y is affine, hence of
the form SpecB for some commutative ring B which is finitely generated over R. The closed immersion f
determines a surjective map of commutative rings B → A having nilpotent kernel I ⊆ B.

Since B is Noetherian, I is finitely generated. It follows that each quotient Ik/Ik+1 is finitely generated
as an A-module, and therefore also as an R-module. Because I is nilpotent, we conclude that B admits a
finite filtration by finitely generated R-modules, and is therefore finitely generated over R. We have an exact
sequence of R-modules

0→ I → B → A→ 0.

Since A is projective as an R-module, this sequence splits. It follows that the quotient I/mI can be identified
with the kernel of the map κ ⊗R B → κ ⊗R A. This kernel vanishes by assumption (d), so that I = mI.
Applying Nakayama’s lemma, we deduce that I = 0. This implies that f is an isomorphism, as desired.
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Proof of Theorem 3.4.1. According to Proposition 3.4.8, the map θt : SpecE∧0 K(Z /pt Z, d) → Skew
(d)
G[pt]

factors through Alt
(d)
G[pt], and can therefore be identified with a map f : SpecE∧0 K(Z /pt Z, d) → Alt

(d)
G [pt].

We will prove that f is an isomorphism of R-schemes by verifying the hypotheses of Proposition 3.4.9:

(a) It follows from Proposition 3.4.3 and Theorem 2.4.10 that E∧0 K(Z /pt Z, d) is a finite flat R-module of
rank t

(
n
d

)
.

(b) Let k be a field and suppose we are given a ring homomorphism R → k. Then we have a canonical
isomorphism

Spec k ×SpecR Alt
(d)
G[pt] ' Alt

(d)
G[pt]k

,

where G[pt]k denotes the group scheme over k given by Spec k×SpecRG[pt]. Since G[pt]k is a truncated

p-divisible group of height n, level t, and dimension 1, Theorem 3.3.1 implies that Alt
(d)
G[pt]k

is a finite

flat k-scheme of rank pt(
n
d).

(c) The group scheme Alt
(d)
G [pt] is separated and of finite type over R by Remark 3.2.12.

(d) The map f induces an isomorphism

Specκ×SpecR SpecE∧0 K(Z /pt Z, d) ' SpecK(n)0K(Z /pt Z, d)) ' Alt
(d)
G0[pt] ' Specκ×SpecR Alt

(d)
G[pt]

by virtue of Proposition 3.4.3 and Corollary 3.3.3.

3.5 Alternating Powers in General

Let G be a finite flat commutative group scheme over a commutative ring R, and let d ≥ 1 be an integer.

In §3.2 we introduced an R-scheme Alt
(d)
G parametrizing alternating multilinear maps from Gd into the

multiplicative group Gm. In this section, we will show that this construction is well-behaved, provided that
G satisfies some reasonably hypotheses. We can state our main result as follows:

Theorem 3.5.1. Let R be a commutative ring, let p be a prime number, let d ≥ 1 be a positive integer,

and let G be an truncated p-divisible group over R of height n, level t, and dimension 1. Then Alt
(d)
G is a

truncated p-divisible group over R of height
(
n
d

)
, level t, and dimension

(
n−1
d

)
.

Corollary 3.5.2. Let G be a truncated p-divisible group of height n, level t, and dimension 1 over a com-

mutative ring R. For d > n, we have Alt
(d)
G ' SpecR.

Corollary 3.5.3. Let G be a truncated p-divisible group of height n, level t, and dimension 1 over a com-

mutative ring R. Then the inclusion map i : Alt
(d)
G ↪→ Skew

(d)
G is a closed immersion.

Proof. Theorem 3.5.1 implies that Alt
(d)
G is finite and flat over R, hence proper over R. Since Skew

(d)
R is an

affine R-scheme of finite presentation, we conclude that the map i is proper. Since i is also a monomorphism,
it must be a closed immersion.

Corollary 3.5.4. Let R be a commutative ring, let d ≥ 1 be an integer, and let G be a p-divisible group of

height n and dimension 1 over R. For each t ≥ 0, let φt : Alt
(d)
G[pt] → Alt

(d)
G[pt+1] be the map induced by the

epimorphism [p] : G[pt+1]→ G[pt]. Then the colimit of the sequence

Alt
(d)
G[1]

φ0→ Alt
(d)
G[p]

φ1→ Alt
(d)
G[p2]

φ2→ · · ·

is a p-divisible group H over R, having height
(
n
d

)
and dimension

(
n−1
d

)
. Moreover, each of the canonical

maps Alt
(d)
G[pt] → H induces an isomorphism from Alt

(d)
G[pt] to H[pt].
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Proof. Since each of the group schemes Alt
(d)
G[pt] is annihilated by pt, the action of p on H is locally nilpotent:

that is, we can write H = lim−→t
H[pt]. We next claim that multiplication by p induces an epimorphism

θ : H → H of sheaves with respect to the flat topology. Note that we can write θ as a filtered colimit of
maps θt : H[pt+1] → H[pt]; it will therefore suffice to show that each θt is an epimorphism of flat sheaves.
We may further write θt as a filtered colimit of maps

θt,s : Alt
(d)
G[ps][p

t+1]→ Alt
(d)
G[ps][p

t].

It follows from Theorem 3.5.1 that Alt
(d)
G[ps] is a truncated p-divisible group of level s for each s ≥ 0, so that

θt,s is an epimorphism whenever s > t.

We next show that for each t ≥ 0, the canonical map ιt : Alt
(d)
G[pt] → H[pt] is an isomorphism. Using

Theorem 3.5.1, we deduce that each H[pt] is representable by a finite flat group scheme over R, so that H

is a p-divisible group. Since Theorem 3.5.1 asserts that the truncated p-divisible group H[p] ' Alt
(d)
G[p] has

height
(
n
d

)
and dimension

(
n−1
d

)
over R, we conclude that H also has height

(
n
d

)
and dimension

(
n−1
d

)
.

Note that ιt can be written as a filtered colimit of maps

ιt,s : Alt
(d)
G[pt] → Alt

(d)
G[pt+s][p

t].

It will therefore suffice to show that each ιt,s is an isomorphism. Working by induction on s, we are reduced

to proving that each of the maps φt induces an isomorphism Alt
(d)
G[pt] → Alt

(d)
G[pt+1][p

t], which follows from

Proposition 3.3.7.

Passing to Cartier duals, we obtain the following close relative of Corollary 3.5.4:

Corollary 3.5.5. Let R be a commutative ring, let d ≥ 1 be an integer, and let G be a p-divisible group of

height n and dimension 1 over R. For each t ≥ 0, let ψt : D(Alt
(d)
G[pt]) → D(Alt

(d)
G[pt+1]) the map induced by

the inclusion G[pt]→ G[pt+1] Then the colimit of the sequence

D(Alt
(d)
G[1])

ψ0→ D(Alt
(d)
G[p])

ψ1→ D(Alt
(d)
G[p2])

ψ2→ · · ·

is a p-divisible group H over R, having height
(
n
d

)
and dimension

(
n−1
d−1

)
. Moreover, each of the canonical

maps D(Alt
(d)
G[pt])→ H induces an isomorphism from D(Alt

(d)
G[pt]) to H[pt].

Example 3.5.6. Let E be a Lubin-Tate spectrum of height n. Using Corollary 3.5.5 and Theorem 3.4.1,
we deduce that the colimit of the sequence

ESpecK(p−1 Z /Z, d)→ ESpecK(p−2 Z /Z, d)→ ESpecK(p−3 Z /Z, d)→ · · ·

is a p-divisible group of height
(
n
d

)
and dimension

(
n−1
d−1

)
over the Lubin-Tate ring R = π0E. This p-

divisible group can also be described as the formal spectrum of power series ring given by E0K(Qp /Zp, d) '
E0K(Z, d+ 1).

Proof of Theorem 3.5.1. Let R be a commutative ring and let G be an truncated p-divisible group over R

of height n, level t, and dimension 1. We wish to prove that Alt
(d)
G is a truncated p-divisible group of height(

n
d

)
, level t, and dimension

(
n−1
d

)
. Note that Alt

(d)
G is annihilated by pt. By virtue of Corollaries 3.1.8 and

3.3.2, it will suffice to prove that Alt
(d)
G is a finite flat group scheme over R.

Write R as a union of its finitely generated subrings Rα. Then we can write G = Gα ×SpecRα SpecR
for some α and some finite flat group scheme Gα over Rα. Using Corollary 3.1.8 and Remark 3.1.9, we
conclude that there exists a quasi-compact open subset U ⊆ SpecRα such that, for every Rα-algebra B, the
fiber product GB = SpecB ×SpecRα Gα is a truncated p-divisible group of height n, level t, and dimension
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1 over A if and only if the induced map SpecB → SpecRα factors through U . In other words, there exists
a finite sequence of elements r1, . . . , rk ∈ Rα such that GB is a truncated p-divisible group of height n, level
t, and dimension 1 over B if and only if the elements r1, . . . , rk generate the unit ideal in B. In particular,
the elements ri generate the unit ideal in R. Enlarging α if necessary, we may assume that the ri generate
the unit ideal in Rα, so that U = SpecRα and Gα is a truncated p-divisible group of height n, level t, and
dimension 1. We may therefore replace R by Rα, and thereby reduce to the case where R is Noetherian.

The map Alt
(d)
G → Skew

(d)
G is a monomorphism of finite presentation, hence quasi-finite and in particular

quasi-affine. It follows that Alt
(d)
G is a quasi-affine scheme. Let A denote the ring of global sections of the

structure sheaf of Alt
(d)
G , so that the canonical map j : Alt

(d)
G → SpecA is a open immersion. It follows that

the complement of the image of j is the vanishing locus of some ideal I ⊆ A.
We first prove the following:

(∗) Let p be a prime ideal of SpecR for which the induced map

SpecRp ×SpecR Alt
(d)
G → SpecRp

is finite flat of degree pt(
n
d). Then there exists an open neighborhood U ⊆ SpecR containing p such

that the induced map

U ×SpecR Alt
(d)
G → U

is finite flat of degree pt(
n
d).

Let p be as in (∗), so that so that the localization Ap is a finitely generated projective Rp module of rank

pt(
n
d), and Ip = Ap. In particular, the identity element 1 ∈ Ap belongs to Ip. It follows that there exists an

element f ∈ R − p whose image in A belongs to the ideal I. Replacing R by R[ 1
f ], we may suppose that

1 ∈ I: that is, that Alt
(d)
G = SpecA is affine. Since Alt

(d)
G is an R-scheme of finite presentation, we deduce

that A is finitely presented as an R-algebra. Choose a finite set of R-algebra generators x1, . . . , xq ∈ A.
Enlarging this list if necessary, we may assume that the images of the xi generate Ap as a module over Rp.
We may therefore write

xixj =
∑

cki,jxk

in Ap, for some coefficients cki,j ∈ Rp. It follows that there exists f ′ /∈ p such that

xixj =
∑

cki,jxk

in A[ 1
f ′ ], for some coefficients cki,j ∈ R[ 1

g ]. Replace R by R[ 1
f ′ ], and set

A = R[X1, . . . , Xq]/(XiXj −
∑

cki,jXk).

Then A is a finitely presented as an R-algebra and finitely generated as an R-module. There is an evident
map φ : A → A, carrying Xi to xi. Since the xi’s form algebra generators for A over R, the map A → A
is surjective. Since A is finitely presented as an R-algebra, the ideal ker(φ) is finitely generated as an A-
module. Since A is finitely generated as an R-module, we conclude that ker(φ) is finitely generated as an

R-module. It follows that A ' A/ ker(φ) is finitely presented as an R-module. Let D = pt(
n
d), so that Ap is

a free Rp-module of rank D. Choose a collection of elements y1, y2, . . . , yD ∈ A whose images in Ap form a
basis. This choice determines a map of R-modules ψ : RD → A. By construction, coker(ψ)p = 0. Since A
is finitely generated as an R-module, it follows that there exists an element f ′′ ∈ R − p such that coker(ψ)
is annihilated by h. Replacing R by R[ 1

f ′′ ], we may suppose that ψ is surjective. We then have an exact
sequence of R-modules

0→ K → RD → A→ 0.
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Since A is finitely presented as an R-module, we conclude that K is finitely generated. Note that Kp ' 0.
It follows that there exists f ′′′ ∈ R− p such that K[ 1

f ′′′ ] ' 0. Replacing R by R[ 1
f ′′′ ], we may reduce to the

case where ψ is an isomorphism: that is, A is a free R-module of rank d. This completes the proof of (∗).
To complete the proof of Theorem 3.5.1, it will suffice to show that every prime ideal p ⊆ R satisfies the

hypothesis of (∗). Replacing R by Rp, we may suppose that R is a local ring. Suppose first that the residue
characteristic of R is different from p. Then the group scheme G is étale. Passing to finite étale covering of
R, we may suppose that G ' (Z /pt Z)n. Invoking Remark 3.2.21 repeatedly, we obtain an isomorphism

Alt
(d)
G ' (µpt)

(nd),

which is evidently a finite flat R-scheme of rank D.
Now suppose that the residue field κ of R has characteristic p. Using Proposition 10.3.1 of [5], we can

choose find a faithfully flat morphism R → R′ of local Noetherian rings, such that the residue field of R′ is
perfect. Replacing R′ by its completion if necessary, we may assume that R′ is complete. Using faithfully

flat descent, we are reduced to proving that the map Alt
(d)
G ×SpecR SpecR′ → SpecR′ is finite flat of degree

D. We may therefore replace R by R′ and thereby reduce to the case where R is a complete Noetherian
local ring whose residue field is perfect. Invoking Theorem 3.1.11, we deduce that there exists a p-divisible
group G over R and an isomorphism G ' G[pm].

We have an exact sequence of p-divisible groups

0→ Ginf → G→ Gét → 0

which determines an exact sequence of finite flat group schemes

0→ Ginf [p
m]→ G→ Gét[p

m]→ 0.

Replacing R by a finite flat extension if necessary, we may assume that the latter sequence splits and that
Gét[p

t] is a constant group scheme. Let G0 = Ginf [p
t], so that we have an isomorphism

G ' G0 ×SpecR (Z /pt Z)k

for some integer k. Applying Remark 3.2.21 repeatedly, we obtain an isomorphism

Alt
(d)
G ' µ

(kd)
pt ×SpecR

∏
1≤d′≤d

(Alt
(d′)
G0

)(
k

d−d′).

It will therefore suffice to show that each of the group schemes Alt
(d′)
G0

is finite flat of rank pt(
n−k
d ). We may

therefore replace G by Ginf and thereby reduce to the case where G is connected, in which case the desired
result follows from Corollary 3.4.2.

4 Ambidexterity

Let M be a compact oriented manifold of dimension d. Poincare duality asserts that cap product with the
fundamental homology class of M induces an isomorphism H∗(M ; Z) → Hd−∗(M ; Z). More generally, if
A is any local system of abelian groups on M , then we obtain an isomorphism H∗(M ;A) ' Hd−∗(M ;A)
between homology and cohomology with coefficients in A. In this section, we will study a somewhat different
situation in which an analogous duality phenomenon occurs.

Let C be an ∞-category and let X be a Kan complex. We define a C-valued local system on X to be
a map of simplicial sets X → C. We will typically use the symbol L to denote a C-valued local system on
X, and Lx to denote the value of L at a point x ∈ X. The collection of all C-valued local systems can be
organized into an ∞-category CX = Fun(X,C). If C is an object of C, we let CX denote the constant map
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X → C taking the value C. The construction C 7→ CX determines a functor δ : C → CX . If we assume
that C admits small limits and colimits, then the functor δ admits both left are right adjoints, which we will
denote by L 7→ C∗(X;L) and L 7→ C∗(X;L), respectively. More concretely, these functors are given by the
formulas

C∗(X;L) = lim−→
x∈X

Lx C∗(X;L) = lim←−
x∈X

Lx .

Our goal is to describe some special situations (depending on the space X and the ambient ∞-category
C) in which the functors L 7→ C∗(X;L) and L 7→ C∗(X;L) are equivalent. We begin by describing some
ways to think about

Construction 4.0.7. Let X be a Kan complex, let C be an ∞-category which admits small limits and
colimits, and let µ : C∗(X; •) → C∗(X; •) be a natural transformation. Suppose we are given a pair of
objects C,D ∈ C and a map of Kan complexes f : X → MapC(C,D). We will abuse notation by identifying
f with a morphism from CX to DX in the∞-category CX of C-valued local systems on X. We define another
map

∫
X
fdµ ∈ MapC(C,D) to be the composition

C → C∗(X;CX)
f→ C∗(X;DX)

µ→ C∗(X;DX)→ D.

We will refer to
∫
X
fdµ as the integral of f with respect to µ.

Remark 4.0.8. In the situation of Construction 4.0.7, we can reconstruct the natural transformation µ
from the collection of maps

∫
X
fdµ. To see this, suppose we are given a local system L ∈ CX . Then the

map µ(L) : C∗(X;L) → C∗(X;L) is given by
∫
X
fdµ, where f : X → MapC(C∗(X;L), C∗(X;L)) is the

map which assigns to each point x ∈ X the composite map

C∗(X;L)→ Lx → C∗(X;L).

Suppose now that X is an arbitrary Kan complex. For every pair of points x, y ∈ X, let Px,y =
{x} ×Fun({0},X) Fun(∆1, X) ×Fun({1},X) {y} be the space of paths from x to y in X. Suppose that for each
x, y ∈ X, we are given a natural transformation µPx,y : C∗(Px,y; •)→ C∗(Px,y; •). Every local system L on
X determines a map φx,y : Px,y 7→ MapC(Lx,Ly), so that we obtain a map

∫
Px,y

φx,ydµPx,y from Lx to Ly

in C. If the natural transformations µPx,y are chosen functorially on x and y, then the maps
∫
Px,y

φx,ydµPx,y
also depend functorially on x and y, and therefore determine a map

NmX(L) : lim−→
x∈X

Lx → lim←−
y∈X

Ly .

This construction itself depends functorially on L, and can therefore be regarded as a natural transformation

NmX : C∗(X; •)→ C∗(X; •).

We would like to apply the above construction iteratively to construct equivalences µX : C∗(X; •) →
C∗(X; •). More precisely, we will introduce the following:

• For every ∞-category C which admits small limits and colimits, we introduce a collection of Kan
complexes which we call C-ambidextrous.

• For every C-ambidexterous Kan complex X, we define an equivalence µX : C∗(X; •)→ C∗(X; •).

We say that a Kan complex X is C-ambidextrous if it satisfies the following three conditions:

(a) The Kan complex X is n-truncated for some integer n.

(b) For every pair of points x, y ∈ X, the path space Px,y is C-ambidextrous.
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(c) The natural transformation NmX : C∗(X; •)→ C∗(X; •) constructed above is an equivalence.

If these conditions are satisfied, then we define the natural transformation µX to be the inverse of the
equivalence NmX .

Remark 4.0.9. The construction of the natural transformations µX : C∗(X; •)→ C∗(X; •) is recursive: if
X is n-truncated for n ≥ −1, then each path space Px,y is (n−1)-truncated, and so we may assume that the
natural transformations µPx,y have already been defined. A special case occurs when n = −2: that is, when

X is contractible. In this case, the functor C 7→ CX induces an equivalence from C to CX , and we take µX
to be the evident identification between the right and left adjoints of this equivalence.

Let us now outline the contents of this section. We begin in §4.1 by giving a more detailed construction of
the natural transformation NmX . With an eye towards future applications, we carry out the construction in
the context of an arbitrary Beck-Chevalley fibration of∞-categories (see Definition 4.1.3). The specialization
to local systems on a Kan complex will be carried out in §4.3.

In §4.2, we study the naturality properties of the norm map. In particular, our results show that for a
Kan fibration f : X → Y , the norm map NmX can be reconstructed from the norm map NmY , together
with the norm maps NmXy associated to the fibers of f (see Propositions 4.2.1 and 4.2.2).

Let X be a Kan complex and let C be an ∞-category which admits small limits and colimits. The
requirement that X be C-ambidextrous imposes conditions on both X and C. On X, it should be regarded as
a finiteness condition: it is generally only reasonable to expect ambidexterity in the case where the homotopy
groups of X are finite (though there are exceptions for some values of C; see Example 4.3.11). As a condition
on C, ambidexterity amounts to a kind of generalized additivity: it implies, in particular, that there is a
canonical way to “integrate” a family of morphisms in C indexed by X. In §4.4, we will make these ideas
more precise, and use them to produce some simple examples of pairs (C, X) which satisfy ambidexterity.
For example, we will show that an Eilenberg-MacLane space X = K(Z /pZ, d) is C-ambidextrous whenever
C is a stable ∞-category having the property that p acts invertible on each object of C (Proposition 4.4.20).

4.1 Beck-Chevalley Fibrations and Norm Maps

Our goal in this section is to give an account of the theory of ambidexterity, including a precise construction
of the associated norm maps (which were described informally in the introduction to §4). With an eye toward
future applications, we will work in a somewhat general context:

(a) We will view ambidexterity as a property of maps of spaces, rather than spaces. For every∞-category C

which admits finite limits and colimits, we will introduce a collection of C-ambidextrous maps f : X → Y
between Kan complexes, having the following property: if f : X → Y is C-ambidextrous, then the left
and right adjoints to the pullback functor f∗ : Fun(Y,C) → Fun(X,C) are (canonically) equivalent.
This does not really result in any additional generality: we will later see that the C-ambidexterity of
a map f : X → Y is really a condition on the homotopy fibers of f (Corollary 4.3.6). However, it is a
convenient mechanism for encoding the naturality properties of the norm, which play an essential role
in our definition.

(b) If C is an ∞-category which admits small limits and colimits, then the theory of C-ambidexterity
depends on the construction X 7→ Fun(X,C) which assigns to each Kan complex X the collection of
C-valued local systems on X. We will develop our theory in the more general case of a construction
X 7→ CX , which assigns an ∞-category CX to each object X of an ambient ∞-category X, and a pair
of adjoint functors

CX
f! //CY
f∗
oo

to each morphism f : X → Y in X.

