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Introduction

Let G be a finite group, and let M be a spectrum equipped with an action of G. We let M"® denote the
homotopy fixed point spectrum for the action of G on M, and Mg the homotopy orbit spectrum for the
action of G on X. These spectra are related by a canonical norm map Nm : Mg — M". Our starting
point is the following result of Hovey and Sadofsky (see [9]):

Theorem 0.0.1. Let K(n) be a Morava K -theory, let M be a spectrum which is K(n)-local, and let G be a
finite group acting on M. Then the norm map

Nm : Mg — M"C

exhibits M"C as a K(n)-localization of Myg. In other words, the map Nm induces an isomorphism of
K (n)-homology groups K(n).,Mpg — K(n),M"".

Our goal in this paper is to place Theorem 0.0.1 into a larger context. The collection of all K (n)-local
spectra can be organized into an co-category, which we will denote by SpK(n). If M is a K (n)-local spectrum
with an action of a finite group G, then M determines a diagram p : BG — Spg,). The homotopy fixed
point spectrum M"C can be identified with a limit of the diagram p, and the localized homotopy orbit
spectrum Ly () Mpc can be identified with a colimit of the diagram p. The main result of this paper is the
following variant of Theorem 0.0.1:

Theorem 0.0.2. Let X be a Kan complex. Assume that, for every vertex x € X, the sets m,(X,x) are finite
for every integer n, and trivial for n > 0. Let p : X — Spy(,) be a diagram of K (n)-local spectra, indezed
by X. Then there is a canonical homotopy equivalence

Nmy : lim(p) = lim(p).
Remark 0.0.3. In the special case where X is the classifying space of a finite group G, and p : X — Spg ()
classifies an action of G on a K(n)-local spectrum M, the map Nmx : h_H)l(p) — %in(p) we will construct

in our proof of Theorem 0.0.2 agrees with the K (n)-localization of the usual norm map Mg — M"C.
Consequently, Theorem 0.0.2 can be regarded as a generalization of Theorem 0.0.1.

Example 0.0.4. The simplest instance of Theorem 0.0.2 occurs when the Kan complex X is discrete. In
this case, Theorem 0.0.2 asserts that for any finite collection of objects M, ..., My € Spg(,), the product
[I,<i<x M; and the coproduct [[,,<, M; are canonically equivalent.

Let us briefly outline our approach to Theorem 0.0.2. Our assumptions on X guarantee that there exists
an integer n > 0 such that the homotopy groups 7, (X, z) vanish for m > n. We proceed by induction on
n. The case n = 0 reduces to Example 0.0.4. The inductive step can be broken into two parts:

(a) The construction of the norm map Nmy : hﬂ(p) — @1(,0)
(b) The proof that Nmx (p) is an equivalence.

To carry out (a), we note that a map from lim(p) to lim(p) can be identified with a collection of maps
¢zt p(z) = p(y), depending functorially on the pair (z,y) € X x X. Note that every point e of the path
space Py, = {z} Xx XA xx {y} determines an equivalence p(e) : p(z) — p(y) in the co-category €. We
will choose Nmx to correspond to the family of maps ¢, , given heuristically by the formula

¢x,y :/ p(e)dﬂv
EEPJJ,y

where the integral is taken with respect to a “measure” p which is defined using the inverse of the norm
map Nmp, = (which exists by virtue of our inductive hypothesis). Making this idea precise will require some
rather intricate categorical constructions, which we explain in detail in §4.



The core of the proof is in the verification of (b). Using formal properties of the norm maps Nmy, we
can reduce to proving that the map Nmy : lim(p) — lim(p) is an equivalence in the special case where X is
an Eilenberg-MacLane space K(Z /pZ,m), and p is the constant functor taking the value K(n) € Spg ).
After passing to homotopy groups, Nmy induces a map of graded abelian groups ¢ : K(n).X — K(n)™*X,
and we wish to show that ¢ is an isomorphism.

Here we proceed by explicit calculation. The groups K(n).K(Z /pZ,m) and K(n)*K(Z /pZ, m) were
computed by Ravenel and Wilson in [18]. Their results are most neatly summarized using the language of
Dieudonne theory. Let £ = moK (n), let G denote the formal group over x given by Spf K(n)? CP>°, and let
M be the covariant Dieudonne module of G (so that M is a module over the Dieudonne ring W (&)[F, V],
which is free of n as a module over W(k)). For each d > 1, the exterior power /\dW(H)M inherits an action

of W ()[F, V], which is the covariant Dieudonne module of a smooth formal group G(® of height (%) and

. . q
dimension ("

d_l). We have a canonical isomorphism

Kn)*K(Z/pZ,m) ~m.K(n) ®, A,

where A is the ring of functions on p-torsion subgroup of G("). We will give a proof of this result in §2
which is somewhat different from the proof given in [18]: it relies on multiplicative aspects of the theory of
Dieudonne modules, which we review in §1.

We can summarize the preceding discussion by saying that the group scheme Spec K (n)°K(Z /pZ, m)
behaves, in some sense, like an mth exterior power of the group scheme Spec K(n)°K(Z /pZ,1). In §4, we
will make this idea more precise by introducing, for every integer m > 0 and every finite flat commutative
group scheme G over a commutative ring R, another group scheme Altgn). We will see that the calculation
of Ravenel and Wilson yields an isomorphism of commutative group schemes

Spec K (n)oK (Z /pZ,m) ~ A&,

where G[p] denotes the p-torsion subgroup of the formal group G (Theorem 2.4.10). Moreover, this isomor-
phism can be lifted to characteristic zero: if E denotes the Lubin-Tate spectrum associated to the formal
group G, and G denotes the universal deformation of G over the Lubin-Tate ring R = 7o E, then we have a
canonical isomorphism

Spec ESYK(Z /pZ,m) ~ Alt(gfz]

of finite flat group schemes over R (Theorem 3.4.1). We will use this isomorphism to identify the bilinear
form § with (the reduction of) a certain multiple of the trace pairing on the algebra E{ K (Z /pZ,m). In §5,
we will use this identification to prove the nondegeneracy of 3, and thereby obtain a proof of Theorem 0.0.2.

Remark 0.0.5. Most of the results proven in the first three sections of this paper have appeared elsewhere in
print, though with a somewhat different exposition. In particular, the material of §1 was inspired by [4] (see
also [2]). The calculations of §2 were originally carried out by in [18] (at least for odd primes; an extension to
the prime 2 is indicated in [12]). The algebraic results of §3 concerning alternating powers of finite flat group
schemes can be found in [8] (at least for odd primes), and the relationship with the generalized cohomology
of Eilenberg-MacLane spaces is described in [2] (for Morava K-theory) and [17] (for Morava E-theory).

Notation and Terminology

In the later sections of this paper, we will freely use the language of co-categories. We refer the reader to
[13] for the foundations of this theory, and to [14] for an exposition of stable homotopy theory from the
oo-categorical point of view. We will generally adopt the notation of [13] and [14]. This leads to a few
nonstandard conventions:

e If C is a monoidal co-category, we will generally let ® : € x € — C indicate the tensor product functor
on C. In particular, we will employ this notation when discussing the smash product of spectra (and
the K (n)-localized smash product of K(n)-local spectra). That is, if X and Y are spectra, we denote
their smash product by X ® Y rather than X AY.



e Let A be an associative ring spectrum (that is, an associative algebra object of the co-category Sp).
We let LMody and RMod,4 denote the oo-categories of left A-module spectra and right A-module
spectra, respectively. If A is a commutative algebra object of Sp (that is, an Ey-ring), then we will
simply right Mod 4 in place of LMod4 and RMod 4.

e If A is an commutative ring, we let Mod 4 denote the abelian category of A-modules. We will generally
abuse notation by identifying A with the corresponding (discrete) ring spectrum. In this case, the
notation Mod4 will always indicate the co-category of A-module spectra. This co-category is related
to (but larger than) Mod4: more precisely, the homotopy category of Mod4 can be identified with
the unbounded derived category of Mod 4.

e More generally, we will use boldface notations such as CAlg, CoAlg, Hopf in cases where we consider
classical algebraic objects (commutative algebras, commutative coalgebras, and Hopf algebras, respec-
tively), which we will be our emphasis throughout §1. Later in this paper we will consider algebras,
coalgebras, and Hopf algebras over ring spectra. These are organized into co-categories which will be
denoted by CAlg, CoAlg, and Hopf (with additional subscripts indicating the ground ring).
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1 Multiplicative Aspects of Dieudonne Theory

Let x be a field. In this section, we will study commutative and cocommutative Hopf algebras over s, which
we shall henceforth refer to simply as Hopf algebras. We let Hopf, denote the category of Hopf algebras
over k. In this section, we will study the structure of the category Hopf,..

If H is a Hopf algebra over x, then the counit and comultiplication on H are given by maps

e:H—k A:H— H®,H.

We let Prim(H) = {z € H : A(z) = 1® 2 + z ® 1} denote the collection of primitive elements of H, and
GLike(H) = {z € H : A(z) = x ® x,¢e(x) = 1} denote the collection of grouplike elements of H. Note that
Prim(H) is a vector space over k, and that the multiplication on H makes GLike(H) into an abelian group.

Definition 1.0.6. Let H be a Hopf algebra over a field k. We will say that H is multiplicative if Prim(H) ~ 0.
We let Hopf' denote the full subcategory of Hopf, spanned by the multiplicative Hopf algebras over .

Let ¥ be an algebraic closure of k, and let Hz = K ®, H be the induced Hopf algebra over k. We will say
that H is connected if the group GLike(Hz) is trivial. We let Hopf}, denote the full subcategory of Hopf,,
spanned by the connected Hopf algebras over k.

Remark 1.0.7. The construction H — Spec H determines a contravariant equivalence from the category
Hopf,, to the category of commutative affine group schemes over x. A Hopf algebra H is multiplicative if
the group scheme Spec H is pro-reductive, and connected if the group scheme Spec H is pro-unipotent.

If the field x is perfect, then every Hopf algebra H over x admits an essentially unique factorization
H~ H°®, H™, where H¢ is connected and H™ is multiplicative. This induces an equivalence of categories
Hopf, ~ Hopf; x Hopf|', where Hopf? and Hopf' denote the full subcategories of Hopf, spanned by
those Hopf algebras which are connective and multiplicative, respectively.

Let H be an arbitrary Hopf algebra over x, and let M = GLike(Hz) be the collection of group-like elements
of Hz. Then M is an abelian group equipped with a continuous action of the Galois group Gal(k/k). Let



R[M] denote the group algebra of M over . The inclusion M = GLike(Hz) C H7 extends uniquely to a
map K[M]| — Hz of Hopf algebras over %, which is Gal(%/k)-equivariant. Restricting to fixed points, we
obtain a map u : Hy — H of Hopf algebras over , where Hy denotes the algebra of Gal(k/k)-fixed points
on K[M]. One can show that p is always injective, and is an isomorphism if and only if H is multiplicative.
Consequently, the construction

H — GLike(Hz)

determines an equivalence from the category Hopf!' to the category of abelian groups equipped with a
continuous action of the Galois group Gal(g/x).

One can attempt to carry out a similar analysis in the setting of connected Hopf algebras, using primitive
elements rather than group-like elements. Let H be an arbitrary Hopf algebra over &, and let V = Prim(H)
be the x-vector space of primitive elements of H. The inclusion V — H extends uniquely to a map of Hopf
algebras v : Sym*V — H (where we regard Sym* V' as endowed with the unique Hopf algebra structure
compatible with its multiplication, having the property that the elements of V' are primitive). If « is a field
of characteristic zero, then the map v is always an injection, and is an isomorphism if and only if the Hopf
algebra H is connected. In this case, the construction H — Prim(H) determines an equivalence from the
category Hopf", to the category Vect, of vector spaces over k.

If k is a perfect field of characteristic p > 0, the situation is much more complicated. The map v :
Sym”* Prim(H) — H is generally neither injective nor surjective, even if we assume that H is connected. To
understand the structure of H, it is necessary to replace the vector space Prim(H) by a more sophisticated
invariant, called the Dieudonne module of H. Let W (k) denote the ring of (p-typical) Witt vectors of &,
let ¢ : W(k) — W (k) denote the automorphism induced by the Frobenius map from x to itself, and let
D, = W(k)[F, V] denote the non-commutative ring obtained by adjoining to W (k) a pair of elements F' and
V satisfying the identities

VF=FV=p FA=p\NF Vo(A) = AV
where \ ranges over W (k). The following is a foundational result of Dieudonne theory:

Theorem 1.0.8. Let k be a perfect field of characteristic p > 0. Then there is a fully faithful embedding
DM from the category Hopf:, of connected Hopf algebras over k to the category of left D-modules. The
essential image of this functor is the collection of those left D,-modules M having the property that each
element x € M is annihilated by V™, for some n > 0.

If H is a connected Hopf algebra over k, we will refer to DM(H) as the Dieudonne module of H. It can
be regarded as an enlargement of the set Prim(H) of primitive elements of H, in the sense that there is a
canonical isomorphism Prim(H) ~ {x € DM(H) : Vz = 0}.

As indicated in Remark 1.0.7, the category Hopf, of Hopf algebras over x can be identified with (the
opposite of) the category of commutative affine group schemes over k. However, it has another algebro-
geometric interpretation which will play an important role throughout this section. Let CAlg,f,id denote the
category of finite dimensional commutative algebras over x, and let Ab denote the category of abelian groups.
A commutative formal group over k is a functor G : CAlg,f{d — Ab which preserves finite limits. If H is a Hopf
algebra over k, then the construction R — GLike(Hp) is a formal group over k (here Hg denotes the Hopf
algebra R®, H over R), which we will denote by Spf H". One can show that the construction H — Spf HY
determines an equivalence from the category of Hopf algebras over x to the category of commutative formal
groups over k.

Suppose that G, G’, and G” are commutative formal groups over k. We can then consider the notion of
a bilinear map G X G’ — G”: that is, a natural transformation of functors G x G’ — G” which induces a
bilinear map

G(R) x G'(R) — G"(R)

for every R € CAlgﬁi. If G and G’ are fixed, then there is a universal example of a commutative formal
group G" equipped with a bilinear map G x G’ — G”, which we will denote by G ® G’. Writing G = Spf H"



and G’ = Spf H'V, we can write G” = Spf H"”V for some Hopf algebra H”. We will indicate the dependence
of H” on H and H' by writing H” = HX H’. The operation X determines a symmetric monoidal structure
on the category Hopf,. If the Hopf algebras H and H’ are connected, we will see that H X H' is also
connected. Consequently, H X H' is determined by its Dieudonne module DM(H X H’). Our main goal
in this section is to prove the following result, which gives a linear-algebraic description of DM(H X H') in
terms of DM(H) and DM(H'):

Theorem 1.0.9 (Goerss, Buchstaber-Lazarev). Let H and H' be connected Hopf algebras over k. Then the
Diuedonne module DM(H X H') is characterized by the following universal property: for any left D-module
M, there is a bijective correspondence between D,;-module maps DM(H X H') — M and W (k)-bilinear maps
A:DM(H) x DM(H') = M satisfying the following identities

VA(z,y) = AV, Vy) FA(Vzx,y) = Az, Fy) F(z,Vy) = MFzx,y).

Let us now outline the contents of this section. We will begin in §1.1 with some generalities on bialgebras
and Hopf algebras, and give a construction of the tensor product X : Hopf, x Hopf, — Hopf,. In §1.3,
we will recall the definition of the Dieudonne module functor DM, and give a proof of Theorem 1.0.9. Both
the definition and the proof will require some general facts about Witt vectors, which we review in §1.2.
Finally, in §1.4, we describe some extensions of Theorem 1.0.9 to the case of Hopf algebras which are not
necessarily connected.

1.1 Tensor Products of Hopf Algebras

Let k be a commutative ring, which we regard as fixed throughout this section, and let Hopf, denote the
category of (commutative and cocommutative) Hopf algebras over k. In this section, we will introduce a
symmetric monoidal structure on the category Hopf,, which will play an important role throughout this
paper. When £ is a field, the tensor product functor X : Hopf,, x Hopf, — Hopf, can be described by the
following universal property: given Hopf algebras H, H', H” € Hopf,, there is a bijective correspondence
between Hopf algebra homomorphisms H X H' — H'' and bilinear maps of formal k-schemes

Spf HY x Spf H"Y — Spf H"'V.

We begin with some general remarks. We let Mody, denote the category of (discrete) k-modules. We
regard Modj, as symmetric monoidal category by means of the usual tensor product (M, N) — M ®; N.

Definition 1.1.1. A k-coalgebra is an object C' € CoAlg, which is equipped with a comultiplication
Ac : C — C ®; C which is commutative, associative, and admits a counit ec : C — k.

Warning 1.1.2. The notion of k-coalgebra introduced in Definition 1.1.1 is more often referred to as a
cocommutative, coassociative, counital coalgebra. We will generally omit these adjectives: in this paper, we
will never consider coalgebras which are not cocommutative and coassociative.

If C and D are k-coalgebras, a coalgebra homomorphism from C to D is a map f : C' — D for which the
diagram

k<SS Cc-2% cg,C
lid if lf@f
k<2 D22 D&, D

commutes. The collection of k-coalgebras and coalgebra homomorphisms determines a category, which we
will denote by CoAlg,,.
We will use the following category-theoretic fact:

Proposition 1.1.3. The category CoAlg,, is locally presentable: that is, it admits small colimits and is
generated by a set of T-compact objects, for some reqular cardinal 7.



Proof. The existence of small colimits in CoAlg, follows immediately from the existence of small colimits in
Mody, (note also that the forgetful functor CoAlg;, — Mod,, preserves small colimits). The accessibility of
CoAlg,, follows from the observation that CoAlg can be identified with a lax limit of accessible categories
(see, for example, [15]). O

Corollary 1.1.4. The category CoAlg,, admits small limits and colimits.

Example 1.1.5. Given a pair of k-coalgebras C' and D, the tensor product C' ®; D is a product of C' and
D in the category CoAlg;,.

Remark 1.1.6. Suppose that k is a field. We let CoAlngd denote the full subcategory of CoAlg; spanned
by those coalgebras which are finite-dimensional when regarded as vector spaces over k. The objects of
CoAlgfgd are compact when regarded as objects of CoAlg,, so that the inclusion CoAlngd — CoAlg,
extends to a fully faithful embedding 6 : Ind(CoAlgfcd) — CoAlg,. The functor 6 is an equivalence of
categories: essentially surjectivity follows from the fact that every k-coalgebra can be written as a union
of its finite-dimensional subcoalgebras. Consequently, we obtain (in the case where k is a field) a stronger
version of Proposition 1.1.3: the category CoAlg, is compactly generated.

Notation 1.1.7. For every k-coalgebra C, we let he : CoAlg,” — Set denote the functor represented by
C, so that h¢ is described by the formula

hc(D) = HomcoAlgk (D, C)
According to Yoneda’s Lemma, the construction C +— h¢ determines a fully faithful embedding
CoAlg,, — Fun(CoAlg;”, Set).

Remark 1.1.8. Suppose that k is a field. Using Remark 1.1.6, we see that the Yoneda embedding C' — h¢
induces a fully faithful embedding

CoAlg, — Fun((CoAlgi?)oP, Set).

Let CAlgfcd denote the category of (discrete) commutative algebras over k which are finite-dimensional when
regarded as vector spaces over k, so that vector space duality induces an equivalence of categories

(CoAlgi?)oP ~ CAlgl .
We then obtain a fully faithful embedding
CoAlg, — Fun(CAlg?, Set),

whose essential image consists of those functors CAngd — Set which preserve finite limits. We will sometimes
denote this latter embedding by C +— SpfCV. Here we can regard CV as a topological ring, and Spf CV
carries an object A € CAlngGl to the set of continuous k-algebra homomorphisms CV — A.

Proposition 1.1.9. The Yoneda embedding h : CoAlg;, — Fun(CoAlg", Set) admits a left adjoint L :
Fun(CoAlg;”, 8et) — CAlg,,. Moreover, the functor L commutes with finite products.

Proof. The existence of L is a formal consequence of Proposition 1.1.3. Let us review a proof, since we
will need it to show that L commutes with finite products. We first note that the essential image of h
is the full subcategory €, C Fun(CoAlg;”, 8et) spanned by those functors which carry small colimits in
CoAlg,, to limits in Set. Choose a regular cardinal 7 such that CoAlg,” is 7-compactly generated, let €
be the category of T-compact objects of CoAlg;,, and let €; be the full subcategory of Fun(CoAlg,”, Set)
spanned by those functors which carry s-filtered colimits to limits in Set. Since CoAlg;” is 7-compactly
generated, a functor F' € &; is determined by its restriction F| €. More precisely, £ is the full subcategory



of Fun(CoAlg;”, 8et) spanned by those functors F' which are right Kan extensions of F'| C°P. It follows that
the inclusion €; — CAlg, admits a left adjoint, which is equivalent to the restriction functor

Fun(CoAlg;”, Set) — Fun(C°P, Set)

(and therefore commutes with all small limits). To complete the proof, it will suffice to show that the
inclusion £y — &7 admits a left adjoint which commutes with finite products.

In what follows, let us identify &; with the presheaf category Fun(C°P,8et). Under this identification,
the inclusion i : £ < &1 is given by the restricted Yoneda embedding C' +— h¢e| €°P. This functor obviously
preserves small limits and 7-filtered colimits. Using the adjoint functor theorem, we deduce that ¢ admits a
left adjoint Ly.

We will complete the proof by showing that Ly commutes with finite products. Fix a pair of functors
F,F': C° — 8et; we wish to show that the canonical map 0p g : Lo(F X F') — Lo(F) ®j Lo(F') is an
isomorphism. Note that if F” is fixed, the constructions F' +— Lo(F x F') and F +— Lo(F) ®x Lo(F’) carry
colimits in Fun(€°?, 8et) to colimits in CoAlg,. We may therefore reduce to the case where F is the functor
represented by a coalgebra C. Similarly, we may suppose that F’ is represented by a coalgebra C’. In this
case, O g is induced by the identity map from C ®;, C’ to itself. O

Definition 1.1.10. Let C be a category which admits finite products. A commutative monoid object of C is
an object M € € equipped with a multiplication map m : M x M — M which is commutative, associative,
and unital. We let CMon(C) denote the category of commutative monoid objects in C.

Example 1.1.11. Let € be the category of sets. In this case, CMon(C) = CMon(8et) is the category of
commutative monoids. We will denote this category simply by CMon.

Example 1.1.12. Let C = CoAlg, be the category of k-coalgebras. In this case, we will denote CMon(C)
by BiAlg,. We will refer to BiAlg, as the category of k-bialgebras. By definition, an object of BiAlg, is a
k-module H which is equipped with a comultiplication A : H — H ®; H and a multiplication H @, H — H
which is a map of k-coalgebras. Here we always require the multiplication and comultiplication on H to be
commutative, associative, and unital.

Let h : CoAlg,, — Fun(CoAlg;”, Set) be the Yoneda embedding, and let L denote the left adjoint to h
supplied by Proposition 1.1.9. Since h and L commute with finite products, they determine an adjunction

CMon(L)
CMon(Fun(CoAlg;”, Set)) <:(>)CMon(CoAlgk) ,
CMon(h

which we will denote simply by
Fun(CoAlg?”, CMon)%BiAlgk .

More concretely, we can summarize the situation as follows:

e Let H be a k-bialgebra. Then for every k-coalgebra C, the multiplication on H determines a commuta-
tive monoid structure on the set Homgoalg, (C, H). Consequently, we can view hy as a contravariant
functor from CoAlg,, to the category of commutative monoids.

e The functor h : BiAlg; — Fun(CoAlg;”, CMon) admits a left adjoint, given on the level of coalgebras
by the construction F — L(F) where L is defined as in Proposition 1.1.9.

Remark 1.1.13. Suppose that k is a field. Using Remark 1.1.8, we see that the Yoneda embedding
determines a fully faithful functor BiAlg, — Fun(CAlg!?, CMon(8Set)), whose essential image is spanned
by those functors X : CAlgid — CMon(8et) which preserve finite limits.



Construction 1.1.14. Let M, M’, and M" be commutative monoids (whose monoid structure will be
denoted additively). We will say that a map A : M x M’ — M" is bilinear if it satisfies the identities

Az + a’, y) = ANz, y) + )‘(mlvy) )‘(an) =0= )\(l‘,O) A,y + y/) = Az, y) + Az, y/)'

Given commutative monoids M and M’, there exists another commutative monoid M ® M’ and a bilinear
map A, : M x M’ — M ® M’ which is universal in the following sense: for every commutative monoid
M", composition with A, induces a bijection from the set Homcnmon(M & M’, M") to the set of bilinear
maps M x M’ — M". We will refer to M ® M’ as the tensor product of M with M’. The tensor product
of commutative monoids is commutative and associative up to coherent isomorphism, and the formation of
tensor products endows CMon with the structure of a symmetric monoidal category.

Remark 1.1.15. If M and M’ are abelian groups, then the tensor product M ® M’ in the category CMon
agrees with their tensor product in the category of abelian groups. However, the inclusion from the category
of abelian groups to the category CMon is not symmetric monoidal, because it does not preserve unit objects:
the unit object of CMon is not the free abelian group Z on one generator, but rather the free commutative
monoid Z>p on one generator.

Proposition 1.1.16. Let C denote the functor category Fun(CoAlg;”, CMon), and regard € as a symmetric
monoidal category using Construction 1.1.14 objectwise. L : C — BiAlg, denote a left adjoint to the Yoneda
embedding. Then L is compatible with the symmetric monoidal structure on €. That is, if a : F — F’ is a
morphism in C which induces an isomorphism of bialgebras L(F) — L(F’), and G is an arbitrary object of
C, then the induced map f: L(F ® G) — L(F' ® G) is also an isomorphism of bialgebras.

Proof. Let H be a bialgebra over k; we wish to show that composition with  induces a bijection
0 : Hompialg, (L(F' ® G), H) — Homg;jalg, (L(F ® G), H).
Unwinding the definitions, we can identify 6§ with a map
Home(F' ® G, hy) — Home(F ® G, hy).

We can identify the left hand side with the set of bilinear maps F’ x G — hp, and the right hand side with
the set of bilinear maps ' x G — hg. Using the fact that the functor L commutes with finite products, we
can identify both sides with the same subset of the mapping set

HomcoAlgk (L(F,) Rk L(G), H) ~ HomcoAlgk (L(F) Rk L(G), H)
L]

Corollary 1.1.17. The category BiAlg, inherits a symmetric monoidal structure from the symmetric
monoidal structure on € = Fun(CoAlg;”, CMon). That is, there is a symmetric monoidal structure on
BiAlg, (which is unique up to canonical isomorphism) for which the localization functor L : C — BiAlg,
is symmetric monoidal.