We begin by introducing some definitions.
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Notation 4.1.1. Let X be an ∞-category and let q : C → X be a map which is both a Cartesian fibration
and a coCartesian fibration. For each object X ∈ X, we let CX denote the fiber q−1{X} = C×X{X}. If
f : X → Y is a morphism in X, then f determines a pair of adjoint functors

CX
f! //CY
f∗
oo .

In this situation, we let
φf : f!f

∗ → idCY ψf : idCX → f∗f!

denote the associated counit and unit transformations.
Given a commutative diagram σ :

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

in X, we have a canonical equivalence of functors g′∗ ◦ f∗ ∼→ g∗ ◦ f∗, which induces a natural transformation
BC[σ] : f ′! g

′∗ → g∗f!. We will refer to BC[σ] as the Beck-Chevalley transformation associated to σ.

Remark 4.1.2. Given a commutative diagram σ :

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y,

the Beck-Chevalley transformation BC[σ] is given by the composition

f ′! g
′∗ ψf→ f ′! g

′∗f∗f! ' f ′! f ′∗g∗f!

φf′→ g∗f!.

Definition 4.1.3. Let X be an ∞-category which admits pullbacks. We will say that a map of simplicial
sets q : C→ X is a Beck-Chevalley fibration if the following conditions are satisfied:

(1) The map q is both a Cartesian fibration and a coCartesian fibration.

(2) For every pullback square σ :

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

in the ∞-category X, the Beck-Chevalley transformation BC[σ] : f ′! g
′∗ → g∗f! is an equivalence of

functors from CY ′ to CX .

Remark 4.1.4. When condition (2) of Definition 4.1.3 is satisfied, we let BC[σ]−1 : g∗f! → f ′! g
′∗ denote

a homotopy inverse to the Beck-Chevalley transformation BC[σ], so that BC[σ]−1 is well-defined up to
homotopy.

Remark 4.1.5. Let X be an ∞-category which admits pullbacks and let q : C → X be both a Cartesian
and a coCartesian fibration. Then condition (2) of Definition 4.1.3 admits either of the following equivalent
formulations:
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(2′) Let σ :

X
′ f

′
//

g′

��

Y
′

g

��
X

f // Y

be a commutative diagram in C whose image in X is a pullback square. If f is q-coCartesian and both

g and g′ are q-Cartesian, then f
′

is q-coCartesian.

(2′′) Let σ :

X
′ f

′
//

g′

��

Y
′

g

��
X

f // Y

be a commutative diagram in C whose image in X is a pullback square. If g′ is q-Cartesian and both

f and f
′

are q-coCartesian, then g is q-Cartesian.

Let q : C → X be a Beck-Chevalley fibration. Then every morphism f : X → Y in X induces a pair of
functors

f! : CX → CY f∗ : CY → CX .

The functor f! is characterized by the fact that it is a left adjoint to f∗. We will be interested in studying
situations in which f! is also a right adjoint to f∗.

Notation 4.1.6. Let q : C → X be a map of ∞-categories which is both a Cartesian fibration and a
coCartesian fibration. Let f : X → Y be a morphism in X, and suppose we are given a natural transformation
µ : idCY → f!f

∗. Let C and D be objects of CY . For every morphism u : f∗C → f∗D in CX , we let∫
f
udµ ∈ MapCY

(C,D) denote the composite map

C
µ→ f!f

∗C
f!(u)→ f!f

∗D
φf→ D.

The construction u 7→
∫
udµ determines a map

dµ : MapCX
(f∗C, f∗D)→ MapCY

(C,D).

Remark 4.1.7. In the situation of Notation 4.1.6, suppose that the functor f∗ also denotes a right adjoint
f∗. Then giving a natural transformation µ : idCY → f!f

∗ is equivalent to giving a natural transformation
f∗ → f!. Note that the “integration” procedure of Notation 4.1.6 can be regarded as a generalization of
Construction 4.0.7.

Construction 4.1.8. Let X be an∞-category which admits pullbacks and let q : C→ X be a Beck-Chevalley
fibration. We will define the following data for n ≥ −2:

(a) A collection of morphisms in X, which we call n-ambidextrous morphisms.

(b) For each n-ambidextrous morphism f : X → Y in X, a natural transformation µ
(n)
f : idCY → f! ◦ f∗,

which is well-defined up to homotopy and exhibits f! as a right adjoint to f∗.

The construction proceeds by induction on n. If n = −2, we declare that a morphism f : X → Y in X

is n-ambidextrous if and only if f is an equivalence. In this case, we define µ
(n)
f to be a homotopy inverse

to the counit map φf : f! ◦ f∗ → idCY (which is an equivalence, since the adjoint functors f! and f∗ are
mutually inverse equivalences).
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Assume now that the collection of n-ambidextrous morphisms have been defined for some n ≥ −2, and

that the natural transformation µ
(n)
g : idCY → g! ◦ g∗ has been specified for every n-ambidextrous morphism

g. Let f : X → Y be an arbitrary morphism in C, and let δ : X → X ×Y X be the diagonal map, so that we
have a commutative diagram

X

δ

$$

idX

))
idX

��

X ×Y X
π1 //

π2

��

X

f

��
X

f // Y.

Let σ be the square appearing in this diagram. Since σ is a pullback square and q : C → X is a Beck-
Chevalley fibration, the Beck-Chevalley transformation BC[σ] : π1!π

∗
2 → f∗f! admits a homotopy inverse

BC[σ]−1 : f∗f! → π1!π
∗
2 . We will say that f is weakly (n + 1)-ambidextrous if the diagonal map δ is

n-ambidextrous. In this case, we define a natural transformation ν
(n+1)
f : f∗f! → idZX to be the composition

f∗f!
BC[σ]−1

−→ π1!π
∗
2

µ
(n)
δ−→ π1!δ!δ

∗π∗1 ' idCX ◦ idCX = idCX .

We will say that f is a (n+ 1)-ambidextrous if the following condition is satisfied:

(∗) For every pullback diagram

X ′
f ′ //

��

Y ′

��
X

f // Y

in X, the map f ′ is weakly (n + 1)-ambidextrous and the natural transformation ν
(n+1)
f ′ is the counit

for an adjunction between f ′∗ and f ′! .

If condition (∗) is satisfied, we let µ
(n+1)
f : idCY → f!f

∗ denote a compatible unit for the adjunction

CX
f∗ //CY
f!

oo

determined by ν
(n+1)
f .

Remark 4.1.9. In the situation of Construction 4.1.8, let f : X → Y be a weakly (n + 1)-ambidextrous

morphism. Then we can describe the natural transformation ν
(n+1)
f more informally as follows: for each

object C ∈ CX , the map ν
(n+1)
f (C) : f∗f!C → C is the image of∫

δ

idC dµ
(n)
δ ∈ MapCX×Y X

(π∗2C, π
∗
1C)

under the homotopy equivalence

MapCX×Y X
(π∗2C, π

∗
1C) ' MapCX

(π1!π
∗
2C,C) ' MapCX

(f∗f!C,C).

Our first observation is that the natural transformations introduced in Construction 4.1.8 are independent
of n, provided that n is sufficiently large.

Proposition 4.1.10. Let X be an ∞-category which admits pullbacks and let q : C→ X be a Beck-Chevalley
fibration. Then:
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(1) If f : X → Y is an n-ambidextrous morphism in X, then f is n-truncated (that is, the induced map
MapX(Z,X)→ MapX(Z, Y ) has n-truncated homotopy fibers, for each Z ∈ X).

(2) Let f : X → Y be an n-ambidextrous morphism in X. Then any pullback of f is also n-ambidextrous.

(3) Let f : X → Y be a weakly n-ambidextrous morphism in X. Then any pullback of f is also weakly
n-ambidextrous.

(4) Let −1 ≤ m ≤ n. If f is a weakly m-ambidextrous morphism in X, then f is weakly n-ambidextrous.

Moreover, the natural transformations ν
(m)
f , ν

(n)
f : f∗f! → idCX agree up to homotopy.

(5) Let −2 ≤ m ≤ n. If f is an m-ambidextrous morphism in X, then f is n-ambidextrous. Moreover, the

natural transformations µ
(m)
f , µ

(n)
f : idCY → f!f

∗ agree up to homotopy.

(6) Let −2 ≤ m ≤ n and let f be a (weakly) n-ambidextrous morphism in X. Then f is (weakly) m-
ambidextrous if and only if f is m-truncated.

Proof. By definition, a morphism f : X → Y is (−2)-ambidextrous if and only if it is an equivalence, and
if f : X → Y is an n-ambidextrous for n > −2 then the diagonal map δ : X → X ×Y X is an (n − 1)-
ambidextrous. Assertion (1) follows immediately by induction on n (see Lemma HTT.5.5.6.15). Assertion
(2) is immediate from the definitions, and (3) follows from (2).

To prove (4) and (5), it suffices to treat the case n = m + 1. We proceed by a simultaneous induction
on m. The implication (4) ⇒ (5) is clear. Conversely, if assertion (5) holds for some integer m ≥ −2, then
assertion (4) holds for the integer m + 1. It will therefore suffice to prove assertion (4) in the special case
m = −2, so that f is an equivalence in X. In this case, the diagonal map δ : X → X ×Y X is also an
equivalence, and therefore (−2)-ambidextrous. In this case, the functors f! and f∗ are homotopy inverse

to one another, and a simple calculation shows that the map v
(−1)
f is a homotopy inverse to the unit map

ψf : idCX → f∗f!. In particular, this map exhibits f∗ as a left adjoint to f!, so that f is (−1)-ambidextrous.

Moreover, the maps µ
(−1)
f and µ

(−2)
f are homotopic (both can be described as homotopy inverses to the

counit map f!f
∗ → idCY ).

We now prove (6), again using induction on m. The “only if” direction follows from (1). To prove
the converse, let us assume that f is m-truncated and n-ambidextrous; we wish to show that f is m-
ambidextrous (the corresponding assertion for weakly ambidextrous morphisms follows immediately from
this). If m = −2, then f is an equivalence and there is nothing to prove. Assume therefore that m > −2,
and let δ : X → X ×Y X be the diagonal map. Replacing f by a pullback if necessary (and invoking (2)),

we are reduced to proving that δ is (m− 1)-ambidextrous and that the map ν
(m)
f : f∗f! → idCX is the counit

of an adjunction between f∗ and f!. Since δ is (n − 1)-ambidextrous and (m − 1)-truncated, the inductive

hypothesis implies that δ is (m−1)-ambidextrous and that the unit maps µ
(m−1)
δ and µ

(n−1)
δ are homotopic.

It follows that the natural transformations ν
(m)
f , ν

(n)
f : f∗f! → idCX are homotopic. Since ν

(n)
f is the counit

of an adjunction, the natural transformation ν
(m)
f has the same property.

Definition 4.1.11. Let X be an ∞-category which admits pullbacks and let q : C→ X be a Beck-Chevalley
fibration. We will say that a morphism f : X → Y in X is a weakly ambidextrous if it is weakly n-ambidextrous

for some integer n ≥ −1. In this case, we let νf : f∗f! → idCX denote the natural transformation ν
(n)
f appear-

ing in Construction 4.1.8 (by virtue of Proposition 4.1.10, the homotopy class of this natural transformation
is independent of n). We will say that f is ambidextrous if it is n-ambidextrous for some n: that is, if every
pullback f ′ of f is weakly ambidextrous and the map νf ′ exhibits f ′∗ as a left adjoint of f ′! . In this case, we

let µf : idCY → f!f
∗ denote a compatible unit for this adjunction (so that µf = µ

(n)
f for any integer n such

that f is n-truncated).
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Remark 4.1.12. Let q : C→ X be a Beck-Chevalley fibration. Let f : X → Y be a morphism in X. If the
pullback functor f∗ : CY → CX admits a right adjoint, we will denote that right adjoint by f∗ : CX → CY .
We then have an evident homotopy equivalence

MapFun(CX ,CX (f∗f!, idCX ) ' MapFun(CX ,CY )(f!, f∗).

If f is weakly ambidextrous, we let Nmf : f! → f∗ denote the image of the natural transformation νf under
this homotopy equivalence. We will refer to Nmf as the norm map associated to f . It follows that f is
ambidextrous if and only, for every pullback diagram

X ′
f ′ //

��

Y ′

��
X

f // Y,

the following conditions are satisfied:

(a) The map f ′ is weakly ambidextrous.

(b) The functor f ′∗ admits a right adjoint f ′∗.

(c) The norm map Nmf ′ : f ′! → f ′∗ is an equivalence.

4.2 Properties of the Norm

Let q : C → X be a Beck-Chevalley fibration of ∞-categories (Definition 4.1.3). In §4.1, we introduced the
notion of an ambidextrous morphism f : X → Y in X, and associated to each ambidextrous morphism f a
natural transformation µf : idCY → f!f

∗. Our goal in this section is to establish two naturality properties
enjoyed by this construction:

Proposition 4.2.1. Let X be an ∞-category which admits pullbacks and let q : C→ X be a Beck-Chevalley
fibration. Suppose we are given a pullback diagram τ :

X ′
f ′ //

gX

��

Y ′

gY

��
X

f // Y

in the ∞-category X. Then:

(1) Assume that f is weakly ambidextrous. Then f ′ is also weakly ambidextrous. Moreover, the diagram
of natural transformations

f ′∗f ′! g
∗
X

BC[τ ] //

νf′

��

f ′∗g∗Y f!
∼ // g∗Xf

∗f!

νf

��
g∗X

id // g∗X

commutes up to homotopy.

(2) If f is ambidextrous, then the diagram of natural transformations

g∗Y
id //

µf′

��

g∗Y

µf

��
f ′! f
′∗g∗Y

∼ // f ′! g
∗
Xf
∗ BC[τ ] // g∗Y f!f

∗
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commutes up to homotopy.

Proposition 4.2.2. Let X be an ∞-category which admits pullbacks, let q : C → X be a Beck-Chevalley
fibration, and suppose we are given a pair of morphisms f : X → Y and g : Y → Z in X.

(1) Assume that f and g are weakly ambidextrous. Then the composition gf is weakly ambidextrous.
Moreover, the natural transformation νgf : (gf)∗(gf)! → idCX is homotopic to the composition

(gf)∗(gf)! ' f∗g∗g!f!
µg−→ f∗f!

µf−→ idZX .

(2) Assume that f and g are ambidextrous. Then the composition gf is ambidextrous. Moreover, the
natural transformation µgf : idCZ → (gf)!(gf)∗ is homotopic to the composition

idCZ

µg→ g!g
∗ µf→ g!f!f

∗g∗ ' (gf)!(gf)∗.

Remark 4.2.3. In the situation of Proposition 4.2.1, assume that f and f ′ are weakly ambidextrous and
that the pullback functors f∗ and f ′∗ admit right adjoints f∗ and f ′∗. Then assertion (1) reduces to the
statement that the composite transformation

f ′! g
∗
X

BC[τ ]→ g∗Y f!
Nmf→ g∗Y f∗ → f ′∗g

∗
X

is homotopic to the map induced by the norm Nmf ′ .

Remark 4.2.4. In the situation of Proposition 4.2.2, assume that f and g are weakly ambidextrous and
that the pullback functors f∗ and g∗ admit right adjoints f∗ and g∗, respectively. Then the pullback functor
(gf)∗ admits a right adjoint, given by the composition g∗ ◦ f∗. In this case, we can reformulate assertion (1)
as follows: the norm map Nmgf : (gf)! → (gf)∗ is given by the composition

(gf)! ' g!f!
Nmg→ g∗f!

Nmf→ g∗f∗ ' (gf)∗.

Remark 4.2.5. Propositions 4.2.1 and 4.2.2 barely scratch the surface of the problem of describing all of
the coherence and naturality properties enjoyed by the constructions f 7→ µf . To address this problem more
completely, it is convenient to use the language of (∞, 2)-categories. Let q : C → X be a Beck-Chevalley
fibration. We can associate to q an (∞, 2)-category Z, which we may describe informally as follows:

(a) The objects of Z are the objects of X.

(b) Given a pair of objects X,Y ∈ X, a 1-morphism from X to Y in Z is given by another object M ∈ X

equipped with a pair of maps f : M → X, g : M → Y .

(c) Composition of 1-morphisms in Z is given by composition of correspondences: that is, the composition
of a morphism X ←M → Y with a morphism Y ← N → Z is given by X ←M ×Y N → Z.

(d) Given a pair of objects X,Y ∈ Z and a pair of morphisms X ← M → Y and X ← N → Y in Z, a
2-morphism from M to N is given by a commutative diagram

M

~~   
X P

u

OO

oo

v

��

// Y

N

`` >>

in the∞-category C, where u is ambidextrous and v is arbitrary. Composition of 2-morphisms is again
given by composition of correspondences.

97



Then one can construct an essentially unique functor Θ from Z to the (∞, 2)-category of∞-categories, given
informally as follows:

(a′) To each object X ∈ Z, the functor Θ assigns the ∞-category CX .

(b′) To each 1-morphism X
f←M

g→ Y in Z, the functor Θ assigns the functor g!f
∗ : CX → CY .

(c′) Given a pair of composable morphisms X
f← M

g→ Y and Y
f ′← N

g′→ Z, consider the commutative
diagram σ :

M ×Y N
f ′′

zz

g′′

$$
M

g

$$

N
f ′

zz
Y.

Then the compatibility of Θ with composition of 1-morphisms is witnessed by the equivalence

(g′g′′)!(ff
′′)∗ ' g′!(g′′! f ′′∗)f∗

BC[σ]−→ g′!(f
′∗g!)f

∗ = (g′!f
′∗) ◦ (g!f

∗).

(d′) To each 2-morphism in Z, given by a commutative diagram

M
f

~~

g

  
X Poo //

u

OO

v

��

Y

N,

f ′

``

g′

>>

the functor Θ associates the natural transformation

g!f
∗ µu−→ g!(u!u

∗)f∗ ' g′!(v!v
∗)f ′∗

φv→ g′!f
∗.

Proposition 4.2.2 expresses a special case of the compatibility of Θ with composition of 2-morphisms, while
Proposition 4.2.1 expresses a special case of the compatibility of Θ with the combination of horizontal and
vertical compositions in Z.

We will defer the precise definition of the (∞, 2)-category Z, and the existence of the functor Θ to a
future work; the comparatively crude Propositions 4.2.1 and 4.2.2 will be sufficient for our applications in
this paper.

From Proposition 4.2.1, we can deduce the following related result:

Corollary 4.2.6. Let X be an ∞-category which admits pullbacks and let q : C → X be a Beck-Chevalley
fibration. Suppose we are given a pullback diagram τ :

X ′

f ′

��

gX // X

f

��
Y ′

gY // Y

in the ∞-category X. Then:
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(1) Assume that f is weakly ambidextrous. Then f ′ is weakly ambidextrous, and the diagram of natural
transformations

gX!f
′∗f ′!

BC[τ ] //

νf′

��

f∗gY !f
′
!
∼ // f∗f!gX!

νf

��
gX!

id // gX!

commutes up to homotopy.

(2) If f is ambidextrous, then f ′ is ambidextrous, and the diagram of natural transformations

gY !
id //

µf′

��

gY !

µf

��
gY !f

′
! f
′∗ ∼ // f!gX!f

′∗ BC[τ ] // f!f
∗gY !

commutes up to homotopy.

Proof. To prove (1), we use the adjointness between gX! and g∗X to obtain homotopy equivalences

MapFun(CX′ ,CX)(gX!f
′∗f ′! , gX!) ' MapFun(CX ,CX (f ′∗f ′! , g

∗
XgX!) ' MapFun(CX′ ,CX)(f

′∗f ′! g
∗
X , g

∗
X).

Under this homotopy equivalence, the two natural transformations appearing in the statement of (1) corre-
spond to the two natural transformations appearing in the first assertion of Proposition 4.2.1. It then follows
from Proposition 4.2.1 that these natural transformations are homotopic. The proof of (2) is similar.

We now turn to the proofs of Propositions 4.2.1 and 4.2.2.

Proof of Proposition 4.2.1. It follows immediately from our definitions that if f is (weakly) ambidextrous,
then f ′ is also (weakly) ambidextrous. If f is weakly ambidextrous, then f is n-truncated for some integer
n ≥ −2. We proceed by induction on n. In the case n = −2, the maps f and f ′ are equivalences and
assertions (1) and (2) are easy. We will therefore assume that n ≥ −1. To prove (1), let us assume that f
and f ′ are weakly ambidextrous, so that we have a pullback square ρ :

X ′
δ′ //

gX

��

X ′ ×Y ′ X ′

gπ

��
X

δ // X ×Y X

where δ and δ′ are (n− 1)-truncated and ambidextrous. Let σ denote the pullback square

X ×Y X
π1 //

π2

��

X

f

��
X

f // Y,

let σ′ denote the pullback square

X ′ ×Y ′ X ′
π′1 //

π′2
��

X ′

f ′

��
X ′

f ′ // Y ′,
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and let ν denote the pullback square

X ′ ×Y ′ X ′
π1 //

gπ

��

X ′

gX

��
X ×Y X

π1 // X,

and consider the diagram of natural transformations

f ′∗f ′! g
∗
X

BC[τ ]

��

BC[σ′]−1

// π′1!π
′∗
2 g
∗
X

µδ′ //

∼

��

π′1!δ
′
!δ
′∗π′∗2 g

∗
X

∼ //

��

g∗X

id

��

π′1!δ
′
!δ
′∗g∗ππ

∗
2

∼
��

f ′∗g∗Y f!

∼

��

π′1!g
∗
ππ
∗
2

µδ′
77

µδ

''
BC[ν]

��

π′1!δ
′
!g
∗
Xδ
∗π∗2

∼ //

BC[ρ]

��

g∗X

��

π′1!g
∗
πδ!δ

∗π∗2

BC[ν]

��
g∗Xf

∗f!

BC[σ]−1

// g∗Xπ1!π
∗
2

µδ // g∗Xπ1!δ!δ
∗π∗2

∼ // g∗X .

We wish to prove that the outer rectangle of this diagram commutes up to homotopy. In fact, we claim
that the entire diagram commutes up to homotopy. For all parts of the diagram except for the middle and
the square on the left, this is routine. The middle part commutes by virtue of the inductive hypothesis. To
prove the commutativity of the rectangle on the left, it suffices to show that the diagram

f ′∗f ′! g
∗
X

BC[τ ]

��

π′1!π
′∗
2 g
∗
X

BC[σ′]oo

∼
��

f ′∗g∗Y f!