Notation 1.1.18. We will indicate the symmetric monoidal structure of Corollary 1.1.17 by
X : BiAlg, x BiAlg, — BiAlg, .

Note that H X H' is very different from the k-linear tensor product H ®; H’. Unwinding the definitions, we
see that giving a bialgebra map H X H' — H" is equivalent to giving a coalgebra map A\ : H @, H — H"
satisfying the identities

AMl®y) =en(y) Mz ®1) = 6H( )

Mz’ @y) = an (2, 2a)N(@', 2L) if Ap(y anza@)z

Az @yy') = calza @) (z;®y)lfAH' = Caza @7,

Concretely, we can describe H X H' as the quotient of the symmetric algebra Sym*(H ®; H') by the ideal
which enforces these relations.



Remark 1.1.19. We have a diagram of categories and functors

BiAlg, —> Fun(CoAlg??, CMon)

| |

CoAlg, — Fun(CoAlg,”, Set)

which commutes up to canonical isomorphism; here the vertical maps are given by the forgetful functors.
Each of these functors admits a left adjoint. The left adjoint to the forgetful functor BiAlg, — CoAlg,
is given by the formation of symmetric algebras C' — Sym™*(C'), while the left adjoint to the right vertical
map is given by pointwise composition with the free commutative monoid functor Set — CMon given by
S — Z>¢[S]. We therefore obtain a diagram of left adjoints

BiAlg, <~— Fun(CoAlg®?, CMon)

-

CoAlg, <=~ Fun(CoAlg;”, Set)

which commutes up to canonical isomorphism. The free commutative monoid functor Set — CMon is
symmetric monoidal: that is, it carries products of sets to tensor products of commutative monoids. It
follows that the functor Sym* : CoAlg, — BiAlg, is also symmetric monoidal. In particular, if C' and D
are k-coalgebras, we have a canonical isomorphism of k-bialgebras Sym*(C' ®y, D) ~ (Sym* C') K (Sym™ D).

Example 1.1.20. Let us regard k as a coalgebra over itself. Then k is the unit object of CoAlg,, (with
respect to the Cartesian product on CoAlg,,, given by tensor product over k). It follows that Sym* k ~ k[z]
is the unit object of BiAlg, with respect to the tensor product X. Here the polynomial ring k[x] is equipped
with its usual multiplication, and its coalgebra structure is determined by the relation A(z) = z ® «.

Notation 1.1.21. Let Z be the group of integers, which we regard as an object of the category CMon
of commutative monoids. We have an evident inclusion Z>¢ — Z, which induces a map of commutative
monoids

Z ~ ZZO®Z_> ZRYL.

A simple calculation shows that this map is an isomorphism: that is, we can regard Z as an idempotent
object in the symmetric monoidal category CMon. If follows that the category Modz(CMon) of Z-module
objects of CMon can be identified with a full subcategory of CMon. Unwinding the definitions, we see that
a commutative monoid M € CMon admits a Z-module structure if and only if M is an abelian group. Let
Ab denote the category of abelian groups, which we identify with a full subcategory of CMon. It follows
that Ab inherits a symmetric monoidal structure from the symmetric monoidal structure on CMon, with the
same tensor product (but a different unit object).

Let H be a k-bialgebra. We will say that H is a Hopf algebra if the functor hy : (CoAlg,,)°? — CMon
factors through the full subcategory Ab C CMon. Let Hopf, denote the full subcategory of BiAlg, spanned
by the Hopf algebras over k.

Let Z denote the constant functor CoAlg;” — CMon taking the value Z, and let

L : Fun(CoAlg;”, CMon) — BiAlg,,

be a left adjoint to the Yoneda embedding. Unwinding the definitions, we can identify L(Z) with the ring
of Laurent polynomials k[Z] = k[t*'], with comultiplication given by A(t) =t ®t. Since the functor L is
symmetric monoidal, we conclude that k[t*!] is an idempotent object of BiAlg,,. Note that k[tT!] is a Hopf
algebra over k.
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For any bialgebra H, we have hgmy+1] = hi @ hy+1) € Fun(CoAlg;?, Ab) so that H K k[t*!] is a Hopf
algebra. Conversely, if H is a Hopf algebra, then we have

H~ L(hyg) ~ L(hg ® Z) ~ L(hy) Rkt ~ H XK k[tT!].
It follows that we can identify Hopf, with the category of modules over the idempotent object k[t*!] in
BiAlg; . In particular, the category Hopf, of Hopf algebras over k inherits a symmetric monoidal structure
from that of BiAlg,,, with tensor product given by (H, H') — H & H’ and unit object given by k[t*!].

We close this section with a few observations which will be helpful when computing with the tensor
product X on BiAlg, and Hopf,,.

Definition 1.1.22. Let C be a k-coalgebra. A coaugmentation on C is a k-coalgebra morphism A : k —
C. We let CoAlg}"® denote the category (CoAlgy ), whose objects are k-coalgebras equipped with a
coaugmentation.

Remark 1.1.23. A coaugmentation A : k — C'is uniquely determined by the element A(1) € C. Conversely,
an arbitrary element = € C' determines a coaugmentation on C' if and only if it is grouplike: that is, if and
only if it satisfies the equations

Ac(z) =z ec(z) =1.

Remark 1.1.24. Let C be a coaugmented k-coalgebra. Then, as a k-module, C splits as a direct sum
k & Cy, where Cj denotes the kernel of the counit map ec : C — k.

Remark 1.1.25. Let Set, denote the category of pointed sets. The adjunction
Fun(CoAlg;”, Set)<4i7>CoAlg,C
determines another adjunction
Fun(CoAlg;”, Set*)%COAlgzug .

We will regard Set, as a symmetric monoidal category via the smash product of pointed sets. If X is
a set, we let X, = X U {x} be the set obtained from X by adjoining a disjoint base point. We then have
canonical isomorphisms X, A Y, ~ (X X Y)., which exhibit the construction X — X, as a symmetric
monoidal functor from (Set, X) to (Set., A). The smash product induces a symmetric monoidal structure
on Fun(CoAlg;”, 8et, ), which is compatible with the localization functor L (as in the proof of Proposition
1.1.16). It follows that the category CoAlg}"® inherits a symmetric monoidal structure, which we will denote
by A : CoAlg;"® x CoAlg;"™ — CoAlg;"®. More concretely, if C' and D are coaugmented coalgebras, then
we can describe C' A D as the quotient of the product C ® D obtained by identifying the maps

C~CRrk—>C®xD+k®,D~D

with those given by the coaugmentation on CAD. Writing C' ~ k®Cy, D ~ k® Dy, and CAD = k®(CAD)g
as in Remark 1.1.24, we obtain an isomorphism of k-modules (C' A D)y ~ Cy ® Dy.

Remark 1.1.26. If H is a k-bialgebra, then we can regard H as a k-coalgebra with a coaugmentation given
by the unit map & — H. This construction determines a forgetful functor BiAlg, — CoAlgg’a“g, which fits
into a diagram

BiAlg, —"—> Fun(CoAlg??, CMon)

| |

CoAlg;"® —— Fun(CoAlg;”, Set..)
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which commutes up to canonical isomorphism. Each of these functors admits a left adjoint. The left adjoint
to the forgetful functor BiAlg, — CoAlg;"® is given by the reduced symmetric algebra construction

Sym;.q : CoAlg;"® — BiAlg,,

which carries a coalgebra C' with distinguished grouplike element 2 € C' to the quotient Sym*(C)/(x — 1).
Writing C' = k& C) as in Remark 1.1.24, we have an isomorphism of k-algebras Sym;,,(C) ~ Sym*(Cjp). The
left adjoint to the right vertical map is induced by pointwise composition with the reduced free commutative
monoid functor F' : 8et, — CMon, given on objects by the formula F(S.) = Z>o[S]. We therefore obtain a
diagram of left adjoints

BiAlg, <~— Fun(CoAlg??, CMon)

TSym;d T

CoAlg, <~— Fun(CoAlg?”, Set, )

which commutes up to canonical isomorphism. Since the functor F' is symmetric monoidal, it follows that
the functor Sym},, is also symmetric monoidal. More concretely, if we are given coaugmented coalgebras
C~k®Cy, D~k Dy, then there is a canonical bialgebra isomorphism

Symred(c) X Sym:ed(D) = Sym:ed (C A D)7
which we can write more informally as Sym*(Cp) K Sym*(Dg) ~ Sym™(Cy ® Dy).

Example 1.1.27. Let us regard k[x] as a Hopf algebra over k, with comultiplication given by A(z) =
1@z +x®1. Then k[z] ~ Sym.4(C), where C is the subcoalgebra of k[z] generated by 1 and . Note that
there is a canonical isomorphism C A C' ~ C, given by  ® x — z. Applying Remark 1.1.26, we obtain an
isomorphism k[z] X k[z] ~ k[z], given by x Kz > x.

1.2 Witt Vectors

In this section, we will review some aspects of the theory of Witt vectors which are needed in this paper.
For a more comprehensive discussion, we refer the reader to [7].

Notation 1.2.1. For every commutative ring R, we let Wgiz(R) denote the subset of R[[t]] consisting of
power series of the form 1+ c¢1t 4 cot? + - -+ (that is, power series with constant term 1). The set Wgig(R)
has the structure of an abelian group, given by multiplication of power series. We will refer to Wiz (R)
as the group of big Witt vectors of R (in fact, Wpgig(R) has the structure of a commutative ring, but the
multiplication on Wgis(R) will not concern us in this section).

Let Wtgig denote the polynomial ring Z[ci, ¢, .. .| on infinitely many variables. For any commutative
ring R, we have a canonical bijection. Wgig(R) ~ Homging(Wtgig, R). Since the functor R — Whgig(R) takes
values in the category of abelian groups, we can regard Wtgj, as a Hopf algebra over the ring of integers Z.

Unwinding the definitions, we see that the comultiplication on Wtg;, is given by

Cp — E ¢ Q ¢y,
i+j=n
where by convention we set ¢y = 1.

Remark 1.2.2. We can identify the commutative ring Wtg;, with the cohomology ring H*(BU;Z). Here
the identification carries each ¢, € Wtgig to the nth Chern class of the tautological (virtual) bundle on BU.

Remark 1.2.3. Every formal power series 1 + ¢t + cot? + - - - € R[[t]] can be written uniquely in the form

[Ta=ant™)

n>0
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for some a, € R. Here we can write each a, as a polynomial (with integer coefficients) in variables
{¢m}m>0, and each ¢,, as a polynomial (with integer coefficients) in the variables {a,}n>0. Applying
this to the universal case R = Wtgig, we obtain elements {a,, € Wtgig }n>0 which determine an isomorphism
Zlai,az,...] ~ Wtgig. The element a, € Wtgig is called the nth Witt component.

Notation 1.2.4. Let f(t) € Wtgig[[t]] denote the tautological element of W (Wtgig), given by the formal
power series 1+ c1t + cot? + - --. Write

tf'(t
tdlog(f(t)) = J]:((t)) = wit + wat? + wstd + - -
for some elements wi,ws, ... € Wtpiz. We will refer to w,, as the nth ghost component. Note that each w,

is a primitive element of Wtpig: that is, we have A(wy,) = w, @ 1 + 1 ® w,.
Let Wt]%g = Qeq, ¢, .. .| denote the tensor product of Wtgi, with the rational numbers. In the power
series ring thig[[t]}, we have the identity

log(f(t) = _ ",

n>0

so that f(t) = exp(}_ “=t"). We therefore have a canonical isomorphism thig ~ Qwy, wa,...]: in partic-
ular, each ¢, can be written as a polynomial in the ghost components {w,,} with rational coefficients.

Remark 1.2.5. Writing f(t) = [],,5((1 — ant™), we obtain the formula

d ymd d g
n>0 m>0 m>0d>0 n>0 dln

Extracting coefficients, we obtain for each n > 0

n o4
Wy = Ean/d.
d|n

In particular, we see that each ghost component w,, can be written as a polynomial in the Witt components
{@m }m|n with integer coefficients. Conversely, each Witt component a,, can be written as polynomial in the
ghost components {wyy, } |, with rational coefficients.

Remark 1.2.6. Let S be a set of positive integers which is closed under divisibility: that is, if n € S and
d|n, then d|S. Let Wtg denote the subalgebra of Wtgi; generated by the Witt components a,, for n € S,

and th the tensor product Wtg ® Q. We make the following observations concerning Wtg:

e An element of Wtgiy belongs to Wtg if and only if, when written as a polynomial in the Witt com-
ponents {a, }n>0, the only Witt components which appear (with nonzero coefficients) are those a,, for
which n € S. In particular, we have Wtg = Wt? NWtgi, (where the intersection is formed in the
larger ring thig ~ Qlay, az,...]).

e For each n € S, the ghost component w,, is contained in Wtg. Moreover, Wt? is a polynomial algebra
(over Q) on the ghost components {wy, }nes (see Remark 1.2.5).

e Since the antipode of thig carries each w,, to —w,, it preserves the subalgebra th’? and therefore
also the subalgebra Wtg = Wt? N Wtgig.

e If n €S, then A(w,) =1&® w, +w, ® 1 belongs to Wtg @ Wtg C Wtgiz ® Wtgig. It follows that the
comultiplication A : thig — thig ®q thig carries Wt? into th ®q Wt?. Since Wtg ® Wtg ~

(V\/'tg(‘,Q ®q Wt?) N (Wtgig ® Wtgig), we conclude that the comultiplication on Wtg;, carries Wtg into
Wts ® Wtg: that is, Wtg inherits the structure of a Hopf algebra from Wtpig.
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Example 1.2.7. Let p be a prime number. We let Wt,~ denote the subalgebra Z[ai, ap, ap2,...] € Wtpig.
We refer to Wt as the Hopf algebra of p-typical Witt vectors.

We now study the relationship between Witt vectors and the Hopf algebra tensor product introduced in
§1.1.

Lemma 1.2.8. Let Hy, Hs,...,H, be a finite collection of bialgebras over Z which are free when regarded
as Z-modules. If each H; is finitely generated as a commutative ring, then H1X---X H,, is finitely generated
as a commutative Ting.

Proof. Let H. ZQ denote the tensor product of H; with the rational numbers. Then H :Q is a coalgebra over Q,
and can therefore be written as a filtered colimit thZQa of finite-dimensional subcoalgebras Hﬁa C HR.

For each index a, let H; o = HQ N H; (where we identify Hga and H; with subsets of HlQ) Since H; is
free as a Z-module, H; , is finitely generated as a Z-module. Note that H; , is a subcomodule of H;. Since
H; is finitely generated as a commutative ring, we may choose « so that H; is generated (as a commutative
ring) by H;o. Set C; = H;,, so that we have a surjective bialgebra map Sym*(C;) — H;. We then
obtain a surjective bialgebra map Sym*(Cy) X --- X Sym*(C,,) — H; X --- K H,. Using the isomorphism
Sym*(C1) K - - K Sym*(C,) ~ Sym*(C; ® --- ® C,,), we deduce that Hy X --- K H, is finitely generated as
a commutative ring. O

Notation 1.2.9. Let H be a bialgebra over a commutative ring k. We let Iy denote the augmentation
ideal of H: that is, the kernel of the counit map € : H — k. We let Q(H) denote the quotient I /I%. Then
Q(H) is a k-module, which we will refer as the k-module of indecomposables of H. Note that if H is finitely
generated as a k-algebra, then Q(H) is finitely generated as a k-module.

Suppose we are given a bialgebra map ¢ : H — H’. We let coker(¢) denote the quotient of H' by the
ideal generated by ¢(I). Then coker(¢) inherits the structure of a bialgebra: it is the cokernel of the map
¢ in the (pointed) category of k-bialgebras. In the language of affine schemes, we can describe Spec coker(¢)
as the kernel of the map of commutative monoid schemes Spec H' — Spec H determined by ¢. Note that
we have an exact sequence of k-modules

Q(H) — Q(H') > Q(coker(9)) — 0.

Proposition 1.2.10. Let H be a Hopf algebra which is finitely generated over Z. Assume that for each
prime number p, the affine scheme Spec H/pH is connected. The following conditions are equivalent:

(1) The Hopf algebra H is smooth as an algebra over Z.
(2) The module of indecomposables Q(H) is free.

(3) For every prime number p, we have
dimq(Q(H) ®z Q) > dimp, (Q(H) ®z F,).

Proof. Let Q)7 denote the module of Kahler differentials of H over Z. Then Q(H) ~ Qp /7 @y Z, where
the tensor product is taken along the counit map H — Z. If H is smooth over Z, then Q7 is a projective
H-module of finite rank, so that Q(H) is a projective Z-module of finite rank, and therefore free. This proves
(1) = (2). The implication (2) = (3) is obvious.

Let us now suppose that (3) is satisfied, and prove (1). We begin by showing that each fiber of the
map Spec H — SpecZ is smooth. For the generic fiber, this is clear (any algebraic group over a field of
characteristic zero is smooth). For the fiber over a prime number p, let  denote the sheaf of relative
Kahler differentials of the map G = Spec H/pH — SpecF,. Then  is equivariant with respect to the
translation action of G on itself, and therefore a locally free sheaf of rank » = dimp, (Q(H) ®z F;). To prove
that G is smooth, it will suffice to show r is equal to the Krull dimension d of G. Let d’ denote the Krull
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dimension of the generic fiber Spec(H ®z Q), so that we have inequalities d’ < d < r. Condition (3) (and
the smoothness of H ®z Q over Q) imply that equality holds throughout, so that G is smooth over F,.

To complete the proof that H is smooth over Z, it will suffice to show that it is flat over Z: that is, that
H is torsion-free as an abelian group. Let I C H denote the torsion submodule of H. Then I is an ideal of
H, and therefore finitely generated as an H-module (since H is Noetherian). It follows that there exists an
integer n > 0 such that n/ = 0. Choose n as small as possible. We wish to prove that n =1 (so that I =0
and therefore H is torsion-free). Assume otherwise; then we can write n = pn’ for some prime number p.
The minimality of n implies that n'I # 0 = nI = n/(pI), so that the quotient I/pI is nontrivial. Since H/I
is torsion-free, we have an exact sequence

0— I/pl - H/pH — H/I @7 F, — 0.

Since G = Spec H/pH is a connected, smooth F,-scheme of dimension d, any proper closed subscheme of G
has dimension < d. It follows that Spec(H/I ®z F,) has dimension < d. This is a contradiction, since the
generic fiber of Spec H/I coincides with the generic fiber of Spec H, which has dimension d. O

Notation 1.2.11. Let R be a commutative ring, and let n > 1 be an integer. There is a canonical group
homomorphism Wgigs(R) — Whgig(R), given on power series by f(¢) — f(¢"). This homomorphism depends
functorially on R, and is therefore induced by a Hopf algebra homomorphism

V,, : WtBig — WtBig .

We will refer to V,, as the nth Verschiebung map. Concretely, it is given by

Vo(em) = Cm/m  if njm
"m0 otherwise

or equivalently by

Vi () = Uy if nlm
[ N0 otherwise.

if
On ghost components, the Verschiebung map is given by V,,(w,,) = "W 3f nfm )
0 otherwise.
Let S and T be subsets of Z~o which are closed under divisibility. Suppose that for every integer
d > 0 such that nd € S, we have d € T. Then the Verschiebung map V,, restricts to a Hopf algebra map

Wts — Wtp, which we will also denote by V,.

Remark 1.2.12. Let S be a set of integers which is closed under divisibility, and let n € S be an element
which does not divide any other element of S, so that S” = .S —{n} is also closed under divisibility. Then the
Verschiebung map V,, : Wtg — Wty ~ Z[cy] exhibits Wty as a cokernel of the inclusion Wtgr — Wtg,
in the category of Hopf algebras over Z.

Proposition 1.2.13. Let S and T be finite subsets of Z~o which are closed under divisibility. Then the
Hopf algebra Wts X Wt is smooth over Z.

Proof. Let s denote the cardinality of the set S, and ¢ denote the cardinality of the set 7. We may assume
without loss of generality that s,¢ > 0 (otherwise the result is vacuous). It follows from Lemma 1.2.8 that
H = Wtg X Wtr is finitely generated as a Z-algebra. Let us first describe the rationalization Hq = H ®z Q.
Let C' denote the Q-submodule th generated by the unit element 1 together with the ghost components
{Wm }mes, and define C" C Wt% similarly. Since each ghost component is a primitive element of Wt]%g, C
and C’ are coaugmented coalgebras over Q, with coaugmentation given by the unit element. It follows from
Remark 1.2.6 that the inclusions
C — Wt C' s W2
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induce Hopf algebra isomorphisms Sym_,(C) ~ Wt? and Sym;4(C") ~ Wt?, so that
Hq ~ Wt 3 Rq Wt ~ Sym?,;(C) Rq Sym.q(C") ~ Sym?q(C A C")

is a polynomial algebra on generators w,, X w,, where m € S and n € T'. In particular, we see that Hq is a
smooth Q-algebra of dimension st.

To complete the proof, it will suffice (by Proposition 1.2.10) to show that for each prime number p, the
affine scheme Spec H/pH is connected and has dimension st. We will proceed by induction on the product
st. If st =1, then S =T = {1} and the desired result follows from Example 1.1.27. Let us therefore assume
that st > 1. We may assume without loss of generality that s > 1. Let n be the largest element of S and let
S" =S — {n}, so that we have a cofiber sequence

Wt — Wtg 28 Wt,

of Hopf algebras over Z. Set H' = Wtg: X Wty and H” = Wt; X Wtr. We then have a cofiber sequence of
Hopf algebras over F,,
H'/pH' — H/pH — H" /pH".

Set G = Spec H/pH, G’ = Spec H'/pH', and G’ = Spec H"” /pH", so that we have an exact sequence of
commutative group schemes over F,,
0-G" >G5 a.

The inductive hypothesis implies that G” and G’ are connected smooth group schemes over F,, having
dimensions t and (s — 1)¢, respectively. Since the generic fiber of the map Spec H — SpecZ has dimension
st, it follows that the dimension of G is at least st. It follows that the image of u is a closed subgroup
G, C @ of dimension at least dim(G) — dim(G”) > (s — 1)t. It follows that G, = G’: that is, the
map u is a flat surjection. Since G” is smooth, the map u is smooth, so that G is smooth of dimension
dim(G") + dim(G") = st. The connectedness of G’ and G now imply the connectedness of G. O

Remark 1.2.14. The proof of Proposition 1.2.13 shows more generally that for any collection Si,..., Sk C
Z of finite sets which are closed under divisibility, the iterated Hopf algebra tensor product Wtg, X--- X
Wtg, is smooth over Z.

Scholium 1.2.15. Let S’ €S C Z-g and T/ € T C Z-( be subsets which are closed under divisibility.
Then the inclusion maps
Wtg — Wtg Wt — Wty

induce a faithfully flat map
¢ Wtgr KWt — Wtg X Wtr .

Proof. Using a direct limit argument, we can reduce to the case where the sets S and T are finite. Note that
the map ¢ factors as a composition

Wtg KWt — Wt KWt — Wtg KWt .

We may therefore reduce to the case where either S = 8" or T'=T’. Let us assume T = T” (the proof in
the other case is the same). Working by induction on the number of elements in S — S’, we may reduce to
the case where S = S’ U {n}, so that we have a cofiber sequence of Hopf algebras
Vi
Wtsr — Wtg —= Wty .
Set H=WtsXWtr, H = Wtg XWtr, and H”' = Wty K Wtr, so that we have a cofiber sequence

H % H - H'
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Note that H ®z Q is a polynomial ring over Q with generators given by {wg ® wp}eecsper, and that ¢
identifies H' ®z Q with the algebra generated by {w, M wp}aesr per. It follows that ¢ is flat after tensoring
with Q. Using the fiber-by-fiber flatness criterion (Corollary 11.3.11 of [6]), it will suffice to show that ¢
induces a flat map ¢, : H'/pH' — H/pH for every prime number p. This was established in the proof of
Proposition 1.2.13. O

Corollary 1.2.16. Let S be a set of positive integers which is closed under divisibility. Then the canonical
map Wtg I Wtg — Wtpis X Wi, is injective. Moreover, Wtg X Wtg can be identified with the intersection

of Wt Mg Wt3 with Wi, 3 Wtp;e in Wi, Mg Wi,

Proof. Using Scholium 1.2.15, we are reduced to verifying the following general assertion: if ¢ : A — B is a
faithfully flat map between torsion free commutative rings, then we can identify A with the intersection of
B with Aq = A®z Q inside Bq = B ®z Q. To prove this, suppose we are given an element x € Aq whose
image in Bq belongs to B. Choose n > 0 so that y = nz € A. Then ¢(y) € nB, so that the image of y
vanishes under the map A/nA — B/nB. Since ¢ is faithfully flat, we conclude that y =0 mod n, so that
x e A O

Remark 1.2.17. Let C' denote the Z-submodule of Wtgj, generated by the elements {¢n}n>0. Using the
formulas

A(Cn): Z ci ¢y C(Cn):{l ifn=0

L 0 otherwise.
1+i=n

we see that C is a subcoalgebra over Wtgi,, equipped with a coaugmentation given by the grouplike element
1 = ¢y € C. The inclusion C — Wtg;; extends uniquely to a map Symy4(C) — Wtgig, which is easily
seen to be an isomorphism. In other words, we can identify Wtg;, with the free bialgebra generated by the
coaugmented coalgebra C.

Notation 1.2.18. Let H and H' be bialgebras over Z, and let v : H ® H — H X H’ be the canonical
coalgebra map. For every pair of elements x € H, y € H', we let zXy denote the element v(z®y) € HX H'.

Remark 1.2.19. Combining Remarks 1.2.17 and 1.1.26, we see that the Hopf algebra Wtpis X Wtp;, is
freely generated (as a commutative ring) by the images of the elements {c¢; K ¢; € Wtgiz ® Wtgig }i j>0. In
particular, Wtg;s X Wtg;, is a polynomial algebra over Z.