∼
��

π′1!g
∗
ππ
∗
2

BC[ν]

��
g∗Xf

∗f! g∗Xπ1!π
∗
2

BC[σ]oo

commutes up to homotopy. This is clear, because both compositions can be associated with the Beck-
Chevalley transformation associated to the pullback square

X ′ ×Y ′ X ′
π′1 //

��

X ′

��
X

f // Y.

We now prove (2). Assume that f is ambidextrous, so that the natural transformations

νf : f∗f! → idCX νf ′ : f ′∗f ′! → idCX′

are counits of adjunctions. It follows that the composite map

α : MapFun(CY ,CY ′ )
(g∗Y , g

∗
Y f!f

∗)→ MapFun(CX ,CY ′ )
(g∗Y f!, g

∗
Y f!f

∗f!)→ MapFun(CX ,CY ′ )
(g∗Y f!, g

∗
Y f!)
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is a homotopy equivalence, where the first map is given by precomposition with f! and the second map is
given by composition with µf . We note that the natural transformation g∗Y → g∗Y f!f

∗ determined by µf can
be identified with an inverse image of the identity transformation under the equivalence α. Consequently,
the commutativity of the diagram appearing in (2) is equivalent to the assertion that the composite map

g∗Y f!

µf′−→ f ′! f
′∗g∗Y f! ' f ′! g∗Xf∗f!

BC[τ ]−→ g∗Y f!f
∗f!

νf−→ g∗Y f!

is homotopic to the identity. To prove this, consider the diagram

g∗Y f!

µf′ // f ′! f
′∗g∗Y f!

∼ // f!g
∗
Xf
∗f!

vf

&&

BC[τ ] // g∗Y f!f
∗f!

νf // g∗Y f!

f ′! g
′
X

BC[τ ]

OO

µf′ // f ′! f
′∗f ′! g

∗
X

BC[τ ]

OO

νf′ // f ′! g
∗
X

BC[τ ]

::

The middle trapezoidal diagram commutes up to homotopy by (1), and the outer parts of the diagram
obviously commute up to homotopy. Since q is a Beck-Chevalley fibration, the map BC[τ ] is an equivalence.
Consequently, to prove that composition appearing in the upper part of the diagram is homotopic to the
identity, it suffices to show that the composition appearing in the lower part of the diagram is homotopic to
the identity. This follows immediately from the compatibility between the unit µf ′ with the counit νf ′ .

Proof of Proposition 4.2.2. If f and g are weakly ambidextrous, then there exists an integer n such that
both f and g are n-truncated. We will prove (1) and (2) by a simultaneous induction on n. If n = −2 (so
that both f and g are equivalences) then the result is obvious. Let us therefore assume that n > −2. We
first prove (1). Assume that f and g weakly ambidextrous. Let δ(f) : X → X×Y X and δ(g) : Y → Y ×Z Y
denote the diagonal maps determined by Y and Z. Then δ(f) and δ(g) are ambidextrous. We will also
consider the ambidextrous maps

Xδ(g) : X → X ×Z Y Xδ(g)X : X ×Y X → X ×Z X δ(g)X : X → Y ×Z X

given by base change of δ(g). The diagonal map

δ(gf) : X → X ×Z X

is given by the composition Xδ(g)X◦δ(f). It follows from the inductive hypothesis that δ(gf) is ambidextrous.
Moreover, we deduce that the unit map µδ(gf) : id→ δ(gf)!δ(gf)∗ is given by the composition

id
µh−→ δ(g)X X! δ(g)

∗
X X

µδ(f)−→ δ(g)X X!δ(f)!δ(f)
∗
δ(g)

∗
X X ' δ(gf)!δ(gf)∗

where h = δ(g)X X .
Let ρ denote the pullback diagram

X ×Y X
π′1 //

π′2
��

X

f

��
X

f // Y,

and consider also the commutative diagram

X ×Z X
Xf //

fX

��

X ×Z Y
Xπ1 //

fY

��

X

f

��
Y ×Z X

Y f //

Xπ2

��

Y ×Z Y
π1 //

π2

��

Y

g

��
X

f // Y
g // Z.
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We will denote the lower right square of this diagram by σ, the upper right square by σ′, and the rectangle
on the left by τ . Consider the diagram of natural transformations (in the ∞-category Fun(CX ,CX))

f∗g∗g!f!

BC[σ]−1

��
f∗π1!π

∗
2f!

µδ(g) //

BC[σ′]−1

��

f∗π1!δ(g)!δ(g)∗π∗2f!

BC[σ′]−1

��

∼ // f∗δ(g)∗π∗2f!

∼

��

∼ // f∗f!

BC[ρ]−1

��

πX 1!f
∗
Y π
∗
2f!

µδ(g) //

BC[τ ]−1

��

µ
Xδ(g)

**

πX 1!f
∗
Y δ(g)!δ(g)∗π∗2f!

∼
��

πX 1! δ(g)X ! δ(g)
∗

X f∗Y π
∗
2f!

∼ //

BC[τ ]−1

��

δ(g)
∗

X f∗Y π
∗
2f!

BC[ρ]−1

��

πX 1! fX !f
∗
X π∗X 2

µ
Xδ(g) //

µ
Xδ(g)X

**

πX 1! δ(g)X ! δ(g)
∗

X X fX !f
∗
Xπ
∗
2

∼
��

πX 1! fX ! δ(g)X X! δ(g)
∗

X Xf
∗
X π∗X 2

∼ // π′1!δ(g)∗f∗Xπ
∗
2

// π′1!π
′∗
2

µδ(f)

��
π′1!δ(f)!δ(f)∗π′∗2

∼
��

idCX .

Using the formula for µδ(gf) given by the inductive hypothesis (and the transitivity properties of Beck-
Chevalley transformations), we see that νgf is given by a a counterclockwise circuit around the diagram,
from the upper left corner to the lower right corner. On the other hand, the composition

(gf)∗(gf)! ' f∗g∗g!f!
vg−→ f∗f!

νf−→ id

is given by a clockwise circuit around the same diagram. It therefore suffices to prove that the diagram
commutes. This follows by inspection except in the case of the two triangles, which commute by virtue of
Proposition 4.2.1 and Corollary 4.2.6.

We now prove (2). Assume that f and g are ambidextrous; we wish to show that g ◦ f is ambidextrous.
Let Z ′ → Z be any morphism in X, and form a pullback diagram

X ′
f ′ //

��

Y ′
g′ //

��

Z ′

��
X

f // Y
g // Z.

We wish to prove that g′ ◦ f ′ is ambidextrous. Replacing Z by Z ′, we are reduced to proving that g ◦ f is
ambidextrous. It follows from (1) that g ◦ f is weakly ambidextrous. Consider the composite map

idCZ

µg−→ g!g
∗ µf−→ g!f!f

∗g∗ ' (gf)!(gf)∗.

We will complete the proof by showing that µ and νgf are compatible unit and counits for an adjunction
between (gf)∗ and (gf)!. In other words, we claim that the composite maps

(gf)∗
µ−→ (gf)∗(gf)!(gf)∗

νgf−→ (gf)∗
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(gf)!
µ−→ (gf)!(gf)∗(gf)!

νgf−→ (gf)!

are homotopic to the identity transformations. We will prove that the first composition is homotopic to the
identity; the proof in the second case is similar. Unwinding the definitions and using the description of νgf
supplied by (1), we see that the relevant composition is given by a clockwise circuit around the diagram

f∗g∗
µg //

id

$$

f∗g∗g!g
∗ µf //

νg

��

f∗g∗g!f!f
∗g∗

νg

��
f∗g∗

µf //

id

''

f∗f!f
∗g∗

νf

��
f∗g∗.

The desired result now follows from the fact that this diagram commutes up to homotopy (the commutativity
of the triangles follows from the compatibility of the pairs (µf , νf ) and (µg, νg)).

4.3 Local Systems

In §4.1, we described the theory of ambidexterity associated to an arbitrary Beck-Chevalley fibration q : Y→
X. In this section, we will specialize to the case where X = S is the ∞-category of spaces, and the fiber of q
over an object X ∈ X is the ∞-category of local systems on X with values in some ambient ∞-category C.
Our main result (Proposition 4.3.5) asserts that in this case, the ambidexterity of a map f : X → Y can be
regarded as a condition on the homotopy fibers of f .

We begin by introducing some notation.

Construction 4.3.1. Let C be an ∞-category. The construction X 7→ Fun(X,C) determines a simplicially
enriched functor from the (opposite of the) category of Kan complexes to the category of ∞-categories.
Passing to the coherent nerve, we obtain a functor of ∞-categories Fun(•,C) : Sop → C. We let q :
LocSys(C) → S denote a Cartesian fibration classified by this functor. More informally, we let LocSys(C)
denote the ∞-category whose objects are pairs (X,L), where X is a Kan complex and L ∈ Fun(X,C) is a
local system on X with values in C.

For each object X ∈ S, the inverse image LocSys(C)X = q−1{X} is canonically equivalent to the ∞-
category Fun(X,C) of C-valued local systems on X. For every map of Kan complexes f : X → Y , the
pullback functor f∗ : LocSys(C)Y → LocSys(C)X can be identified with the functor Fun(Y,C) → Fun(X,C)
given by composition with f .

Remark 4.3.2. Let C be an ∞-category which admits small colimits. Then for every functor f : I → J

between small ∞-categories, the associated functor f∗ : Fun(J,C) → Fun(I,C) admits a left adjoint f!,
given by left Kan extension along f (see §HTT.4.3.3). It follows in particular that the Cartesian fibration
LocSys(C)→ S is also a coCartesian fibration (see Corollary HTT.5.2.2.5).

Proposition 4.3.3. Let C be an ∞-category which admits small colimits. Then the forgetful functor

LocSys(C)→ S

is a Beck-Chevalley fibration (Definition 4.1.3).

Proof. Suppose we are given a pullback diagram σ :

X ′
f ′ //

gX

��

Y ′

gY

��
X

f // Y
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in S. Unwinding the definitions, we must prove the following: if we are given local systems LX : X → C and
LY : Y → C and a natural transformation α : LX → LY ◦f which exhibits LY as a left Kan extension of
LX along f , then the induced natural transformation β : LX ◦gX → LY ◦gY ◦ f ′ exhibits LY ◦gY as a left
Kan extension of LX ◦gX along f ′. Fix a point y′ ∈ Y ′. We wish to prove that the canonical map

θ : lim−→((LX ◦gX)|(X ′ ×Y ′ Y ′/y′)→ (LY ◦gY )(y′)

is an equivalence. Since σ is a pullback diagram, we can identify θ with the canonical map

lim−→(LX |X ×Y Y/y)→ LY (y),

where y = gY (y′) denotes the image of y′ in Y . The desired result now follows immediately from the
assumption that α exhibits LY as a left Kan extension of LX along f .

Definition 4.3.4. Let C be an∞-category which admits small colimits and let q : LocSys(C)→ S denote the
Beck-Chevalley fibration of Proposition 4.3.3. We will say that a Kan complex X is weakly C-ambidextrous if
the projection map X → ∗ is weakly ambidextrous in the sense of Definition 4.1.11 (for the Beck-Chevalley
fibration q). We will say that X is C-ambidextrous if it is weakly C-ambidextrous and the natural transfor-
mation νf : f∗f! → idFun(X,C) is the counit of an adjunction.

We are now ready to state our main result:

Proposition 4.3.5. Let C be an ∞-category which admits small colimits, and let f : X → Y be a Kan
fibration between Kan complexes. Then:

(1) The map f is ambidextrous (for the Beck-Chevalley fibration q : LocSys(C) → S) if and only if it is
n-truncated for some integer n and each fiber Xy of f is C-ambidextrous.

(2) The map f is weakly ambidextrous (for the Beck-Chevalley fibration q : LocSys(C)→ S) if and only if
it is n-truncated for some integer n and each fiber Xy of f is weakly C-ambidextrous.

Corollary 4.3.6. Let C be an ∞-category which admits small colimits, and let f : X → Y be a Kan
fibration between truncated spaces. If Y is C-ambidextrous and each fiber Xy of f is C-ambidextrous, then X
is C-ambidextrous.

Proof. Combine Propositions 4.2.2 and 4.3.5.

Remark 4.3.7. Let C be an ∞-category which admits small colimits. Using Proposition 4.3.5, we see that
a Kan complex X is weakly C-ambidextrous if and only if, for every pair of vertices x, y ∈ X, the path space
Px,y is C-ambidextrous. In particular:

• If X is empty, then it is automatically weakly C-ambidextrous.

• If X is connected, then it is weakly C-ambidextrous if and only if the loop space Ω(X) (formed with
any choice of base point) is C-ambidextrous.

• If X has more than one connected component, then it is weakly C-ambidextrous if and only if the empty
space ∅ is C-ambidextrous (this is equivalent to the assumption that the ∞-category C is pointed: see
Remark 4.4.6) and the loop space Ω(X) is C-ambidextrous, for every choice of base point x ∈ X.

Our proof of Proposition 4.3.5 will require the following simple observation:

Lemma 4.3.8. Let C be an ∞-category which admits small colimits and let X be a Kan complex. Then
Fun(X,C) is generated (under small colimits) by objects of the form i!C, where i : {x} → X is the inclusion
of a vertex and C ∈ C ' Fun({x},C).
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Proof. Let δ : X → X ×X denote the diagonal map and let p : X ×X → X denote the projection onto the
second factor. Then left Kan extension along δ and p determine functors

δ! : Fun(X,C)→ Fun(X ×X,C) p! : Fun(X ×X,C)→ Fun(X,C),

and the composition p! ◦ δ! is homotopic to the identity. Note that we can identify Fun(X ×X,C) with the
∞-category of diagrams Fun(X,Fun(X,C)), and that the functor p! is given by the formation of colimits of
X-indexed diagrams in Fun(X,C). It follows that every object L ∈ Fun(X,C) is given by the colimit of a
diagram q : X → Fun(X,C), where q(x) = (δ!X)|({x} × X). Applying Proposition 4.3.3 to the homotopy
pullback square

{x} //

��

{x} ×X

��
X

δ // X ×X,

we can identify q(x) with the left Kan extension ix! L(x), where ix : {x} → X is the inclusion map and
L(x) ∈ C ' Fun({x},C) is the value of L at the point x.

Proof of Proposition 4.3.5. The “only if” directions of (1) and (2) are clear. To prove the reverse implica-
tions, we may suppose that f is n-truncated for some integer n. We prove (1) and (2) by a simultaneous
induction on n.

If n = −2 then f is an equivalence and there is nothing to prove. Suppose now that n > −2 and that
each fiber of f is weakly C-ambidextrous. Let δ : X → X ×Y X be the diagonal map. We wish to show that
δ is ambidextrous. Since δ is (n− 1)-truncated, it will suffice (by virtue of the inductive hypothesis) to show
that each homotopy fiber of δ is C-ambidextrous. Fix a vertex of X ×Y X, which we can identify with a pair
of vertices (x, x′) ∈ X ×X having the same image y ∈ Y . Let Px,x′ denote the homotopy fiber of δ over the
point (x, x′), which we can identify with the space of paths from x to x′ in the Kan complex Xy. Since Xy

is weakly C-ambidextrous, the diagonal map Xy → Xy ×Xy is ambidextrous. Using the homotopy pullback
diagram

Px,x′ //

��

{(x, x′)}

��
Xy

// Xy ×Xy,

we deduce that Px,x′ is C-ambidextrous as desired.
Now suppose that f is n-truncated and that fibers of f are C-ambidextrous; we wish to show that f is

ambidextrous. It follows from the previous step that f is weakly ambidextrous. Replacing f by a pullback
of f , we are reduced to showing that the map νf : f∗f! → id is the counit of an adjunction between the
functors f∗ and f!. Fix a pair of local systems LX : X → C and LY : Y → C; we wish to show that the
composite map

α : MapFun(Y,C)(LY , f! LX)→ MapFun(X,C)(f
∗ LY , f

∗f! LX)
νf→ MapFun(X,C)(f

∗ LY ,LX)

is a homotopy equivalence. The collection of those local systems LY for which this condition is satisfied
is closed under small colimits. We may therefore use Lemma 4.3.8 to reduce to the case where LY = i!C,
where i : {y} → Y denotes the inclusion of a vertex and C ∈ C is a fixed object. Let f ′ : Xy → {y} denote
the projection map. We have a diagram

MapFun(Y,C)(LY , f! LX) //

��

MapFun(X,C)(f
∗ LY , f

∗f! LX)
νf //

��

MapFun(X,C)(f
∗ LY ,LX)

��
MapC(C, (f! LX)(y)) // MapFun(Xy,C)(f

′∗C, f ′∗(f! LX)(y))
νf′ // MapFun(Xy,C)(f

′∗C,LX |Xy)
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where the commutativity of the right square follows from Proposition 4.2.1. It follows from Proposition 4.3.3
that the vertical map on the right is a homotopy equivalence. We are therefore reduced to showing that the
lower horizontal composition is a homotopy equivalence, which follows immediately from our assumption
that the fiber Xy is C-ambidextrous.

We now use Lemma 4.3.8 to give an alternate characterization of C-ambidextrous spaces, which does
make explicit mention of the natural transformations ν.

Proposition 4.3.9. Let C be an ∞-category which admits small colimits, let X be a truncated Kan complex,
and let f : X → ∗ be the projection from X to a point. Then X is C-ambidextrous if and only if the following
conditions are satisfied:

(1) The Kan complex X is weakly C-ambidextrous (that is, each path space Px,y = Fun(∆1, X)×Fun(∂∆1,X)

{(x, y)} is C-ambidextrous: see Remark 4.3.7).

(2) The pullback functor f∗ : C→ Fun(X,C) admits a right adjoint f∗.

(3) The functor f∗ preserves small colimits.

Proof. Suppose X is C-ambidextrous. Then condition (1) is obvious, and conditions (2) and (3) follow from
the observation that f! is right adjoint to f∗. Conversely, suppose that conditions (1), (2), and (3) are
satisfied. Using condition (2), we can identify νf : f∗f! → idFun(X,C) with a norm map NmX : f! → f∗ (see
Remark 4.1.12); we wish to show that Nmf is an equivalence. For this, it suffices to show that for every
local system L : X → C, the induced map f! L→ f∗ L is an equivalence in C. The collection of those objects
L ∈ Fun(X,C) for which this condition is satisfied is closed under small colimits in Fun(X,C) (by virtue of
condition (3)). Using Lemma 4.3.8, we can assume that L = i!C, where C ∈ C is an object and i : {x} → X
is the inclusion of a point. Assumption (1) guarantees that i is ambidextrous. Using Remark 4.2.4, we see
that the composite map

C ' (fi)!C ' f! L
Nmf→ f∗ L

Nmi→ f∗i∗C ' C

is homotopic to the identity. Since i is ambidextrous, the map Nmi is an equivalence; it follows that Nmf is
an equivalence as well.

Remark 4.3.10. In the situation of Proposition 4.3.9, suppose that the ∞-category C admits small limits
(this is satisfied, for example, if C is presentable). Then hypothesis (2) is automatically satisfied. Moreover,
we can replace hypothesis (3) by the following variant:

(3′) The functor f! preserves small limits.

Assuming (3′), the collection of those objects L ∈ Fun(X,C) for which the norm map Nmf induces an
equivalence f! L → f∗ L is closed under small limits. Invoking the dual of Lemma 4.3.8, we can reduce to
the case where L = i∗C where i is the inclusion of a point x ∈ X and C ∈ C is some object. We have a
commutative diagram

f!i!C
Nmf //

Nmi

��

f∗i!C

Nmi

��
f!i∗C // f∗i∗C.

Since i is ambidextrous, the vertical maps are equivalences, and the diagonal map is an equivalence by
Remark 4.2.4. It follows that the lower horizontal map is also an equivalence.

Example 4.3.11. Let PrL denote the ∞-category whose objects are presentable ∞-categories and whose
morphisms are functors which preserve small colimits. Let X be an arbitrary simplicial set equipped with a
map χ : X → PrL, classifying a coCartesian fibration q : X → X with presentable fibers. Using Propositions
HTT.5.5.3.13 and HTT.3.3.3.1, we can identify lim←−χ with the full subcategory of FunX(X,X) spanned by
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those sections of q which carry each edge of X to a q-coCartesian edge of X. In the special case where X is a
Kan complex, this condition is automatic so that lim←−χ ' FunX(X,X). In this case, we can also view χ as a

functor χ′ : X → PrR, where PrR denotes the∞-category of presentable∞-categories and functors which are
accessible and preserve small limits. Using Corollary HTT.5.5.3.4, Theorem HTT.5.5.3.18, and Proposition
HTT.3.3.3.1, we obtain an equivalence of ∞-categories lim−→χ ' lim←−χ

′ ' FunX(X,X). Combining these
observations, we obtain a canonical equivalence lim−→χ ' lim←−χ. This equivalence is natural in χ. If f : X → ∗
is the projection map, we obtain an equivalence α between the functors f∗, f! : Fun(X,PrL) → PrL. In
particular, the functor f∗ preserves small colimits and the functor f! preserves small limits. Repeatedly
applying Proposition 4.3.9, we deduce that every truncated space X is PrL-ambidextrous. With more effort,
one can show that the equivalence α : f! ' f∗ constructed above is homotopic to the norm map Nmf of
Remark 4.1.12.

4.4 Examples

Let C be an ∞-category which admits small limits. In §4.3, we introduced the notion of a C-ambidextrous
space. In this section, we will study conditions on C which guarantee the existence of a good supply of
C-ambidextrous spaces.

Definition 4.4.1. Let X be a space. We will say that X is a finite n-type if the following conditions are
satisfied:

(1) The space X is n-truncated: that is, the homotopy groups πm(X,x) vanish for m > n (for every choice
of base point x ∈ X).

(2) For every point x ∈ X and every integer m, the set πm(X,x) is finite.

Definition 4.4.2. Let C be an ∞-category which admits small colimits, and let n ≥ −2 be an integer. We
will say that C is n-semiadditive if every finite n-type X is C-ambidextrous.

Remark 4.4.3. Let n ≥ −2 be an integer, and let C be an n-semiadditive ∞-category. For every finite
n-type X, let p : X → ∗ denote the projection map from X to a point, and let µX denote the natural
transformation µp : idC → p!p

∗ of Definition 4.1.11. For every pair of objects C,D ∈ C, the construction
described in Notation 4.1.6 determines a map of spaces

dµX : Fun(X,MapC(C,D))→ MapC(C,D),

which we will denote by f 7→
∫
X
fdµX . This is our motivation for the terminology introduced in Definition

4.4.2: an n-semiadditive ∞-category is an ∞-category C in which is it possible to “add” a collection of
morphisms parametrized by a finite n-type.

Remark 4.4.4. Let X be a finite (n + 1)-type. For every pair of vertices x, y ∈ X, the path space Px,y is
a finite n-type. It follows from Remark 4.3.7 that if C is an n-semiadditive ∞-category, then X is weakly
C-ambidextrous.

Example 4.4.5. A Kan complex X is a finite (−2)-type if and only if it is contractible. It follows that
every ∞-category C which admits small colimits is (−2)-semiadditive.

Remark 4.4.6. Let C be an ∞-category which admits small colimits. The empty Kan complex ∅ is always
weakly C-ambidextrous (since the diagonal map ∅ → ∅ × ∅ is an isomorphism). Note that Fun(∅,C) ' ∆0

has a unique object, which we will denote by E. Let f : ∅ → ∗ be the inclusion, so that the pullback functor

f∗ : C ' Fun(∗,C)→ Fun(∅,C) ' ∆0

is the constant map and its left adjoint f! : Fun(∅,C) → C carries E to an initial object of C. Unwinding
the definitions, we see that the empty Kan complex is C-ambidextrous if and only if the identification
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νf : f∗ ◦ f! ' id is the counit of an adjunction. This is equivalent to the assertion that for every object
C ∈ C, the canonical map

MapC(C, f!(E))→ MapFun(∅,C)(f
∗C, f∗f!(E))

νf→ MapFun(∅,C)(f
∗C,E) ' ∗

is a homotopy equivalence. In other words, ∅ is C-ambidextrous if and only if C is a pointed ∞-category:
that is, the initial object of C is also a final object.

Example 4.4.7. Note that a Kan complex X is a finite (−1)-type if and only if it is either empty or
contractible. Consequently, if C is an∞-category which admits small colimits, then C is (−1)-semiadditive if
and only if it is pointed. In this case, for every pair of objects C,D ∈ C, Remark 4.4.3 produces a canonical
map

dµ∅ : Fun(∅,MapC(C,D))→ MapC(C,D),

which we can identify with a morphism from C to D. Unwinding the definitions, we see that this is the zero
morphism from C to D: that is, it is given by the composition C → 0 → D, where 0 denotes a zero object
of C.

Example 4.4.8. Let C be an∞-category which admits small limits and colimits and let X be a set, which we
regard as a discrete space. Then we can identify objects of LocSys(C)X with sequences of objects {Cx}x∈X
of the ∞-category C, indexed by the set X. If p : X → ∗ denotes the projection from X to a point, then the
functors

p! : Fun(X,C)→ C p∗ : Fun(X,C)→ C

are given by

{Cx}x∈X 7→
∐
x∈X

Cx {Cx}x∈X 7→
∏
x∈X

Cx.

Assume that C is pointed, and therefore (−1)-semiadditive. It follows from Remark 4.3.7 that X is weakly
C-ambidextrous. Unwinding the definitions, the norm map Nmp : p! → p∗ associates to each {Cx}x∈X ∈
Fun(X,C) the map

θ :
∐
x∈X

Cx →
∏
y∈X

Cy,

whose (x, y)-component is given by idCx for x = y, and is otherwise given by the zero map (see Example
4.4.7). It follows that X is C-ambidextrous if and only if θ is an equivalence, for every collection of objects
{Cx}x∈X .

Proposition 4.4.9. Let C be an∞-category which admits small limits and colimits. Then C is 0-semiadditive

if and only if it is pointed and, for every pair of objects C,D ∈ C, the matrix

[
idC 0
0 idD

]
induces an

equivalence C qD → C ×D.

Proof. We will prove the “if” direction; the converse is an immediate consequence of Examples 4.4.7 and
4.4.8. Assume that C satisfies the conditions of the Proposition; we wish to show that every finite discrete
space X is C-ambidextrous. We proceed by induction on the number of elements of X. If X is empty, then the
desired result follows from our assumption that C is pointed (Example 4.4.7). Otherwise, choose an element
x ∈ X. Set Y = {x, y}, and define a map p : X → Y which carries x to itself and X − {x} to y. The fiber
p−1{x} is contractible (hence C-ambidextrous), and the fiber p−1{y} has cardinality < |X| and is therefore
C-ambidextrous by the inductive hypothesis. It follows from Example 4.4.8 that Y is C-ambidextrous, so
that X is C-ambidextrous by Corollary 4.3.6.

Remark 4.4.10. In the situation of Proposition 4.4.9, it is not really necessary to assume that C admits
small limits. If C is a pointed∞-category which admits small colimits, then for every pair of objects C,D ∈ C

we obtain a canonical pair of maps
C ← C qD → D.
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The 0-semiadditivity of C is equivalent to the requirement that this pair of maps exhibits CqD as a product
of C with D in the ∞-category C.

Remark 4.4.11. Let C be a 0-semiadditive ∞-category. For every pair of objects C,D ∈ C and every finite
set X, the construction of Remark 4.4.3 determines a map

dµX : Fun(X,MapC(C,D))→ MapC(C,D).

In particular, taking X to be a set with two elements, we obtain an addition map

+ : MapC(C,D)×MapC(C,D)→ MapC(C,D).

It is not difficult to see that this addition map is commutative and associative up to homotopy, with unit
given by the zero map 0 ∈ MapC(C,D). With more effort, one can show that this addition is commutative
and associative up to coherent homotopy: that is, it underlies an E∞-structure on the space MapC(C,D).

Remark 4.4.12. Let A be an ordinary category. Recall that A is said to be additive if the following
conditions are satisfied:

(1) The category A is pointed.

(2) The category A admits finite products and coproducts.

(3) For every pair of objects A,B ∈ A, the matrix

[
idA 0
0 idB

]
determines an isomorphism from the

coproduct AqB to the product A×B.

(4) For every pair of objects A,B, the set of maps HomA(A,B) is an abelian group under the addition
law which carries a pair of maps f, g : A→ B to the sum

f + g : A→ A×A (f,g)−→ B ×B ' B qB → B.

Note that if A admits small colimits, then conditions (1), (2), and (3) are equivalent to the 0-semiadditivity
of the nerve N(A). We may therefore regard the theory of 0-semiadditive∞-categories as a generalization of
the theory of additive categories (modulo the assumption of the existence of small colimits, which is mostly
a matter of convenience).

Remark 4.4.13. Let C be an ∞-category which admits small limits and colimits. The characterization
of Proposition 4.4.9 shows that the 0-semiadditivity of C is really a condition on the homotopy category
hC. Namely, the homotopy category hC automatically satisfies condition (2) of Remark 4.4.12, and C is
0-semiadditive if and only if hC also satisfies conditions (1) and (3).

Example 4.4.14. Let C be a stable ∞-category which admits small limits and colimits. Then C is 0-
semiadditive. Consequently, for every finite group G, the classifying space BG is weakly C-ambidextrous.
Let p : BG→ ∗ denote the projection map. Then the norm map Nmp : p! → p∗ determines a map CG → CG,
for every G-equivariant object C of C. We denote the cofiber of this norm map by CtG, and refer to it as the
Tate construction for the action of G on C (see Definition HA.7.1.6.24). Note that the classifying space BG
is C-ambidextrous if and only if, for every G-equivariant object C of C, the Tate construction CtG vanishes.

We now turn our attention to 1-semiadditivity.

Notation 4.4.15. Let C be a 0-semiadditive∞-category. For every integer n ≥ 0 and every object C ∈ C, we
let [n] : C → C denote the n-fold sum of the identity map idC with itself, under the addition on MapC(C,C)
described in Remark 4.4.11. More explicitly, we let [n] denote the composite map

C
δ→
∏

1≤i≤n

C '
∐

1≤j≤n

C
δ′→ C.

Here δ and δ′ denote the diagonal and codiagonal, respectively, and the middle equivalence is supplied by
Example 4.4.8.
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Proposition 4.4.16. Let C be a 0-semiadditive ∞-category which admits small limits and colimits. Assume
that there is a prime number p with the following property:

(∗) For every integer n ≥ 1 which is relatively prime to p and every object C ∈ C, the map n : C → C is
an equivalence.

Then C is 1-semiadditive if and only if the Eilenberg-MacLane space K(Z /pZ, 1) is C-ambidextrous.

Proof. The “only if” direction is obvious. For the converse, suppose that K(Z /pZ, 1) is C-ambidextrous.
Let X be any finite 1-type; we wish to show that X is C-ambidextrous. Applying Corollary 4.3.6 to the map
X → π0X, we can reduce to the case where X is connected, so that X ' BG for some finite group G. Let
P ⊆ G be a p-Sylow subgroup, and consider the maps

BP
g→ BG

f→ ∗.

We wish to show that the norm map Nmf : f! → f∗ is an equivalence. Let L ∈ Fun(BG,C) be an arbitrary
object. The map g is equivalent to a covering space with finite fibers, and is therefore ambidextrous. Let
α : L→ L denote the composition

L→ g∗g
∗ L ' g!g

∗ L→ L .

We claim that α is an equivalence. To prove this, it suffices to show that α induces an equivalence x∗ L→ x∗ L
for every point x ∈ BG. Unwinding the definitions, we see that x∗(α) is given by the multiplication map
[n] : Lx → Lx, where n is the cardinality of the quotient G/P . Since P is a p-Sylow subgroup of G, the
number n is relatively prime to p so that [n] is an equivalence. It follows that L is a retract of g!g

∗ L.
Consequently, to prove that Nmp induces an equivalence p! L → f∗ L, we are free to replace L by f!f

∗ L,
and may therefore assume that L = f! L

′ for some L′ ∈ Fun(BP,C). Consider the composite map

f!g! L
′ Nmf−→ f∗g! L

′ Nmg−→ f∗g∗ L
′ .

Since g ambidextrous, the second map is an equivalence. To prove that the first map is an equivalence, it
suffices to show the composite map is an equivalence. According to Remark 4.2.4, the composite map can
be identified with the norm for the composition fg. We may therefore replace G by P and reduce to the
case where G is a p-group. We now proceed by induction on the cardinality of G. If G is trivial there is
nothing to prove. Otherwise, we can choose a normal subgroup G′ ⊆ G of order p. It follows from the
inductive hypothesis that B(G/G′) is C-ambidextrous. We have a fibration BG → B(G/G′), whose fibers
are homotopy equivalent to the Eilenberg-MacLane space BG′ ' K(Z /pZ, 1). Applying Corollary 4.3.6, we
deduce that BG is C-ambidextrous as desired.

Proposition 4.4.17. Let C be a 0-semiadditive ∞-category, let p be a prime number. Assume that for each
C ∈ C, the map [p] : C → C is an equivalence. Then, for every finite p-group G, the Eilenberg-MacLane
space BG is C-ambidextrous.

Proof. Arguing as in the proof of Proposition 4.4.16, we can reduce to the case where G = Z /pZ. Consider
the maps

∗ g→ BG
f→ ∗.

We wish to show that the norm map Nmf : f! → f∗ is an equivalence. Let L ∈ Fun(BG,C) be an arbitrary
object. The map g is equivalent to a covering space with finite fibers, and therefore ambidextrous. Let
α : L→ L denote the composition

L→ g∗g
∗ L ' g!g

∗ L→ L .

As in the proof of Proposition 4.4.16, we see that for each x ∈ BG, the map Lx → Lx determined by α is
homotopic to p : Lx → Lx, and therefore an equivalence. It follows that L is a retract of g! L

′, for L′ = g∗ L.
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It will therefore suffice to show that Nmf induces an equivalence f!g! L
′ → f∗g! L

′. Remark 4.2.4 implies
that the composite map

f!g! L
′ Nmf−→ f∗g! L

′ Nmg−→ f∗g∗ L
′ .

is an equivalence. Using the two-out-of-three property, we are reduced to proving that Nmg induces an
equivalence f∗g! L

′ → f∗g∗ L
′. This follows from our assumption that C is 0-semiadditive.

Corollary 4.4.18. Let C be a 0-semiadditive ∞-category. Assume that for each integer n ≥ 1 and each
object C ∈ C, the map [n] : C → C is an equivalence. Then C is 1-semiadditive.

Proof. Combine Propositions 4.4.16 and 4.4.17.

Proposition 4.4.19. Let C be an ∞-category which admits small limits and colimits, and let n ≥ 2 be an
integer. Then C is n-semiadditive if and only if the following conditions are satisfied:

(1) The ∞-category C is (n− 1)-semiadditive.

(2) For every prime number p, the Eilenberg-MacLane space K(Z /pZ, n) is C-ambidextrous.

Proof. It is clear that conditions (1) and (2) are necessary. To prove sufficiency, assume that (1) and (2) are
satisfied and let X be a finite n-type; we wish to show that X is C-ambidextrous. Using Corollary 4.3.6, we
are reduced to proving that the homotopy fibers of the truncation map X → τ≤n−1X are C-ambidextrous.
We may therefore assume that X is an Eilenberg-MacLane space K(A,n) for some finite abelian group
A. We proceed by induction on the cardinality of A. If A is trivial there is nothing to prove, and if A
is isomorphic to Z /pZ for some prime number p then the conclusion follows from (2). Otherwise, we can
choose a short exact sequence

0→ A′ → A→ A′′ → 0

where A′ and A′′ are smaller than A. Then there is a fibration X → K(A′′, n) whose homotopy fibers are
equivalent to K(A′, n). The inductive hypothesis implies that K(A′′, n) and K(A′, n) are C-ambidextrous.
It follows from Corollary 4.3.6 that X is C-ambidextrous, as desired.

Proposition 4.4.20. Let C be a stable ∞-category which admits small limits and colimits. Let p be a prime
number with the following property: for every object C ∈ C, the multiplication map [p] : C → C is an
equivalence. Then the Eilenberg-MacLane spaces K(Z /pZ,m) are C-ambidextrous for m ≥ 1.

Proof. We proceed by induction on m. The case m = 1 follows from Proposition 4.4.17. Assume that m ≥ 2.
The inductive hypothesis implies that K(Z /pZ,m − 1) is C-ambidextrous, so that K(Z /pZ,m) is weakly
C-ambidextrous (Remark 4.3.7). Let X = K(Z /pZ,m) and let f : X → ∗ denote the projection map. To
complete the proof, it will suffice to show that the functor f∗ : Fun(X,C)→ C preserves small colimits. We
will complete the proof by showing that f∗ is an equivalence of ∞-categories. Equivalently, we will show
that the diagonal embedding C→ Fun(X,C) is an equivalence of ∞-categories. For this, it suffices to show
that for every simplicial set K, the induced map

Fun(K,C)' → Fun(K,Fun(X,C))'

is a homotopy equivalence of Kan complexes. Replacing C by Fun(K,C), we are reduced to proving that the
diagonal map C' → Fun(X,C)' ' Fun(X,C') is a homotopy equivalence.

We will prove by induction on n that the diagonal map

δn : τ≤n C
' → Fun(X, τ≤n C

')

is a homotopy equivalence (the desired result then follows by passing to the homotopy limit in n). When
n = 1, this follows immediately from the fact X is 2-connective (since m ≥ 2). Assume that δn is a homotopy
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equivalence and consider the diagram

τ≤n+1 C
' δn+1 //

��

// Fun(X, τ≤n+1 C
')

��
τ≤n C

' δn // Fun(X, τ≤n C
').

To prove that δn+1 is a homotopy equivalence, it will suffice to show that δn+1 induces a homotopy equivalence
between the homotopy fibers taken over any chosen vertex of τ≤n C

'. Such a vertex depends on a choice of
object C ∈ C. Unwinding the definitions, we are reduced to proving that the diagonal map

K(Ext−nC (C,C), n+ 1)→ Fun(X,K(Ext−nC (C,C), n+ 1))

vanishes. This is equivalent to the vanishing of the reduced cohomology groups H∗red(X;A), where A =
Ext−nC (C,C). The vanishing now follows from the observation that the abelian group A is a module over
Z[ 1

p ].

Corollary 4.4.21. Let C be a stable ∞-category which admits small limits and colimits. Assume that for
each object C ∈ C, the endomorphism ring Ext0

C(C,C) is an algebra over the field Q of rational numbers.
Then C is n-semiadditive for every integer n.

Proof. Combine Corollary 4.4.18, Proposition 4.4.20, and Proposition 4.4.19.

Example 4.4.22. Let R be an E1-ring, and suppose that π0R is a vector space over the field Q of rational
numbers. Then the ∞-category LModR of left R-module spectra is n-semiadditive for every integer n.

Corollary 4.4.23. Let C be a stable ∞-category which admits small limits and colimits, and let p be a
prime number. Assume that for each object C ∈ C, the endomorphism ring Ext0

C(C,C) is a module over
the local ring Z(p). Then C is n-semiadditive if and only if the Eilenberg-MacLane spaces K(Z /pZ,m) are
C-ambidextrous for 1 ≤ m ≤ n.

Proof. Combine Propositions 4.4.19, 4.4.16, and 4.4.20.

5 Ambidexterity of K(n)-Local Stable Homotopy Theory

Let C be an ∞-category which admits small limits and colimits. In §4.3, we introduced the notion of a
C-ambidextrous space. If X is a C-ambidextrous space, then for any C-valued local system L on X, we have
an equivalence

NmX : C∗(X;L)→ C∗(X;L).

In §4.4, we studied some situations in which the C-ambidexterity of a space X can be proven by purely
formal arguments. However, the cases considered in §4.4 are not particularly interesting: our arguments
required assumptions which rule out the existence of interesting local systems (see the proof of Proposition
4.4.20), and the similarity between C∗(X;L) with C∗(X;L) reflects the vanishing of both sides.

Our goal in this section is to establish ambidexterity in a more interesting setting. Our main result
(Theorem 5.2.1) asserts that if C is the ∞-category of K(n)-local spectra (Definition 2.1.13) and X is
a Kan complex with finitely many finite homotopy groups, then X is C-ambidextrous. The proof is not a
formal exercise: it depends crucially on the Ravenel-Wilson calculation of the K(n)-cohomology of Eilenberg-
MacLane spaces discussed in §2.

Suppose that C = SpK(n) is the∞-category of K(n)-local spectra, and that X is a Kan complex which is
known to be weakly C-ambidextrous. Then X is C-ambidextrous if and only if, for every C-valued local system
L on X, the norm construction of Remark 4.1.12 determines an equivalence NmX : C∗(X;L) → C∗(X;L).
In §5.1 we show that it suffices to prove this in the case where L is the trivial local system on X (Example
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5.1.10). In this case, we can think of NmX as a kind of bilinear form on the K(n)-local suspension spectrum
LK(n)Σ

∞
+ (X), and ambidexterity is equivalent to the nondegeneracy of this bilinear form.

We carry out the proof of Theorem 5.2.1 in §5.2. Roughly speaking, the idea is to reduce to the case where
X is an Eilenberg-MacLane space, so that the Lubin-Tate homology E∧0 (X) is well-understood by means of
the calculations of §3.4. The map NmX determines a bilinear form on E∧0 (X), and this formal properties
of the norm (specifically, Remark 5.1.12 and Proposition 5.1.18 from §5.1) are sufficient to determine this
bilinear form explicitly. The desired nondegeneracy is then a consequence of a general algebraic fact about
p-divisible groups (Proposition 5.2.2).

In §5.4, we study the structure of the∞-category Fun(X,SpK(n)) of K(n)-local spectra on a Kan complex
X. It follows from Theorem 5.2.1 that if X has finitely many finite homotopy groups, then the construction
L 7→ C∗(X;L) determines a colimit-preserving functor from Fun(X,SpK(n)) to SpK(n). Note that for any
L ∈ Fun(X,Sp), the spectrum C∗(X;L) is naturally a module over the function spectrum C∗(X;S) (here S
denotes the K(n)-local sphere spectrum). Our main result asserts that if X is n-truncated and its homotopy
groups are p-groups, then every K(n)-local module over C∗(X;S) arises via this construction: more precisely,
the global sections functor determines an equivalence of ∞-categories

C∗(X; •) : Fun(X; SpK(n))→ ModC∗(X;S)(SpK(n)).

Our proof relies on a duality phenomenon enjoyed by the Morava K-theory of Eilenberg-MacLane spaces,
which we review in §5.3.

5.1 Ambidexterity and Duality

Let C be an ∞-category which admits small limits and colimits. Our goal in this section is to develop some
tools for proving that a Kan complex X is C-ambidextrous. Assume that X is weakly C-ambidextrous.
Then the construction of Remark 4.1.12 supplies a map NmX from the homology of X to the cohomology
of X, taken with respect to an arbitrary C-valued local system on X. Roughly speaking, we can think
of a map from homology to cohomology as something like a bilinear pairing on the homology of X. The
C-ambidexterity of X is then equivalent to the nondegeneracy of this pairing. Our first goal is to make this
idea more precise. We begin by reviewing some general facts about duality in monoidal ∞-categories (for a
more detailed discussion, we refer the reader to [14]).

Definition 5.1.1. Let C be a monoidal category with unit object 1. A map

e : X ⊗ Y → 1

in C is said to be a duality datum if there exists a map c : 1→ Y ⊗X such that the composite maps

X
id⊗c−→ X ⊗ Y ⊗X e⊗id−→ X

Y
c⊗id−→ Y ⊗X ⊗ Y id⊗e−→ Y

coincide with the identity maps idX and idY , respectively. In this case, we say that e and c are compatible
with one another.

If C is a monoidal ∞-category, we say that a map e : X ⊗ Y → 1 is a duality datum if it is a duality
datum when regarded as a morphism in the homotopy category of C.

Definition 5.1.2. Let C be a symmetric monoidal ∞-category. We say that an object X ∈ C is dualizable
if there exists another object Y ∈ C and a duality datum e : X ⊗ Y → 1. In this case, choose c : 1→ Y ⊗X
to be compatible with e. We define dim(X) ∈ π0 MapC(X,X) = HomhC(X,X) to be the morphism given
by the composition

1
c→ Y ⊗X ' X ⊗ Y e→ 1.