Proposition 1.2.20. There exists a unique Hopf algebra map ¢ : Wtgiz — Wtgig X Wtpis with the property
that 1(wy,) = LnBWa

n

Proof. Let us first prove the analogous result working over the field Q, rather than over the integers. Let
Xq denote the tensor product operation on bialgebras over Q. Since thig is a polynomial ring generated
by the ghost components {w,},>1, there is a unique ring homomorphism ¢q : thig — thig Mg thig

satisfying vq(w,) = % We claim that tq is a bialgebra homomorphism. To prove this, it will suffice to
show that tq carries each w, to a primitive element of thig Mq thig. Equivalently, we must show that

wy, X w, is primitive for n > 1. We now compute

Alw, Rw,) = (w,@14+1Qw,) X (w, ®1+1®w,)
= (W Rwp)@ (1K) + (1K1 (w, Rwy,) + (1R w,) @ (w, ®1) 4+ (w, K1) @ (1 Kw,).

We now conclude by observing that 1 X w,, = e(w,) =0 and 1K1 =¢(1) = 1.

Let us now work over the ring Z of integers. Since Wtpiy K Wtpig is a polynomial ring over Z (Remark
1.2.19), it is torsion free. We may therefore identify Wtpig X Wtgig with its image in the Q-bialgebra
(Wtgig K Wtpig) ® Q ~ thig Mg thig. The first part of proof shows that there is a unique algebra

wy, Xw,
n

homomorphism ¢ : Wtgijg — thig Mg thig satisfying ¢(w,) =
showing that ¢ factors through Wtgi, X Wtgig.

. We will complete the proof by
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If R is a commutative ring and G(z,y) € R[[z,y]] is a power series in two variables given by G(z,y) =
Ym0 Mgyl welet GO(t) = 3,5 Aiit” denote the “diagonal part” of G. Write f(t) = 14+cit+eat?+--- €

Wtgig[[t]], so that log f(t) € thig[[t}] is given by - -, “=t". It follows that
Wn \ n Wn, Wn | ,n
rQlog f(1)) = Y u(= )" = (— B —m)t" = F(1),

n n n
n>1 n>1

where F(z,y) = log f(z) M log f(y). Since 1q is a ring homomorphism, we obtain

W(f(1) = 1q(f(t)) = exp(iqlog f(t)) = exp(F’(t)).

We wish to show that each coefficient of this power series belongs to Wtgis X Wtpig.

Let I denote the augmentation ideal of thig[[y]]. Since log f(z) is a primitive element of thig[[x]], the
construction g(y) +— log f(z) X g(y) annihilates the ideal I?. Since f(y) € 1+ I, we have log f(y) = f(y) — 1
mod I2. Tt follows that log f(x) Klog f(y) = log f(z) X (f(y) — 1) = log f(z) X f(y). Since f(y) is a grouplike

element of thig[[y]], the construction g(z) — g(z) ¥ f(y) is a ring homomorphism. It follows that

(log f(x)) X (log f(y)) = (log f(x)) B f(y) = log(f(z) ® f(y))-

Note that the coefficients of the power series f(x) K f(y) belong to Wtgig X Wtg;s. To complete the proof,
it will suffice to verify the following:

(¥) Let R be a torsion-free ring and let Rq = R® Q. Let H(x,y) € Rl[[x,y]] be a power series with
constant term 1, let G(z,y) = log H(x,y) € Rq[[r,y]], and let G°(t) € Rq|[t]] be defined as above.
Then exp G°(t) € R[[t]].

To prove (), we can write H(z, y) formally as a product []; ;(1+X; j2'y?, where A; ; € R and the product
is taken over all pairs (i, j) € Z>o X Z>o such that (i,7) # (0,0). Then G(z,y) = >, ;log(1 + i jz'y?),
so that GO(t) = Y, olog(1 + Ait?). It follows that exp(G°(t)) = [[;~0(1 + Ait?) has coefficients in R, as
desired. O

Corollary 1.2.21. Let S be a subset of Zi~o which is closed under divisibility. Then there exists a unique
Hopf algebra map 1s : Wts — Wtg K Wtg with the property that ts(w,) = % formeS.

Proof. Since Wtg X Wtg is flat over Z (Scholium 1.2.15), the uniqueness can be checked after tensoring
with Q, where it follows from the observation that Wt? is a polynomial ring on generators {wy,}nes.
Using Scholium 1.2.15, we can identify Wtg X Wtg with its image in Wtpjs XM Wtpis. Let ¢ : Wtpjz —
Wtgig X Wtgig be as in Proposition 1.2.20. To prove the existence of ¢g, it will suffice to show that ¢ carries
Wts C Wtgi, into Wtg M Wtg C Wtpis X Wtpie. Using Corollary 1.2.16, we are reduced to proving that the
image of Wtg in thig Xq thig is contained in Wt? Xg Wt?, which follows immediately from the formula

(wy) = Lalwn O

n

Remark 1.2.22. Let S be a subset of Z- o which is closed under divisibility. Then the diagram

Ls

Wtg —————— Wtg K Wtg

lLS iid N g

Wts X Wtg L‘XM; Wts X Wtg X Wtg

commutes. By virtue of Remark 1.2.14, it suffices to check this after tensoring with Q, where it follows from
the observation that both maps are given by

wy, X w,, Xw,
Wy = ———————
n
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Remark 1.2.23. Let S,T C Z-( be subsets which are closed under divisibility, let n be a positive integer,
and suppose that whenever nm € S, we have m € T. Then the diagram of Hopf algebras

Wtg —2 > Wtg K Wtg

\LVTL \Lbsgl,s

Wty — > Wty K Wty

commutes. To prove this, we may work rationally; it now suffices to observe that both compositions are
given by
2 .
wp s B (Win e M Wy ) if n|m '
0 otherwise.

Example 1.2.24. Let S = {1}. Then the map tg : Wtg — WtgXWtg can be identified with the
isomorphism Z[t] ~ Z[t] X Z[t] of Example 1.1.27.

1.3 Dieudonne Modules

Throughout this section, we fix a field « of characteristic p > 0. Recall that a Hopf algebra H over « is said
to be connected if the Hopf algebra K ®, H does not contain any nontrivial grouplike elements, where & is
an algebraic closure of k£ (Definition 1.0.6). We let Hopf", denote the full subcategory of Hopf, spanned by
the connected Hopf algebras over . In this section, we will review the theory of Dieudonne modules, which
provides a fully faithful embedding

DM : Hopf{, — LModp,_,

where LModp,, denotes the category of left modules over a certain noncommutative ring D,, ~ W (k)[F, V].
Our main goal is to prove a result of Goerss, which asserts that DM is a (nonunital) symmetric monoidal
functor (see Theorem 1.3.28).

Notation 1.3.1. For each integer n > 0, let Wt,. denote the Hopf algebra over x given by
K ®Z Wt{17p7p27.__,pn71},

where Wty ,n-1) is defined as in Remark 1.2.6. We will refer to Wt as the Hopf algebra of n-truncated
p-typical Witt vectors. We can write Wt; = ka1, ..., a,»-1], where the Witt components a; are defined as
in Remark 1.2.3.

Notation 1.3.2. Let H be a Hopf algebra over k. For every integer n, we let [n] : H — H be the Hopf
algebra homomorphism which classifies the map of group schemes Spec H — Spec H given by multiplication
by n. If n > 0, this map is given by the composition

H — H®" - H,

where the first map is given by iterated comultiplication and the second by iterated multiplication.

We let H®) e Hopf, denote the base change of H along the Frobenius isomorphism ¢ : kK — k. Then
we have a canonical isomorphism of commutative rings H ~ H®) which we will denote by x — z®). The
k-algebra structure on H®) is then characterized by the formula A\?z(®) = (Az)®), where A\ € k and = € H.

There is a canonical Hopf algebra homomorphism F : H®?) — H, given by z®) — zP. We will refer to F
as the Frobenius map. A dual construction yields a Hopf algebra homomorphism V : H — H®)  called the
Verschiebung map. The composite maps

gL P L F
g» 5 g Y go

19



are given by the Hopf algebra homomorphisms [p] on H and H®), respectively.

In the special case where H = Wt!', we have a canonical isomorphism H ~ H (») (since H is defined
over the prime field Fp). Under this isomorphism, the Verscheibung map V : H — H agrees with the
Verscheibung map V), of Notation 1.2.11. In particular, it is given by the formula

Va2 {0 =0
L Api—1 if 4 > 0.

Definition 1.3.3. Let H be a connected Hopf algebra over k. For each integer n > 1, we let DM(H),
denote the set of all elements € H which satisfy the following condition: there exists a Hopf algebra
homomorphism f : Wt} — H such that f(a,n-1) = x. We let DM(H) denote the union | J,,o , DM(H),. We
will refer to DM(H) as the Dieudonne module of H.

n>0

Remark 1.3.4. Let H be a connected Hopf algebra over x. By definition, evaluation at a,.-1 € Wt
induces a surjective map
Hompopt, (Wty,, H) = DM(H),.

In fact, this map is bijective: that is, a Hopf algebra homomorphism f : Wt — H is determined by the
element f(a,n-1) € H. This is clear, since Wt;; is generated as an algebra by the elements

Apn—1, Vapn—1 = Qpn-2, VQG/pn—l = Qpn-3,..., V"_lapnﬂ =a.

P
Remark 1.3.5. Let H be a connected Hopf algebra over k. Then we have inclusions
DM(H): € DM(H), € DM(H)3 C --- .
To prove this, we note that if € DM(H),, then there exists a Hopf algebra map f : Wt — H with
f(ayn-1) = . Then z is the image of a,» € Wt} | under the composite map
Wt Bwir Lo,
so that € DM(H )p41.

Remark 1.3.6. Let H be a connected Hopf algebra over . For each n > 1, the identification DM(H),, ~
Hompopt, (Wty,, H) determines an abelian group structure on DM(H),,. Moreover, the inclusions

DM(H); CDM(H) C ...
are group homomorphisms, so that the union DM(H) inherits the structure of an abelian group.

Example 1.3.7. Let H be a connected Hopf algebra over k. Then DM(H); is the subset Prim(H) C H
consisting of primitive elements. Consequently, we can identify Prim(H) with a subset of the Dieudonne
module DM(H). Moreover, this identification is additive: that is, the addition on DM(H); described in
Remark 1.3.6 agrees with the usual addition in H.

Remark 1.3.8. Let H be a connected Hopf algebra over . If f: Wtl: — H is a Hopf algebra homomor-
phism, then f induces another Hopf algebra homomorphism

@) Wit ~ (Wtﬁ)(”) — H®P),

satisfying ) (ayn-1) = f(ayn-1)®. It follows that the construction z + z(®) determines a bijection
DM(H) — DM(H®).

We now investigate the structure of the Dieudonne module DM(H).
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Construction 1.3.9. The construction H — DM(H) is functorial in H: that is, if f : H — H' is a map of
Hopf algebras over x, then f induces a group homomorphism from DM(H) to DM(H'). In particular, the
Frobenius and Verschiebung maps

F:HP - H V:H—H®P

induce maps

DM(H) ~ DM(H®) — DM(H)  DM(H) — DM(H®)) ~ DM(H),

which we will also denote by F' and V, respectively.
More concretely, for x € DM(H) C H, we have Fx = 2P € DM(H) C H. If x = f(a,»-1) for some Hopf
algebra homomorphism f: Wt;; — H, then Vo = f(Va,n-1) = f(apn-2).

Remark 1.3.10. Let H be a connected Hopf algebra over k, and let & € DM(H) be represented by a Hopf
algebra homomorphism f : Wt: — H. For m < n, we have an exact sequence of Hopf algebras over

Wte_ o Wtt VS WitE

Note that x belongs to DM(H) if and only if f factors through the map V"*~™ : Wt). — Wt/ , which is

equivalent to the requirement that the restriction f| Wt/ _  is trivial. In other words, x € DM(H) if and
only if f(ayn-m-1) = 0. Since f(apn-m-1) = V"™ f(ayn-1) = V™z, we conclude that DM(H),, is the kernel
of the map V™ : DM(H) — DM(H). In particular, we can identify Prim(H) = DM(H); with the kernel of

the map V : DM(H) — DM(H).

Notation 1.3.11. Let W (k) denote the ring of p-typical Witt vectors of the field k. For each x € k, we let
7(z) € W (k) denote its Teichmiiller representative. Let ¢ : W (k) — W (k) denote the Frobenius map: that
is, the unique ring homomorphism from W (k) to itself satisfying p(7(x)) = 7(aP).

Construction 1.3.12. For each integer n > 1, the affine scheme Spec Wt,. is a ring-scheme, whose ring of
k-points is given by the quotient W (x)/p™. In particular, the commutative ring W (k)/p™ acts on the Hopf
algebra Wt (as an object of the abelian category Hopf, ). We will regard Wt,> as a module over the ring
W (k) via the composite map

W(k) “S W(k) = W(r)/p"W (k).

For each a € W(k), we let [a] : Wt: — Wt/ denote the corresponding endomorphism of Wt/ (note that
when A is an integer, this agrees with Notation 1.3.2). The action of W (k) on Wt,, is uniquely characterized
by the formula

1+i—n

[T(N)](ayi) = AP Qi

pi
for \ € k.

For every connected Hopf algebra H, the action of W(x) on Wt, determines an action of W (k) on the

abelian group
DM(H),, ~ Homgyopt, (Wty,, H).

This action is normalized so that for each A € &, the map 7(\) : DM(H),, - DM(H), is given by multipli-
cation by A. Note that the inclusions DM(H),, < DM(H),4+1 are W (x)-linear, so that DM(H) inherits the
structure of a W (x)-module.

Remark 1.3.13. The action of W(k)/p™ on Wt determines, by composition with the Teichmiiller map
T:k — W(k)/p™, an action of the multiplicative group £* on Wt... Unwinding the definitions, we see that

this action is determined by the grading of Wt};, where we regard a,: as a homogeneous element of degree
i

p.
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Notation 1.3.14. We let D, denote the associative ring generated by W (k) together with symbols F' and
V', subject to the relations

FA=¢o(\F  Ve(A\)=\V  FV=VF=p,

where A ranges over W (k). We will refer to D, as the Dieudonne ring. We let LModp, denote the category
of (discrete) left modules over Dy.

We will say that a left D,-module M is V -nilpotent if, for every element z € M, we have V"z = 0 for
n > 0. Let LModgE denote the full subcategory of LModp, spanned by the V-nilpotent D,.-modules.

Proposition 1.3.15. Let H be a connected Hopf algebra over . Then the maps F,V : DM(H) — DM (H)
and the action of W (k) on DM(H) exhibit DM(H) as a V -nilpotent left module over the Dieudonne ring Dy,
of Notation 1.3.14.

Proof. If x € DM(H), the equalities VFz = px = FVz follow from Notation 1.3.2. It follows from Remark
1.3.10 that if x € DM(H),, then z is annihilated by V™. Let A € W (k); we wish to show that

F(\zx) = p(N\)Fzx VoNx = AVa.

We will prove the first equality; the proof of the second is similar. Assume that x € DM(H),, so that =
is annihilated by V™ and therefore also by p™. To verify the equality F(Ax) = ¢(A\)Fz, we may replace
A by any element of A + p"W (k). We may therefore assume without loss of generality that A\ has a finite
Teichmiiller expansion

A= Z p'7(a;)

0<i<n

for some a; € k. We may therefore reduce to the case where A = 7(a) for some a € . In this case, we have
©(A) = 7(aP), and the desired equality reduces to the formula (ax)? = aPzP. O

We refer the reader to [3] for a proof of the following result:

Theorem 1.3.16. The construction H — DM(H) determines an equivalence of categories DM : Hopf, —
LModp!.

Remark 1.3.17. For each n > 0, the functor DM carries Wt.. to the module D, /D, V™. Since the category
of V-nilpotent left D.-modules is generated under small colimits by the objects D,; / D,; V", Theorem 1.3.16
implies that Hopf®(k) is generated under small colimits by the Hopf algebras Wt:.

Corollary 1.3.18. Let H be a connected Hopf algebra over k. Then H is generated as an algebra by the
subset DM(H) C H.

Proof. Let H' denote the subalgebra of H generated by DM(H). We first claim that the comultiplication of
H restricts to a comultiplication on H’. To prove this, we let A C H denote the inverse image of H' @ H'
under the comultiplication map A : H — H ® H. Then A is a subalgebra of H. Consequently, to prove that
H' C A, it will suffice to show that DM(H) C A. Let x € DM(H),, so that x is the image of a,n-1 € Wty
under some Hopf algebra homomorphism ¢ : Wt — H. Then A(z) = (¢ ® ¢)A(a,n-1). Consequently, to
show that A(x) € H' ® H’, it will suffice to show that ¢ carries Wt into H’. Since Wt,. is generated by the
elements a,: for 0 < i < n, we are reduced to proving that ¢(a,:) € H' for 0 < i < n. This is clear, since
P(ay) =V 17iz € DM(H).

Since DM(H)) is closed under the antipodal map from H to itself, the subalgebra H' is also invariant under
the antipodal map, and is therefore a sub-Hopf algebra of H. By construction, we have DM(H’) = DM(H).
It follows from Theorem 1.3.16 that the inclusion H’ < H is an isomorphism, so that H is generated by
DM(H). O
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Remark 1.3.19. Let H be a Hopf algebra over k. The inclusion pg : DM(H) < H is generally not
additive. Given classes x,2’ € DM(H ), represented by Hopf algebra homomorphisms ¢, ¢’ : Wt): — H, we
can identify pg(x + ') with the image of a,.-1 under the composite map
bWt B Wt e, Wt 228 He, H S H.

Let my denote the augmentation ideal of H, and let n denote the augmentation ideal of DM(H). Then
Alapn-1) = apn-1 @1 =1 Q@ ayn-1 € n®@n, we have py(z +y) — pu(x) — pu(y) € m3,. Consequently, py
induces an additive map DM(H) — my /m%. Note that if z € DM(H), then pg(Fz) = pu(z)P € mb, C m%.
Consequently, pg descends to a map

Py : DM(H)/FDM(H) — my /m?%.

Using the description of the action of 7(k) C W (k) on DM(H) supplied by Construction 1.3.12, we see that
P is k-linear.

Proposition 1.3.20. Let H be a connected Hopf algebra over k. Then the map py : DM(H)/F DM(H) —
my /m% of Remark 1.3.19 is an isomorphism of vector spaces over k.

Proof. Let € denote the full subcategory of LModgf spanned by those Dieudonne modules M for which
there exists a connected Hopf algebra H with DM(H) ~ M and py : DM(H)/FDM(H) — my/m% an
isomorphism. Using Theorem 1.3.16, we see that C is closed under the formation of colimits. Consequently,
it will suffice to show that € contains every Dieudonne module of the form D, /V™D,. In other words, it
suffices to treat the case where H = Wt . In this case, DM(H ) is generated by an element x (corresponding to
identity map in Hompoept, (Wt;,, H)) satisfying V"2 = 0, and DM(H)/F DM(H) has a basis (as a s-vector

space) given by the images of the elements z,Vx, V2x,..., V" 1z. Unwinding the definitions, we ahve
pa(V'z) = ayn-1-i € H, from which we immediately deduce that p; carries the images of z, V', ..., Vnolg
to a basis for mpy/m%,. O

We now investigate the relationship between the theory of Dieudonne modules and the Hopf algebra
tensor product introduced in §1.1.

Proposition 1.3.21. Let H and H' be connected Hopf algebras over k. Then HX H' is connected.

Proof. Without loss of generality, we may assume that x is algebraically closed. In this case, every Hopf
algebra K over r splits as a tensor product K¢ ®, K% where K¢ is connected and K< ~ x[M] is the group
algebra of some abelian group M. Consequently, if HXH’ is not connected, then there exists an abelian group
M and a nontrivial Hopf algebra homomorphism H X H' — [M]. In particular, there must be a nontrivial
coalgebra map H ®, H' — k[M]. It follows that the formal scheme Spf(H ®,, H')Y ~ Spf HY x Spf H"V is
disconnected, contracting our assumption that H and H’ are connected. O

Notation 1.3.22. Let Hopf?, denote the full subcategory of Hopf,, spanned by the connected Hopf algebras
over k. It follows from Proposition 1.3.21 that Hopf, has the structure of a nonunital symmetric monoidal
category, with tensor product given by X.

Warning 1.3.23. The unit object for the operation X on Hopf,, is the Hopf algebra of Laurent polynomials
K[tT1], which is not connected.

Definition 1.3.24. Let M, M’', and M” be left D,-modules. A pairing of M and M’ into M" is a W (k)-
bilinear map
wiMx M — M

satisfying the identities

Vu(r,y) = p(Va,Vy)  Fu(z,Vy) = p(Fz,y)  Fu(Vz,y) = p(x, Fy).
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Remark 1.3.25. Let M and M’ be left D,.-modules. Then there exists a left D,-module M®M' and
a pairing pg : M x M’ — M®M' with the following universal property: for every left D,-module M”,
composition with po induces a bijection from the set Hompmodp, (M@M’, M") to the set of pairings M x
M — M.

Note that the module M®M' depends functorially on M and M’. Moreover, the construction (M, M')
M®M' preserves small colimits in each variable (in particular, it is right exact in each variable).

Construction 1.3.26. For each n > 0, let ¢, : Wt: — Wt KWt" be the map given by Corollary 1.2.21.
Given a pair of objects H, H' € Hopf",, we let
pin : Hompeps (Wty, H) X Hompgope, (Wt H') — Hompiope, (Wtyy, H X H')
denote the composition of the evident map
Hompiopr, (Wtyy, H) x Hompopr, (Wty, H) — Hompope, (Wt XWt) H X H')

with the map Hompepr, (Wt;, X Wt H K H') — Hompept, (Wt,,, H X H') given by composition with v,.
Let V : Wty ., — Wt be the Verschiebung map (see Notation 1.2.11). Using Remark 1.2.23, we see that
the diagram

Hn

Hompopt, (Wty,, H) x Hompope, (Wty,, H') Hompopt, (Wt,,, H X H')

\LOVXV ioV

Homizopr, (W5, 1, H) x Hompops (Wt 1, H') 2> Hompepe (Wt7, |, H K H')

commutes. Consequently, the maps {p,,} determine a map p: DM(H) x DM(H') — DM(H X H').

Proposition 1.3.27. Let H and H' be Hopf algebras over k. Then the map p : DM(H) x DM(H') —
DM(H X H') of Construction 1.3.26 is a pairing, in the sense of Definition 1.3.24.

Proof. We first show that p is W(k)-bilinear. Choose x € DM(H), y € DM(H’), and A € W(k); we wish
to show that p(Az,y) = Au(z,y) = p(z, Ay). Write A = 3. 7(X\;)p’ for A; € k. Choose an integer n such
that V" = 0 = V™y. Then z, y, and u(x,y) are annihilated by p™. We may therefore replace A by the
finite sum 7(\g) + -+ + p" " 17(N\,_1). Since p is Z-bilinear, we are reduced to proving the identity

p(r(2)z,y) = T(2)lx, y) = p(e, 7(2)y)

for z € k. Since V"2 = 0, z and y determine a Hopf algebra homomorphisms Wt — H. We may
therefore reduce to the universal case where H = H' = Wt , in which case u(x,y) is given by the map

n?

Ly Wt — Wt KI'Wt,r. Unwinding the definitions, we must show that the diagram

Wt S Wt =] Wt"
. l . [P "IRid . J’ . iR . l .
WtE W < Wt KWt ————— Wt* QWt"

commutes. This follows from the observation that the map ¢, : Wt;;, — Wt X'Wt, carries homogeneous
elements of degree m to homogeneous elements of bidegree (m,m) (see Remark 1.3.13).

We next prove that Vu(z,y) = p(Va,Vy) for « € DM(H) and y € DM(H'). As above, we may assume
that V"z = 0 = V"y for some n, and then reduce to the universal case H = H' = Wt;,. Unwinding the
definitions, we must show that the diagram

Witr Wtr

Wit RWtr L wer ) ws
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commutes. To prove this, we may assume without loss of generality that xk = F,. It will then suffice to
show that the bottom horizontal map V KV : Wt Wt — Wt KWt coincides with the (absolute)
Verschiebung map V' of Wt IWt/. Let £ : Wt @ Wt — Wt KWt be the canonical coalgebra map.
Since the image of £ generates Wt;: I Wt, as an algebra, it will suffice to show that the composite maps

VRV

Wt* @ W' 5 Wt" BWt" "5 Wtk & Wt"

K
n

Wtr @ Wt 5 Wt RWtE ¥ Wtr B wWt” .

coincide. This is clear, since both maps are obtained by precomposing ¢ with the Verschiebung map on the
coalgebra Wt, @ Wt.'.

We now complete the proof by showing that Fu(Vz,y) = u(x, Fy) and Fu(z,Vy) = p(Fz,y) for
x € DM(H) and y € DM(H’). By symmetry, it will suffice to prove the first of these identities. As above,
we may suppose that V"z = V"y = 0, and reduce to the universal case where H = H' = Wt,.. Unwinding
the definitions, we must prove that the diagram

Wt? £

Wt
in (Vid)oty,
Wit KWt~ 42 wir ) wer

commutes. As before, we may reduce to the case k = F), so that F' and V coincide with the absolute
Frobenius and Verschiebung maps on Wt”, respectively. Let F(?) be the Frobenius map from Wt/ & Wt”
to itself, so that F) o4, =1, o F. Consequently, we are reduced to proving the identity

(VRid)o F® oy, = (IdRF) o 1,.

In fact, we claim that (V ®id) o F) and id ®F coincide as Hopf algebra homomorphisms from Wt/ K Wt
to itself. To prove this, it will suffice to show that both homomorphisms agree on u X v, for every pair of
elements u,v € Wt,-. In other words, we must verify the identity (V(u) K v)? = « X vP, which follows from
the identities given in Notation 1.1.18. O

We are now ready to state the main result of this section.

Theorem 1.3.28 (Goerss, Buchstaber-Lazarev). Let H and H' be connected Hopf algebras over k. Then
the pairing 1 : DM(H) x DM(H') — DM(H X H') of Proposition 1.3.27 induces an isomorphism of left
D,.-modules

O DM(H)® DM(H') — DM(H K H').