Remark 5.1.3. In the situation of Definition 5.1.2, the object Y and the morphisms e and c are determined
by X up to a contractible space of choices. In particular, dim(X) depends only on the object X.
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Remark 5.1.4. Let C be a symmetric monoidal ∞-category and let e : X ⊗ X → 1 be a duality datum
in C. Assume that e is symmetric up to homotopy (that is, e is homotopic to its composition with the
self-equivalence of X ⊗X given by swapping the two factors). Then dim(X) is given by the composition

1
c→ X ⊗X e→ 1,

where c is compatible with e.

Example 5.1.5. Let R be a commutative ring, and let C denote the ordinary category of R-modules. An
object M ∈ C is dualizable if and only if it is finitely generated and projective as an R-module. If M is
a projective R-module of rank n, then dim(M) ∈ Hom(R,R) ' R coincides with the image of n in the
commutative ring R.

Example 5.1.6. Let R be an E∞-ring. We say that an R-module spectrum M is projective if π0M is a
projective module over π0R and the canonical map

πmR⊗π0R π0M → πmM

is an isomorphism for every integer m. Let Modproj
R denote the full subcategory of ModR spanned by

the projective R-modules. According to Corollary HA.8.2.2.19, the construction M 7→ π0M determines
an equivalence from the homotopy category of Modproj

R to the category of projective modules over the
commutative ring π0R. In particular, we see that if M and N are projective R-modules, then a map

e : M ⊗R N → R

is a duality datum if and only if the induced map

π0M ⊗π0R π0N → π0R

is a duality datum in the category of π0R-modules.

Notation 5.1.7. Let q : C→ X be a Beck-Chevalley fibration. For every morphism f : X → Y in X, we let
[X/Y ] denote the functor f!◦f∗ : CY → CY . If f is weakly ambidextrous, we let TrFmf : [X/Y ]◦ [X/Y ]→ id
denote the natural transformation given by

(f!f
∗)(f!f

∗) ' f!(f
∗f!)f

∗ νf→ f!(idCX )f∗ ' f!f
∗ φf→ id .

We will refer to TrFmf as the trace form of f .

Proposition 5.1.8. Let q : C→ X be a Beck-Chevalley fibration and let f : X → Y be a weakly ambidextrous
morphism in X. The following conditions are equivalent:

(1) The map νf : f∗f! → idCX is the counit of an adjunction between f∗ and f!.

(2) The trace form TrFmf : [X/Y ] ◦ [X/Y ] → idCY exhibits the functor [X/Y ] as its own dual in the
monoidal ∞-category Fun(CY ,CY ).

Proof. Suppose first that (1) is satisfied, and let µf : idCY → [X/Y ] be a unit map which is compatible with
νf . We define a natural transformation c : idCY → [X/Y ] ◦ [X/Y ] given by the composition

id
µf→ [X/Y ] = f! id f∗

id×ψf×id−→ f!f
∗f!f

∗ = [X/Y ] ◦ [X/Y ].

We claim that c and TrFmf exhibit [X/Y ] as a self-dual object of Fun(CY ,CY ): in other words, the composite
maps

[X/Y ]
id×c−→ [X/Y ] ◦ [X/Y ] ◦ [X/Y ]

TrFmf × id−→ [X/Y ]
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[X/Y ]
c×id−→ [X/Y ] ◦ [X/Y ] ◦ [X/Y ]

id×TrFmf−→ [X/Y ]

are homotopic to the identity. We will prove that the first composition is homotopic to the identity; the
proof in the second case is similar. We have a commutative diagram

[X/Y ]
id×µf //

id×c ((

[X/Y ] ◦ [X/Y ]

id×ψf×id

��

id×νf×id // [X/Y ]

id×ψf×id

��
[X/Y ] ◦ [X/Y ] ◦ [X/Y ]

id×νf×id//

TrFmf × id ))

[X/Y ] ◦ [X/Y ]

φf×id

��
[X/Y ]

The upper horizontal and right vertical compositions are homotopic to the identity, by virtue of the com-
patibilities between the pairs (φf , ψf ) and (µf , νf ).

Now suppose that (2) is satisfied, so that there exists a coevaluation map c : idCY → [X/Y ] ◦ [X/Y ]
compatible with TrFmf . We define natural transformations µ, µ′ : id→ [X/Y ] to be the compositions

µ : id
c→ [X/Y ] ◦ [X/Y ]

φf×id−→ [X/Y ]

µ′ : id
c→ [X/Y ] ◦ [X/Y ]

id×φf−→ [X/Y ]

We will prove:

(i) The composite transformation

f!
µ×id−→ f!f

∗f!
id×νf−→ f!

is homotopic to the identity.

(ii) The composite transformation

f∗
id×µ′−→ f∗f!f

∗ νf×id−→ f∗

is homotopic to the identity.

Assuming (i) and (ii), we deduce that the composite transformation

id
µ×µ′−→ f!f

∗f!f
∗ id×νf×id−→ f!f

∗

is homotopic to both µ and µ′. It follows that µ ' µ′ is the unit for an adjunction compatible with the
counit map νf .

It remains to prove (i) and (ii). We will prove (i); the proof of (ii) is similar. Since φf is the counit for
an adjunction between f! and f∗, the composite map

MapFun(CX ,CY )(f!, f!)→ MapFun(CY ,CY )(f!f
∗, f!f

∗)
φf◦→ MapFun(CY ,CY )(f!f

∗, idCY )

is a homotopy equivalence. It will therefore suffice to show that the composition

f!f
∗ µ×id−→ f!f

∗f!f
∗ id×νf×id−→ f!f

∗ φf→ idCY

is homotopic to φf . Using the definitions of TrFmf and µ, we can rewrite this composition as

[X/Y ]
c×id−→ [X/Y ] ◦ [X/Y ] ◦ [X/Y ]

φf×id−→ [X/Y ] ◦ [X/Y ]
e→ idCY .
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The desired result now follows from the commutativity of the diagram

[X/Y ]
c×id //

id

((

[X/Y ] ◦ [X/Y ] ◦ [X/Y ]

id×e
��

φf×id // [X/Y ] ◦ [X/Y ]

e

��
[X/Y ]

φf // id .

We now restrict our attention to the Beck-Chevalley fibrations arising in the study of local systems.

Notation 5.1.9. Let C be an ∞-category which admits small colimits, let X be a Kan complex, and let
f : X → ∗ be the projection map. We let [X] denote the functor from C to itself given by [f ] = f! ◦ f∗ (see
Notation 5.1.7). Unwinding the definitions, we see that [X] is simply the functor given by tensoring with
X (since C admits small colimits, it is naturally tensored over the ∞-category of spaces). In particular, it
depends functorially on X. If we are given another map g : Y → X, then the counit map g!g

∗ → id induces
a natural transformation [Y ] = f!g!g

∗f∗ → f!f
∗ = [X], which we will denote by αg.

If X is weakly C-ambidextrous, then we let TrFmX denote the natural transformation TrFmf : [X]◦[X]→
idC described in Notation 5.1.7.

Example 5.1.10. Let X be a Kan complex, and let C be the image of an accessible exact localization
functor L : Sp → Sp (see Proposition 2.1.1). Then the smash product monoidal structure on Sp induces a
symmetric monoidal structure on C (Corollary 2.1.3), and the action of C on itself determines a monoidal
equivalence from C to the full subcategory of Fun(C,C) spanned by those functors which preserves small
colimits (Proposition 2.1.5). Under this equivalence, the functor [X] : C → C corresponds to the object
[X](L(S)) = L(Σ∞+ X) ∈ C.

If X is weakly C-ambidextrous, then Notation 5.1.7 determines a map

TrFmX : L(Σ∞+ X)⊗̂L(Σ∞+ X)→ L(S),

which is a duality datum if and only if X is C-ambidextrous (Proposition 5.1.8).

It will be useful to have a more explicit description of the trace form TrFmX assocated to a weakly
C-ambidextrous Kan complex X.

Notation 5.1.11. Let C be an ∞-category which admits small colimits, and let X be a Kan complex
equipped with a base point e : ∗ → X. Assume that e is ambidextrous (this is automatic, for example, if
the Kan complex X is weakly C-ambidextrous). We let Tre : [X] → idC denote the natural transformation
given by

[X] = f!f
∗ µe→ f!e!e

∗f∗ ' idC .

Remark 5.1.12. Let C be an∞-category which admits small colimits, letX be a Kan complex, let f : X → ∗
be the projection map, and let e : ∗ → X be an ambidextrous map. Then the composite transformations

f!f
∗ Tre−→ idC ' f!e!e

∗f∗
φe−→ f!f

∗ = [X]

f!f
∗ id×ψf×id−→ f!f

∗f!f
∗ Tre× id−→ f!f

∗
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are homotopic to one another. This follows from the commutativity of the diagram

f!f
∗ id×ψf×id //

ue

��

f!f
∗f!f

∗

ue

��
f!e!e

∗f∗
id×ψf×id//

φe

��

f!e!e
∗f∗f!f

∗

φe

��
f!f
∗ id×ψf×id //

id

''

f!f
∗f!f

∗

φf×id

��
f!f
∗.

Proposition 5.1.13. Let C be an ∞-category which admits small colimits, let X be a weakly C-ambidextrous
space, and suppose that X admits the structure of a simplicial group. Let f : X → ∗ be the projection map,
e : ∗ → X in the inclusion of the identity, and s : X×X → X denote the subtraction map (given on simplices
by (x, y) 7→ x−1y). Then the trace form TrFmX : [X] ◦ [X]→ idC is given by the composition

[X] ◦ [X] ' [X ×X]
αs→ [X] = f!f

∗ ue→ f!e!e
∗f∗ ' id .

Proof. For every map of Kan complexes g : Y → Z, we let φg : g!g
∗ → id denote the counit for the natural

adjunction between g! and g∗. Consider the diagram

X

δ

##

��

))
X ×X π1 //

π2

��

X

f

��
X

f // ∗.

Unwinding the definitions, we see that the trace form TrFmX is given by the composition

f!f
∗f!f

∗ ' f!π1!π
∗
2f
∗ µδ→ f!π1!δ!δ

∗π∗2f
∗ ' f!f

∗ φf→ id .

Note that fπ1 and fπ2 are both homotopic to fs. We can therefore identify the functor f!f
∗f!f

∗ ' f!π1!π
∗
2f
∗

with f!s!s
∗f∗. Under this identification, TrFmX is given by

f!s!s
∗f∗

µδ→ f!s!δ!δ
∗s∗f∗

φfsδ→ id .

Consider the pullback diagram σ :

X
f //

δ

��

∗

e

��
X ×X s // X.

Using this diagram, we can identify φfsδ with the composition

f!s!δ!δ
∗s∗f∗ ' f!s!s

∗e!e
∗f∗

φs→ f!e!e
∗f∗

φe→ f!f
∗ φf→ idC .

Since e ◦ f is homotopic to the identity, the composition of the last two of these natural transformations is
homotopic to the identity. It follows that TrFmX is given by the composition

f!s!s
∗f∗

µδ→ f!s!δ!δ
∗s∗f∗ ' f!s!s

∗e!e
∗f∗

φs→ f!e!e
∗f∗ ' idC .

117



The desired result therefore now follows from the diagram

f!s!s
∗f∗

µδ //

φs

��

µe

''

f!s!δ!δ
∗s∗f∗

∼
��

f!s!s
∗e!e

∗f∗

φs

��
f!f
∗ µe // f!e!e

∗f∗,

which commutes up to homotopy by virtue of Proposition 4.2.1.

Corollary 5.1.14. Let C be a stable ∞-category which admits small limits and colimits and let p be a prime
number. Assume C is (n−1)-semiadditive and that for each object C ∈ C, the endomorphism ring Ext0

C(C,C)
is a module over the local ring Z(p). The following conditions are equivalent:

(1) The ∞-category C is n-semiadditive.

(2) The composition

[K(Z /pZ, n)]× [K(Z /pZ, n)]→ [K(Z /pZ, n)×K(Z /pZ, n)]
α→ [K(Z /pZ, n)]

Tre→ idC

exhibits the functor [K(Z /pZ, n)] as a self-dual object of the monoidal ∞-category Fun(C,C). Here
Tre is defined as in Notation 5.1.11 (where e denotes the base point of K(Z /pZ, n)), and α is induced
by the subtraction map

K(Z /pZ, n)×K(Z /pZ, n)→ K(Z /pZ, n)

(where we view K(Z /pZ, n) as a simplicial abelian group).

Proof. Combine Corollary 4.4.23, Proposition 5.1.13, and Proposition 5.1.8.

Let X be a pointed connected Kan complex which is weakly C-ambidextrous, and let δ : X → X ×X be
the diagonal map. Then the trace form TrFmX : [X]◦ [X]→ idC is defined using the natural transformation
µδ, whose existence is a reflection of the nondegeneracy of the trace form TrFmΩ(X). Consequently, it is
natural to expect a relationship between the trace form TrFmX of X and the trace form TrFmΩ(X) of the
loop space of X. We close this section by establishing such a relationship. First, we need to introduce a bit
of terminology.

Notation 5.1.15. Let C be an ∞-category which admits small colimits and let X be a C-ambidextrous
Kan complex, so that the trace form TrFmX : [X] ◦ [X]→ idC exhibits [X] as its own dual in the monoidal
∞-category Fun(C,C) (Proposition 5.1.8). We let dim(X) denote the dimension of the functor [X], as in
Definition 5.1.2. That is, we let dim(X) denote the endomorphism of idC given by the composition

idC
c→ [X] ◦ [X]

TrFmX→ idC,

where c denotes a coevaluation natural transformation which is compatible with TrFmX .

Remark 5.1.16. Let f : X → ∗ denote the projection map. Using the definition of TrFmX and the proof
of Proposition 5.1.8, we see that dim(X) is given by the composition

idC

µf→ f!f
∗ ' f! idC f

∗ ψf→ f!f
∗f!f

∗ νf→ f! idC f
∗ ' f!f

∗ φf→ idC .
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Notation 5.1.17. Let C be an ∞-category which admits small colimits, let X be a Kan complex, and let
β : [X] → idC be a natural transformation of functors from C to C. Given a point e : ∗ → X, we let β(e)
denote the natural transformation from idC to itself given by composing α with the map idC ' [∗] → [X]
induced by e. More concretely, if f : X → ∗ denotes the projection map, then β(e) is given by the composition

idC ' f!e!e
∗f∗

φe→ f!f
∗ β→ idC .

We will be particularly interested in the case where e is ambidextrous and β = Tre. In this case, Tre(e)
is given by

idC ' f!e!e
∗f∗

φe→ f!f
∗ µe→ f!e!e

∗f∗ ' idC .

Our goal in this section is to prove the following:

Proposition 5.1.18 (Product Formula). Let C be an ∞-category which admits small colimits, let G be a
simplicial group which is C-ambidextrous. Let e : ∗ → G denote the inclusion of the identity element, and let
E : ∗ → BG be the inclusion of the base point. Then there is a canonical homotopy

dim(G) ' Tre(e) ◦ TrE(E)

of natural transformations from the identity functor idC to itself.

Proof. Let f denote the projection map from G to a point, so that we have a pullback square σ :

G
f //

f

��

∗

E
��

∗ E // BG.

Consider the diagram of natural transformations

idC

uf // f!f
∗ ∼ //

ψf

��

f!f
∗ φf //

ψE

��

idC

ψE

��
f!(f

∗f!)f
∗ BC[σ] //

νf

��

f!f
∗E∗E!

φf //

νE

��

E∗E!

vE

��
f!f
∗ ∼ // f!f

∗ φf // idC .

This diagram commutes up to homotopy (this is obvious except for the lower left square, which commutes
by virtue of Proposition 4.2.1). Remark 5.1.16 implies that dim(G) is given by traversing this diagram via a
counterclockwise circuit. It follows that we can write dim(G) = α ◦ β, where α denotes the composite map

idC
ψE→ E∗E!

νE→ idC and β the composite map idC

µf→ f!f
∗ φf→ idC. To complete the proof, it will suffice to

prove the following:

(a) The natural transformation α is homotopic to Tre(e).

(b) The natural transformation β is homotopic to TrE(E).

We begin by proving (a). Unwinding the definitions, we see that α and Tre(e) are given by the compo-
sitions

α : idC
ψE−→ E∗E!

BC[σ]−1

−→ f!f
∗ µe−→ f!e!e

∗f∗ ' idC

Tre(e) : idC ' f!e!e
∗f∗

φe−→ f!f
∗ µe−→ f!e!e

∗f∗ ' id .
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It will therefore suffice to show that the composite map

idC ' f!e!e
∗f∗

φe−→ f!f
∗ BC[σ]−→ E∗E!

is homotopic to ψE . Note that the diagram σ determines a (nontrivial) homotopy h from the constant map
(E ◦ f) : G → BG to itself, which determines a homotopy γ from the functor f∗E∗ to itself. The desired
result now follows by inspecting the diagram

f!e!e
∗f∗

φe //

ψE

��

f!f
∗

��
f!e!e

∗f∗E∗E!
φe //

id

��

f!f
∗E∗E!

γ

��
f!e!e

∗f∗E∗E!
φe //

∼

''

f!f
∗E∗E!

φf

��
E∗E!

(note that the composition of the column on the right is homotopic to the Beck-Chevalley transformation
BC[σ]; see Remark 4.1.2).

We now prove (b). Let F : BG→ ∗ denote the projection map. We can write β as a composition

idC ' E∗F ∗
µf→ f!f

∗E∗F ∗
φf→ E∗F ∗ ' idC .

Using Proposition 4.2.1, we can rewrite this composition as

idC ' F!E!E
∗F ∗

µE−→ F!E!E
∗(E!E

∗)F ∗
φE−→ F!E!E

∗F ∗ ' idC .

We have a commutative diagram

F!E!E
∗E!E

∗F ∗
id×φE×id// F!E!E

∗F !

φFE

��
F!E!f!f

∗E∗F ∗

BC[σ]

OO

BC[σ]

��

φFEf // idC

F!E!E
∗E!E

∗F ∗
id×φE×id//

OO

F!E!E
∗F ∗

φFE

OO

from which it follows that the upper and lower horizontal maps are homotopic to one another. It follows
that β is equivalent to the composition

idC ' F!E!E
∗F ∗

id×uE×id−→ F!E!E
∗E!E

∗F ∗

id×φE×id−→ F!E!E
∗F ∗

' idC

Assertion (b) now follows from the commutativity of the diagram

F!E!E
∗F ∗

φE //

id×uE×id

��

F!F
∗

uE

��
F!E!E

∗E!E
∗F ∗

id×φE×id// F!E!E
∗F ∗.
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5.2 The Main Theorem

Our goal in this section is to prove the following result:

Theorem 5.2.1. Let K(n) be a Morava K-theory spectrum (Notation 2.1.10), let SpK(n) denote the ∞-
category of K(n)-local spectra, and let X be a Kan complex which is a finite m-type for some integer m
(Definition 4.4.1). Then X is SpK(n)-ambidextrous.

The proof of Theorem 5.2.1 will occupy our attention throughout this section. Here is an outline of our
basic strategy:

(a) Using Corollary 4.4.23, we can reduce to proving Theorem 5.2.1 in the special case where X is an
Eilenberg-MacLane space K(Z /pZ,m).

(b) Using Example 5.1.10, we are reduced to proving that the trace form TrFmX exhibits LK(n)Σ
∞
+ (X) as

a self-dual object of the ∞-category SpK(n).

(c) Let E denote the Lubin-Tate spectrum corresponding to the Morava K-theory K(n). Using the fact
that all K(n)-local spectra can be built from K(n)-local E-modules (Proposition 5.2.6), we are reduced
to proving that TrFmX exhibits LK(n)E[X] as a self-dual object of the ∞-category ModE(SpK(n)).

(d) Since LK(n)E[X] is free as an E-module spectrum (Theorem 2.4.10 and Proposition 3.4.3), the claim
that TrFmX is a perfect pairing reduces to a purely algebraic assertion: namely, that TrFmX exhibits
E∧0 (X) as a self-dual module over the commutative ring π0E (Example 5.1.6).

(e) Using Remark 5.1.12 and Proposition 5.1.18, we see that the pairing on E∧0 (X) determined by TrFmX

can be identified with a certain multiple of the usual trace pairing on E∧0 (X).

(f) According to Theorem 3.4.1, we can identify E∧0 (X) with the ring of functions on the p-torsion subgroup
of a p-divisible group over π0E. The nondegeneracy of TrFmX can now be deduced from a general
algebraic fact (Proposition 5.2.2).

Our starting point is the following result, which we prove using an argument of Tate (see [20]).

Proposition 5.2.2. Let R be commutative ring, p a prime number which is not a zero-divisor in R, and let
G be a truncated p-divisible group over R of level 1 and dimension d. Write G = SpecA where A is a finite
flat R-algebra. Then:

(1) The trace map tr : A→ R is divisible by pd.

(2) The construction (x, y) 7→ tr(xy)
pd

determines a duality datum A⊗RA→ R in the category of R-modules.

Proof. Writing R as a direct limit of its finitely generated subrings, we can choose a finitely generated
subalgebra R0 ⊆ R such that G ' G0 ×SpecR0

SpecR, for some finite flat group scheme G0 over R0.
Enlarging R0 if necessary, we may suppose that G0 is a p-divisible group of dimension d and level 1. Note
that since R0 ⊆ R, p is not a zero divisor in R0. We may therefore replace R by R0 and thereby reduce to
the case where R is Noetherian.

Assertion (1) is equivalent to the statement that the map A
tr→ R → R/pdR is zero. If this condition is

satisfied, then (x, y) 7→ p−d tr(xy) determines a map from A to its R-linear dual A∨, and assertion (2) says
that this map is an isomorphism. To show that a map f : M → N between finitely generated R-modules is
zero or an isomorphism, it suffices to show that the induced map of localizations Mp → Np is an isomorphism,
for every prime ideal p ⊆ R. To prove this we may replace R by its localization Rp, and thereby reduce
to the case where R is local. Using Proposition 10.3.1 of [5], we can choose find a faithfully flat morphism
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R→ R′ of local Noetherian rings, such that the residue field of R′ is perfect. Replacing R′ by its completion
if necessary, we may assume that R′ is complete. Using faithfully flat descent, we can replace R by R′, and
thereby reduce to the case where R is a complete local Noetherian ring whose residue field κ is perfect.

If κ is a field of characteristic different from p, then p is invertible in R. In this case, the group scheme G
is automatically étale, so that A is an étale R-algebra and the trace pairing (x, y) 7→ tr(xy) is nondegenerate.
Let us therefore assume that κ has characteristic p. Applying Theorem 3.1.11, we conclude that there exists
a p-divisible group G over R and an isomorphism G ' G[p].

Let Ginf and Gét denote the connected and étale parts of G, respectively, so that we have an exact
sequence of p-divisible groups

0→ Ginf → G→ Gét → 0

and therefore an exact sequence of finite flat group schemes

0→ Ginf [p]→ G[p]→ Gét[p]→ 0.

Passing to a finite flat covering of SpecR, we may assume that this second sequence splits. It will therefore
suffice to prove assertions (1) and (2) after replacing G by either Ginf or Gét.

Assume first that G is étale. Then d = 0 so that assertion (1) is vacuous. To prove assertion (2), we
can pass to a finite étale cover of SpecR and thereby reduce to the case where G[p] is the constant group
scheme associated to a Z /pZ-module M . Then A '

∏
x∈M R, and assertion (2) is clear.

Now suppose that G is connected, and can therefore be identified with smooth formal group of dimension
d over R. We have a pullback diagram (of formal schemes)

G[p] //

��

SpecR

��
G

p // G.

Let B and B′ denote the ring of functions on the formal scheme G, and regard the map p : G → G as
determining a finite flat map from B to B′. It will then suffice to prove the following:

(1′) The trace map tr : B′ → B is divisible by pd.

(2′) The construction (x, y) 7→ tr(xy)
pd

determines a duality datum B′ ⊗B B′ → B in the category of B-
modules.

Let Ω denote the B-module of sections of the cotangent bundle of G over R, and let Ω′ denote the
same abelian group regarded as a B′-module. Then the top exterior powers ∧dBΩ and ∧dB′Ω′ are invertible
modules over B and B′, respectively. There is a canonical trace map tr′ : ∧dB′Ω′ → ∧dBΩ, and the construction
(f, ω) 7→ tr′(fω) determines a perfect pairing

B′ ⊗B (∧dB′Ω′)→ ∧dBΩ.

Tensoring with the inverse of ∧dBΩ, we can regard this as a duality datum

λ : B′ ⊗B ((∧dB′Ω′)⊗B (∧dBΩ)−1)→ B.

Unwinding the definitions, we see that the trace pairing (x, y) 7→ tr(xy) is given by the composition

B′ ⊗B B′
id⊗α−→ B′ ⊗B ((∧dB′Ω′)⊗B (∧dBΩ)−1)

λ→ B,

where α corresponds to the map of B′-modules

B′ ⊗B ∧dBΩ→ ∧dB′Ω′

given by pullback of differential forms. To complete the proof, it will suffice to prove the following:
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(1′′) The map α is divisible by pd.

(2′′) The quotient α
pd

is an isomorphism.

Since α is given by the dth exterior power of a map β : B′ ⊗B Ω → Ω′, we are reduced to proving the
following:

(1′′) The map β is divisible by p.

(2′′) The quotient β
p is an isomorphism.

Let Ω0 denote the R-module of translation-invariant differential forms on G. Then Ω0 is a projective R-
module of rank d, and we have canonical isomorphisms

Ω ' B ⊗R Ω0 Ω′ ' B′ ⊗R Ω0.

Under these isomorphisms, we see that β corresponds to the map

B′ ⊗R Ω0
id⊗γ−→ B′ ⊗R Ω0,

where γ : Ω0 → Ω0 is given by differentiating the multiplication-by-p map from G to itself. It follows that
γ is just given by multiplication by p, from which assertions (1′′) and (2′′) immediately follow.

To apply Proposition 5.2.2 in practice, it will be useful to have a criterion for recognizing the trace map.

Proposition 5.2.3. Let R be a commutative ring, let p be a prime number which is not a zero-divisor on
R, let G be a p-divisible group over R of height h and level 1, and write G = SpecA, so that A is a finite
flat R-algebra of rank ph. Suppose that λ : A→ R is an R-linear map satisfying the following conditions:

(1) The map λ carries 1 ∈ A to ph ∈ R.

(2) Let ∆ : A→ A⊗R A be the ring homomorphism classifying the multiplication on the group scheme G.
Then the composite map

A
∆→ A⊗R A

λ⊗id−→ A

is given by a 7→ λ(a).

Then λ coincides with the trace map tr : A→ R.

Proof. Replacing R by R[ 1
p ], we may assume that p is invertible in R, so that the group scheme G is étale.

Passing to a finite flat cover, we may assume that G is the constant group scheme associated to some finite
abelian group M . We can then identify A with the ring AM of functions f : M → A. Then λ is given
by λ(f) =

∑
x∈M cxf(x) for some constants cx ∈ R; we wish to show that each cx is equal to 1. For each

x ∈M , let ex ∈ A be given by

ex(y) =

{
1 if x = y

0 otherwise.

Then ∆(ex) =
∑
x=x′+x′′ ex′ ⊗ ex′′ , so assertion (2) gives

cx =
∑

x=x′+x′′

cx′ex′′

in the ring A. It follows that the function x 7→ cx is constant. Now λ(1) =
∑
x∈M cx = phc1. Since p is

invertible, condition (1) implies that c1 = 1, so that each cx is equal to 1.
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Corollary 5.2.4. Let R be a commutative ring, p a prime number which is not a zero-divisor of R, and G
a truncated p-divisible group over R of dimension d, height h, and level 1. Write G = SpecA where A is a
finite flat R-algebra (of rank ph). Let σ : A→ A denote the antipodal map (that is, the ring homomorphism
which induces the map [−1] : G→ G), and let λ : A→ R be an R-linear map with the following properties:

(1) The map λ carries 1 ∈ A to ph−d ∈ R.

(2) Let ∆ : A→ A⊗R A be the ring homomorphism classifying the multiplication on the group scheme G.
Then the composite map

A
∆→ A⊗R A

λ⊗id→ A

is given by a 7→ λ(a).

Then the map (a, b) 7→ λ(aσb) determines a duality datum

A⊗R A→ R

in the category of R-modules.

Proof. Since σ is an R-module automorphism of A, it will suffice to show that the map (a, b) 7→ λ(ab)
determines a duality datum. Using Proposition 5.2.2, we are reduced to proving that pdλ coincides with the
trace map of A, which follows from Proposition 5.2.3.

We now return to Theorem 5.2.1. The main step in the proof is to establish the following:

Corollary 5.2.5. Let E be a Lubin-Tate spectrum of height n, let p be the characteristic of the residue
field of E, and let K(n) denote the associated Morava K-theory spectrum. Assume that m > 0 and that
K(Z /pZ,m− 1) is SpK(n)-ambidextrous. Let X = K(Z /pZ,m), and consider the map

β : LK(n)E[X]⊗ LK(n)E[X]→ E

determined by the trace form TrFmX of Example 5.1.10, where ⊗ denotes the tensor product on the symmetric
monoidal ∞-category ModE(SpK(n)). Then β is a duality datum.

Proof. We have already seen that LK(n)E[X] is a a projective E-module of finite rank (Theorem 2.4.10 and
Proposition 3.4.3). Let R = π0E. Using Example 5.1.6, we are reduced to proving that β induces a duality
datum

β : E∧0 (X)⊗R E∧0 (X)→ R

in the category of R-modules. Let e : ∗ → X denote the inclusion of the base point, so that the map of spectra
Tre : LK(n)(Σ

∞
+ X) → LK(n)(S) induces a map of R-modules λ : E∧0 (X) → R. Let σ : E∧0 (X) → E∧0 (X)

denote the antipode for the Hopf algebra structure on E∧0 (X). Using Proposition 5.1.13, we see that β
classifies the bilinear map (x, y) 7→ λ(xσy). Consequently, to show that β is a duality datum, it will suffice
to show that λ satisfies conditions (1) and (2) of Corollary 5.2.4.

(1) According to Theorems 3.4.1 and 3.5.1, SpecE∧0 K(Z /pZ,m) is a truncated p-divisible group of height(
n
m

)
, dimension

(
n−1
m

)
, and level 1. We must show that λ(1) = p(

n
m)−(n−1

m ) = p(
n−1
m−1). We proceed

by induction on m. Let e′ : ∗ → K(Z /pZ,m − 1) denote the inclusion of the base point, so that e′

induces a trace map Tre′ : LK(n)Σ
∞
+ K(Z /pZ,m− 1)→ LK(n)(S) and therefore a map of R-modules

λ′ : E∧0 K(Z /pZ,m−1)→ R. Note that λ(1) ∈ R ' π0 MapModE(SpK(n))
(E,E) is the image of the map

Tre(e) ∈ MapSpK(n)
(LK(n)(S), LK(n)(S)), and similarly λ′(1) ∈ R is the image of Tre′ e

′. Combining

Proposition 5.1.18 and Example 5.1.5, we obtain an equality

λ(1)λ′(1) = dimE∧0 K(Z /pZ,m− 1) = p(
n

m−1).
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We are therefore reduced to proving that

λ′(1) = p(
n

m−1)−(n−1
m−1) =

{
p(

n−1
m−2) if m ≥ 2

1 if m = 1.

This follows from the inductive hypothesis if m ≥ 2, and from a straightforward calculation when
m = 1.

(2) Let ∆ : E∧0 (X)→ E∧0 (X)⊗R E∧0 (X) denote the comultiplication on E∧0 (X) (induced by the diagonal
embedding X → X ×X). Then the composite map

E∧0 (X)
∆→ E∧0 (X)⊗R E∧0 (X)

λ⊗id→ E∧0 (X)

coincides with the composition E∧0 (X)
λ→ R→ E∧0 (X). This follows immediately from Remark 5.1.12.

We can use Corollary 5.2.5 to show that LK(n)E[K(Z /pZ,m)] is self-dual as an E-module spectrum.
To deduce consequences for the K(n)-localization LK(n)Σ

∞
+ K(Z /pZ,m), we need the following fact:

Proposition 5.2.6. Let E be a Lubin-Tate spectrum of height n, let K(n) denote the associated Morava
K-theory spectrum, and let C be the smallest stable subcategory of SpK(n) which is closed under retracts and
contains the image of the forgetful functor ModE(SpK(n))→ SpK(n). Then C = SpK(n).

Proof. Let E(n) denote the nth Johnson-Wilson spectrum, and let C′ be the smallest stable subcategory
of Sp which contains E(n) ⊗ X for every spectrum X and is closed under retracts. Since LK(n)E(n) can
be written as a retract of E, the functor LK(n) carries C′ ⊆ Sp into C ⊆ SpK(n). According to Theorem

5.3 of [10], every E-local spectrum belongs to C′. It follows that for every K(n)-local spectrum X, we have
X ' LK(n)(X) ∈ LK(n)(C

′) ⊆ C.

Corollary 5.2.7. Let E be a Lubin-Tate spectrum of height n, let p be the characteristic of the residue
field of E, and let K(n) denote the associated Morava K-theory spectrum. Assume that m > 0 and that
K(Z /pZ,m− 1) is SpK(n)-ambidextrous. Then X = K(Z /pZ,m) is also SpK(n)-ambidextrous.

Proof. Let TrFmX : LK(n)Σ
∞
+ (X) ⊗ LK(n)Σ

∞
+ (X) → LK(n)S be defined as in Example 5.1.10; we wish

to show that TrFmX exhibits LK(n)Σ
∞
+ (X) as a self-dual object of the symmetric monoidal ∞-category

SpK(n). In other words, we must show that for every pair of objects Y,Z ∈ SpK(n), the map θY,Z given by
the composition

MapSpK(n)
(Y,LK(n)(Σ

∞
+ X)⊗ Z) → MapSpK(n)

(LK(n)(Σ
∞
+ X)⊗̂Y, LK(n)(Σ

∞
+ X)⊗ LK(n)(Σ

∞
+ X)⊗̂Z)

→ MapSpK(n)
(LK(n)(Σ

∞
+ X)⊗ Y, Z)

is a homotopy equivalence. Let C denote the full subcategory of SpK(n) spanned by those objects Z for
which the map θY,Z is a homotopy equivalence for every Y ∈ SpK(n). It is easy to see that C is a stable
subcategory of SpK(n) which is closed under retracts. Using Proposition 5.2.6, we are reduced to proving
that θY,Z is an equivalence whenever Z admits the structure of an E-module. In this case, we can identify
θY,Z with a map

MapModE(SpK(n))
(E ⊗ Y, (E ⊗LK(n)(Σ

∞
+ X))⊗E Z)→ MapModE(SpK(n))

((E ⊗LK(n)(Σ
∞
+ X))⊗E (E⊗̂Y ), Z),

which is a homotopy equivalence by Corollary 5.2.5.

Proof of Theorem 5.2.1. Let K(n) be a Morava K-theory, and let p denote the characteristic of the field
π0K(n). Applying Corollary 5.2.7 repeatedly, we deduce that each Eilenberg-MacLane space K(Z /pZ,m)
is SpK(n)-ambidextrous. Note that if l is an integer not divisible by p, then multiplication by l induces a
homotopy equivalence from K(n) to itself. It follows that for every spectrum X, multiplication by l induces
a K(n)-homology equivalence, so that l acts invertibly on LK(n)(X). Invoking Corollary 4.4.23, we deduce
that every finite m-type is SpK(n)-ambidextrous.
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5.3 Cartier Duality

Throughout this section, we fix a perfect field κ of characteristic p > 0, and a smooth connected 1-dimensional
formal group G0 of height n < ∞ over κ. Let E denote the Lubin-Tate spectrum determined by the pair
(κ,G0), let R = π0E ' W (κ)[[v1, . . . , vn−1]] be the Lubin-Tate ring classifying deformations of G0, and let
G denote the universal deformation of G0 (regarded as a p-divisible group over R). Let A be a finite abelian
p-group. It follows from Theorem 2.4.10 that for 0 ≤ d ≤ n, SpecK(n)0K(A, d) is a finite flat commutative
group scheme over κ. We begin this section by reviewing a result of Buchstaber and Lazarev, which gives
a topological description of the Cartier dual of SpecK(n)0K(A, d) (Theorem 5.3.6). Using this result, we
construct an analogous duality in the setting of finite flat commutative group schemes over the Lubin-Tate
spectrum E itself (Theorem 5.3.25). From this, we reprove a result of Bauer concerning the convergence
properties of the Eilenberg-Moore spectral sequence in Morava K-theory (see Corollary 5.3.27 and Remark
5.3.28), which will play an important role in §5.4.

We begin by introducing some terminology.

Definition 5.3.1. Let A be a commutative ring, and let G be a p-divisible group over A of height n and

dimension 1. According to Corollary 3.5.4, the direct limit lim−→t
Alt

(n)
G[pt] is again a p-divisible group over R,

of height 1 and dimension 0. A normalization of G is an isomorphism of p-divisible groups

Qp /Zp ' lim−→
t

Alt
(n)
G[pt]

Here Qp /Zp denotes the constant p-divisible group associated to the abelian group Qp /Zp.

Remark 5.3.2. In the situation of Definition 5.3.1, we can think of a normalization as given by a compatible
family of isomorphisms

Z /pt Z ' Alt
(n)
G[pt] .

Such an isomorphism is determined by an A-valued point of Alt
(n)
G[pt]: that is, by an alternating multilinear

map
G[pt]n → µpt ⊆ Gm.

Remark 5.3.3. Let G be a p-divisible group over a commutative ring A, which has height n and dimension

1. Then lim−→t
Alt

(n)
G[pt] is an étale p-divisible group of height 1 over A. It follows that a normalization of G

always exists after replacing A by a direct limit of étale A-algebras. In particular, if A is a separably closed
field, then G always admits a normalization.

Remark 5.3.4. Let A be a Henselian local ring with residue field κ, and let κ denote the residue field of
A. Then category of étale local systems on SpecA is equivalent to the category of étale local systems on
Specκ. In particular, if G is a p-divisible group of height n and dimension 1 over A and G0 is the associated
p-divisible group over κ, there is a bijective correspondence between normalizations of G and normalizations
of G0.

Let G0 be a smooth connected formal group of height n <∞ over a perfect field κ, and let K(n) denote
the associated Morava K-theory. According to Proposition 2.4.10, KSpec(K(Qp /Zp, n)) is a connected

p-divisible group of dimension 1 over κ, which is Cartier dual to lim−→t
Alt

(n)
G0[pt]. In this situation, there is

a bijective correspondence between normalizations G0 and isomorphisms ν : KSpec(K(Qp /Zp, n)) ' Ĝm,

where Ĝm denotes the formal multiplicative group over κ. In what follows, we will generally identify ν with
the corresponding normalization of G0.

Notation 5.3.5. Let A be a finite abelian p-group. We let A∗ denote the Pontryagin dual of A, which we
will identify with the set Hom(A,Qp /Zp) of all homomorphisms from A to Qp /Zp. If G = SpecH is a
finite flat commutative group scheme over a commutative ring A, we let D(G) = SpecH∨ denote the Cartier
dual of G.
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Let A be a finite abelian p-group and let 0 ≤ d ≤ n be an integer. The bilinear map A× A∗ → Qp /Zp
determines map of spaces

c : K(A, d)×K(A∗, n− d)→ K(Qp /Zp, n),

classifying the cup product operation ∪ : Hd(•;A) × Hn−d(•;A∗) → Hn(•; Qp /Zp). Using Theorem 2.4.10
and Remark 2.1.21, we deduce that the spaces K(A, d) and K(A∗, n− d) are K(n)-good, so that we obtain
a map of formal schemes

c : KSpec(K(A, d))×Specκ KSpec(K(A∗, n− d))→ KSpec(K(Qp /Zp, n)).

It follows from the bilinearity of the cup product that c is bilinear. If ν : KSpec(K(Qp /Zp, n)) ' Ĝm is a
normalization of G0, then c is classified by a map

KSpec(K(A∗, n− d))→ D(KSpec(K(A, d))).

of group schemes over κ.

Theorem 5.3.6 (Buchstaber-Lazarev [2]). Let A be a finite abelian p-group and let 0 ≤ d ≤ n be an integer,
and fix a normalization ν of the p-divisible group G0 over κ. Then the above construction produces an
isomorphism

θA : KSpec(K(A∗, n− d))→ D(KSpec(K(A, d)))

of finite flat group schemes over κ.

Proof. Since the cup product of cohomology classes is bilinear, we obtain a map of Hopf algebras

K(n)0K(A, d) �K(n)0K(A∗, n− d)→ K(n)0K(Qp /Zp, n).

Using Proposition 1.4.14, we can identify this with a map of Dieudonne modules

β : DM+(K(n)0K(A, d))×DM+(K(n)0K(A∗, n− d))→ DM+(K(n)0K(Qp /Zp, n).

Using the normalization ν of G0, we can identify Spf K(n)0K(Qp /Zp, n) with the formal multiplicative
group over κ, so that the codomain of β can be identified withW (κ)[p−1]/W (κ) (where the actions of F and V
on W (κ)[p−1]/W (κ) are induced by the maps λ 7→ ϕ(λ), pϕ−1(λ) from W (κ) to itself). Using Example 1.4.18,
we see that θA is an isomorphism if and only if β determines an isomorphism from DM+(K(n)0K(A∗, n−d))
to HomW (κ)(DM+(K(n)0K(A, d)),W (κ)[p−1]/W (κ)). The collection of those finite abelian p groups A which
satisfy this condition is closed under products. We may therefore assume without loss of generality that A
is a cyclic group of the form Z /pt Z. Let M denote the Dieudonne module of K(n)0K(Z /pt Z, 1). Using
Theorem 2.4.10, we can identify ν with the composition

d∧
W (κ)/ptW (κ)

M ×
n−d∧

W (κ)/ptW (κ)

M →
n∧

W (κ)/ptW (κ)

M 'W (κ)/ptW (κ)
p−t

↪→ W (κ)[p−1]/W (κ).

To prove that ν is a perfect pairing, it suffices to show that M is a free module of rank n over W (κ)/ptW (κ),
which follows immediately from our assumption that G0 is a p-divisible group of height n over κ.

The remainder of this section is devoted to proving an analogue of Theorem 5.3.6 in the setting of spectral
algebraic geometry. That is, we want a version of Theorem 5.3.6 which gives an identification of finite flat
group schemes over the Lubin-Tate spectrum E, rather than over the residue field κ. We begin by reviewing
some definitions.
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Notation 5.3.7. For every ∞-category C which admits finite products, we let CMon(C) denote the ∞-
category of commutative monoid objects of C (see §HA.2.4.2). In particular, we let CMon(S) denote the
∞-category of commutative monoid objects of the ∞-category S of spaces (that is, the ∞-category of E∞-
spaces). We will generally abuse notation by identifying an object X ∈ CMon(S) with its image under
the forgetful functor CMon(S) → S. Note that if X ∈ CMon(S), then π0X inherits the structure of a
commutative monoid. We say that X is grouplike if π0X is an abelian group. We let CMongp(S) denote
the full subcategory of CMon(S) spanned by the grouplike E∞-spaces. The passage to zeroth spaces defines
an equivalence of ∞-categories Ω∞ : Spcn → CMongp(S), where Spcn denotes the ∞-category of connective
spectra.

Definition 5.3.8. Let A be an E∞-ring, and let CAlgA denote the ∞-category of E∞-algebras over A. A
finite flat commutative group scheme over A is a functor G : CAlgA → Spcn with the following property: the
composite functor Ω∞ ◦ G : CAlgA → S is corepresentable by an A-algebra B ∈ CAlgA which is finite flat
over A. We let FFA denote the full subcategory of Fun(CAlgA,Spcn) spanned by the finite flat commutative
group schemes over R.

Remark 5.3.9. Let A be an E∞-ring, and let CAlgff
A denote the full subcategory of CAlgA spanned by

those E∞-algebras which are finite and flat over A. Combining the equivalence Ω∞ : Spcn ' CMongp(S)
with the Yoneda embedding (CAlgff

A)op → Fun(CAlgA, S), we obtain an equivalence of ∞-categories

FFA ' CMongp((CAlgff
A)op).