Proof. As functors of H and H’, both the domain and codomain of 6 preserve small colimits in each variable.
Using Remark 1.3.17, we can reduce to the case where H = Wt and H' = Wt for some integers m and
n. We now proceed by induction on m. The case m = 0 is trivial. If m > 0, we have an exact sequence of
Hopf algebras

k — Wti — Wt EN Wtr 1 — K,

giving rise to a commutative diagram of exact sequences
DM(Wt5)® DM(Wt) —= DM(Wt" )@ DM(Wt£) — DM(Wt£,_ )@ DM(Wt£) —= 0

; : :

DM(Wt BWt5) — 2~ DM(Wt", RWt") — > DM(Wt~,_, IWt") — > 0.
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It follows from Theorem 1.3.16 and Scholium 1.2.15 that the map ¢ is injective, and from the inductive
hypothesis that 6" is an isomorphism. Consequently, to prove that # is an isomorphism, it will suffice to
show that 6’ is an isomorphism. That is, we may reduce to the case where m = 1. Similarly, we may reduce
to the case n = 1. In this case, DM(H) and DM(H') can be identified with the free D,-module M generated
by a single element e satisfying Ve = 0. The map ¢; : Wtf — WtF KWt} is an isomorphism (Example
1.2.24). We may therefore identify § with a map M®&M — M, induced by a bilinear map p: M x M — M
satisfying pu(e, e) = e. Let pg : M x M — M®&M be the universal pairing. Then Vg (e, e) = ug(Ve, Ve) = 0,
so there is a unique map of left D,-modules ¢ : M — M®M satisfying ¢(e) = po(e,e). It is clear that
0 o b = idp;. To complete the proof that 6 is an isomorphism, it will suffice to show that v is surjective.
Since the image of ¥ is a left D,-submodule of M®M, it will suffice to show that the image of 1) contains
po(w,y) for all z,y € M. As a k-vector space, M has a basis given by F'e for i > 0. It will therefore suffice
to show that po(Fiz, F/y) belongs to the image of ¢ for 4,5 > 0. For i = j = 0, this is clear from the
construction. If ¢ > 0, we have

po(F'e, Fly) = Fuo(F'~ 'z, VFIy) = Fuo(F''z,0) = 0.
Similarly, if j > 0, we have uo(Fx, Fiy) = 0. O

Remark 1.3.29. It is not hard to see that the operation ® endows LModp, with the structure of a
symmetric monoidal category. The unit object of LModp, is given by W (k), where the action of F and V
are given by the formulas

F(z)=pp(z)  V(e)=¢ '(a)
Corollary 1.3.30. The functor DM : Hopf; — LModp, is a (nonunital) symmetric monoidal functor.

Proof. For every pair of connected Hopf algebras H and H’ over k, Theorem 1.3.28 provides a canonical
isomorphism 6 g : DM(H)® DM(H') — DM(H X H’). To show that this data endows DM with the
structure of a (nonunital) symmetric monoidal functor, it will suffice to show that the diagrams

DM(H)® DM(H') —~> DM(H')& DM(H)

leH’H, leH/‘H

DM(H K H') —~—~ DM(H' X H)

DM(H)&(DM(H")® DM(H")) —~> (DM(H)® DM(H'))& DM(H"')

iGH,'H“ leH,H’

DM(H)®DM(H' K H") DM(H X H')@ DM(H")
iew lem,ﬂ,,
DM(HX (H' K H")) —— > DM((H X H') K H")
commute. In the first case this is obvious, and in the second it follows from Remark 1.2.22. O

Notation 1.3.31. Let M, M’, and M" be left D,-modules, and suppose we are given a pairing A : M x M’ —
M". Using the relation VA(x,y) = A(Vz,Vy), we deduce that X\ carries {x € M : Vo = 0} x M’ into
{z € M" : Vz=0}. Moreover, if Va = 0, then

Mz, Fy) = FA(Vz,y) = FA(0,y) = 0,

so that \ induces a map A\: {z € M : Vo =0} x M'/FM' — {z € M" : Vz = 0}.
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Remark 1.3.32. Let H, H’, and H” be connected Hopf algebras over x and let p: H ®, H — H"” be a
bilinear map of Hopf algebras. If x € H is primitive and y € my-, then pu(x®y) € H” is primitive. Moreover,
for y,y" € mpy/, we have

peyy)=pzey)pley)+uleyuzey’)=0.
It follows that p induces a map
7i: Prim(H) ®, my /m3;, — Prim(H").
We will need the following compatibility between the constructions described in Notation 1.3.31 and
Remark 1.3.32:

Proposition 1.3.33. Let H, H', and H" be Hopf algebras over k, let u: H® H' — H" be a bilinear map,
and let A : DM(H) x DM(H') — DM(H") be the induced pairing. Let pg : DM(H) — H be the inclusion,
and let py, : DM(H')/F DM(H') — mys /m%, be the isomorphism of Proposition 1.3.20. Then the diagram

{z € DM(H) : V& = 0} x DM(H')/FDM(H') ——2 {2 ¢ DM(H") : V2 = 0}
Prim(H) ®,, my: /m2,, r Prim(H")

commutes, where X\ and i are defined as in Notation 1.3.31 and Remark 1.3.32, respectively.

The proof of Proposition 1.3.33 will require the following preliminary result:
Lemma 1.3.34. For each n > 0, the elements {(a1 o api)pj Yo<i<n,0<j form a basis for the vector space
Prim(Wty KWt ).
Proof. We proceed by induction on n, the case n = 0 being trivial. Assume that n > 0. We have an exact
sequence of Hopf algebras

k— Wt — Wt, vy Wtf — k.
Using Scholium 1.2.15, we deduce that the induced sequence
k— W KWt — Wt Wt — Wt KWt — &

is also exact, so that we have an exact sequence of k-vector spaces

0 — Prim(Wtf I Wt*_,) — Prim(Wtf X Wt%) % Prim(Wt; & Wt5).

The inductive hypothesis implies that the collection of elements {(a; o apfz)pj Yo<i<n—1 forms a basis for
Prim(Wt7 XWt»_,). To complete the proof, it will suffice to show that that the elements {g((a; X
apn—1)P)}j>0 form a basis for Wtf KWt}. We now observe that Wt} KWt} is isomorphic to a polyno-
mial ring x[z], with comultiplication given by A(x) = z ® 1 + 1 ® x; the collection of primitive elements in

#[r] has a basis given by the monomials {2’ };>¢. O

Proof of Proposition 1.3.33. Fix n > 1, and consider the composite map

¢ WtE o Wt ®RWee T 50 W ) Wi
. n n n 1 n "

It follows from Notation 1.3.31 that ¢(a,n-1) is a primitive element of Wt} Wt . Using Lemma 1.3.34, we

can write ¢(a,»—1) as a linear combination of elements (a1 X a,:)P’. Let us regard Wt; K Wt,, as bigraded
(where a;Xa; has bidegree (4, j)), so that ¢ carries elements of degree d to elements of bidegree (p'~"d, d). In
particular, ¢(a,n-1) has bidegree (1, p"~1). It follows that ¢(a,n-1) = ¢, (a1®a,n-1) for some constant ¢,, € k.
It then follows that for every V-torsion element € DM(H) and every V™-torsion element y € DM(H'), we
have pgr Az, y) = cali(pr(z), pg(y)). Since this equation holds for every bilinear map p: H @ H' — H”,
we conclude that ¢,, is independent of n. To complete the proof, it will suffice to show that ¢, = 1 for all n.
Since ¢,, does not depend on n, it suffices to show that ¢; = 1, which is clear (note that ¢1(a1) = a1 Xay). O
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1.4 Disconnected Formal Groups

Let x be a perfect field of characteristic p > 0, which we regard as fixed throughout this section. The
Dieudonne module functor H — DM(H) determines a fully faithful embedding from the category Hopf",
of connected Hopf algebras over x to the category LModp, of Dieudonne modules. For many applications,
it is useful to extend this construction to a somewhat larger class of Hopf algebras: namely, those Hopf
algebras H for which multiplication by p is locally nilpotent on the formal group Spf HY. In this section,
we will prove an analogue of Theorem 1.3.28 in this more general context.

We begin with some general remarks about adjoining units to symmetric monoidal categories.

Notation 1.4.1. Let Ab denote the category of abelian groups, and let A be an abelian category which
admits small colimits. Then there exists a unique functor ® : Ab x A — A which preserves small colimits
separately in each variable, having the property that the functor C' — Z ®C is the identity functor from A
to itself. This functor exhibits A as tensored over the category of abelian groups.

We will say that A is Z /p™ Z-linear if, for every pair of objects C, D € A, the abelian group Hom 4 (C, D)
is annihilated by p™. In this case, for every abelian group M and every object C' € A, the canonical
epimorphism

M@C— (M/p"M)®C
is an isomorphism. It follows that the functor ® : Ab x A — A factors as a composition

®z /pn
Abx A — Modg gz x A 57 A.

The functor ®z ;,» z exhibits A as tensored over the symmetric monoidal category Modg /,» z of (discrete)

Z /p™ Z-modules.

Construction 1.4.2. Suppose that A is an abelian category which admits small colimits and is Z /p™ Z-
linear. Suppose further that A is equipped with a nonunital symmetric monoidal structure for which the
tensor product functor ® : A x A — A preserves colimits separately in each variable. We let A denote the
product category Modz j,nz X A. We let @ : Ay x Ay — A denote the functor given by

(M,C)®, (M',C") = (M ®z /pn 7 M' (M @z /pn Z Co (M @z /pmzC) D (C® ).

It is not difficult to show that the tensor product functor ®, exhibits A4 as a symmetric monoidal category,
with unit object given by (Z /p™ Z,0).

Remark 1.4.3. In the situation of Construction 1.4.2, the symmetric monoidal category A, has the fol-
lowing universal property: for any Z /p™ Z-linear abelian category B equipped with a symmetric monoidal
structure for which the tensor product preserves small colimits in each variable, composition with the inclu-
sion functor A — A4 induces an equivalence from the category of colimit-preserving symmetric monoidal
functors from A4 to B to the category of colimit-preserving nonunital symmetric monoidal functors from A
to B.

Notation 1.4.4. Let n > 0 be an integer. We will say that a Hopf algebra H over « is p™-torsion if it is
annihilated by p", when regarded as an object of the abelian category Hopf,. We let Hopf, , denote the
the full subcategory of Hopf, spanned by the p™-torsion Hopf algebras, and Hopfz’n = Hopf, N Hopf,, ,,
the full subcategory of Hopf,, spanned by the connected p"-torsion Hopf algebras.

Remark 1.4.5. The inclusion functor Hopf, , < Hopf, admits a left adjoint, which carries each Hopf al-
gebra H to the cokernel (in the abelian category Hopf,, of the map [p"] : H — H representing multiplication
by p". Consequently, we may view Hopf, ,, as a localization of the category Hopf,..

K,m

Remark 1.4.6. Let H and H' be Hopf algebras over . If either H or H' is p™-torsion, then the Hopf algebra
HMX H'is p"-torsion. It follows that the full subcategories Hopf, ,, Hopf| , C Hopf, are closed under the
functor X, and therefore inherit the structure of nonunital symmetric monoidal categories. In fact, Hopf, ,

is even symmetric monoidal: it has a unit object, given by the group algebra x[Z /p" Z] = x[z]/(2z?" — 1).
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Let n > 0. It follows from Remark 1.4.3 that the inclusion Hopf¢ , — Hopf

K,n

unique extension to a symmetric monoidal functor ¢ : (Hopf}, ,,)+ — Hopf, ,,.

x,n admits an essentially

Proposition 1.4.7. Suppose that the field x is algebraically closed. Then for each n > 0, the functor
¢ : (Hopf} ,,)+ — Hopf, ,, is an equivalence of categories.

K,n

Proof. Since k is algebraically closed, every Hopf algebra H over x can be written canonically as a tensor
product H¢ ®, k[M], where H¢ is a connected Hopf algebra over k, and M is an abelian group (which we
can identify with the collection of group-like elements of H). This observation determines an equivalence
of categories Hopf, ~ Ab x Hopf},, which restricts to an equivalence Hopf, , ~ Modz /,» z x Hopf, ,,.

K

Under this equivalence,  corresponds to the identity functor from Modz /,n z X Hopf;n to itself. O

For n > 0, we let D, /p™ denote the quotient of D, by the (two-sided) ideal generated by p™. We will

identify LModp, ;,» with the full subcategory of LModp, spanned by those left D.-modules which are
annihilated by p”, and we let LModgE /pr denote the full subcategory spanned by those left D-modules which
are annihilated by p™ on which the action of V' is locally nilpotent. Note that LModp,, /,» and LModgi1 /pn

are closed under the tensor product ®, and therefore inherit the structure of nonunital symmetric monoidal
oo-categories. Moreover, LModp, /,» has a unit object, given by the quotient W (x)/p"W (k) (where the
actions of F' and V are given by F(z) = pp(z) and V(x) = ¢~ !(z), as in Remark 1.3.29). Proposition 1.4.7
implies that the formation of Dieudonne modules defines a nonunital symmetric monoidal functor

DM : Hopf}, , ~ LModp /. < LModp, /.
This extends uniquely to a symmetric monoidal functor ¢ : (Hopf}, ,,)+ — LModp, /pn-
Proposition 1.4.8. Let n > 0. Then the functor ¢' : (Hopf}, )+ — LModp,_ /,n is fully faithful.

Proof. We can identify objects of (Hopf} , ) with pairs (M, H), where M is an abelian group which is
annihilated by p", and H is a connected p"-torsion Hopf algebra over k. Unwinding the definitions, we see
that the functor 6% is given by

07 (M, H) = (W (k) ®z M) ® DM(H),
where the actions of F' and V on the first factor are given by
F(z) =pp(Nz  V(Az) =9 (N

for A € W(k), x € M. Since the functor DM is fully faithful, the assertion that 8’ is fully faithful is equivalent
to the following:

(1) For every abelian group M which is annihilated by p™ and every connected Hopf algebra H which is
annihilated by p™, there are no nonzero left D,-module homomorphisms from W (k) ®z M to DM(H).

(2) For every abelian group M which is annihilated by p™ and every connected Hopf algebra H which is
annihilated by p™, there are no nonzero left D,-module homomorphisms from DM(H) to W (k) ®z M.

(3) For every pair of abelian groups M and N which are annihilated by p", the canonical map
Hom 45(M, N) — Homp (W (k) @z M, W (k)®z, N)
is bijective.

To prove (1), suppose we are given a map of left Dy-modules A : W(k) ®z M — DM(H). For each
x€M,wehave V(1®2z) =1®z in W(k) ®z M, so that

VAl @) =AV(1®1) = A1)
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for all m. Since the action of V' on DM(H) is locally nilpotent, we conclude that A(1® z) = 0 for all z € M.
Since A is W (k)-linear, we conclude that A = 0.

The proof of (2) is similar. Let A : DM(H) — W (k) ®z M be a left D,-module homomorphism, and let
x € DM(H). Then V™z = 0 for m > 0. It follows that

VmA(z) = A(V™z) = A(0) = 0.

Since ¢! is an automorphism of W (k), the action of V on W (k) ®z M is invertible, from which we deduce

that A(z) = 0.

We now prove (3). Let M and N be abelian groups which are annihilated by p™. Let us identify
M and N with their images in W (k) ®z M and W (k) ®z N, respectively. The map Hompu,(M,N) —
Homp, (W (k) ®z M, W (k) ®z N) is evidently injective. To prove the surjectivity, it will suffice to show that
every left D,-module homomorphism A : W (k) ®z M — W(k) ®z N carries M into N. For this, it will
suffice to show that if y € W (k) ®z N satisfies V(y) = y, then y € N. In other words, we wish to show that
the sequence

(¢t —id)®id

0> N—->Wk)®@zN"T~ —' W(k)®zN

is exact. Writing IV as a filtered colimit of finitely generated submodules, we may assume that IV is a finitely

generated abelian group. Writing IV as a direct sum of indecomposable summands, we can reduce to the
case where N = Z /p™ Z for m < n. In this case, we must prove the exactness of the sequence

0= Z /p™Z — W(K)/p"W (k) ¢ =W (k) /p™W (k).

At 1the level of Witt components, this amounts to the observation that every element z € k satisfying
2P = x must belong to the prime field F,,. O

Proposition 1.4.9. Suppose that  is algebraically closed, and let n > 0. Then the essential image of the
functor ¢ : (Hopf, )y — LModp, /,n is the full subcategory spanned by those left D, /p"-modules N
which satisfy the following condition:

(%) For each element x € N, there is a finite length W (k)-submodule of N which contains x and is closed
under the action of V.

Lemma 1.4.10. Let ¢ : W (k) — W (k) be the Frobenius map, let N be a W (k)-module which is annihilated
by p" for some n, let V.: N — N be a ¢~ '-semilinear map, and set M = {x € N : Vo = x}. Then the
canonical map W (k) @ M — N is injective.

Proof. Tt will suffice to show that for every finitely generated submodule My C M, the induced map W (k) ®
My — N is injective. Write My as a direct sum @, ,.,Z /p" Z, so that the inclusion of My into M
determines a collection of elements z1,...,z4 € N satisfgfir_lg Va; = 2; and ptix; = 0. Suppose we are given
a dependence relation
c1x1+ -+ cqrg =0
in N, where ¢; € W(k)/p""W (). We wish to prove that each ¢; vanishes. Suppose otherwise. Without loss
of generality, we can choose a counterexample with d as small as possible, so that none of the coefficients
¢; vanish. Multiplying each ¢; by an invertible element of W (k), we may assume without loss of generality
that ¢; = p* for some integer k.
Let ¢ : W (k) — W(k) denote the Frobenius morphism. We then have

0=V(cizs 4+ +cqzg) =@ Her)x + -+ o Hea),
so that >, ., .,(c; — ¢~ e;)x; = 0. Since ¢; = ¢~ *(c1), the minimality of d guarantees that ¢; = ¢~ '¢; for
1 <4 < d. That is, we can identify each ¢; with an element of Z /p'* Z C W (k)/p"*W (k). In this case, the
sum c1x1 + - - - + cqxq can be identified with an element of M, and the composite map

M- MeW() = N

is injective by construction. O
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Lemma 1.4.11. Assume that k is algebraically closed. Let N be a finite dimensional vector space over k,
and let F' be a @-semilinear automorphism of N. If N # 0, then N contains a nonzero element which is
fixed under the action of F.

Proof. Choose a nonzero element v € N. Since V is finite-dimensional, the elements {v, F(v), F2(v),...}
cannot all be linearly independent. Thus there exists a nonzero dependence relation

> AF(v) =0.
0<i<n

Replacing v by F?(v) if necessary, we may assume that the coefficient )\ is nonzero. Dividing by Ao, we may
assume that Ay = 1: that is, we have
v= Y =NF(v).

1<i<n
We may assume that n is chosen as small as possible: it follows that the set {v, F(v),..., F""1(v)} is linearly
independent, and therefore \,, # 0. Since v # 0, we must have n > 0.
Note that ) o s
flx)y=aP + X} 2P  + X 2P 4+ N
is a separable polynomial of degree p™ > 1, and therefore has p™ distinct roots in the field x. Consequently,
there exists a nonzero element a € « such that f(a) = 0. Let

w=av+ (a® + ar)F(v) + (ap2 +aPA? 4 aXo) F2(v) + - + (apn_1 + ap"_z)\’fn_2 + o ad,_ ) F" ().
Since the elements {F*(v)}o<i<n are linearly independent and a # 0, w is a nonzero element of N. An

explicit calculation gives

w—F(w)=av+ Y  aX\F'(v)+ (aky — f(a)F"(0) = a(v + M F(v) + -+ + A F"(v)) = 0,
0<i<n
so that w is fixed by F'. O
Lemma 1.4.12. Let ¢ : W(k) — W (k) be the Frobenius map, let N be a W (k)-module of finite length, and

let V: N — N be a ¢~ -semilinear map. Suppose thatV is injective and that k is algebraically closed. Then
N is generated by M = {x € N : Vo =z} as a module over W (k).

Proof. Let N’ denote the W (k)-submodule of N generated by W (k) and set N” = N/N’; we wish to show
that N ~ 0. We have a diagram of short exact sequences

0 N’ N N" 0
b o |
0 N’ N N 0.

Since k is algebraically closed, the Artin-Schreier map x — x — 2P is a surjection from & to itself. Composing
with ¢!, we deduce that ¢~! —id : Kk — & is surjective. It follows by induction on ¢ that the map ¢! —id is
a surjection from W (k)/p'W (k) to itself for all t. Consequently, ¢! —id induces a surjection from W (x)® M
to itself for every finite abelian p-group M, and therefore for every p™-torsion abelian group M. Combining
this observation with Lemma 1.4.10, we deduce that the map V —1: N’ — N’ is surjective. We therefore
obtain a short exact sequence

0—ker(V—-1:N = N')—>ker(V—-1:N—N)—ker(V—-1:N"— N")—=0.

By construction, the first map is an isomorphism, so that V' — 1 is an injection from N” to itself. Let N}
denote the p-torsion subgroup of N”. Since N is a W (k)-module of finite length, the injectivity of V' implies
that V : N — N is an isomorphism. Then V induces an isomorphism from N[ to itself having no fixed
points. Applying Lemma 1.4.11 to the inverse isomorphism, we conclude that N§ = 0, so that N = 0 as
desired. O
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Proof of Proposition 1.4.9. Let us identify objects of (Hopf}, ,, ), with pairs (M, H) as in the proof of Propo-
sition 1.4.8. We first show that every object belonging to the essential image of §’ satisfies condition (x). We
have ¢'(M, H) ~ 0'(M, ) & DM(H). Since the action of V on DM(H) is locally nilpotent, it automatically
satisfies (). It will therefore suffice to show that (M, k) ~ W (k) ® M satisfies (), which is clear.

Conversely, suppose that N is a left D,-module which annihilates p” and satisfies condition (x). We
wish to show that N belongs to the essential image of 6’. Let Ny denote the subset of N consisting of those
elements x € N which are annihilated by some power of V, let M = {x € N : Vo = z}, and let Ny be the
W (k)-submodule of N which is generated by M. Note that the action of F' on M is given by multiplication
by p, so we have a surjective map of Dy-modules M ® W (k) — Ni. Since the action of V' on Nj is locally
nilpotent, we can write Ny ~ DM(H) for some connected Hopf algebra H over k. Lemma 1.4.10 implies
that Ny ~ W (k) ® M. We therefore have 0'(M, H) ~ Ny & N;. To complete the proof, it will suffice to show
that the direct sum Ny @ N is isomorphic to N.

Since V acts by an isomorphism on Nj and the action of V on Ny is locally nilpotent, we have NoN Ny = .
It will therefore suffice to show that every element x € N can be written in the form zg + x1, where xg € Ny
and x; € N;. Using condition (*), we can choose a finite length W (x)-submodule N’ C N which contains x
and is closed under the action of V. It follows that there exists an integer m such that ker(V™ : N’ — N’)
is independent of m' for m’ > m. Let N} = ker(V™ : N’ — N’) and let Ny = im(V™ : N’ — N’). Note
that if y € NJ N Ny, then we can write y = V™2 for some z € N’ satisfying V?"z = V™y = 0. Then
z € ker(V?™) = ker(V™), so that y = V™2 = 0. It follows that N) N Nj = 0. We have an exact sequence

O%N{)*}N"QHN{%O,

so that the length of N’ over W (k) is the sum of the lengths of Nj and Ny over W (k). It follows that N’ is
the direct sum of the submodules Nj and Nj. In particular, we can write = xg + @1, where zg € Nj and
x1 € Ny. It is clear that zy belongs to Ny, and Lemma 1.4.12 implies that x; belongs to Nj.

We now prove (b). It will suffice to show that for every finitely generated submodule My C M, the
induced map W (k) ® My — N is injective. Write My as a direct sum @, ., ,Z /p" Z, so that the inclusion
of My into M determines a collection of elements x1,...,zq4 € N satisfying Vx; = z; and ptixz; = 0. Suppose
we are given a dependence relation

1T+ +cqgrg =0
in N, where ¢; € W(k)/p""W (). We wish to prove that each ¢; vanishes. Suppose otherwise. Without loss
of generality, we can choose a counterexample with d as small as possible, so that none of the coefficients
¢; vanish. Multiplying each ¢; by an invertible element of W (x), we may assume without loss of generality

that ¢; = p* for some integer k.
Let ¢ : W(k) — W(k) denote the Frobenius morphism. We then have

0=V(cizy 4+ +cqzg) =@ Her)x + -+ o Hea),

so that >, ., (c; — ¢ e;)x; = 0. Since ¢; = ¢~ (1), the minimality of d guarantees that ¢; = ¢~ '¢; for
1 < i < d. That is, we can identify each ¢; with an element of Z /p'i Z C W (k)/p'iW (k). In this case, the
sum c1x1 + - - - + cqxgq can be identified with an element of M, and the composite map

M—->MeW(k) - N CN
is injective by construction. O

Remark 1.4.13. Let  be a perfect field of characteristic p > 0, let K be an algebraic closure of &, and let
Gal(%/k) denote the Galois group over K over k. Let Dz denote the Dieudonne ring of &, so that the Galois
group Gal(%/r) acts on Dz and therefore also on the category LModp, /pn. Let (LModDﬁ/pn)Gal(E/“)
denote the category of homotopy fixed points for this action. More concretely, (LModp_ /pn)Gal(E/ ®) is
the category whose objects are left Dz /p™-modules equipped with a compatible action of the Galois group
Gal(R/r). The construction M — W(R) @w ) M ~ W(R)/p" @w(x)/pr M determines a fully faithful
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embedding LModp, /,» — (LModp_ ,»)%*(%/%) The essential image of this functor is the full subcategory
of (LModp._ /pn)Gal(E/”) spanned by those Dz /p™-modules M on which the action of Gal(%/k) is continuous
(meaning that every element x € M is stabilized by an open subgroup of Gal(k/k).

Similarly, the Galois group Gal(%/k) acts on the category Hopf ,, of p™-torsion Hopf algebras over &,

and we have a fully faithful embedding Hopf, ,, — Hopfg}anl(ﬁ/ )

Propositions 1.4.7 and 1.4.8 determine a fully faithful embedding Hopf,, z — LModp_ /,~, which induces
a fully faithful embedding

DM, : Hopf {2 ™/") — LModj" "/

Proposition 1.4.14. For each integer n > 0, the composite functor

Gal(%/k) DMy Gal(R/k)
Hopf, ,, — Hopr,n — LMOdDﬁ Jpn

Gal(R/k

Do Jpr - Conse-

factors through the essential image of the fully faithful embedding LModp, ;,» — LMod
quently, we obtain a fully faithful symmetric monoidal functor

DM, : Hopf, ,, = LModp,_ /pn -

K,n

Proof. Let H be a p™-torsion Hopf algebra over &, let H = K®, H, and let M = DM(H) be the associated Dx-
module. Then M is acted on by the Galois group Gal(%/k); we wish to show that this action is continuous.
Since the field & is perfect, we can write H as a tensor product H¢ ®, H?, where H is connected and
H? is diagonalizable over ®. It will therefore suffice to prove the result under the assumption that H is
either connected or diagonalizable over ®. In the connected case, the continuity of the action of Gal(k/x)
on DM(H) C H follows immediately from the continuity of the action of Gal(%/x) on H.