Put more informally: we can identify finite flat group schemes over A with commutative and cocommutative
Hopf algebras in the ∞-category of finite flat A-module spectra.

Notation 5.3.10. The functor Ω∞ : Sp→ S is lax symmetric monoidal, where we endow Sp with the smash
product symmetric monoidal structure, and S with the usual symmetric monoidal structure. In particular,
if A is an E∞-ring, then the multiplication on A determines a commutative monoid structure on Ω∞A.
We let GL1(A) denote the union of those connected components of Ω∞A which are invertible in π0A. The
construction A 7→ GL1(A) determines a functor GL1 : CAlg→ CMongp(S). We will generally abuse notation
by identifying GL1 with the corresponding functor CAlg→ Spcn. We will also abuse notation by identifying
GL1 with its restriction to CAlgA, where A is an arbitrary E∞-ring.

Definition 5.3.11. Let A be an E∞-ring, and let G,H : CAlgA → Spcn be finite flat commutative group
schemes over A. A Cartier pairing between G and H is a natural transformation

G⊗H → GL1

of functors from CAlgA to Sp. We let

Cart(G,H) = MapFun(CAlgA,Spcn)(G⊗H,GL1)

denote the space of Cartier pairings of G with H. The construction (G,H) 7→ Cart(G,H) determines a
functor (FFA×FFA)op → S.

Let β : G⊗H → GL1 be a Cartier pairing of finite flat commutative group schemes over A. We say that
β is left universal if, for every H ′ ∈ FFA, evaluation on β induces a homotopy equivalence

MapFFA(H ′, H)→ Cart(G,H ′).

In this case, we say that H is the Cartier dual of G, and write H = D(G).

Remark 5.3.12. Let G be a finite flat commutative group scheme over an E∞-ring A. It follows immediately
from the definitions that a Cartier dual of G is determined uniquely (up to a contractible space of choices) if
it exists. For existence, we refer the reader to [15]. Moreover, it is proven in [15] that if the functor Ω∞ ◦G is
representable by an E∞-algebra H, then Ω∞ ◦D(G) is representable by the A-linear dual H∨ of A, endowed
with an E∞-algebra structure which is A-linear dual to the comultiplication on H.
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Remark 5.3.13. In the situation of Definition 5.3.11, we also have the dual notion of a right universal
Cartier pairing: a natural transformation β : G ⊗ H → GL1 with the property that, for every finite flat
commutative group scheme G′ over A, evaluation on β induces a homotopy equivalence

MapFFA(G′, G)→ Cart(G′, H).

A Cartier pairing is left universal if and only if it is right universal (see [15]). In other words, a Cartier
pairing β : G⊗H → GL1 exhibits G as a Cartier dual of H if and only if it exhibits H as a Cartier dual of
G.

Remark 5.3.14. Let A be an E∞-ring. The formation of Cartier duals determines an equivalence of
∞-categories (FFA)op ' FFA.

Our next goal is to produce some examples of finite flat commutative group schemes over ring spectra.
In what follows, we fix a perfect field κ of characteristic p > 0 and a connected p-divisible group G0 of finite
n < ∞ over κ. Let E denote the Lubin-Tate spectrum determined by (κ,G0), and K(n) the associated
Morava K-theory spectrum.

Definition 5.3.15. We say that a space X is K(n)-perfect if K(n)0X is a finite-dimensional vector space
over κ, and K(n)iX ' 0 when i is odd. We let Spf denote the full subcategory of S spanned by the
K(n)-perfect spaces. It follows from Remark 2.1.21 that Spf is closed under finite products.

Notation 5.3.16. For every Kan complex X, we let C∗(X;E) denote a limit of the constant diagram
X → Sp taking the value E, and C∗(X;E) the colimit of the same diagram (so that C∗(X;E) is the
function spectrum of maps from X to E, and C∗(X;E) is obtained by tensoring E with X). We will regard
C∗(X;E) as an E∞-ring with the following universal property: for every E∞-ring A, there is a canonical
homotopy equivalence

MapCAlg(A,C∗(X;E)) ' MapS(X,MapC(A,E)).

The construction X 7→ C∗(X;E) determines a functor from Sop to the ∞-category CAlgE of E∞-algebras
over E. In particular, for every pair of spaces X and Y , there is a canonical map

C∗(X;E)⊗E C∗(Y ;E)→ C∗(X × Y ;E)

Using Proposition 3.4.3 and Remark 2.1.21, we deduce that this map is an equivalence whenever X and Y
are K(n)-perfect.

Definition 5.3.17. Let X be a K(n)-perfect space. We let + ESpec(X) denote the functor CAlgE → S

given by the formula
+ ESpec(X)(A) = MapCAlgE

(C∗(X;E), A).

Remark 5.3.18. Let X be a K(n)-perfect space. Proposition 3.4.3 implies that EX is a free E-module
of finite rank. It follows that + ESpec(X) is representable by an affine nonconnective spectral Deligne-
Mumford stack which is finite flat over E. Moreover, the underlying ordinary scheme of + ESpec(X) is given
by ESpec(X) = SpecE0(X).

Remark 5.3.19. The construction X 7→ + ESpec(X) determines a functor from Spf → Fun(CAlgE , S) which
commutes with finite products. In particular, if X is a grouplike commutative monoid object of S, then we
can regard + ESpec(X) as a finite flat commutative group scheme over E.

Using Theorem 2.4.10 and Remark 5.3.19, we can produce a large class of examples of finite flat commu-
tative group schemes over E.

Definition 5.3.20. Let Z denote the ring of integers. We will identify Z with a discrete E∞-ring, and let
ModZ denote the ∞-category of module spectra over Z (equivalently, we can described ModZ as obtained
from the ordinary category of chain complexes of abelian groups, by inverting quasi-isomorphisms). We will
say that an object M ∈ ModZ is p-finite if each homotopy group πmM is a finite abelian p-group, and the
groups πmM vanish for m� 0 and m� 0. We let Modp−fin

Z denote the full subcategory of ModZ spanned
by the p-finite Z-module spectra.
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Remark 5.3.21. The construction M 7→ π0M induces an equivalence from the ∞-category of discrete
Z-module spectra to the ordinary category of abelian groups. We will abuse notation by identifying an
abelian group A with its preimage under this equivalence (that is, with the corresponding Eilenberg-MacLane
spectrum).

Since the commutative ring Z has projective dimension ≤ 1, every object M ∈ ModZ splits (noncanon-
ically) as a direct sum

⊕
m∈Z Σm(πmM). In particular, M is p-finite if and only if it can be obtained as a

finite product of Z-module spectra of the form Σm(Z /pt Z).

Construction 5.3.22. Let M be a p-finite Z-module spectrum. Using Proposition 2.4.10 and Remark
5.3.21, we see that the space Ω∞M is K(n)-perfect. We can therefore view + ESpec(Ω∞M) as a finite flat
commutative group scheme over E. We will regard the construction M 7→ + ESpec(Ω∞M) as a functor from

Modp−fin
Z to the ∞-category FFE of finite flat commutative group schemes over E.

Let M be a p-finite Z-module spectrum. Our next goal is to describe the Cartier dual + ESpec(Ω∞M).
First, we need to introduce a bit more terminology.

Definition 5.3.23. Let M be a p-finite Z-module spectrum. We define the Pontryagin dual M∗ of M to
be the mapping object (Qp /Zp)

M , formed in the symmetric monoidal ∞-category ModZ. More precisely,
M∗ is an object of ModZ equipped with a map

β : M ⊗Z M
∗ → Qp /Zp,

satisfying the following universal property: for every Z-module spectrum N , composition with β induces a
homotopy equivalence

MapModZ
(N,M∗)→ MapModZ

(M ⊗Z N,Qp /Zp).

Remark 5.3.24. Let M be a finite abelian p-group, regarded as a discrete Z-module spectrum. Then the
Pontryagin dual M∗ of Definition 5.3.23 is also discrete (since Qp /Zp is an injective Z-module), and agrees
with the Pontryagin dual of M defined in Notation 5.3.5.

More generally, the Pontryagin dual M∗ of an arbitrary p-finite Z-module spectrum is determined up to
equivalence by the existence of natural isomorphisms

πmM
∗ ' Hom(π−mM,Qp /Zp).

We are now ready to state our main result.

Theorem 5.3.25. Let κ be a perfect field of characteristic p > 0, let G0 be a connected p-divisible group of
height n over κ, and let E denote the Lubin-Tate spectrum associated to (κ,G0), and K(n) the associated

Morava K-theory. Fix a normalization ν : KSpecK(Qp /Zp, n) ' Ĝm of G0. Then for every p-finite
Z-module spectrum M , ν determines an equivalence of finite flat commutative group schemes

D(() + ESpec(Ω∞M)) ' + ESpec(Ω∞−nM∗),

depending functorially on M ∈ Modp−fin
Z .

Before giving the proof of Theorem 5.3.25, let us collect up some consequences. Note that the the
construction X 7→ LK(n)C∗(X;E) determines a symmetric monoidal functor from S into ModE(SpK(n)),
which carries grouplike commutative monoid objects of S to E∞-algebras over E. In the special case where
X is K(n)-perfect, the induced comultiplication on the E-linear dual C∗(X;E) of LK(n)C∗(X;E) underlies
the Hopf algebra structure on C∗(X;E) which determines the group structure on + ESpec(X). Combining
this observation with Theorem 5.3.25, we obtain the following:

Corollary 5.3.26. In the situation of Theorem 5.3.25, a normalization ν of G0 determines equivalences

LK(n)C∗(Ω
∞M ;E) ' C∗(Ω∞−nM∗;E)

of E∞-algebras over E, depending functorially on M ∈ Modp−fin
Z .
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Corollary 5.3.27. Suppose we are given a pullback diagram σ :

M //

��

M0

��
M1

// M01

in Modp−fin
Z . Assume that each of the objects appearing in this diagram is n-truncated. Then the associated

diagram

C∗(Ω∞M ;E) C∗(Ω∞M0;E)oo

C∗(Ω∞M1;E)

OO

C∗(Ω∞M01;E)oo

OO

is a pushout square in CAlg(ModE(SpK(n))).

Proof. Using Corollary 5.3.26, we are reduced to proving that the diagram

LK(n)C∗(Ω
∞−nM∗;E) LK(n)C∗([Ω

∞−nM∗0 ;E)oo

LK(n)C∗(Ω
∞−nM∗;E)

OO

LK(n)C∗(Ω
∞−nM∗01;E)

OO

oo

is a pushout square in CAlg(ModE(SpK(n))). Since the functor X 7→ LK(n)C∗(X;E) is symmetric monoidal,
it suffices to show that the diagram τ :

Ω∞−nM∗ Ω∞−nM∗0oo

Ω∞−nM∗1

OO

Ω∞−nM∗01
oo

OO

is a pushout square in CAlg(S) ' CMon(S). Note that the full subcategory CMongp(S) is closed under
pushouts in CMon(S); it will therefore suffice to show that τ is a pushout diagram in CMongp(S). The
functor Ω∞ is an equivalence from Spcn to CMongp(S); we are therefore reduced to proving that the diagram

ΣnM∗ ΣnM∗0oo

ΣnM∗1

OO

ΣnM∗01

OO

oo

is a pushout diagram in Spcn. This follows immediately from our assumption that σ is a pullback diagram
(the connectivity of the spectra appearing in this diagram follows from our assumption that σ is a diagram
of n-truncated Z-module spectra).

Remark 5.3.28. The conclusion of Corollary 5.3.27 is equivalent to the convergence of the Eilenberg-Moore
spectral sequence

TorK(n)∗Ω∞M01
∗ (K(n)∗Ω∞M0,K(n)∗Ω∞M1)⇒ K(n)∗Ω∞M.

We refer the reader to [1] for another proof of this convergence result.

Remark 5.3.29. In §5.4 we will prove a generalization of Corollary 5.3.27 (Theorem 5.4.8), where we replace
E by an arbitrary K(n)-local E∞-ring A, and allow Kan complexes which are not generalized Eilenberg-
MacLane spaces.
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We will reduce Theorem 5.3.25 to Theorem 5.3.6 by means of the following result:

Proposition 5.3.30. Let κ be a perfect field of characteristic p > 0, let G0 be a connected p-divisible group
of height n over κ, and let E denote the Lubin-Tate spectrum associated to (κ,G0), and K(n) the associated

Morava K-theory. Define functors θ, θ′ : (Modp−fin
Z )op → FFE by the formulas

θ(M) = + ESpec(Ω∞−nM∗) θ′(M) = D(+ ESpec(Ω∞M)).

Then every normalization ν of G0 determines a natural transformation α : θ → θ′ with the following property:
in the special case where A is a finite abelian p-group and M = ΣdA, the map of finite flat group schemes

+ ESpec(K(n− d,A∗)→ D(+ ESpec(K(A, d)))

induces a map of ordinary schemes ESpec(K(n − d,A∗)) → D(ESpec(K(A, d))) which extends the isomor-
phism KSpecK(n− d,A∗) ' D(KSpecK(A, d)) of Theorem 5.3.6.

Proof of Theorem 5.3.25 from Proposition 5.3.30. It will suffice to show that the natural transformation
α : θ → θ′ is an equivalence. Fix an object M ∈ Modp−fin

Z ; we wish to show that the map

α(M) : + ESpec(Ω∞−nM∗)→ D(+ ESpec(Ω∞M))

is an equivalence of finite flat group schemes over E. To prove this, it suffices to show that α(M) induces an
equivalence of S-valued functors: in other words, we must show that it underlies an equivalence of E-module
spectra

LK(n)C∗(Ω
∞M ;E)→ C∗(Ω∞−nM∗;E).

Since both sides are finite and flat over E, we are reduced to proving that the underlying map of commutative
rings

φ : E∧0 (Ω∞M)→ E0(Ω∞−nM∗)

is an isomorphism. The collection of those objects M ∈ Modp−fin
Z which satisfy this condition is closed under

finite products. We may therefore assume without loss of generality that M has the form ΣdA, for some
finite abelian p-group A. Note that the domain and codomain of φ are free modules of finite rank over the
local ring π0E. It follows that φ is an isomorphism if and only if the induced map of closed fibers

κ⊗π0E E
∧
0 (Ω∞M)→ κ⊗π0E E

0(Ω∞−nM∗)

is an isomorphism of vector spaces over κ. If d < 0 or d > n, then both sides are isomorphic to κ and there
is nothing to prove. Otherwise, the desired result follows from Theorem 5.3.6.

The remainder of this section is devoted to the construction of the natural transformation α appearing
in the proof of Proposition 5.3.30. Essentially, our goal is mimic the construction that precedes Theorem
5.3.6, working over the Lubin-Tate spectrum E rather than κ. Our first goal is to construct an analogue of
the isomorphism ν : KSpecK(Qp /Zp, n) ' Ĝm.

Definition 5.3.31. Let A be an E∞-ring and let G be a finite flat commutative group scheme over A. We
will say that G is étale if the functor Ω∞ ◦G is corepresentable by an étale A-algebra H. We let FFét

A denote
the full subcategory of FFA spanned by the finite flat commutative group schemes which are étale over A.

Remark 5.3.32. The equivalence of ∞-categories FFA ' CMongp((CAlgff
A)op) restricts to an equivalence

FFét
A ' CMongp((CAlgfét

A )op), where CAlgfét
A denotes the full subcategory of CAlgA spanned by those A-

algebras which are finite étale over R. Using Theorem HA.8.5.0.6, we see that CAlgfét
A is equivalent to

(the nerve of) the ordinary category of finite étale (π0R)-algebras. It follows that the ∞-category FFét
A is

equivalent to the nerve of the ordinary category of étale local systems of finite abelian groups on the affine
scheme Specπ0A. In particular, if M is a finite abelian group, then the constant local system on Specπ0A
taking the value M determines a finite flat group scheme over A, which we will denote by M .

If A is a Henselian local ring with residue field κ, we further obtain an equivalence of FFét
A ' FFét

κ .
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Example 5.3.33. Let A be an E∞-ring. The functor GL1 : CAlgA → CMongp(S) admits a left adjoint,
which carries a grouplike commutative monoid object M ∈ CMongp(S) to the spectrum C∗(M ;A), which
we can think of as the group algebra of M over A (it is a commutative algebra object of ModA, since the
construction X 7→ C∗(X;A) determines a symmetric monoidal functor from S to ModA). In particular, for
each M ∈ CMongp(S), the E∞-ring C∗(M ;A) corepresents the functor GLM1 : CAlgA → S, given by the
formula

GLM1 (B) = MapCMon(S)(M,GL1(B)).

Note that GLM1 has the structure of a grouplike commutative monoid in Fun(CAlgB , S). Let us now specialize
to the case where M is a finite abelian group (regarded as a discrete space), so that C∗(M ;A) is a free A-
module of finite rank. Then we can regard GLM1 as a finite flat commutative group scheme over A. In the
special case where M = Z /mZ for some integer m > 0, we will denote GLM1 by µm. Note that the unit
element 1 ∈ Z /mZ determines a natural transformation µm → GL1.

Remark 5.3.34. Let A be an E∞-ring, let M be a finite abelian group, and let GLM1 be the finite flat
group scheme over A described in Example 5.3.33, so that Ω∞ ◦GLM1 is corepresented by the group algebra
H = C∗(M ;A). The dual Hopf algebra H∨ is étale over R, and is therefore determined up to equivalence by
an étale local system of finite abelian groups on the affine scheme Specπ0A (Remark 5.3.32). By inspection,
this is the constant local system with value M . We therefore obtain a canonical equivalence D(GLM1 ) 'M
of finite flat commutative group schemes over A. Specializing to the case where M = Z /mZ is a cyclic
group, we obtain equivalences

D(Z /mZ) ' µm D(µm) ' Z /mZ.

Remark 5.3.35. Let A be an E∞-ring and let G be a finite flat commutative group scheme over A, so that
the underlying functor Ω∞ ◦G : CAlgA → S is corepresentable by an A-algebra H which is finite flat over A.
Then π0A is a commutative cocommutative Hopf algebra over the commutative ring π0A, so we can regard
Specπ0H as a finite flat group scheme G0 over π0A (in the sense of classical algebraic geometry). Suppose
that G0 is split multiplicative: that is, that there is a finite abelian group M such that π0A is isomorphic
(as a Hopf algebra) to the group algebra (π0R)[M ]. Then the Cartier duals of G and GLM1 are étale and
determine the same local system of finite abelian groups on Specπ0A. Applying Remark 5.3.32, we see that
the isomorphism π0H ' (π0A)[M ] lifts uniquely (up to a contractible space of choices) to an equivalence
G ' GLM1 of finite flat commutative group schemes over A.

Example 5.3.36. Let κ and G0 be as in Proposition 5.3.30, and let ν : KSpecK(Qp /Zp, n) ' Ĝm be a
normalization of G0. Using Remark 5.3.35, we see that ν determines a compatible family of equivalences

+ ESpec(K(Z /pt Z, n)) ' µpt

of finite flat commutative group schemes over E.

Construction 5.3.37. Note that every p-finite Z-module spectrum M is a compact object of ModZ. It
follows that the inclusion Modp−fin

Z ↪→ ModZ extends to a fully faithful embedding ι : Ind(Modp−fin
Z ) ↪→ ModZ

which preserves filtered colimits; the essential image of ι is the full subcategory Modp−nilZ spanned by those
Z-module spectra M such that M [p−1] ' 0.

Let Ψ : Modp−fin
Z → Fun(CAlgE ,CMongp(S)) ' Fun(CAlgE ,Spcn) denote the functor given by Ψ(M) =

+ ESpec(Ω∞M). Then Ψ admits an essential unique extension to a functor

Ψ̂ : Modp−nilZ → Fun(CAlgE ,CMongp(S))

which commutes with filtered colimits. Using Example 5.3.36, we see that a normalization ν of the p-divisible
group G0 determines a natural transformation

ν : Ψ̂(Σn Qp /Zp) ' lim−→
t≥0

µpt → GL1 .

in the ∞-category Fun(CAlgE ,Spcn).
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We now turn to the construction of the natural transformation α appearing in Proposition 5.3.30. For
this, it will be convenient to use the language of pairings of ∞-categories developed in §SAG.4.3.1, together
with the description of the smash product of spectra given in [15].

Notation 5.3.38. Let VPair denote the ∞-category

(Modp−fin
Z ×Modp−fin

Z )×ModZ
(ModZ)/ΣnQp /Zp

whose objects are triples (M,N,α), where M and N are p-finite Z-module spectra and α is a map of
Z-modules from M ⊗Z N into Σn Qp /Zp.

We let WPair denote the ∞-category

(FFE ×FFE)×Fun(CAlgE ,Spcn) Fun(CAlgE ,Spcn)/GL1

whose objects are triples (G,H, β), where G and H are finite flat commutative group schemes over E, and β
is a natural transformation from the pointwise smash product G⊗H into the functor GL1 : CAlgE → Spcn.

Remark 5.3.39. The projection map λ : VPair → Modp−fin
Z ×Modp−fin

Z is a right fibration, which we can

regard as a pairing of the ∞-category Modp−fin
Z with itself, in the sense of Definition SAG.4.3.1.1. We note

that for M,N ∈ Modp−fin
Z , we have a canonical homotopy equivalence

MapModZ
(M ⊗Z N,Σ

n Qp /Zp) ' MapModZ
(M,ΣnN∗),

so that the pairing λ is left and right representable (see Definition SAG.4.3.1.2), with associated duality
functor(s) given by N 7→ ΣnN∗.

Similarly, the projection map λ′ : WPair → FFE ×FFE is a right fibration, which we can regard as
a pairing of FFE with itself. This pairing is also left and right representable, with the associated duality
functor(s) given by Cartier duality on FFE .

Construction 5.3.40. Let ν be a normalization of G0. Let γ : ModZ → CMongp(S) denote the composition
of the forgetful functor ModZ → Sp with the functor Ω∞ : Sp → Mongp

CRing(S). Suppose we are given an
object (M,N,α) ∈ VPair. Then α determines a natural transformation

α0 : γ(M) � γ(N)→ γ(Σn Qp /Zp) ◦ ∧

of functors from N(Fin∗)×N(Fin∗) to S. We therefore obtain, for each A ∈ CAlgE , a natural transformation

Ψ(M)(A) � Ψ(N)(A)→ Ψ̂(Σn Qp /Zp)(A) ◦ ∧.