Now suppose that H is diagonalizable over & and let N be the collection of grouplike elements of H,
so that we have a Hopf algebra isomorphism &[N] ~ H. Since Gal(%/x) acts continuously on H, it acts
continuously on N, and therefore also on the tensor product W (%) /p" ®z jpn zN ~ DM (H). This completes
the proof that DM, is well-defined. O

Corollary 1.4.15. For each n > 0, the nonunital symmetric monoidal equivalence DM : Hopffw —

LModginl /pn €xtends to a fully faithful symmetric monoidal functor DM, : Hopf, , — LModp, /pn. The
essential image of this functor is the full subcategory of LModp, s, consisting of those modules which satisfy
condition (x) of Proposition 1.4.9.

Proof. The only nontrivial point is to describe the essential image of DM . We first note that for any
p"-torsion Hopf algebra H over k, the Dg-module W (&) ®yy () DM (H) satisfies (x) by Proposition 1.4.12,
so that DM (H) also satisfies (x). Conversely, suppose that M is a left D, /p"-module satisfying (x). Then
M = W(FR) Qw (k) M is a left Dz /p"-module satisfying (), so that Proposition 1.4.12 implies that we can
write M = DM, (H) for some Hopf algebra H over % equipped with a semilinear action of Gal(%/k). To
complete the proof, we must show that the action of Gal(%/x) on H is continuous. As above, it will suffice
to prove this in the special cases where H is assumed either to be connected or diagonalizable.

If H is diagonalizable, we can write H = K[N] for some Z /p" Z-module N, and we are reduced to
showing that the action of Gal(XK/x) on N is continuous. This is clear, since N can be identified with the
set of V-fixed elements of DM, (H).

If H is connected, then we can identify DM (H) with a subset of H, and the action of Gal(%/x) on that
subset is continuous. Since H is generated by DM(H) as an algebra over x (Corollary 1.3.18), we conclude
that the action of Gal(%/k) on H is continuous. O

Remark 1.4.16. Unwinding the definitions, we see that if H is a Hopf algebra over x which is diagonalizable
over &, then DM (H) can be identified (W (%) ®z GLike(Hz))“(%/%). The map V : DM (H) — DM (H)
is induced by the automorphism ¢! of W(k), and the map F : DM (H) — DM, (H) is induced by the
map A — pe(A) from W(R) to itself.
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Let us say that a Hopf algebra H over k is p-nilpotent if it is the union of the subalgebas {H[p"]},>0.
Let Hopfﬂ_"” denote the full subcategory of Hopf, spanned by the p-nilpotent Hopf algebras over x. Then
the construction H + {H[p"]}n>0 determines an equivalence from Hopf? ™" to the homotopy inverse limit
of the tower of categories {Hopf, ,},>0. Passing to the limit over n, we obtain the following version of
Corollary 1.4.15:

Corollary 1.4.17. The nonunital symmetric monoidal equivalence DM : Hopf{ — LModgij extends to a

fully faithful nonunital symmetric monoidal functor DM : Hopfﬁfmll — LModp, . The essential image
of this functor is the full subcategory of LModp, consisting of those modules which satisfy condition (x) of
Proposition 1.4.9.

Example 1.4.18 (Cartier Duality). Let s be a field, let G = Spec H be a finite flat commutative group
scheme over k, and let D(G) = Spec HY be its Cartier dual. We then have a bilinear map p : G Xgpec
D(G) — G,. Suppose that G is annihilated by p™, so that p factors through the subscheme p,n C Goy,.
Then p is given by a map of Hopf algebras

HYXH — g2/7" %
and therefore induces a pairing of Dieudonne modules
v:DM(HY) x DM(H) — DM(xZ/P" %),

Note that we can identify DM(xZ%/P" %) with the quotient p~"W (k)/W (k). The bilinear pairing therefore
induces a map

O : DM(HY) — Homyy () (DM(H ), p™"W (k) /W (k)) =~ HomW(K)(DM(H),W(n)[pil]/W(/@)).

Note that the automorphism ¢ : W (k) — W (k) induces an automorphism of W (k)[p~!]/W (k), which
we will also denote by ¢. The action of F' on DM(x%/P" %) ~ p="W (k)/W () is then given by ¢, while the
action of V is given by z — pp~1(z). Since v is a pairing of D.-modules, we obtain the identities

ew(z,Vy)) =v(Fz,y)  v(Va,Vy) =pp ' (w(z,y) ow(Va,y))=v(z,Fy).

Note that the second identity is superfluous (it follows from either of the other identities). The first and third
identities imply that 65 is a map of D.-modules, where we regard Homyy () (DM(H), W (k)[p~*]/W (k)) as
a left D.-module via the action given by

(FA) () =eAVy)  (VA() = '(A(Fy)).

It follows that the kernel of 8 is a D,-submodule of DM(H"), which classifies a closed subgroup of G on
which the pairing p vanishes. Such a subgroup is automatically trivial, so that 8y is injective. Since the
domain and codomain of fy have the same length as W(k)-modules, 8y is an isomorphism. That is, we
have a canonical isomorphism of D,-modules

DM(HV) = HomW(n) (DM(H)7 W(H) [p_l]/W("i))v

where the action of F' and V' on the right hand side are given as above.

2 The Morava K-Theory of Eilenberg-MacLane Spaces

Let x be a perfect field of characteristic p > 0, and let Gy be a 1-dimensional formal group of height
0 < n < oo over k. To the pair (G, k) one can associate a cohomology theory K (n), called the nth Morava
K -theory. The Morava K-groups K (n).K(Z /p' Z,d) were computed by Ravenel-Wilson in [18] (in the case
p > 2) and Johnson-Wilson in [12] (in the case p = 2). Their results are conveniently stated in the language
of Dieudonne modules:
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Theorem 2.0.1. For each t > 0 and d > 0, the canonical map
(mK (n)) @ K(n)oK(Z /p' Z,d) = K(n)..K(Z [p' Z,d)

is an isomorphism (that is, the K (n)-homology groups K (n).K(Z /p' Z,d) are concentrated in even degrees).
The group K (n)oK(Z /pt Z,d) is a finite-dimensional connected Hopf algebra over x, which is determined by
its Dieudonne module M(d) = DM(K (n)oK(Z /p* Z,d)) (Definition 1.3.3). Moreover, we have an isomor-
phism of Dieudonne modules M(d) ~ /\i M(1), where the action of F and V' on /\i M(1) are determined
by the formulas

V(er A ANxg) =Var A AVay

F(V{)Sl/\--'/\Vxl;lAl‘iAVl‘i+1A--'A$d):LL'l/\“-/\LL'Z‘,l/\Fl‘i/\,TZ‘Jrl/\-“/\LL‘d.

We will give the proof of Theorem 2.0.1 in §2.4. Our strategy is to verify the following three assertions,
using induction on d:

(a) The ring R(d) = K(n)°K(Q,, / Zy, d) is isomorphic to a formal power series ring over .

(b) The formal group Spf R(d) is p-divisible, and its Dieudonne module is given by the dth exterior power
of the Dieudonne module of the formal group Gg ~ Spf R(1).

(¢) The group scheme Spec K (n)°K (Z /pt Z, d) can be identified with the p’-torsion subgroup of the formal
group Spf R(d).

To carry out the inductive step, we use the Rothenberg-Steenrod spectral sequence to compute the K (n)-
cohomology groups of K(Q, /Z,,d) in terms of the K(n)-homology groups of K(Q,, /Z,,d — 1). We will
review the definition of this spectral sequence in §2.3, since the precise construction plays an important role
in our proof. The other main ingredient is a purely algebraic result about the cohomology of p-divisible
groups (Theorem 2.2.10), which we prove in §2.2.

For the reader’s convenience, we include in §2.1 a brief review of some aspects of chromatic homotopy
theory that are relevant to this paper, such as the theory of Lubin-Tate spectra and Morava K-theories, and
the associated localizations of stable homotopy theory.

2.1 Lubin-Tate Spectra

In this section, we briefly review some concepts from stable homotopy theory which will play an essential
role in this paper: specifically, the theory of Lubin-Tate spectra, their associated Morava K-theories, and
the corresponding localizations of the stable homotopy category. Our exposition is rather terse, and for the
most part proofs have been omitted.

We begin with some general remarks about localization in the setting of stable homotopy theory.

Proposition 2.1.1. Let Sp denote the co-category of spectra, and let € C Sp be a full subcategory. The
following conditions are equivalent:

(1) The inclusion ¢ : C — Sp admits a left adjoint F. Moreover, the composite functor L = 1o F is
accessible and exact.

(2) The full subcategory € C Sp is presentable, stable, closed under small limits, and closed under k-filtered
colimits for some sufficiently large reqular cardinal k.

Proof. Tf (1) is satisfied, then the exactness of L implies that € ~ LSp is a stable oo-category; the re-
maining conditions are established in §HTT.5.5.4. Conversely, suppose that € satisfies (2). Using Corollary
HTT.5.5.2.9, we deduce that the inclusion ¢ : € < Sp admits a left adjoint F'. Since C and Sp are presentable
and stable, the functors ¢ and F' are exact and accessible (Proposition HTT.5.4.7.7), so that the composition
L =10 F is also accessible and exact. O
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In the situation of Proposition 2.1.1, the localization functor L is automatically compatible with the
symmetric monoidal structure on the oo-category Sp:

Proposition 2.1.2. Let L : Sp — Sp be as in Proposition 2.1.1. Then L is compatible with the smash
product of spectra. That is, if X is a spectrum and f :' Y — Z is an L-equivalence of spectra, then the
induced map

XY ->X®Z

is also an L-equivalence.

Proof. The collection of L-equivalences is closed under small colimits. Since the oco-category Sp is generated
(under small colimits) by the collection of spheres S™, we may reduce to the case where X = S™. In other
words, we are reduced to proving that if f : X — Y is an L-equivalence, then the induced map "X — XY
is an L-equivalence. This follows immediately from the exactness of L. O

Corollary 2.1.3. Let C C Sp be a full subcategory satisfying the requirement of Proposition 2.1.1. Then
the smash product of spectra induces a symmetric monoidal structure on the co-category C. Moreover, the
inclusion C — Sp is lax symmetric monoidal, and its left adjoint L : Sp — C is symmetric monoidal.

Proof. Combine Propositions 2.1.2 and HA.2.2.1.9. O

Notation 2.1.4. In the situation of Corollary 2.1.3, we will sometimes denote the tensor product on the
oo-category € by @ (to avoid confusion with the smash product on the ambient co-category of spectra).
Concretely, this operation is given by

XQY =L(X®Y).

Proposition 2.1.5. Let C C Sp be the essential image of an accessible exact localization functor L. Then
the localized smash product functor @ : €@ x @ — € determines a fully faithful embedding o : € — Fun(C, @).
The essential image of this embedding is the full subcategory of Fun(C, C) spanned by those functors which
preserve small colimits.

Proof. Let Fun’(C, C) denote the full subcategory of Fun(C, €) spanned by those functors which preserve
small colimits. It is clear that « factors through Fun’(€, €). Let S € Sp denote the sphere spectrum. Then
evaluation on LS € € induces a functor 8 : Fun’(C,€) — €, and the composition 3 o « is homotopic to the
identity functor ide. To prove that « is an equivalence, it will suffice to show that § is fully faithful. Note
that 3 is given by a composition
Fun’(€, €) 25 Fun'(Sp, €) & ¢,

where Fun’(Sp, €) is the full subcategory of Fun(Sp,€) spanned by those functors which preserve small
colimits, and 3’ is given by evaluation at the sphere spectrum. The map /' is an equivalence of co-categories
(Corollary HA.1.4.4.6), and the first map is fully faithful by virtue of our assumption that L is a localization
functor. O

Remark 2.1.6. In the situation of Proposition 2.1.5, the equivalence € ~ Fun'(C, ) is a monoidal func-
tor (where we regard € as endowed with the symmetric monoidal structure given by Corollary 2.1.3, and
Fun’(C, €) with the monoidal structure given by composition of functors).

In this paper, we will be most interested in the localization of the stable homotopy category with respect
to Morava K-theory spectra.

Notation 2.1.7. We define a category FG as follows:

(1) The objects of FG are pairs (R, G), where R is a commutative ring and G is a 1-dimensional formal
group over R.

(2) A morphism from (R, G) to (R, G) is given by a pair (¢, a), where ¢ : R — R’ is a ring homomorphism
and «a : ¢*G ~ G’ is an isomorphism of formal groups of R'.
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We will refer to FG as the category of formal groups. We let FG,¢ denote the full subcategory of 3G spanned
by those pairs (R, G) where R is a perfect field of characteristic p > 0 and G is a formal group of finite
height over R.

Definition 2.1.8. Let F be an E-ring spectrum. We will say that E is a Lubin-Tate spectrum if the
following conditions are satisfied:

(1) As a ring spectrum, F is even periodic. That is, the homotopy groups m; F vanish when i is odd, and
there exists an element 8 € m_oF such that multiplication by £ induces isomorphisms 7, F — 7, _oF.

(2) The ring R = moF is a complete local Noetherian ring having maximal ideal m, whose residue field
k(E) = R/m is perfect of characteristic p > 0.

(3) Let G denote the formal group SpfmoECF™ over the commutative ring R, and let G denote the
induced formal group over the residue field k(F). Then Gg has finite height, and G is a universal

deformation of Gyg.

In this case, we define the height of E to be the height of the formal group Gy.
Let CAlg denote the co-category of Eo.-rings, and CAlg; the full subcategory of CAlg spanned by the
Lubin-Tate spectra.

Theorem 2.1.9 (Goerss-Hopkins-Miller). The construction E — (k(E), Go) determines an equivalence
from the oo-category CAlg; of Lubin-Tate spectra to the (nerve of the) category FG.¢ of one-dimensional
formal groups of finite height over perfect fields.

Notation 2.1.10. Let s be a perfect field of characteristic p > 0, let Gg be a smooth 1-dimensional formal
group over k of height 0 < n < co. According to Theorem 2.1.9, there exists an (essentially unique) Lubin-
Tate spectrum E = E(k, G) for which the formal group Spf moECF"™ is the universal deformation of Gy.
We will refer to E as the Lubin-Tate spectrum associated to the pair (k,Gp). Note that R = moF is the
Lubin-Tate deformation ring of the formal group Gg, which is non-canonically isomorphic to the formal
power series ring W (&)[[u1,. .., un—1]]- Set ug = p, and for 0 < i < n let M (i) denote the cofiber of the map
of E-module spectra u; : £ — E. We let K(n) denote the E-module @, ,., M; (where the smash product
is formed in the symmetric monoidal oo-category Modg of E-module spectra). We will refer to K(n) as
the Morava K -theory spectrum associated to the pair (k, Gp). One can show that the homotopy equivalence
class of K(n) is independent of system of generators (uy, ..., un—1) chosen for R. It is an E-module spectrum
whose homotopy groups are given by

K(n) Kk ifi=2j
5 n)x~
0 ifi=2j+1.

Remark 2.1.11. Lubin-Tate spectra are often referred to in the literature as Morava E-theories.

Warning 2.1.12. Our terminology is somewhat nonstandard. Many authors use the notation K(n) to
indicate a summand of the spectrum introduced in Notation 2.1.10, whose associated homology theory is
periodic of period 2(p™ —1). In this paper, we work exclusively with 2-periodic versions of Morava K-theory.

Definition 2.1.13. Let  be a perfect field of characteristic p > 0, let Gg be a smooth 1-dimensional formal
group of height 0 < n < oo over k, and let K (n) denote the associated Morava K-theory. We will say that
a spectrum X is K (n)-acyclic if the K (n)-homology groups K (n).X vanish. We will say that a spectrum Y’
is K(n)-local if the mapping space Mapg,(X,Y’) is contractible whenever X is K(n)-acyclic. We let Sp(,,
denote the full subcategory of Sp spanned by the K (n)-local spectra. We refer to Sp K(n) 8 the co-category
of K(n)-local spectra.

Remark 2.1.14. In the situation of Definition 2.1.13, the spectrum K (n) depends on the perfect field x and
the formal group Go. However, the full subcategory Spg(,) C Sp is mostly independent of those choices: it
depends only on the characteristic p of the field , and the height n of the formal group Gyg.
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Proposition 2.1.15. Let E be a Lubin-Tate spectrum of height n. Then Spg,, is the essential image of an
accessible exact localization functor L ) : Sp — Sp. Moreover, Spy ) depends only on the integer n > 0
and on the characteristic p of the residue field k(E).

We now discuss the multiplicative structures on Morava K-theories.

Proposition 2.1.16. Let E be a Lubin-Tate spectrum and let K(n) be the associated Morava E-theory.
Then K (n) admits the structure of an Eq-algebra object of Modg.

Remark 2.1.17. The E;-algebra structure on K(n) is not unique. In fact, one can show that K(n) admits
uncountably many pairwise inequivalent E;-algebra structures.

Notation 2.1.18. Let F be an E,,-ring, and let A be an E;-algebra over E. We let 4BMod4(Modg)
denote the co-category of A-A bimodule objects of Modg. Then 4BMod4(Modg) is a presentable monoidal
oo-category (with monoidal structure given by the relative smash product ®4), and the tensor product
on yBMod 4 (Modg) preserves small colimits separately in each variable. It follows that there is a unique
monoidal functor § - 4BMod 4 (Modg) which preserves small colimits (here we regard 8 as a monoidal co-
category via the Cartesian product). We will denote this functor by X — A[X]. Note that, as a spectrum,
we can identify A[X] with the smash product A ® ¥3°X. In particular, the homotopy groups 7, A[X] can
be identified with the A-homology groups A.(X).

Remark 2.1.19. In the situation of Notation 2.1.18, the construction M — 7, M determines a lax monoidal
functor from the oco-category of A-A bimodule objects of Modg to the (nerve of the) ordinary category of
graded (myA)-m. A bimodules in Mod,, g. That is, for every pair of objects M, N € 4BMod4(Modg), we
have a canonical map

Tord*# (m. M, 7. N) — m.(M ®4 N).

This map is an isomorphism if 7, M is flat as a right 7, A-module, or if 7, N is flat as a left 7, A-module (see
Proposition HA.8.2.1.19).

In particular, suppose that E is the Lubin-Tate spectrum associated to a perfect field k of characteristic
p > 0 and a one-dimensional formal group Gq of finite height over k, and let A = K(n) be the associated
Morava K-theory spectrum. Let us regard K(n) as an E;-algebra over E (Proposition 2.1.16). Since the
map 7. E — m.K(n) is surjective, the category of graded 7, K (n)-bimodule objects of Mod, g is equivalent
to the category of graded modules over 7, K(n). Combining this observation with Notation 2.1.18, we can
regard the construction

X = mKn)[X] ~ K(n).«.(X)

as a monoidal functor from the oco-category 8 of spaces to (the nerve of) the ordinary category of graded
modules over 7, K (n).

Definition 2.1.20. Let E be a Lubin-Tate spectrum, and let K(n) be the associated Morava K-theory
spectrum. We will say that an object M € g ,)BModg(n)(() Modg) is even if the homotopy groups mqM
vanish when d is odd. We let f(,)BMod,,)(Modg) denote the full subcategory of g (,)BModk (,)(Modg)
spanned by the even objects.

We will say that a space X is K(n)-even if the bimodule K (n)[X] is even. We let 8° denote the full
subcategory of § spanned by the K (n)-even spaces.

Remark 2.1.21. In the situation of Definition 2.1.20, let M, N € g ,yBModg (,)(Modg). From the isomor-

phism 7, (M @ ny N) =~ Torg’“K(n)(mM7 7. N), we deduce that if M and N are even, then M ®p ) N is
even. It follows that the full subcategory r(,)BMod{,,(E) inherits the structure of a monoidal co-category.
Since the functor X — K (n)[X] is monoidal, it follows that 8° is closed under finite products in 8.

Remark 2.1.22. Let K(n) be the Morava K-theory spectrum associated to a formal group of height n < oo
over a perfect field , and let € be the category of graded 7, K (n)-modules which are concentrated in even
degrees. Then there is a monoidal equivalence of categories € — Vect,, given by M, — M, (an inverse
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equivalence Vect, — C is given by V — (m.K(n)) ®. V). Applying Remark 2.1.19, we deduce that the
construction

X = K(n)o(X)
is a monoidal functor from the co-category 8¢ to (the nerve of) the category Vect,.

Proposition 2.1.23. Let K(n) be the Morava K -theory spectrum associated to a formal group Go of height
n < oo over a perfect field k. Then the monoidal functor

X — K(n)oX
of Remark 2.1.22 is symmetric monoidal. That is, for every pair of K (n)-even spaces X,Y € 8°, the diagram

K(n)o(X) @ K(n)o(Y) —— K(n)o(Y) @x K(n)o(X)

| |

Kn)p(X xY) — = K(n)o(Y x X)
commautes.
The proof of Proposition 2.1.23 will require a few preliminaries.

Notation 2.1.24. Let E be a Lubin-Tate spectrum. For every space X, we let E.(X) denote the homotopy
groups of the spectrum Ly ) (E ® ¥ X).

Lemma 2.1.25. Let E be a Lubin-Tate spectrum and let K(n) denote the associated Morava K-theory.
Suppose that N is an E-module spectrum. Assume that N is K(n)-local and the homotopy groups m4(N Qg
K (n)) vanish when d is odd. Then the homotopy groups wqN vanish when d is odd, and the canonical map

moN = mo(N @ K(n))
18 surjective.

Proof. Let R = moE, write R = W(k)[[u1,...,un—1]], and set ug = p. For 0 < i < n, let M (i) denote the
cofiber of the map u; : £ — E. For 0 < j <mn, let N(j) denote the tensor product N ® @, ; M (i) (formed
in the symmetric monoidal oo-category Modg), so that we have a sequence of maps B

N =N(0) = N(1) - -+ > N(n) = N®g K(n).
We will prove the following assertions using descending induction on j:
(aj) The homotopy groups mqN(j) vanish when d is odd.
(bj) The map moN(j) — moN(n) is surjective.

Assume that j < n and that assertions (a;y+1) and (b;j41) have been verified. For each integer m > 0, let
T'(m) denote the cofiber of the map u}* : N(j) — N(j). We have fiber sequences
NG+1) = T(m+1) = T(m).

It follows by induction on m that the homotopy groups 74T (m) vanish when d is odd, and that the maps
mT(m+ 1) = 7. T(m) are surjective. Let T'(c0) = limT'(m). It follows that the groups 74T (co) vanishes
when d is odd, and that the map 7T (c0) — meT'(1) = meN(j + 1) is surjective. To complete the proofs of
(a;) and (b;), it will suffice to show that the canonical map 6 : N(j) — T'(c0) is an equivalence. Note that 0
becomes an equivalence after tensoring with M(j), and is therefore an equivalence after K (n)-localization.
Since both N(j) and T'(o0) are K (n)-local, we conclude that 6 is an equivalence as desired. O
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Example 2.1.26. Let X be a space and set N = Lg(,)E[X]. Then N is K(n)-local, and N ®p K(n) ~
Lgn)(K(n)[X]) = K(n)[X]. Consequently, if X is K(n)-even, then N satisfies the hypotheses of Lemma
2.1.25, so that the homology groups E.(X) are concentrated in even degrees, and the canonical map
E§(X) = K(n)o(X) is a surjection.

Remark 2.1.27. It follows from Lemma 2.1.25 that the monoidal structure on the functor
8¢ — Vect,,

X K(n)oX

is independent of our choice of ring structure on K (n). That is, if X and Y are K (n)-even spaces, then the
isomorphism
K(n)oX @, K(n)oY — K(n)o(X xY)

does not depend on the multiplication chosen on K(n). To prove this, it will suffice (by virtue of Example
2.1.26) to show that the composite map

TorgoE(E(’)\(X)7E6\(Y)) = K(n)oX &, K(n)gY = K(n)o(X xY)
does not depend on the multiplication of K(n). But this map can also be written as a composition
TorgOE(Eé\(X),Eé\(Y)) = EMX xY) = K(n)y(X xY)
of maps which do not depend on the E;-algebra structure of K(n).

Proof of Proposition 2.1.23. Let E be the Lubin-Tate spectrum associated to (k,Gy), and let R = moE.
Since E is an E-ring, the construction X — FE{(X) is a lax symmetric monoidal functor from the oo-
category of spaces to the (nerve of the) ordinary category of discrete R-modules. It follows that the diagram

Torg (E§ (X), Eg (Y)) — Torg (Eo(Y), Eo(X))

| |

Ey(X xY)— = Fy(Y x X)
commutes. From this, we deduce the commutativity of the outer rectangle in the diagram

Torg (E§ (X), Eg (Y)) —— Torg (B¢ (Y), B (X))

| |

K(n)o(X) @k K(n)o(Y) —— K(n)o(Y) @x K(n)o(X)

| i

K(n)o(X xY) —— = K(n)o(Y x X).

The desired result now follows from Example 2.1.26. O

Warning 2.1.28. Remark 2.1.27 and Proposition 2.1.23 are generally false if we do not restrict our attention
to K (n)-even spaces. More precisely, let € denote the category of graded modules over 7. K (n), and let let
F : 8 — @ be the functor of Remark 2.1.19. We will regard € as a symmetric monoidal category (using the
usual sign conventions for the tensor product of graded vector spaces). Then:
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e Every E;-structure on K(n) determines a monoidal structure on the functor F: that is, it determines
an isomorphism

K(n).(X) @, x(n) K(0)(Y) = K(n).(X x Y)

for every pair of spaces X and Y. However, these isomorphisms depend on the multiplication chosen
on K(n).

e Choose an E;-algebra structure on K(n), and regard F' as a monoidal functor. Then F' is symmetric
monoidal if and only if the multiplication m : K(n) ® g K(n) — K(n) is homotopy commutative. If
p = 2, the latter condition is never satisfied, so the functor F' is never symmetric monoidal.

Construction 2.1.29. Let E be a Lubin-Tate spectrum with residue field k, and let K(n) denote the
associated Morava K-theory. Every K (n)-even space X can be regarded as a commutative coalgebra object
of the co-category 8°. It follows from Proposition 2.1.23 that the vector space K (n)o(X) inherits the structure
of a commutative coalgebra object of Vect,.. In particular, the dual space K (n)°(X) =~ Hom, (K (n)o(X), )
inherits the structure of a linearly compact topological k-algebra. We let KSpec(X) denote the formal scheme
Spf K (n)%(X).

Remark 2.1.30. The construction X — KSpec(X) determines a functor from the homotopy category of
K (n)-even spaces to the category of formal schemes over &, which preserves finite products. In particular, if
X is an K (n)-even space which has the structure of a group object in the homotopy category hS of spaces,
then KSpec(X) is a formal group over . If the multiplication on X is homotopy commutative, then the
formal group KSpec(X) is commutative.

2.2 Cohomology of p-Divisible Groups

Let x be a perfect field of characteristic p > 0, fixed throughout this section. Our goal is to study the
cohomology of p-divisible groups over k. We begin with some general definitions.

Definition 2.2.1. Let A be an associative algebra over k, equipped with an augmentation € : A — . For
each n > 0, we let Ext’} denote the Ext-group Ext"; (k, k), where we regard k as an A-module via e. Then
Ext’ is a graded algebra over x, which we will refer to as the cohomology ring of A.

Example 2.2.2. For any Hopf algebra A over k, the unit map x — Extgl is an isomorphism.

Remark 2.2.3. For our applications in this paper, we are interested only in the special case of Definition
2.2.1 where A is a commutative and cocommutative Hopf algebra, and the augmentation € : A — k is the
counit map of A. In this case, the algebra Ext” is graded-commutative: that is, for homogeneous elements
x € Ext’y, y € Ext’y, we have zy = (—1)™"yx € Ext’y*". One can think of Ext’ as the cohomology of the
formal group G = Spf AV (with coefficients in the trivial representation of G).

Remark 2.2.4. Let A be an augmented k-algebra, and let ms be its augmentation ideal. Then the
Ext-groups Ext’; can be computed as the cohomology of the reduced cobar complex C%, where C? =
Hom, (m%™, k), and the differential d : C'J — CXLH is given by

(d/\)(ao,...,am): Z (—1)i+1)\(a0,a1,..‘,ai,lai,aiﬂ,...,am).

1<i<m

In particular, the differential CY — C vanishes, and the kernel of the differential C} — C?% consists of
those functionals on m4 which vanish on m?%. In particular, we obtain a canonical isomorphism of Extil with
the dual of m4/m?%. If A is a connected Hopf algebra, this is also the dual of the quotient DM(A)/F DM(A)
(Proposition 1.3.20).

Remark 2.2.5. Let A be a connected Hopf algebra over x, and assume that the relative Frobenius map
F: AP — A is trivial. Then A is annihilated by p, and therefore has dimension p¢ over x for some integer
e. Then DM(A)/F DM(A) ~ DM(A) has dimension e as a vector space over x, so that e = dim,, Ext,.
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Definition 2.2.6. Let A be a (commutative and cocommutative) Hopf algebra over k. We will say that A
is F'-divisible if the following conditions are satisfied:

(a) The relative Frobenius map F : A®) — A is an epimorphism of Hopf algebras over k.

(b) Let A[F] denote the kernel of the map F : A®) — A (formed in the abelian category Hopf, of Hopf
algebras over k). Then A[F] is finite-dimensional (as a vector space over k.

Example 2.2.7. Let A be a Hopf algebra over k. We will say that A is p-divisible if it satisfies the following
variants of conditions (a) and (b) of Definition 2.2.6:

(a’) The Hopf algebra homomorphism [p] : A — A is an epimorphism (see Notation 1.3.2).

(') Let A[p] denote the kernel of [p] (formed in the abelian category Hopf,). Then A[p| is a finite-
dimensional vector space over k.

Every p-divisible Hopf algebra is F-divisible, in the sense of Definition 2.2.6.

Construction 2.2.8. Given a short exact sequence of Hopf algebras
k—A - A= A" =k,

we obtain a quasi-isomorphism
RHom 4 (k, k) ~ RHom 4+ (, RHom 4 (A", k)) ~ RHom 4~ (r, RHom 4/ (k, £)).

The Postnikov filtration on RHom 4/ (k, k) determines a spectral sequence of algebras { E5', d,. },>2 converging
to Ext*(A), whose second page is given by

Ept ~ Ext®y, (k, Extly,).

Here the action of A” on Ext, is induced by the conjugation action of A” on A’. Since the comultiplication
on A is cocommutative, this action is trivial, so that the action of A” on Extf4, factors through the counit
map A" — k. If we further assume that A’ is Noetherian, then each H'(A’) is a finite dimensional vector
space over &, so that the canonical map Ext%, ®, ExtY, — Ext%, (k, ExtYy,) is an isomorphism and we obtain
a canonical isomorphism

Ey' ~ Ext’, @, Extly, .

In particular, we have an exact sequence of low-degree terms
0 — Extl, — Extl — Ext), 5 Ext?, — Ext?.

Remark 2.2.9. For later use, it will be helpful to have an explicit description of the map 9 : Extjlél, — EXti//
appearing in Construction 2.2.8. Let A : ma — k be a vector space homomorphism which annihilates m%,,
so that we can identify A with an element of Extl, (see Remark 2.2.4). Since A is faithfully flat as an
A’-algebra, the quotient mg/my ~ A/A" is a flat A’-module. It follows that the sequence

0—>my — my —>mA/mA/ — 0

remains exact after tensoring with A’/my4/. In particular, the canonical map mAI/mi, — my/mymy is
injective, so that A can be extended to a linear map \ : my4 — & which vanishes on m mu,. Let 7 = d\ € C’i:
that is, 77 is the linear map m4 ®, ma — & given by Zi(x,y) = A(ay). Since \ vanishes on mm 4/, the map
7 factors (uniquely) as a composition

L
my @, My — Myr Q, Myr l—) K.

Unwinding the definitions, we see that u € C%, is a cocycle representing ¥()\) € Ext2A,,.
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We can now state our main result.

Theorem 2.2.10. Suppose we are given an exact sequence of Hopf algebras over k
k= A - AL A -k

Assume that A is connected and F-divisible, that A’ is finite-dimensional, and that the map u factors through
the relative Frobenius A”®) — A", Let 1) : ExtY, — Ext?, be defined as in Construction 2.2.8. Then:

(1) The Hopf algebra A" is connected and F-divisible.
(2) The map ¢ induces an isomorphism Sym*(Extly,) — Ext*,.

(3) Let yy,...,ym form a basis for ExtY,. For each I = {iy < ... <ix} C{1,...,m}, let y; = y;, Y, €
Ext]jl/, Then Ext%, is freely generated by the elements yr as a module over Ext’.

Remark 2.2.11. In the situation of Theorem 2.2.10, the hypothesis that u factors through the relative
Frobenius map A”(®) — A’ is automatically satisfied if, for example, the kernel of the map u(® : A®) — A"(®)
contains A[F] = ker(F : AP) — A).

Example 2.2.12. Let A be a connected p-divisible Hopf algebra over x. Then for every integer ¢ > 1, the
exact sequence

m—)A[pt]—>A[I)¥>]A—>/-@

satisfies the hypotheses of Theorem 2.2.10. It follows that Ext? is canonically isomorphic to the symmetric
algebra on the vector space Exti[pt]. This statement remains valid without the connectedness hypothesis on
A, but the connected case will be sufficient for our applications in this paper.

The proof of Theorem 2.2.10 will require some preliminaries.

Proposition 2.2.13. Let A be a Hopf algebra over k, and let F : A®) — A denote the relative Frobenius
map. Then, for each n >0, F induces the zero map Ext’y — Ext",,.

Proof. Note that Ext’; is the s-linear dual of the nth homotopy group of the E -algebra given by k ®4 &.
The Frobenius map F on A induces a map from the underlying spectrum of kK ® 4 k to itself which agrees
with the power operation P° of Construction SAG.8.4.2.6, and therefore annihilates the positive homotopy
groups of kK ® 4 K. O

Corollary 2.2.14. Suppose we are given an exact sequence of Hopf algebras over k
koA - AL A -k,
where A is F-divisible and A’ is finite-dimensional. Then:
(1) The Hopf algebra A" is F-divisible.
(2) The Hopf algebras A[F] and A”[F] have the same dimension over k.
(3) We have Ext!y ~ 0 ~ Ext},.
(4)

4) Suppose that u factors through the relative Frobenius map Frobenius map F : A"®) — A”. Then the
map Y : Extil, — Extzw is an isomorphism.

Proof. We have a commutative diagram

AP ﬂ> A”(p)

|

A—2 s AV,
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Since the left vertical map and the bottom horizontal maps are Hopf algebra epimorphisms, the right vertical
map is likewise a Hopf algebra epimorphism. We have a commutative diagram of short exact sequences

Kk —> A'(P) AP) A'p) o
K A A A" K.

Applying the snake lemma, we obtain an exact sequence
k — A'[F] — A[F] — A"[F] — coker(F : A'® — A') - k.

It follows immediately that A”[F] is finite-dimensional as a vector space over &, which proves (1). Moreover,
we have

_ dim, (A[F]) dim, (coker(F" : AP 5 ANY)
B dim, A’[F] ’

dim, (A" [F])
The short exact sequence
k— A'[F] — A'® — A" — coker(F : AP - A') - &

gives an equality
dim, coker(F : A'® — A")  dim, A" 1
dim, A’[F] ~ dim, A/ 7
so that dim, (A”[F]) ~ dim, (A[FY]), thereby proving (2).
Assertion (3) follows from Remark 2.2.4. To prove (4), we note that the spectral sequence of Construction
2.2.8 yields an exact sequence of low degree terms

0 — Extl, % Extl — Bxt), 5 Ext} 5 Ext? .

If u factors through the relative Frobenius map of A”, the maps a and 3 are zero by Proposition 2.2.13.
Since Extz ~ (), we conclude that 1 is an isomorphism. O

Example 2.2.15. Let A be a connected F-divisible Hopf algebra over x. Then A®) is also connected and
F-divisible, and the exact sequence

k— A[F] = AD 5 4

satisfies the hypotheses of Corollary 2.2.14. Tt follows that we have a canonical isomorphism Ext? o~ Extllél[ ok
Using Remark 2.2.5, we deduce that dim, A[F] = p®, where e = dim,, Ext?.

Remark 2.2.16. Suppose we are given an exact sequence of connected Hopf algebras
k—A A=A -k

satisfying the hypotheses of Corollary 2.2.14. Then dim, A[F] ~ dim, A”. It follows from Example 2.2.15
that dim, Ext% = dim, Ext?,,.

Lemma 2.2.17. Let B be a finite-dimensional Hopf algebra over k. Assume that B is local and connected.
Then, as an algebra over k, B is isomorphic to a tensor product of algebras of the form k[T]/(TP").

Proof. Let M = DM(B) be the Dieudonne module of B. Since B is local, the action of F on M is locally
nilpotent. For each m > 0, let W (m) denote the quotient F™M/F™*1 M. For each m > 0, let d,,, denote the
dimension of W(m) as a vector space over k. Since B is finite dimensional, we have W (m) ~ 0 for m > 0,
and dim, B = p= . Let ¢ : Kk — K be the Frobenius map, so that F induces a @-semilinear surjection of
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k-vector spaces 0y, : W(m) — W(m + 1) for m > 0. We may therefore choose a basis {v(m)1,...,v(m)q4,,}
for each W (m) with the property that

vim+1); ifl1<i<d
() = O LSS
0 otherwise.

Let d = dy, and let v1,...,v4 € M be a collection of representatives for v(0)1,...,v(0)q € W(0) =
M/FM. For 1 <i<d, let e; be the smallest integer such that ¢ > d.,. Then the image of Fv; vanishes in
W (e;), so that F¢v; € F¢T1M. Altering our choice of v;, we may assume that F¢v; = 0. We will identify
M with a subset of B, so that each v; is an element of B satisfying v! " = 0. Consequently, there is a unique
map of commutative rings

0: & w[L)/(T7)— B
1<i<m
carrying each T; to the element v; € B. We will complete the proof by showing that 6 is an isomorphism.
Since the domain and codomain of 6 have the same dimension (as vector spaces over &), it will suffice to
show that 6 is surjective. For this, it suffices to show that 6 induces a surjection on Zariski cotangent spaces,
which follows from Proposition 1.3.20. O

Lemma 2.2.18. Let B be a finite-dimensional connected Hopf algebra over k, and let d = dim,, Ext}g. Then,
for each integer m > 0, we have dim, Exty = (m'tg_l) (in other words, the Poincare series of the graded
ring Exty is equal to the Poincare series for a polynomial ring in d-variables over k). Moreover, Extp is
generated (as a ring) by elements of degree < 2.

Proof. Since k is perfect, we can write B as a tensor product of Hopf algebras By ®,; B1, where By is a local
ring and B is étale over k. Since there is a canonical isomorphism Exty ~ Ext%o, we may replace B by By
and thereby reduce to the case where B is a local ring.

According to Lemma 2.2.17, B is isomorphic to a tensor product of algebras of the form [T]/(T?"). The
result now follows from the observation that Ext, iz /s (k, k) = H'(BZ /p®Z; k) is either a polynomial
ring on a single class in degree 1 (if p® = 2) or the tensor product of an exterior algebra on a class of degree
1 and a polynomial algebra on a class of degree 2 (if p¢ > 2). O

Proof of Theorem 2.2.10. Let {E5*,d, },>2 be the spectral sequence associated to the short exact sequence
of Hopf algebras
koA - AL A -k,

so that Ey' ~ H*(A”) @, H'(A’). Let W C H?(A’) be the image of the restriction map Ext} — Ext%,, so
that we can identify W with the subspace of Eg -2 consisting of permanent cycles. Choose a basis y1,...,Yn
for the vector space Extl, ~ E9' over . For each subset I = {i; < ... <i,} C {1,...,n}, we let y; denote
the product y;, i, - - ¥i, € Extiy,.

According to Corollary 2.2.14, the differential ds induces an isomorphism ) : EXt]A/ — Exti/,, and Extle
vanishes. It follows that E;’l ~ Eg’o ~ 0, so that the restriction map Ext% — ES’Q ~ Ext?%, is injective, and
therefore induces an isomorphism from Ext% to W. Using Remark 2.2.16, we obtain

dim, (W) = dim,, Ext% = dim,, Ext%,, = dim, Ext},, = n.

The elements ¢ (y1), . . . , ¥ (y,) form a basis for Ext%,,. The differential dy also induces a map 1’ : Ext%, —
Extz, Rk Extiw. Since ds is a derivation with respect to the algebra structure on E3™*, we obtain

V' (yiys) = ¥i @ V(y5) — v5 @Y (i)

The collection of elements {y; ® ¥(y;) — y; ® ¥(y;) }1<i<j<n are linearly independent in Extl, ®. Exty,. It
follows that the elements {y;y; }1<i<j<n form a basis for a subspace W' C Ext%,, and that ¢'|W’ is injective.

. Applying

Since W consists of permanent cycles, we have W N W’ = {0}. The dimension of W’ is "22_ n
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Lemma 2.2.18, we deduce that dim, Exti, = "2;" = dim, W + dim,. W’. From this, we deduce that Exti,
is a direct sum of W and W’. Since 1’ is injective when restricted to W', we conclude that W = ker(¢).

We next prove the following:
(*) As a module over Sym* W, Ext’, is freely generated by the elements {yr}rcqi,... n}-

To prove this, let us regard Sym* W as a graded ring (with elements of W regarded as homogeneous of
degree 2), and let M* denote the graded Sym™ IW-module freely generated by elements {Y7};c1,... n}, where
we regard Y7 as being of degree |I|. There is a unique homomorphism of graded Sym™* (W )-modules v :
M* — Ext%,, given on generators by v(Y7) = y;. We wish to show that v is an isomorphism. Using Lemma
2.2.18, we see that dim, M™ = dim, Ext}, for each m > 0. Consequently, it will suffice to show that v is
surjective. It is evident from the construction that v induces a surjection M™ — Ext’, for m < 2. Since
Ext%, is generated (as a ring) by elements of degree < 2, we are reduced to proving that the image of v is a
subring of Ext,.

Fix an element = € im(v) C Ext’, belonging to the image of v. We wish to show that for all 2’ € im(v),
we have za’ € im(v). It clearly suffices to prove this in the special case where 2/ € Sym* W or 2/ = y;
for some i. The first case is obvious (since v is a Sym* V-module homomorphism). In the second case,
we may assume that x = zoys for some g € Sym™*W and some I C {1,...,n}. If i ¢ I, we have
v’ = f£xoyupy = Fv(xoYiupy). We may therefore suppose that i € I, so that * = x1y; for some
r1 € im(v). Note that ¥/ (y?) = y; @ ¥(y;) — v;: @ ¥(y;) = 0, so that y? € ker(¢') = W. Since the image of v
is stable under multiplication by Sym* W, we conclude that 2’ = z1y? € im(v), as desired. This completes
the proof of (x).

We now construct some auxiliary spectral sequences. We let {E(0)%*, d,.} be the spectral sequence given
by

Sym™ (W) if s=0,t=2m
0 otherwise,

with all differentials trivial. For 1 <1i < n, let {E(4)5?,d,} be the spectral sequence given by

K ifs=t=0
+_ )rY: ifs=0t=1r=2
" kZ; ifs=2t=0,r=2

0 otherwise,

where the differential dy carries Y; to Z;. The inclusion W — ES’Q induces a map of spectral sequences
E(0)5* — E2*t. Similarly, for 1 < i < n we have a map of spectral sequences E(i)5t — ES*! given by Y; — y;
and Z; — 1(y;). Since {E%* d,.} is a spectral sequence of algebras, we can tensor these maps together to
obtain a map of spectral sequences & : {E/*' d,.} — {E$' d,}, where E/*' is the tensor product of the
spectral sequences E(i)$!. Note that E5"" is a polynomial algebra on the classes {Z;}1<i<n. Consequently,
to prove (1), it will suffice to show that ¢ induces an isomorphism Eé*’o — Ej 0 ~ Ext*,. In fact, we will
show that £ is an isomorphism of spectral sequences. For this, it suffices to verify the following assertion for

each m > 0:
(*m) The map & induces an isomorphism Eés’t — ES’t when s+t < m, and a monomorphism when s+t = m.

Note that (x,,,) is equivalent to the apparently weaker assertion that Eés’o — ES’O ~ Ext%, is bijective
for s < m and injective for s = m. This condition is evidently satisfied for m < 3. We will prove it
in general using induction on m. Assume that m > 3 and that condition (x,,) holds; we wish to verify
(*m+1)- We first show that the map Eém’o — Ey' ¥ is surjective. Suppose otherwise: then there exists a class
n € Ey 0~ Ext’y,, which does not belong to the image of £. Using the inductive hypothesis, we see that
the image of 7 in E™? cannot be a coboundary for any r > 2, so that n has nontrivial image 7 € E7°. Tt
follows that 1 has nonzero image under the pullback map Ext’y,, — Ext"), contradicting Proposition 2.2.13.
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We now show that ¢ induces an injection Ey" ™1 — EZ**1C0 If m is even, then E;™T1? ~ 0 and there

is nothing to prove. Assume therefore that m is odd, and let n € Eémﬂ’o lies in the kernel of £&. Note that
the differential dy : By~ "' — EJ™ % is surjective, so we can write 1) = da(a) for some v € Ey™ "', Then
£(a) € E5 " lies in the kernel of the map dy : EJ*~ "' — EJ"™° and is therefore a permanent cycle.
Since the map 0 =~ Eém’o — By 0 s surjective, we have Ext’y,, ~ 0. It follows that the image of o must
be trivial in E™~ 11, Note that condition (x,,) implies ¢ induces a surjection E/*' — E5! for s +t < m.
Since the differential d, on E/** is trivial for r > 2, we conclude that the differential d, : E&* — EsTmi=r+1
vanishes for s+t < m, so that E?~ 11 ~ EF'™5! = coker(dy : ES* %% — EJ*™ "), Then &(a) = dy(B) for
some § € EJ%2 Using (%), we can write § = £(8) for some 3 € E;"~*2. Then £(da(8)) = £(w), so that
condition (%) implies that o = do(8). Then n = d2(d2(8)) = 0, as desired. This completes the proof of (1).
Assertion (2) follows from (1) and (x). O

2.3 The Spectral Sequence of a Filtered Spectrum

Let K(n) denote the Morava K-theory spectrum associated to a formal group Gg of finite height over a
perfect field x of characteristic p > 0. Let X be an Eilenberg-MacLane space K(Z /pZ,m). Our goal in
§2.4 is to compute the Morava K-theory K(n)*(X). The basic strategy is to use induction on m. Let
G =K(Z/pZ,m — 1), so that (without loss of generality) we can regard G as a topological abelian group
whose classifying space BG is homotopy equivalent to X. Then X is equipped with the corresponding
Milnor filtration, given by partial realizations of the standard simplicial topological space with geometric
realization BG. This filtration determines a spectral sequence converging to K (n)*(X), whose second page
can be calculated in terms of the Morava K-homology groups K (n).(G). For our applications, we will need
to know not only that such a spectral sequence exists, but the exact details of its construction. Our goal in
this section is to review the relevant details.

We begin with a more general construction: the spectral sequence associated to a filtered spectrum.
Our exposition will be somewhat terse; for a more detailed account (with more proofs and slightly different
notational conventions), we refer the reader to §HA.1.2.2.

Definition 2.3.1. Let Sp denote the oco-category of spectra, and let Z denote the linearly ordered set of
integers (regarded as a category). A filtered spectrum is a functor X : N(Z)°P — Sp.

In other words, a filtered spectrum is a diagram of spectra
= X2) 2 X1) -2 X0) > X(-1) > X(-2)—

Notation 2.3.2. Let X be a filtered spectrum. We let X (co0) denote the limit Hm X (n). Form <n < oo,
we let X (n,m) denote the fiber of the canonical map X(n) — X (m).

Construction 2.3.3. Given a filtered spectrum X and integers s, ¢, and r with » > 1, we define subgroups
BSH(X) C Z5H(X) € m_ s X (5,5 — 1)
as follows:
o Z5%(X) is the image of the map m;_( X (s +7r—1,5s—1) > m_sX(s,5 — 1)
e B3Y(X) is the kernel of the composite map

Z5NX) = m_sX (5,8 —1) = m_X(s,5—71).

We let E5'(X) denote the quotient Z5*(X)/B:*(X). The fiber sequence of spectra

X(s+rs+r—1)—=X(s+r,s—1) = X(s+r—1,s—1).
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determines a boundary map § : ms_; X(s+7r —1,s — 1) — ZSTH" =Y X) C 7y X(s+ 7,5+ — 1). There
is a unique map d, : E34(X) — ESTTtT=1(X) which fits into a commutative diagram

T X(s 47— 15— 1) —> Z3(X) ———> E3(X)

l6 ’

er+r,t+rfl (X) Eﬁ+r7t+r71 (X) .

The collection {E$*,d, },>1 is a spectral sequence of abelian groups, which depends functorially on the
filtered spectrum X.

Note that we can identify E3¢(X) with the image of the map m,_ X (s+7r—1,s—1) = m_sX(s,5 — 7).
In particular, if X (i) ~ 0 for ¢ < 0, then for 7 > s we can identify E3*(X) with the subgroup of m_sX(s)
given by the image of m;_ ;X (s+r — 1,5 — 1). We therefore have canonical monomorphisms

e B9 (X) < B2 (X).
We let E5:!(X) denote the inverse limit of this diagram.

Let X be a filtered spectrum. In good cases, one can show that the spectral sequence of Construction
2.3.3 converges to the homotopy groups of the spectrum X (co). For example, we have the following result:

Proposition 2.3.4. Let X : N(Z)°P — Sp be a filtered spectrum. Suppose that the following conditions are
satisfied:

(a) The spectrum X (s) vanishes for s < 0.

(b) For every pair of integers s,t € Z, we have E3*' ~ Efil forr> 0.
For each s > 0, let F*m, X (c0) denote the kernel of the map 7, X (00) = m, X (s). Then:
1) For each integer n, the abelian group I'&nl{wnX(s)}szo is trivial.

2) The canonical map 7, X (00) — M{WnX(s)}szo is an isomorphism.

(1)
(2)
(3) The canonical map 7, X (c0) — @WRX(m)/FSwnX(w) is an isomorphism.
(4) We have canonical isomorphisms F*m, X (00)/F*Tim, X (00) ~ ES"T5(X).

Proof. Fix an integer n > 0. For a < b, let ¢4 : m, X (b) — 7, X (a) be induced by the spectrum map
X(b) — X(a). We first prove the following:

(*) For each s € Z, there exists another integer s’ > s with the following property: for s” > &', the maps
¢s,s and ¢s ¢ have the same image in m, X (s).

The proof of () proceeds by induction on s, the case s < 0 being vacuous by virtue of assumption (a).
To handle the inductive step, choose s’ > s with the property that im(¢s—1,+) = im(¢s_1 ) for s > .
Condition (b) implies that there exists 7 > s such that E$"% ~ E>"° for ' > r. Enlarging s if necessary,
we may suppose that ' > s+ r — 1. We now claim that s’ satisfies the requirements of (). To prove
this, suppose that n € 7, X (s) lies in the image of the map ¢, o, and let s” > s’. We wish to show that
n € im(¢s ). Note that ¢s_1 s(n) belongs to the image of ¢s_1, ¢, S0 we can write ¢s_1,5(1) = Ps—1,5/ (7))
for some 7 € 7, X(s"). Replacing n by n — ¢s,s(7), we can reduce to the case where ¢5_1 4(n) = 0. Write
17 = ¢s,s (). Then 7' belongs to the kernel of the map m,X(s') — X (s — 1), and therefore to the image
of the map m, X (s',s — 1) = 7, X(s'). It follows that n € E"° C 7, X(s) for ' = s’ + 1 — 5. Since
r’ >, we have E)"° = E7/""°, where " = s + 1 — s. It follows that n belongs to the image of the map
X (s",8—1) = m,X(s), and in particular to the image of @, 4.
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For each s > 0, let T, denote the intersection (1, ,im(¢s ) € 7, X (s). We claim that for a < b, the
map ¢, induces a surjection 7, — T,. To prove this, suppose that n € T,. Using (*), we deduce that
Ty, = im(¢p ) for some b’ > a. Then n = ¢4 () for some 7 € 7, X(b'). Then n = ¢g.b(do.p (7) € Pap(Th)-

For each s > 0, condition (x) implies that there exists s’ > s such that the map ¢, o carries m, X (s)
into Ty. It follows that ¢, s induces the zero map from 7, X (s")/Ty to 7, X (s)/Ts. We have a short exact
sequence of towers of abelian groups

0— {TS}SZO — {WnX(S)}nZO — {ﬂ-nX(S)/TS}SZO — 0,

giving rise to exact sequences
0= lim{T}uz0 — lim{m, X (5)}sz0 = lim{m, X ()/ T }axo

I.Ln{ﬂnX(S)/Ts}SZO - LiLnl{Tsjl’SZO - l'gll{ﬁnX(S)}szo - I.Lnl{ﬂ'nX(S)/Ts}SZO'

The above argument shows that {m, X (s)/Ts}s>0 is a zero object in the category of pro-abelian groups, so
that @l{wnX(s)/Ts}szo =~ (0 for ¢ = 0,1. We therefore obtain isomorphisms

lim{ T bozo > lm{ma X(s)hizo L' {Tu}zo = Jim' {ma X(5) oo,

Since each of the maps Ts11 — T is surjective, we have I'&nl{Ts}szo ~ 0. This proves (1), which immediately
implies (2).