Composing with the map ν : Ψ̂(Σn Qp /Zp)→ GL1 of Construction 5.3.37, we obtain a natural transforma-
tion β : Ψ(M)⊗Ψ(N)→ GL1 of functors from CAlgE to Spcn. The construction

(M,N,α) 7→ (Ψ(M),Ψ(N), β)

determines a functor VPair→WPair, which fits into a commutative diagram

VPair //

��

WPair

��
Modp−fin

Z ×Modp−fin
Z

Ψ×Ψ // FFE ×FFE .

Proof of Proposition 5.3.30. Apply Proposition SAG.4.3.3.4 to the map of pairings given by Construction
5.3.40.
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5.4 The Global Sections Functor

Let K(n) denote a Morava K-theory spectrum, fixed throughout this section. Let A be a K(n)-local E∞-ring,
and let X be a Kan complex. The formation of global sections F 7→ C∗(X;F) determines a functor

Fun(X,ModA(SpK(n)))→ ModA(SpK(n)).

It follows from Theorem 5.2.1 that if X is a finite m-type for some integer m, then this functor preserves small
colimits. Our first main result in this section asserts that, if X satisfies some slightly stronger conditions, then
F can be recovered from C∗(X;F), regarded as a module over the function spectrum C∗(X;A) (Theorem
5.4.3). First, we need to introduce a bit of terminology:

Definition 5.4.1. Let X be a Kan complex and p a prime number. We will say that X is p-finite if the
following conditions are satisfied:

(a) The set π0X is finite.

(b) For each x ∈ X and each k > 0, the homotopy group πk(X,x) is a finite p-group.

(c) The Kan complex X is m-truncated for some integer m.

Remark 5.4.2. The notion of p-finite Kan complex (Definition 5.4.1) is closely related to the notion of p-
finite Z-module spectrum (Definition 5.3.20). More precisely, a connective Z-module spectrum M is p-finite
if and only if Ω∞M ∈ S is p-finite.

Throughout this section, we regard SpK(n) as a symmetric monoidal ∞-category with respect to the
K(n)-localized smash product (Corollary 2.1.3), which we will denote by ⊗ : SpK(n)×SpK(n) → SpK(n). For
any Kan complex X, the symmetric monoidal structure on SpK(n) induces a symmetric monoidal structure
on Fun(X,SpK(n)), given by pointwise tensor product. If f : X → Y is a map of Kan complexes, then
the pullback functor f∗ : Fun(Y,SpK(n)) → Fun(X,SpK(n)) is symmetric monoidal. It follows that the
pushforward functor f∗ : Fun(X,SpK(n)) → Fun(Y,SpK(n)) is lax symmetric monoidal. In particular, f∗
carries algebra objects A ∈ Alg(Fun(X,SpK(n))) to algebra objects of Fun(Y, SpK(n)), and A-module objects
of Fun(X,SpK(n)) to f∗A-module objects of Fun(Y, SpK(n).

We can now state our main result:

Theorem 5.4.3. Let K(n) be a Morava K-theory spectrum of height n > 0, let p denote the characteristic
of the residue field π0K(n), let f : X → Y be a map of Kan complexes, and let A ∈ Alg(Fun(X,SpK(n))) be
a local system of K(n)-local E1-rings on X. Then:

(1) Assume that the homotopy fibers of f are finite m-types, for some integer m. Then the pushforward
functor

G : LModA(Fun(X,SpK(n)))→ LModf∗A(Fun(Y,SpK(n)))

has a fully faithful left adjoint.

(2) Assume that each homotopy fiber of f is p-finite and n-truncated. Then the functor G is an equivalence
of ∞-categories.

Corollary 5.4.4. In the situation of Theorem 5.4.3, let X be a Kan complex which is n-truncated and
p-finite. Then for any K(n)-local E1-ring, the global sections functor

Fun(X,LModA(SpK(n)))→ LModC∗(X;A)(SpK(n))

is an equivalence of ∞-categories.

Corollary 5.4.5. Let f : X → Y be a map of Kan complexes.
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(1) If the homotopy fibers of f are finite m-types and (n+ 1)-connective, then the pullback functor

f∗ : Fun(Y, SpK(n))→ Fun(X,SpK(n))

is fully faithful.

(2) If the homotopy fibers of f are finite m-types and (n + 2)-connective, then f∗ is an equivalence of
∞-categories.

Proof. Let S denote the K(n)-local sphere spectrum. For every space Z, let SZ denote the constant local
system on Z taking the value S. We first show that the following properties of a map f : X → Y are
equivalent:

(a) The homotopy fibers of f are finite m-types and the pullback functor f∗ is fully faithful.

(b) The homotopy fibers of f are finite m-types and the unit map uf : SY → f∗f
∗SY ' f∗SX is an

equivalence.

The implication (a) ⇒ (b) is obvious, and the converse follows from Theorem 5.4.3. Let us say that a map
f : X → Y is good if it satisfies the equivalent conditions (a) and (b). We immediately conclude the following:

(i) A map f : X → Y is good if and only if, for each point y ∈ Y , the induced map X ×Y {y} → {y} is
good (this follows immediately from description (b)).

(ii) If f : X → Y and g : Y → Z are good, then the composite map g ◦ f : X → Z is good (this follows
immediately from description (a)).

To prove (1), we must show that if the homotopy fibers of f : X → Y are (n + 1)-connective finite
m-types, then f is good. Using (i), we can reduce to the case where Y is a single point. Then X is a finite
m-type for some integer m. We proceed by induction on m. If m ≤ n, then X is contractible and the
result is obvious. Otherwise, we have m > n and the inductive hypothesis implies that τ≤m−1X is good.
Using (ii), we are reduced to proving that the map X → τ≤m−1X is good. Using (i), we are reduced to
showing that for every finite abelian group A, the map K(A,m) → ∗ is good. We proceed by induction on
the order of A. If A is trivial, then K(A,m) is contractible and the result is obvious. Otherwise, there exists
a subgroup A′ ⊆ A which is cyclic of prime order. Set A′′ = A/A′. The inductive hypothesis implies that
K(A′′,m) is good. Using (b), we are reduced to showing that the map K(A,m)→ K(A′′,m) is good. Using
(a), we are reduced to proving that K(A′,m) is good. Write A′ = Z /lZ for some prime number l, and let
X = K(A′,m). We wish to show that the unit map S → C∗(X;S) is an equivalence. We note that this
unit map is the Spanier-Whitehead dual of canonical map v : LK(n)Σ

∞
+ (X)→ S. It will therefore suffice to

show that v is an equivalence in SpK(n). This is equivalent to the assertion that v induces an isomorphism
on K(n)-homology groups K(n)∗X → π∗K(n). For l 6= p this is easy (and valid for any m > 0); when l = p
it follows from Theorem 2.4.10. This completes the proof of (1).

We now prove (2). Suppose that the homotopy fibers of f are (n+ 2)-connective finite m-types; we wish
to show that f∗ is an equivalence of ∞-categories. We may assume without loss of generality that Y is a
point, so that there exists a section e : Y → X of the map f . Let M ∈ LocSys(SpK(n))X ; we wish to show
that f lies in the essential image of f∗. We note that e∗M ' e∗f∗e∗M . Since the functor e∗ is fully faithful
by (1), we deduce that M is equivalent to f∗e∗M , and therefore belongs to the essential image of f∗, as
desired.

The proof of Theorem 5.4.3 will require some preliminaries.

Proposition 5.4.6 (Push-Pull Formula). Let f : X → Y be a map of spaces. Suppose we are given local
systems A ∈ Alg(Fun(Y,SpK(n))), M ∈ RModf∗A(Fun(X,SpK(n))), and N ∈ LModA(Fun(Y,SpK(n))). If
the homotopy fibers of f are finite m-types, then the canonical map

βM,N : (f∗M)⊗A N→ f∗(M⊗f∗Af∗N)

is an equivalence in Fun(Y,SpK(n)).
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Proof. We may assume without loss of generality that Y consists of a single point, so that we can identify
the local system A with a K(n)-local E1-ring A. Let us regard M as fixed, and let C ⊆ LModA(SpK(n))
denote the full subcategory spanned by those objects N for which βM,N is an equivalence. Since the functor
f∗ preserves small colimits (Proposition 5.2.1), we conclude that C is closed under small colimits. Since
LModA(SpK(n)) is generated under small colimits by the objects {ΣmA}m∈Z, we are reduced to proving
that βM,N is an equivalence when N has the form ΣmA, which is clear.

Corollary 5.4.7. Let X be a finite m-type, let A be an E1-ring which is K(n)-local, and let M be a left
A-module which is K(n)-local. Then the canonical map C∗(X;A) ⊗M → C∗(X;M) is an equivalence of
K(n)-local spectra.

Proof of Theorem 5.4.3. The functor G admits a left adjoint F , given by the formula

F (M) = A⊗f∗f∗Af∗M .

Assume that the homotopy fibers of f are finite m-types; we will show that F is fully faithful. To prove
this, we must show that for each N ∈ LModf∗A(Fun(Y, SpK(n))), the unit map uN : N → (G ◦ F )(N) is
an equivalence in LModf∗N(Fun(Y,SpK(n))). To prove this, it suffices to show that for each point y ∈ Y ,
uN induces an equivalence Ny → (G ◦ F )(N)y. Replacing X by the homotopy fiber X ×Y {y}, we can
reduce to the case where Y consists of a single point. Let C = LModf∗A(SpK(n)), and let C0 denote the
full subcategory of C spanned by those objects N for which the unit map uN is an equivalence. Since f is
SpK(n)-ambidextrous (Theorem 5.2.1), the pushforward functor f∗ preserves small colimits. It follows that
C0 is closed under small colimits in C. Since C is generated under small colimits by objects of the form
Σmf∗A and C0 is closed under shifts, we are reduced to proving that the unit map uN is an equivalence in
the special case N = f∗A, in which case the result is clear. This completes the proof of (1).

We now turn to the proof of (2). Assume that the homotopy fibers of f are p-finite and n-truncated; we
wish to show that G is an equivalence of ∞-categories. The first part of the proof shows that G admits a
fully faithful left adjoint F . It will therefore suffice to show that G is conservative. For this, it suffices to
show that the global sections functor

f∗ : Fun(X,SpK(n))→ Fun(Y,SpK(n))

is conservative. That is, we wish to show that if M ∈ Fun(X,SpK(n)) is nonzero, then f∗M is nonzero. In
fact, we claim that if Mx is nonzero for some point x ∈ X, then (f∗M)f(x) is nonzero. To prove this, we can
replace f by the map X ×Y {f(x)} → {f(x)} and thereby reduce to the case where Y is a single point.

We now prove by induction on m that if m ≤ n and X is m-truncated, then the global sections functor
f∗ : Fun(X,SpK(n))→ SpK(n) is conservative. If m = 0, then X is homotopy equivalent to a discrete space
and the result is obvious. To carry out the inductive step, it suffices to show that the pushforward functor
Fun(X,SpK(n)) → Fun(τ≤m−1X,SpK(n)) is conservative. Repeating the above argument, we can reduce to
the case where τ≤m−1X is contractible. Then X is an Eilenberg-MacLane space K(G,m), where 1 ≤ m ≤ n
and G is a finite p-group (which is abelian if m > 1).

We now proceed by induction on the order of G. If G is trivial, then X is contractible and there is
nothing to prove. Otherwise, G contains a normal subgroup of order p. We then have an exact sequence of
groups

0→ Z /pZ→ G→ G′ → 0,

which gives rise to a fiber sequence of spaces

K(Z /pZ,m)→ K(G,m)→ K(G′,m).

The inductive hypothesis implies that the global sections functor Fun(K(G′,m),SpK(n)) → SpK(n) is con-
servative. We are therefore reduced to proving that the pushforward functor Fun(K(G,m),SpK(n) →
Fun(K(G′,m),SpK(n)) is conservative. Working fiberwise, we are reduced to proving that the global sections
functor Fun(K(Z /pZ,m),SpK(n))→ SpK(n) is conservative. To prove this, it will suffice to verify assertion
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(2) in the special case where X = K(Z /pZ,m), Y is a point, and A is the constant local system taking the
value S, where S denotes the K(n)-local sphere spectrum (that is, the unit object of the symmetric monoidal
∞-category SpK(n)).

For M ∈ Fun(X,SpK(n)), let vM : (F ◦ G)(M) → M denote the counit map. Let D ⊆ Fun(X,SpK(n))
be the full subcategory spanned by those objects M for which vM is an equivalence. We wish to show that
D = Fun(X,SpK(n)). Since the functor f∗ preserves small colimits, the ∞-category D is closed under small
colimits in LocSys(SpK(n))X . Choose a base point x ∈ X, and let e : {x} → X denote the inclusion. We
have a canonical equivalence of ∞-categories SpK(n) ' Fun({x},SpK(n)); we will henceforth identify S with
its image in Fun({x},SpK(n)). Since X is connected, Lemma 4.3.8 implies that Fun(X,SpK(n)) is generated
under small colimits by the essential image of the functor e!. Since SpK(n) is generated under small colimits

by the objects {ΣkS}k∈Z, we are reduced to proving that e!S ∈ D. Since the map e is SpK(n)-ambidextrous
(Theorem 5.2.1), we have an equivalence e!S ' e∗S. We are therefore reduced to proving that e∗S ∈ D. In
other words, we wish to show that the canonical map

α : S ⊗f∗C∗(X;S) (f∗f∗e∗S)→ e∗S

is an equivalence in Fun(X,SpK(n)); here S denotes the unit object of Fun(X,SpK(n)). Choose a point
y ∈ X, and let Px,y = {x} ×X {y} denote the space of paths from x to y in X. Unwinding the definitions,
we see that α induces an equivalence after evaluation at y if and only if the diagram σ :

C∗(X;S) //

��

C∗({x};S)

��
C∗({y};S) // C∗(Px,y;S)

is a pushout square in CAlg(SpK(n)). This follows from Corollary 5.3.27.
We may assume without loss of generality that the field π0K(n) is algebraically closed. Let E denote the

Lubin-Tate spectrum associated to , and let Φ : CAlg(SpK(n))→ CAlg(ModE(SpK(n))) denote a left adjoint
to the forgetful functor. Since Φ is conservative, we are reduced to proving that Φ(σ) is a pushout square in
CAlg(ModE(SpK(n))), which follows from Corollaries 5.4.7 and 5.3.27.

We now use Theorem 5.4.3 to prove a generalization of Corollary 5.3.27.

Theorem 5.4.8. Let A be a K(n)-local E∞-ring. Suppose we are given a pullback diagram of spaces.

X ′ //

��

X

g

��
Y ′

f // Y.

Assume that Y is n-truncated and p-finite and that X is a finite m-type, for some integer m. Then the
diagram

C∗(X ′;A) C∗(X;A)oo

C∗(Y ′;A)

OO

C∗(Y ;A)

OO

oo

is a pushout square in CAlg(SpK(n)).

Remark 5.4.9. Like Corollary 5.3.27, Theorem 5.4.8 can also be deduced from the main result of [1].

We will give the proof of Theorem 5.4.8 at the end of this section. For now, let us deduce some conse-
quences.
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Corollary 5.4.10. Let A be a K(n)-local E∞-ring, and let S
p−fin
≤n denote the full subcategory of S spanned

by those spaces which are p-finite and n-truncated. The following conditions are equivalent:

(1) The functor S
p−fin
≤n → CAlgop

A given by X 7→ C∗(X;A) is fully faithful.

(2) For every n-truncated, p-finite space X, the canonical map X → MapCAlgA
(C∗(X;A), A) is a homotopy

equivalence.

(3) If X = K(Z /pZ, n), then the canonical map X → MapCAlgA
(C∗(X;A), A) is a homotopy equivalence.

Proof. The implications (1)⇒ (2)⇒ (3) are obvious. We next show that (2) implies the following stronger
version of (1):

(1′) Let X and Y be spaces. If X is n-truncated and p-finite, then the canonical map

θX,Y : MapS(Y,X)→ MapCAlgA
(C∗(X;A), C∗(Y ;A))

is a homotopy equivalence.

Note that the collection of those spaces Y for which θX,Y is a homotopy equivalence is closed under small
colimits in S. Consequently, to show that θX,Y is a homotopy equivalence for all Y ∈ S, it suffices to show
that θX,∗ is a homotopy equivalence: that is, that X satisfies condition (2).

We now complete the proof by showing that (3) → (2). Let F : S → S denote the functor given by

F (X) = MapCAlgA
(C∗(X;A), A). We have an evident natural transformation α : id → F . Let C ⊆ S

p−fin
≤n

denote the full subcategory spanned by those spaces X for which the map αX : X → F (X) is an equivalence.

We wish to prove that C = S
p−fin
≤n . We proceed in several steps:

(a) Using assumption (3), we see K(Z /pZ, n) ∈ C.

(b) Theorem 5.4.8 implies that the restriction of F to S
p−fin
≤n preserves finite limits. It follows that C is

closed under finite limits in S
p−fin
≤n .

(c) Combining (a) and (b), we deduce that K(Z /pZ,m) ∈ C for m ≤ n.

(d) Taking m = 0 in (c), we conclude that the finite set Z /pZ belongs to C. Combining this with (b), we
deduce that C contains every finite discrete space.

(e) Suppose we are given a fibration f : X → Y , where X and Y belong to S
p−fin
≤n . Assume that each fiber

Xy belongs to C. Using the left-exactness of F , we deduce that the diagram

X //

��

Y

��
F (X) // F (Y )

is a pullback square. If we also assume that Y ∈ C, it follows that X ∈ C.

(f) Let 1 ≤ m ≤ n, and let G be a p-group which is abelian if m > 1. We claim that K(G,m) belongs to
C. The proof proceeds by induction on the order of G. If G is trivial, the result is obvious. Otherwise,
we can choose an exact sequence

0→ G′ → G→ G′′ → 0,

where G′ is isomorphic to the cyclic group Z /pZ. Then K(G′,m) ∈ C by (c), and K(G′′,m) ∈ C by
the inductive hypothesis. Using (e), we deduce that K(G,m) belongs to C.
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(g) We now prove that if X ∈ S
p−fin
≤m for m ≤ n, then X ∈ C. The proof proceeds by induction on m.

If m = 0, then the desired result follows from (d). Otherwise, the inductive hypothesis implies that
τ≤m−1X ∈ C. Since the homotopy fibers of the map X → τ≤m−1X belong to C by (f), we conclude
that X ∈ C using (e).

We now complete the proof by taking m = n in step (g).

Remark 5.4.11. Let A be a K(n)-local E∞-ring, and let Z(A) = MapCAlgA
(C∗(K(Z /pZ), n), A). The

evident map K(Z /pZ, n)→ Z(A) determines a base point η ∈ Z(A).

Since the functor F appearing in the proof of Corollary 5.4.10 is left exact when restricted to S
p−fin
≤n , we

have a canonical homotopy equivalence

ΩnZ(A) ' MapCAlgA
(C∗(Z /pZ;A), A).

Since C∗(Z /pZ;A) is an étale A-algebra, Theorem HA.8.5.0.6 implies that MapCAlgA
(C∗(Z /pZ;A), A) is

homotopy equivalent to the discrete space of all π0A-algebra maps from (π0A)Z /pZ into π0A. In particular,
if the affine scheme Spec(π0A) is connected, we obtain isomorphisms

πm(Z(A), η) '

{
0 if m > n

Z /pZ if m = n.

Consequently, A satisfies the equivalent conditions of Corollary 5.4.10 if and only if the space Z(A) is
n-connective.

Remark 5.4.12. In the case where A is a Lubin-Tate spectrum, Remark 5.4.11 is a theorem of Sati and
Westerland; see [19].

Remark 5.4.13. Let E be a Lubin-Tate spectrum of height n, and suppose that the residue field of E
is algebraically closed. In this case, Example 5.3.36 gives an isomorphism of finite flat group schemes
+ ESpecK(Z /pZ, n) ' µp. We therefore obtain a canonical homotopy equialence Z(E) ' µp(E) =
MapCMon(S)(Z /pZ,GL1(E)).

Conjecture 5.4.14. Let E be a Lubin-Tate spectrum of height n with algebraically closed residue field.
Then E satisfies the equivalent conditions of Corollary 5.4.10. Equivalently, the space

µp(E) = MapCMon(S)(Z /pZ,GL1(E))

is n-connective (and therefore homotopy equivalent to an Eilenberg-MacLane space K(Z /pZ, n)).

We now turn to the proof of Theorem 5.2.1. We begin by considering the special case where the fiber
product is an ordinary product.

Lemma 5.4.15 (KünnethFormula). Let X and Y be spaces, and let A be a K(n)-local E∞-ring. If X is
finite m-type, then the canonical map

C∗(X;A)⊗A C∗(Y ;A)→ C∗(X × Y ;A)

is an equivalence of K(n)-local E∞-rings.

Proof. Let f : X → ∗ denote the projection map. Using Corollary 5.4.7 we obtain equivalences

C∗(X × Y ;A) ' f∗f
∗C∗(Y ;A)

' (f∗f
∗A)⊗A C∗(Y ;A)

' C∗(X;A)⊗A C∗(Y ;A).
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Proof of Theorem 5.4.8. For every space Z, let AZ denote the constant local system on Z taking the value
A. Since Y is n-truncated and p-finite, Theorem 5.4.3 yields an equivalence of ∞-categories

ModAY (LocSys(SpK(n))Y )→ ModC∗(Y ;A)(SpK(n)).

This equivalence is right adjoint to a symmetric monoidal functor, and therefore symmetric monoidal. Con-
sequently, to prove that the diagram C∗(σ;A) is a pushout square, it will suffice to show that the diagram

AY //

��

g∗AX

��
f∗AY ′

// q∗AX′

is a pushout square in CAlg(Fun(Y, SpK(n))), where q : X ′ → Y denotes the map appearing in the diagram
σ. This assertion can be checked pointwise on Y . We may therefore reduce to the case where Y is a point,
in which case the desired result follows from Lemma 5.4.15.
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: IV. Étude locale des schmas et des morphismes de schémas, Troisième partie. Publications
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