Note that 7, X (c0)/F*m, X (c0) can be identified with the image of the map ¢ oo : T X (00) = T, X (s —
1). To prove (3), it will therefore suffice to show that Ty = im(¢s o). The containment im(¢ds o) C
Ne>sim(¢s ) = T is clear. To prove the converse, it suffices to prove that the map

T X (00) = I'&H{Ta}ago — T

is surjective, which follows from the surjectivity of the maps T,11 — Ty.

We now prove (4). Note that ¢ », induces a bijection from F*m, X (00)/F**1m, X to the kernel of the
map Ts — 7, X (s — 1). On the other hand, E%"~* can be identified with the subgroup of 7, X(s) given
by the intersection of the images of the maps 7, X (s’,s — 1) = 7, X (s). The inclusion EZ"° C ker(Ts —
X (s —1)) is clear. To prove the reverse inclusion, suppose that n € Ty and ¢5_1 4(n) = 0; we wish to prove
that n € E3*~°. Choose s’ > s; we will show that n belongs to the image of the map 7, X (s', s—1) — 7, X (s).
Since n € Ts, we can write n = ¢4 o (1) for some 7' € X(s’). Then i’ € ker(¢s—1,+), so that n’ belongs to
the image of the map 7, X (s',s— 1) = 7, X (s’), from which we conclude that n belongs to the image of the
composite map

T X(s',s—1) = m, X(s") = 7 X(s).

O

Example 2.3.5. Let G be a topological group, let BG be its classifying space, and let K(n) be a Morava
K-theory. The classifying space BG can be described as the geometric realization of a simplicial space Y,,
with Y, = G*. The construction [s] + K (n)¥* determines a cosimplicial spectrum with totalization K (n)Z%.
In particular, we can identify K (n)B¢ with the limit of a tower of spectra

= X(2) > X(1) = X(0)

with X (s) = Tots K(n)¥*. Let {E>* d,},>1 be the spectral sequence associated to this tower of spectra (see
Construction 2.3.3). The second page of this spectral sequence is given by the cohomology of the (normalized
or unnormalized) cochain complex associated to the cosimplicial graded abelian group ., K (n)Y*.

Now suppose that the topological group G is K (n)-even, in the sense of Definition 2.1.20, and let A =
K(n)o(G). Then the group structure on G exhibits A as a cocommutative (but generally non-commutative)
Hopf algebra over £ (Remark 2.1.30). For each s > 0, Remark 2.1.19 supplies a canonical equivalence

. K (n)Ys ~ 1, K(n) ®, Hom,(A®*, k).
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Consequently, we obtain a canonical isomorphism
E)' ~ mK(n) ®, Ext?,
where Ext’ is as in Definition 2.2.1 (see Remark 2.2.4).

Remark 2.3.6. In the situation of Example 2.3.5, the spectral sequence {E** d,.},>; is automatically
convergent, since it can be identified with the k-linear dual of the Eilenberg-Moore spectral sequence

TorX -G (7, K (n), 7. K(n)) = K(n),,BG
obtained from the equivalence of spectra
K(n) @k (n)(c) K(n) ~ K(n)[BG].

We will not need this observation: in the applications we describe in §2.4, it is easy to verify that the
hypotheses of Proposition 2.3.4 are satisfied.

Remark 2.3.7. In the situation of Example 2.3.5, {ES*, d, },>2 is a spectral sequence of algebras. That
is, each E* has the structure of a bigraded ring, each differential d, satisfies the Leibniz rule, and each
identification of E:fl with the cohomology of the differential d, is an isomorphism of bigraded algebras.
Moreover, the identification

Ey' ~ mK(n) ®, Ext

is an isomorphism of bigraded rings.

2.4 The Main Calculation

Throughout this section, we fix a perfect field « of characteristic p > 0, and a one-dimensional formal group
Gy over k of height n < co. Let E denote the associated Lubin-Tate spectrum and K (n) the associated
Morava K-theory. Our goal is to compute the Morava K-groups K(n).(X), where X is an Eilenberg-
MacLane space of the form K(Z /p* Z,m) or K(Q,, / Z,,m), for m > 0.

Definition 2.4.1. Let X be a topological abelian group. We will say that X is K (n)-good if the following
conditions are satisfied:

(a) The space X is K(n)-even, so that K(n)o(X) can be regarded as a Hopf algebra over £ (Remark
2.1.30).

(b) The action of p is locally nilpotent on the Hopf algebra K (n)o(X). That is, K(n)o(X) can be written
as the colimit of a sequence of Hopf algebras H(t) which are annihilated by p’ (when regarded as
objects of the abelian category Hopf,).

If X is K(n)-good, we let D(X) denote the Dieudonne module DM (K (n)o(X)), where DM is the
functor of Corollary 1.4.15. Then D(X) is a left module over the Dieudonne ring D, = W(k)[F, V], and
in particular a module over the ring W(x) of Witt vectors of k. We will refer to D(X) as the Dieudonne
module of X.

Warning 2.4.2. The condition that a topological abelian group X be K (n)-good depends on the group
structure of X, and not only on the underlying topological space.

If X is a topological abelian group which is K (n)-good, then the following algebraic data are interchange-
able:

e The Morava K-theory K (n).(X), regarded as a graded Hopf algebra over 7, K (n).

e The homology group K (n)o(X), regarded as a Hopf algebra over .
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e The formal group Spf K (n)°(X) over .
e The Dieudonne module D(X).

We will describe the relevant calculations using the language of Dieudonne modules, where the answer
seems to admit the cleanest formulation.

Notation 2.4.3. Let H denote the Hopf algebra K(n)oK(Q,/Zp,1) ~ K(n)oCP>. For each t > 0,
we let H[p'] denote the kernel of the map [p'] : H — H (formed in the abelian category Hopf, ). Since
Go = Spf HY is a smooth 1-dimensional formal group of height n, each H|[p?] is a Hopf algebra of dimension
p™ < 0o over k. We let M denote the D.-module given by the inverse limit of the tower

-+ — DM(H|p*]) — DM(H[p]) — DM(H p’]) ~ 0,
so that M is a free module of rank n over the ring of Witt vectors W (k).

When m = 1, the calculation of the Morava K-groups K (n).K(Z /p' Z,m) is contained in the following
standard result:

Proposition 2.4.4. Let t > 0 be an integer. The space K(Z /p'Z,1) is K(n)-good. Moreover, the fiber
sequence of topological abelian groups
K(Z/p'Z.1) = K(Q,/Zp,1) ™ K(Q, / Zyp,1)

induces a short exact sequence of Hopf algebras

t

k= K(n)oK(Z /p'Z,1) = H® H = k.

In particular, we obtain an isomorphism of Hopf algebras K(n)oK(Z /p'Z,1) ~ H[p'] and of Dieudonne
modules D(K(Z /p' Z,1)) ~ M/p'M.

Proof. Let BS" denote the Kan complex K(Z,2), so that there is a canonical map K(Q,/Z,,1) — BS"
which induces an isomorphism on K (n)-homology. Fix an invertible element 8 € 7m_sK(n), and let n €
K(n)?,,BS' C K(n)?BS! be a complex orientation of K(n), so that HY = K(n)°BS! is isomorphic to a
power series ring x[[z]], where z = f7'n € K(n)"BS?!.

For every Kan complex X, let K (n)X denote the constant local system of spectra on X with value
K(n). Choose a contractible space ES' equipped with a Kan fibration ¢ : ES* — BS!. We can identify
the complex orientation of K (n) with a class n € K(n)2,4(BS'). Any such class determines a map of local

systems E’QK(TL)BS1 — K(n)BS1 together with a nullhomotopy of the composite map

-2
LK)~ K)o~ K (n) o

The assumption that 7 is a complex orientation guarantees that the above maps form a fiber sequence. We
have a homotopy pullback diagram

K(Z /p'Z,1) —— ES*

AR
K(Z,2) — > BS",

where 7 is induced by multiplication by p?. It follows that

rn = r*(fz) = fr*(z) = Bp')(z) € K(n)*K(Z,2).
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Pulling back, we obtain a fiber sequence

—2 /
2 L(n)K(z,z) - L(n)K(z,z) - q*@K(Z /p*Z,1)

of local systems of spectra on K(Z,2). Taking global sections, we obtain a long exact sequence

K(n)* 2K (Z,2) 2 K(n)*K(Z,2) = K(n)*K(Z /p' Z,2) — K(n)* ' K(Z,2) 2 K(n)*"K(Z,2),

where ¢ is given by multiplication by B[p](z).
Since the formal group Gy has finite height, [p'](z) is not a zero divisor in K(n)°K(Z,2). It follows that
our long exact sequence reduces to a short exact sequence

0= K(n)2K(Z,2) "X K (n)* K(Z,2) » K(n)"K(Z /p' Z,1) — 0.

In particular, we deduce that K (n)*K(Z /ptZ,1) vanishes in odd degrees, and that K(n)°K(Z /ptZ,1) is
isomorphic to the the quotient x[[z]]/([p'](x)). Passing to s-linear duals, we obtain the desired result. O

We will attempt to understand other Eilenberg-MacLane spaces by relating them to classifying spaces of
cyclic p-groups.

Remark 2.4.5. Let X1, X5,...,X,,, and Y be K(n)-good topological abelian groups, and suppose we are
given a multilinear map

¢o: X1 X - XXy —Y.
Then ¢ induces a multilinear map of Hopf algebras, which we can identify with a Hopf algebra homomorphism
Y K(n)o(X1) W WK (n)o(Xm) = K(n)o(Y).

If we assume that the spaces X1,...,X,,, and Y are K(n)-good, we can use Corollary 1.4.15 to identify ¢
with a map of Dieudonne modules

D(X1)®---®@D(X,,) — D(Y).
In particular, we obtain a W (k)-multilinear map
D(X1) x -+ x D(X,) = D(Y).

Construction 2.4.6. Fix m > 0, and let Y = K(Q, /Z,,m). Assume that Y is good. Writing Y as a
filtered colimit of spaces of the form K(p~'Z, /Z,,m), we deduce that Y is K(n)-good, so that the Hopf
algebra K (n)o(Y) is determined by its Dieudonne module D(Y).

For each t > 0, consider the map

(bt:K(Z/ptZ,l)m —>K(Z/ptZ,m) —Y

where the first map is given by the iterated cup product, and the second is given by the inclusion Z /pt Z ~
p'Z,/Z, CQ,/Z, Using Remark 2.4.5, we see that ¢; induces a W (x)-multilinear map

07 M/p*M x -+« x M/p'M — D(Y).

Remark 2.4.7. In the situation of Construction 2.4.6, the antisymmetry of the cup product shows that the
map
07"+ (M/p'M)™ — D(Y)

is antisymmetric: that is, for any permutation o of {1,...,m}, we have
07" (z1, ..., om) = sn(0)07" (To(1), - -, To(m))s

where sn(o) denotes the sign of the permutation o.
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Remark 2.4.8. Let Y be as in Construction 2.4.6, and let £ : K(Z /p'Z,1) — K(Z /p**t! Z,1) denote the
map induced by multiplication by p. The diagram of spaces

K(Z /p"' )" x K(Z /p') — K(Z /p", 1) ! x K(Z /p', 1)

lid x & ldn

K(Z /pt*1, 1)t x K(Z /pt*1,1) Y

commutes up to homotopy. It follows that if we are given elements x1,...,Z,_1 € M/t*P*1 M with images
T,y Tm—1 € M/tPM, and y € M /t? M, then we have

07" (T1, - T—1,y) = 0711 (21, .o, Tt 1Y),
Lemma 2.4.9. In the situation of Construction 2.4.6, the multilinear map
07" - (M/p*M) x - x (M/p'M) — D(Y)
is strictly alternating. That is, we have 07" (x1,...,xy) = 0 whenever x; = x; for i # j.

Proof. Suppose that we are given a sequence of elements 1, ...,z € M/p'M such that z; = x; for some
i # j. Choose elements y1,...,Yn € M/p"T M lifting the elements x;, so that y; = y;. The antisymmetry
of Remark 2.4.7 guarantees that 207} (y1,...,¥m) = 0. Using Remark 2.4.8, we obtain

07 (1, ) = 070 (1 - YUm—15DYm) = PO (Yo - Ym)-

This completes the proof when p = 2. If p is odd, the desired result follows immediately from Remark
2.4.7. O

Let A™ M denote the mth exterior power of M, regarded as a module over W (k). Then each quotient
Z /p'Z® \™ M can be identified with the mth exterior power of M/p'M as a module over W (k)/p'W (k).
It follows from Lemma 2.4.9 that 6" induces a map of W (k)-modules Z /p' Z® A™ M — D(Y'), which we
will also denote by 67". Remark 2.4.8 guarantees the commutativity of the diagrams

o
Z/pt 2o N M ——= D(Y)

| Ji

t+1

Z/ptZ®/\mML>D(Y).

Together, these assemble to give a map

0" :Q,/Z,® \M — D(Y).
We can now state the main result of this section:
Theorem 2.4.10 (Ravenel-Wilson). Let m > 0 be an integer, and let Y = K(Q,, / Zp,m). Then:
(a) The ring K(n)°(Y) is isomorphic to a power series algebra over k on (:;_11) variables.
(b
(c
(d) The formal group Spf K (n)°(Y) is p-divisible of height ( ) and dimension (:7';11)

n
m

The groups K(n)(Y) vanish when i is odd. In particular, Y is K(n)-good.

)
)
) The map 0™ : Q, /Zy, @ N M — D(Y) is an isomorphism.
)
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(e) For each t >0, the space Yy = K(Z /pt Z,m) is good. Moreover, the canonical map
Y,~K(p 'Z,/Z,,m)—Y

induces a monomorphism of Hopf algebras K(n)oY; — K(n)oY, which exhibits K(n)oY; as the kernel
of the map [p'] : K(n)oY — K(n)oY (in the abelian category of Hopf algebras over k).

We will prove Theorem 2.4.10 using induction on m. In the case m = 1, the desired results follow from
Proposition 2.4.4 (and from the definition of Morava K-theory and the Dieudonne module M). To carry out
the inductive step, it will suffice to prove the following three results:

Proposition 2.4.11. Let m > 1 be an integer. Suppose that K(Q,, [/ Z,,m — 1) is K(n)-even and that the
formal group
Spt K(n)°K (Q, / Zym — 1)

is connected and p-divisible of height (") and dimension (:;11) Then K(Q,/Zy,m) is K(n)-even, and
K(n)°K(Q, /Z,,m) is isomorphic to a formal power series ring on (";Ll) variables.
Proposition 2.4.12. Let m > 1 be an integer. Suppose that K(Q,, / Zy,m — 1) and K(Z /pZ,m — 1) are
K (n)-good, that Spr(n)OK(Qp / Z,,m—1) is a connected p-divisible group of height (myil) and dimension
(:1__11), that the sequence of Hopf algebras
k— Kn)oK((p~'Z,/)Zy,m—1) — K(n)oK(Q,/Zy,m—1) = K(n)oK(Q, /p Zym—1) =k

is exact, and that the map 0™ 1 is an isomorphism. Then:

(i) The map 0™ :Q, /Z,® N M — D(K(Q, /Z,,m)) is an isomorphism.

(i1) The formal group Spf K(n)°K(Q,, / Zp, m) is p-divisible, with height (') and dimension (>1).
Proposition 2.4.13. Let m > 1 be an integer. Suppose that K(Q, /Z,,m — 1) and K(Z /p®Z,m — 1) are
K (n)-even, that Spf K (n)°K(Q,, / Zy,m—1) is a connected p-divisible group of height (," |) and dimension
(:;11), and that the sequence of Hopf algebras

k= K(n)oK(p~“Zy [ Zp,m—1) = K(n)oK(Q,/Zp,m—1) = K(n)oK(Q, /p”“Zp,m—1) = &
is exact. Then K(p~°Z, |/ Z,,m) is K(n)-even, and the sequence of Hopf algebras
k— Kn)oK(p~ 2,/ Zy,,m) — K(n)OK(QP /Z,,m)— K(n)OK(Qp /D ¢Zy,,m) = K

s exact.

Proof of Proposition 2.4.11. Let G = K(Q, /Z,,m —1). Then G can be realized as a topological abelian

group, whose classifying space BG is a model for K(Q,, / Z,,m), and set A = K(n)o(G). Then the function

BG can be written as the limit of a tower of spectra

spectrum K (n)
= X(2) > X(1) = X(0),

where each X (s) is given by the sth partial totalization of the cosimplicial spectrum [j] — K (n)G'j. Let
{E#*,d, },>1 be the spectral sequence of Example 2.3.5, whose second page is given by

Ey" = Ext) @,m.K(n).

Since the formal group Spf AV is p-divisible, we have an exact sequence of Hopf algebras

/<;—>A[p]—>A[£;A—>m,

54



where A[p] is finite-dimensional as a vector space over k. Note that the kernel and cokernel of the Frobenius
map on A[p] have the same rank, which is the rank of the kernel of the Frobenius map ¢ : A®) — A.
Since Spf A has height (, " |) and dimension (gb__ll), we conclude that dim, Extjléx[p] =) - (:1__11) =
(";11) < oo. Applying Theorem 2.2.10, we see that Eg’t vanishes when s is odd, and Egs’t is given by
Symz(Exti[p] )@, K (n). Since Ey"* vanishes unless s and ¢ are both even, we conclude that the differentials
d, vanish for r > 2, so that Ey" ~ E%*. In particular, the filtered spectrum {X (s)} satisfies the hypotheses
of Proposition 2.3.4. Tt follows that each 7, K (n)2% = K(n)"™BG admits a filtration

K(n)™™BG = F°K(n)"™BG 2 F*K(n)"™BG D ---,
where K(n)""BG ~lim K(n)""BG/F*K(n)~™"BG, whose associated graded is given by
F*K(n)"™BG/F*"'K(n)"™BG ~ B3 ~ Ext’ @ TmisK(n).

It follows immediately that the space BG is K (n)-even. Let B = K(n)"BG, and let I(s) = F*K(n)°BG for
s > 0. Note that this filtration is multiplicative: that is, we have I(s)I(s") C I(s + s’). In particular, each
I(s) is an ideal in B. We have B ~ Hm B/I(s); let us regard B as endowed with the inverse limit topology.
There is an isomorphism of associated graded rings

gr(B) ~ Sym:(Exth[p] ®xmeK(n)).

Let t1,...,tx be a basis for the vector space Exti[p] ®xm2 K (n), where k = ("_1). For 1 < i < k, choose

m

t; € I(2) having image t; in gr?(B) = I(2)/I1(3). We then have a unique continuous ring homomorphism

k[[T1,...,Tx]] = B, carrying each T; to t;. This map induces an isomorphism of associated graded rings,
and is therefore an isomorphism. O

Remark 2.4.14. In the situation of Proposition 2.4.11, let B = K(n)°K(Q,, / Z,,m), and let mp denote
its augmentation ideal. The proof of Proposition 2.4.12 shows that the filtration

B=I(0)2I1)2I(2)2-

is a reindexing of the mp-adic filtration. More precisely, we have

I@){m% it 5 = 2k
mp  ifs=2k-1
In particular, we have an isomorphism mp/m% ~ I(2)/1(3).
Let H = K(n)oK(Q, /Zy,m), so that B is the s-linear dual of H and the sequence of ideals {I(s)}s>0
is dual to an increasing filtration
k~F'HCF'HC---.

Dualizing the above reasoning, we conclude that Prim(H) C F?H, and that the composite map Prim(H) —
F?H — F?H/F'H is an isomorphism of s-vector spaces.

Proof of Proposition 2.4.12. We will prove assertion (i); assertion (i¢) is an immediate consequence of (i) and
Proposition 2.4.11. Replacing k by its algebraic closure if necessary, we may assume that M is generated
over D, by an element x satisfying Fa = V" 'z, so that M is freely generated as a W (k)-module by
2, Va,V3z,..., V" ly with V"2 = pz. Given a subset I = {i; < ... < i} C {0,...,n — 1}, we let
Vig = Vig A ... AVimz € N™ M. Note that the action of V on M induces a Verschiebung map V :
A" M — \™ M, given on generators by

eI\ Vatlg AL A VIRt if i, <n-—1

VIAVAZ AL AVImg) = : _
( ! 7 {(l)mlpcpl()\)x AVEFTLA A VEIm-1it g otherwise.
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Applying the snake lemma to the diagram

0—=A\N"M —QaN"M—Q,/Z, 3 \"M —0

ook |

0> A"M—= QA" M —>Q,/Z, & \" M —0,

we deduce that V induces a surjection from A\™ M ® Q, / Z, to itself, and obtain an isomorphism

ker(V:Qp/Zp®7\M—>Qp/Zp®7\M):coker(V:?\M—)}n\M).

By inspection, the right hand side has basis (as a xk-vector space) given by elements of the form Viiz A... A
Vimg with 47 = 0. It follows that the left hand side has dimension (:1:11) as a vector space over k.

Set Y = K(Q, / Zy, m), and note that the map 6™ : A" M ®Q, / Z, — D(Y) is V-linear. We will prove
the following:

(*) The map 6™ induces a surjection
ker(V:Q,/Z,® \M - Q,/Z,® \ M) = kex(V : D(Y') = D(Y)).

Assume (x) for the moment. Proposition 2.4.11 implies that the map V' : D(Y') — D(Y) is surjective, and that
its kernel has dimension (~}) over x. It follows that ¢ induces an isomorphism ker(V : Q, / Z, ® A" M —
Q,/Z, @ \" M) — ker(V : D(Y) — D(Y)), so that 6™ is injective when restricted to the kernel of V. We
claim that §™ is injective. To prove this, suppose that 0 # z € Q, /Z, ® A™ M. Note that V'z = 0 for
sufficiently large values of . Choose a minimal value of ¢ such that V*z = 0. Since z # 0, we have ¢ > 0.
Then 0 # V=12 € ker(V), so that VI=10(z) = (V1=12) # 0 and therefore 6(z) # 0.

We now prove the surjectivity of 8. Let y € D(Y); we wish to show that y belongs to the image of 6.
Using Proposition 2.4.11, we see that the formal group Spf K (n)°(Y) is connected so that the action of V
on D(Y) is locally nilpotent. It follows that there exists ¢ such that ¥ty = 0. We now proceed by induction
on t. If t = 0, then y = 0 and there is nothing to prove. Otherwise, V!~1y € ker(V). Using (*), we deduce
that there exists z € Q,/Z, ® \™ M with 6™ (z) = V'~!y. Since V is surjective on Q, / Z, ® \"™ M, we
can write y = V=17 for some Q,/Z,®y € M. Then z —0™(7) is annihilated by Vt=1, Using the inductive
hypothesis, we see that z — 6™ (y) belongs to the image of 6™, so that z also belongs to the image of 6.

It remains to prove (x). Let ¢ : K(Z /pZ,1)xK(Z /pZ,m—1) — Y be the composition of the cup product
map with the inclusion K(Z /pZ,m) ~ K(p~' Z, / Z,,m) — K(Q,/Z,,m). Set B = K(n)oK(Z /pZ,1)
and B' = K(n)oK(Z /pZ,m — 1). Since ™! is an isomorphism and B’ is the kernel of [p] on the Hopf
algebra K (n)oK(Q, /Zy,m — 1), the canonical map (M/pM)®™~! — DM(B') induces an isomorphism
Z/pZ @ N\N""' M ~DM(B'). The map ¢ induces a bilinear map of Hopf algebras

p:B®, B — K(n)o(Y),
hence a pairing of Dieudonne modules A : M/pM x (Z /pZ @ N™ ' M) — D(Y). Consider the map
Xt ker(V : M/pM — M/pM) @, DM(B')/FDM(B') — ker(V : D(Y) — D(Y))
introduced in Notation 1.3.31. To prove (x), it will suffice to show that \ is surjective.

Let A= K(n)oK(Q,/Zy,m — 1), let mp, denote the augmentation ideal of B’, and let 7 : Prim(B) x
mp /m%, — Prim(K (n)o(Y)) be as in Remark 1.3.32. According to Proposition 1.3.33, we have a commu-
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tative diagram
ker(V : M/pM — M/pM) ®,, DM(B’)/F DM(B’) A ker(V : DM(A) — DM(A))

- ﬁ »

Prim(B) ®, mp /m%, Prim(A).

It will therefore suffice to show that 7z is surjective.

Let X, denote the simplicial space given by the Cechnerve of the base point inclusion % — K (Z /pZ,1)
(so that X, can be identified with the simplicial set given by K; = (Z /pZ)"). Associated to this simplicial
space is a spectral sequence {E/*' d, },>1 converging to K(n).K(Z /pZ,1). From the second page onward,
this spectral sequence can be identified with the Atiyah-Hirzebruch spectral sequence for the spectrum K (n):
in particular, we have a canonical isomorphism Fy»" ~ Hy(K(Z /pZ,1); 7K (n)). We have an associated
filtration

O=gr 'Bosg’Bog!—...,

with gr® B/gr*=! B ~ E’$=%. Note that Prim(B) is contained in gr? B, and that the projection map
Prim(B) — gr? B/ gr! B is an isomorphism.

Let Y, denote the simplicial space appearing in the proof of Proposition 2.4.11. Associated to Y, is another
spectral sequence {ES*, d,},>1 converging to a filtration of K (n),K(Q, / Z,,m), which is a x-linear predual
of the spectral sequence appearing in the proof of Proposition 2.4.12. We have a homotopy commutative
diagram

x X K(Z /pZ,m —1) *

l

K(Z /pZ,1) XK(Z/pZ,m—l)#K(Qp/Zp,m).

which induces a map of simplicial spaces « : Xo X K(Z /pZ,m — 1) — Y, and therefore a map
gr* B®, B’ — gr® K(n)o(Y).

We have a commutative diagram

Prim(B) ®, mp/ Prim(K (n)o(Y))

l i

gr? B/ gr1B ®, mp — gr? K(n)o(Y)/gr! K(n)o(Y),

where the vertical maps are isomorphisms (see Remark 2.4.14). Consequently, to show that & is surjective,
it will suffice to show that the induced map of spectral sequences {E/*' @, B’,d.} — {E%¢ d,} induces a
surjection B2 ®, mp — E2~2. Because E;2’72 consists of permanent cycles, it suffices to show that the
map of second pages E£2’72 Qpmpr — E22’72 is surjective. Using the 2-periodicity of the graded ring 7. K (n),
we are reduced to showing that the map

¥ By’ @cmp ~ Ho(K(Z /pZ,1);Z [pZ) @7 jpz mp — Tors (k, k) ~ Ey°

is surjective.

Our assumptions allow us to identify B’ with the kernel (in the abelian category Hopf, ) of the map
[p] : A — A. Note that Ho(K(Z /pZ,1);Z /pZ) is a free module of rank one over Z /pZ with a canon-
ical generator (dual to the generator of H*(K(Z /pZ,1);Z /pZ) classifying the extension 0 — Z /pZ —
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Z /p*Z — Z /pZ — 0). Using this generator, we can identify ¢ with a map ¢’ : mp — Torjy (x,x). The
surjectivity of ¢ now follows from the commutativity of the diagram

’

mp v . Tord (k, k)

| |

mp /m%, — > Tor? (k, k),

since the right vertical map is the s-linear dual of the isomorphism Ext}, — Ext% of Theorem 2.2.10. [
Proof of Proposition 2.4.13. Set
G = K(Zy /0 Lypm—1)  G=K(Q,/p°Zpm—1) G =K(Q,/Zpm—1),

so that we have a fiber sequence of topological abelian groups G' — G — G”. Set A’ = K(n)oG’' and
A = K(n)oG, so that the map G’ — G induces a Hopf algebra homomorphism A’ — A. Moreover, we
can also identify K(n)oG’ with A, so that the map G — G’ induces the Hopf algebra homomorphism
[p]: A— A.

We will identify K(Z /p®Z,m) with the classifying space of the group G, and let {E?",d, },>1 be the
spectral sequence of Example 2.3.5, whose second page is given by

Ey" = Ext%, ®,m.K(n).

Let R = K(n)°K(Q, /Zy,m), and let mp denote its maximal ideal, so that the proof of Proposition
2.4.10 supplies canonical isomorphisms m%,/m5 ~ Ext% ®, 725K (n) (see Remark 2.4.14). By assumption,
the fiber sequence

G —-G—->q"

induces an exact sequence of connected Hopf algebras
/ [p°]
k—A > A= A— k.

Let 1 : Ext!, — Ext% be the isomorphism of Theorem 2.2.10, and let v € 7K (n) be a nonzero element.
The main ingredient in our proof is the following assertion:

*) Suppose we are given an element x € E," and an element y € mp representing
S i lement z € E,° and an element ti
Y(z) @ v € Ext? @,.mK(n) ~ mp/m%

Suppose furthermore that the Hopf algebra homomorphism [p°] : R — R carries y to an element
y' € m%, and let o/ € E;*** 2 denote the image of 3’ under the composite map

25,25 —V_ " 425,252
miy/myt ~ Exty ®@,ma K (n) — Ext?) @,mos K (n) = B35 ™% E3*%

Then x and z’ survive to the (2s — 1)st page of the spectral sequence {E** d,.},>1. That is, there
exist elements {z, € B} 2l € E?*72}5-, <9, 1 such that zo = z, 2} = y, d,x, = d,z), = 0 for
2 <r < 2s—1, each z, is a cycle representing 11, and each /. is a cycle representing ;. ;. Moreover,

we have vdas_1(was_1) = Th,_; in E§§3f72
Let us now explain how to complete the proof, assuming (x). We first treat the case where m = n. Then
Spf R is a 1-dimensional p-divisible group of height 1 over x. Replacing x by its algebraic closure if necessary,
we may assume that Spf R is the formal multiplicative group, so that there exists an isomorphism R ~ &[[y]],
where the p-series [p°] is given by [p](y) = y*. Then the image of y in mp/m% ~ Ext% ®,mK (n) has the
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form t(z) ® v, for a unique element = € Ey°. It follows from (%) that  survives to the (2p° — 1)st page of
the spectral sequence, and that the differential dope_1 carries (the residue class of) x to (the residue class
of) v~'7?°, where 7 denotes the image of y in the graded ring gr(R) = @m%/m?{rl.

We now define an auxiliary spectral sequence { E/*', d}. }, > as follows: for r < 2p°—1, we let E/** denote
the free (m,. K (n))[Y]-module on generators 1 and X, where X has bidegree (1,0) and Y has bidegree (2,2).
For r > 2p°, we let E'*** denote the quotient (m, K (n))[Z]/(ZP"). Finally, the differentials d/, vanish unless

r = p' — 1, in which case d,. is the unique (7. K (n))[Y]-linear map satisfying
d(1)=0 d.(X)=—-vlY?.

Using (*), we deduce that there is a map of spectral sequences {E'*t, d.} — {E%t d,.}, given on the second
page by
Y-y XY* = zy®.
By inspection, this map induces an isomorphism on the second page, and is therefore an isomorphism of
spectral sequences. In particular, the spectral sequence { E5*,d, },>5 stabilizes after a finite number of steps,
and its final page is given by ,
B = By = (m K (n) 51/ (7 ),

where each 7; has bidegree (2,2). _

Using Proposition 2.3.4, we deduce that each group K(n)'K(Z /p®Z,n) admits a filtration

K(n)'K(Z /p°Z,n) = F°K(n)'K(Z /p®Z,n) O F*'K(n)'K(Z /p°Z,n) D ---

with
K(n)'K(Z [p°Z,n) ~ lim K (n)' K(Z [p° Z,n)/F*K (n)' K (Z [p° Z,n)
and F*K(n)'K(Z [p¢Z,n)/F*T1 K(n)'K(Z /p°Z,n) ~ ES**. Since ES! ~ 0 unless both s and ¢ are even,
we immediately deduce that K(n)'K(Z /p°Z,n) vanishes when i is odd: that is, the space K(Z /p°Z,n)
is K (n)-even. Moreover, the associated graded ring gr* K (n)°K(Z /p°Z,m) is isomorphic to a truncated
polynomial algebra x[g]/7°.
Since multiplication by p® on K(Z /p®Z,m) is nullhomotopic, the canonical map

0:R— K(n)K(Z /p°Z,n)

annihilates y?° = [p°](y). We now complete the proof by observing that 6 determines an isomorphism
R/(y*") — K(n)°K(Z /p° Z,n) (since the induced map of associated graded rings is an isomorphism).
We now treat the case m # n. Here the argument is similar, but the details are more complicated because
we do not have a simple formula for the map [p°] : R — R. Let mp denote the maximal ideal of R and let N
denote the dual of the Dieudonne module DM(K (n)oK(Q,, / Zy,m)). As a W (x)-module, we will identify
N with
Homyy () (DMK (n)o K (Q, / Zym)), W () [p~ 11/ W ()

equipped with the action of D, described in Remark 1.4.18. Using Proposition 2.4.12, we can identify N with
the dual Homyy () (A™ M, W (x)). Replacing « by its algebraic closure if necessary, we may assume that M is
generated (as a D,-module) by an element v satisfying Fry = V"~ 1y, so that M is freely generated as a W (k)-
module by the elements v, V7, ..., V" 1y with Vv = py. For every subset I = {i1,...,i,} € {0,...,n—1},
we let VI(y) = Viigy A... AViny € AmM. The elements VI~ form a basis for A™ M as a W (x)-module.
We let {dr}rcqo,....n—1) denote the dual basis for N. Unwinding the definitions, we see that the action of F
on N is given on this basis by the formula

Ofir—1,emeyim— if iy > 0
F6i ; _ {i1—1,0yim—1} 1
{ 1<...,< m} {(—1)7”_1])6{1'21 ..... imfl,nfl} lf il —0.
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Since m # n, the action of V on N is topologically nilpotent. We may therefore write R as an inverse
limit of finite-dimensional connected Hopf algebras H, over k. Then N ~ lim DM(H, ), so that the inclusions
DM(H,) <= H, determine amap pr : N — R. Let J denote the collection of all subsets of {0, ...,n—1} which
have cardinality m and contain the element n—1. For each I € g, let y; = pr(d;) € R. The elements {01} ¢
form a basis for N/FN, so that the images of the elements {ys}seg form a basis for mp/m% (see Proposition
1.3.20). It follows that R can be identified with the formal power series ring generated by the elements y;.
Foreach I = {i; < -+ <y} €d,let e = i1 —im_o,and let [T ={e; —1<er+i1 <...,<er+im_2},
so that pd; = (—1)™ 1 F°1§;. We define I(k) for k > 0 by the recursion

I(0)=0 I(k+1)=1(k)",

and we let e(Ik) =es +eya) + -+ erx—1), so that pFor = (—1)k(m_1)Fegk)61(k). Let o0 : R — R denote the
antipodal map if k(m — 1) is odd, and the identity map otherwise. Then the map [p¢] : R — R carries o(yr)

to
RE)

— c(m— g e<c) :
pIpr((=1)"V61) = pr((=1)“"Vp%6r) = (F1 6101)) = o9y, -
For each I € J, we define a spectral sequence {E$*(I),d, },>2 as follows. For r < 2p°’ —1, we let E**(I)

denote the free (m.K(n))[Zr]-module on generators 1 and X, where X has bidegree (1,0) and Z; has
o(0)
bidegree (2,2). For r > 2p°’, we let E}*(I) be the quotient (7, K (n))[Z7]/(Z? " ). Finally, the differential

d, vanishes unless r = 2p€(10) — 1, in which case d, is the unique (7, K (n))[Z]-linear map given by
o(0)

o (1) = d (X)) =v (=DtmDzgrt
2pe§>71() 0 2p83>71( )=v (-1 I

Let 7; denote the image of y; in mp/m% ~ F3*, and choose an element x; € E,° such that 1(z;) = 7.

Using (*), we obtain a map of spectral sequences E2*(I) — E2*! given on the second page by

21 =Tl X1Zi = xriyi-

Since {E%*,d,},>2 is a spectral sequence of algebras, we can tensor these maps together (over the graded
ring 7. K (n)) to obtain a map of spectral sequences

®{E'ﬁ7t(‘[)7 d'f}'r22 — {E;?’t, dr}r22~
Ied

By inspection, this map is an isomorphism on the second page, and therefore an isomorphism. In particular,
the spectral sequence {E$",d, },>2 stabilizes after a finite number of steps, and its final page is given by
s R )
EZ > (m K (n)[U1]/ ()

where each 7; has bidegree (2,2).
Using Proposition 2.3.4, we deduce that each group K (n)'K(Z /p°¢Z, m) admits a filtration

K(n)'K(Z /p°Z,m) = F°K(n)'K(Z /p°Z,m) 2 F*K(n)'K(Z /p°Z,m) D -
with
K(n)'K(Z [p°Z,m) ~ im K (n)'K(Z [p° Z,m)/F*K (n)'K(Z /p® Z,m)

and F*K(n)'K(Z /p°Z,m)/F*T K (n) K (Z /p¢ Z,m) ~ E35~%. Since E%! ~ 0 unless both s and t are even,
we immediately deduce that K(n)*K(Z /p¢ Z, m) vanishes when i is odd: that is, the space K(Z /p°Z,m)

is K (n)-even. Moreover, K(n)°K(Z /p°Z,m) is a vector space over  of dimension [];c, peﬁc), and its
@
associated graded ring gr* K (n)" K (Z /p®Z,m) is isomorphic to a truncated polynomial algebra x[1j;]/(y 1t ).
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Let K C R denote the ideal defining the kernel of the map [p°] : Spf R — Spf R. Since multiplication by p°
on K(Z /p¢Z,m) is nullhomotopic, the canoncial map 6 : R — K (n) K (Z /p¢ Z, m) annihilates the ideal K.
To complete the proof, it will suffice to show that 6 induces an isomorphism R/K — K(n)°K(Z /p¢ Z,m).
It is clear that the map 6 is surjective (in fact, it is surjective at the level of associated graded rings, where
R is equipped with the filtration appearing in the proof of Proposition 2.4.11). It will therefore suffice to

. (o) . . (o) . . .
show that dim, R/K < [[;c4p° . This is clear, since [[;c4p° is the dimension of the truncated power
oo oo

series ring n[[yj]]/(y?(z) ), and each y?(tl) belongs to the ideal K.

It remains to prove (x). Let Y, and Y’ be the simplicial spaces obtained by applying the bar construction
to the topological abelian groups G = K(Q,, /p®Z,,m —1) and G" = K(Q, / Z,,m — 1), and let X and X"
denote the filtered spectra given by the partial totalizations

X(s) = Tot, K(n)Y* X"(s) = Tot, K(n)¥s .
Finally, let W denote the constant tower of spectra
= W(2) - W(1) —» W(0)
where each W(s) is equal to K(n). The pullback square of topological abelian groups
G =——G
|
e a——

determines a commutative diagram of filtered spectra

XI/HX

L

W —-s X'

We let X (c0) denote the inverse limit l<i£1$X(s) ~ K(n)K¥(Qs/P"Zpm) - and define X'(00), X" (00), and
W (o0) similarly. For 0 < a < b < co we let X(b,a) denote the fiber of the map X (b) — X (a), and define
X'(b,a), X"(b,a), and W (b, a) similarly (so that W (b,a) ~ 0).

Let © € Ey® be as in (). Remark 2.4.14 supplies an isomorphism Ext% ~ im(m_sX"(c0,0) —
m_2X"(2,0)). We will abuse notation by identifying ¢ (x) with the element of 7_5X"(2,0) given by its
image under this isomorphism, and x with an element of 7_; X’(1) belonging to the image of the map
m-1X'(2,0) = 7_1X’'(1). We will need the following assertion:

(*") There exists an element z € m_o fib(X"(2,0) — X (2,0)), whose image in m_2X"(2,0) coincides with
—1(z), and whose image in under the composite map

o fib(X"(2,0) — X (2,0)) = 7o fib(W(2,0) — X'(2,0)) 271 X'(2,0) = 71 X'(1)
coincides with x.

Assuming () for the moment, let us prove (x). Choose y € mp ~ mpX" (00, 0) representing vip(x), and
let z be as in (*). Since the map

T_2 ﬁb(X”(OO, 0) — X(2, 0)) — W,QX//(OO, 0) Xp_pX"(2,0) T—2 ﬁb(X//(2, O) — X(2, 0))

is surjective, we can choose an element z € m_o fib(X"(c0,0) — X(2,0)) whose image in m_2X"(00,0) is
v~ 1y, and whose image in m_5 fib(X"”(2,0) — X(2,0)) coincides with z. By assumption, we have [p¢](y) €
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m$,, so that the image of v™'y in 7_2X (00, 0) lifts to an element 7 € X (00,25 — 1). Let ¥ and Zz’ denote
the images of 7 and Z in m_5 fib(X(00,0) — X (2,0)) ~ m_2X(00,2). The ¥ and Z have the same image
in m_2X(00,0), so that the difference ¥ — Z belongs to the image of the boundary map 7n_;X(2,0) —
mo fib(X (00,0) — X (2,0)). The proof of Proposition 2.4.11 shows that the map 7_; X (2,0) — 7_1X(1,0)
vanishes. Using the commutativity of the diagram

T_1X(2,0) —= m_s fib(X (00,0) — X(2,0))

l l

71X (1,0) —= 7_5 fib(X (00,0) — X(1,0)),

we see that 7 and z have the same image in m_2X (00, 1). Let 2z denote the image of Z in 7_o fib(X" (00, 0) —
X (1)), so that the pair (zo,7) lifts to an element w of

W?Q(ﬁb(XN(OO, O) - X(17 O)) Xfib(X (00,0)— X (1,0) ﬁb(X(OO7 0) - X(2S -1, O)>7
which we will identify with 7_5(X"(00) X x(o0) X (00,25 —1)). Let T denote the image of w in
T_o(W(00) X x/(00) X'(00,25 — 1)) ~ 7m_1 X'(25 — 1,0).

By construction, Z is a preimage of x under the canonical map 7_1X’(2s — 1,0) — 7_; X’(1). This proves
that x survives to the (2s — 1)st page of our spectral sequence. Moreover, dos—1(x) can be identified with
the image of T under the composite map

71X (25 —1,0) ~ 7 fib(0 — X'(2s — 1,0)) = 7_2 fib(X'(2s,0) — X'(25 — 1,0)) ~ 7_2X'(2s,25 — 1).
Equivalently, dos—1(x) is represented by the image of w under the composite map
T_o(X"(00) X x(00) X (00,25 — 1)) = m_2X (00,25 — 1) = m_5X(25,25 — 1) = m_5X'(25,25 — 1),

which coincides with the element 2’ appearing in ().

We now prove ('). If Z is a pointed space, we let K(n)} 4(Z) denote the reduced K (n)-cohomology of
Z: that is, the kernel of the map K(n)*(Z) — K(n)*(red) given by evaluation at the base point. Unwinding
the definitions, we obtain canonical isomorphisms

X (d,d — 1) ~ K(n) 574G =~ Hom, (m3%, k) @, Ty K (n)

X' (d,d — 1) ~ K(n) 74 (G") ~ Hom, (m5, k) @, mar. K (n).

Using the fiber sequences
X(1,0) » £X(2,1) - £X(2,0)

X'(1,0) - ¥X'(2,1) = £X'(2,0),
we deduce the existence of exact sequences
0 — m_1X(2,0) — Hom, (my4,x) 2 Hom,(m%%, k) = 7_2X(2,0) — 0,

where v is dual to the multiplication map m%Q — my. The kernel of v can be identified with Ext!; (Remark
2.2.4), which vanishes by Theorem 2.2.10. It follows that the homotopy groups of X(2,0) are concentrated
in even degrees. We have a diagram of short exact sequences

0 — Hom,, (m4, k) — Hom,, (m§? k) —=71_5X"(2,0) —= 0

T

0 — Hom, (m4, k) — Hom, (m%?, k) — m_2X(2,0) — 0.
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Here the maps a and o are induced by the Hopf algebra homomorphism [p€] : A — A. Since Spf AY is
p-divisible, these maps are injective. The snake lemma provides an exact sequence

0 — ker(B) % coker(a) — coker(a’) — coker(8) — 0

Since 71X (2,0) ~ 0, we the canonical map 7_o fib(X"(2,0) — X(2,0)) — ker(8) is an isomorphism.
Moreover, the canonical map 7_o fib(X”(2,0) — X(2,0)) — 7_1X'(1,0) is given by the composition

m_o fib(X"(2,0) = X(2,0)) ~ ker(8) =5 coker(a) — 7_1 X'(1,0).

Consequently, to prove (x'), it will suffice to show that for each € Ey°, the element ¢ (x) € T_X(2,0)
belongs to the kernel of 3, and u(¢(z)) € coker(«) is a preimage of x under the canonical map coker(a) —
X'(1,0). This follows immediately from the description of ¥ (x) supplied by Remark 2.2.4. O

3 Alternating Powers of p-Divisible Groups

Let x be a perfect field of characteristic p > 0, let G be a smooth connected 1-dimensional formal group
of height n < oo over k, and let K(n) denote the associated Morava K-theory spectrum. In §2.4, we
reviewed the Ravenel-Wilson calculation of the groups K(n).K(Z /ptZ,d). In the language of Dieudonne
modules, this calculation can be summarized as follows: K(n)oK(Z /p'Z,d) is a connected Hopf algebra
over k, whose Dieudonne module can be identified with the dth exterior power of the Dieudonne module of
K(n)oK(Z /p' Z,1).

Our goal in this section is to describe the passage from Gg to K(n)oK(Z /p'Z,d) in a purely algebro-
geometric way, which does not make reference to Dieudonne theory. To this end, we introduce a general
construction, which associates to each finite flat commutative group scheme G over a commutative ring R a
collection of group schemes {Alt(g )}dzl- Our main results can be summarized as follows:

(a) Let R be a perfect field of characteristic p > 0, let G be a truncated connected p-divisible group of
dimension 1 over  (see Definition 3.1.1), and write G = Spec H" for some Hopf algebra H over k.

Then Alt(g) = Spec A, where the Dieudonne module of A is the dth exterior power of the Dieudonne
module of H (Theorem 3.3.1).

(b) In the special case where R = k, we will show that Theorem 2.4.10 supplies a canonical isomorphism
Spec K (n)oK (Z /p' Z,d) ~ Alt&) , (Corollary 3.3.3).

(¢) Let E denote the Lubin-Tate spectrum determined by x and Gg, and let G be the formal group
Spf E9(CP®™) over R = moE. Then the isomorphism appearing in (b) lifts to an identification R-
schemes

Spec B} K(Z /p' Z,d) ~ Altg?pt]

(see Theorem 3.4.1).

(d) Let G be a truncated p-divisible group of dimension 1 over an arbitrary commutative ring R. Then

each Altgl ) is also a truncated p-divisible group over R (Theorem 3.5.1). In particular, it is a finite flat
group scheme over R.

If G is a finite flat group scheme which is annihilated by some odd integer n, then the group schemes
Alt(cf) are easy to describe: they classify skew-symmetric multilinear maps from the d-fold product G Xgpec r
-+ Xgpec g G into the multiplicative group G,,,. In the general case, the appropriate definition was suggested
to us in a correspondence with Johan de Jong, and will be explained in detail in §3.2. We will discuss (a)
and (b) in §3.3, (¢) in §3.4, and (d) in §3.5. We note that for p # 2, these results appear elsewhere in the
literature. We refer the reader to [17] for a proof of (¢), and to [8] for proofs of (a) and (d).

Note that assertions (a) and (d) make reference the theory of truncated p-divisible groups. For the
reader’s convenience, we summarize the relevant definitions in §3.1.
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3.1 Review of p-Divisible Groups

In this section, we briefly review the theory of p-divisible groups and of truncated p-divisible groups, em-
phasizing those aspects which will be needed in this paper. For more detailed accounts, we refer the reader
to [3], [16], and [11].

Definition 3.1.1. Let R be a commutative ring, let CAlgy denote the category of (discrete) commutative
R-algebras, let p be a prime number, and let Ab denote the category of abelian groups. A p-divisible group
of height n over R is a functor G : CAlgp — Ab satisfying the following conditions:

(a) For every integer t > 0, the functor A — {z € G(A) : ptxz = 0} is representable by a finite flat group
scheme of rank p™ over R, which we will denote by G[p'].

(b) The union {J,~, G[p'] is equal to G: that is, for every A € CAlgp, the action of p on G(A) is locally
nilpotent.

It follows from (a) and (b) that the functor A — G(A) is a sheaf for the fpqc topology on CAlgy.

(¢) The map [p] : G — G is an epimorphism of sheaves for the fpqc topology. That is, we have a short
exact sequence
0—>Gpl=-G—->G—=0

of fpqc sheaves.

Remark 3.1.2. Let « be a field, and let H be a p-divisible Hopf algebra over x (Definition 2.2.6). Then
the functor
Spf HY : CAlg,. — Ab

A GLike(H ®, A)

is a p-divisible group of height n over R. The construction H ~ Spf HY determines an equivalence from the
category of p-divisible Hopf algebras over k to the category of p-divisible groups over .

Definition 3.1.3. Let R be a commutative ring and let G be a finite flat commutative group scheme over R.
We will say that G is a truncated p-divisible group of height n and level t over R if the following conditions
are satisfied:

(a) The rank of G is equal to p™*.
(b) The finite flat group scheme G is annihilated by p'.

(c) Suppose we are given a ring homomorphism ¢ : R — &, where k is an algebraically closed field of
characteristic different from p. Then the finite abelian group G(k) is isomorphic to (Z /p* Z)".

(d) Suppose we are given a ring homomorphism R — k, where « is a perfect field of characteristic p. Write
G Xgpec r Spec k = Spec H for some finite-dimensional Hopf algebra H over «, and let M = DM, (H)
be its Dieudonne module. Then

dim, ker(V : M — M) + dim, ker(F : M — M) =n.

Proposition 3.1.4. Let R be a commutative ring and let G be a p-divisible group over R of height n. For
each t > 0, the subgroup G[p'] is a truncated p-divisible group over R of height n and level t.
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Proof. We will show that G satisfies conditions (a) through (d) of Definition 3.1.3. Conditions (a) and (b)
are obvious. To prove (c¢), let k be an algebraically closed field of characteristic different from p. Then
G[p'](k) = {z € G(k) : p'x = 0} is a Z /p' Z-module of cardinality p™*. Since G is p-divisible, we have short
exact sequences

0= Glp)(x) = Glp™*](x) = Glpl(x) = 0,

so the cardinality of G[p'](k) is the tth power of the cardinality of G[p](k). It follows that G[p](x) has
cardinality p™. Using the structure theory for finitely generated abelian groups, we deduce that G[pt](k) is
a direct sum of exactly n cyclic groups, each of which has order at most pt. Since G[p'](k) has cardinality
p™t, each of these groups must have order p', so that G[pt](k) is a free Z /p* Z-module of rank n.

It remains to verify condition (d). Suppose we are given a map R — &, where k is a perfect field of
characteristic p > 0. Write G = Spf H" for some Hopf algebra H over x, and let M = DM, (H). Let M[F],
M|[V], and M|[p] denote the kernels of F, V| and p on M, respectively. We have an exact sequence

0 — M[F] — M[p| & M|V,
which yields an inequality
dim, M[F] + dim, M[V] > dim, M|[p] = n.

To show that equality holds, it will suffice to verify that the above sequence is exact on the right. Choose an
element x € M[V]; we wish to show that x = Fy for some y € M satisfying py = 0. Since G is p-divisible,
we can write x = px’ for some z’ € M. Then y = V' has the desired properties. O

Proposition 3.1.5. Let R be a commutative ring, and let G be a finite flat commutative group scheme of
rank p™t over R, and suppose that G is annihilated by pt. Then:

(1) Ift > 2, then G is a truncated p-divisible group of height n and level t if and only if the map [p| : G —
G[p"~'] is a surjection of fpgc sheaves. Moreover, if this condition is satisfied, then G[p*] is a finite
flat group scheme for 0 < k <mn.

(2) Suppose thatt =1, let R’ = R/pR, let G’ = G Xgpec r Spec R’ be the reduction of G modulo p, let G'®)
denote the pullback of G along the Frobenius map ¢ : R’ — R/, and let

F:G'—=G®»  v.qW g

denote the relative Frobenius and Verschiebung maps, respectively. Then the following conditions are
equivalent:
(i) The group scheme G is a truncated p-divisible group of height n and level 1 over R.

(i4) The map F induces an epimorphism G' — ker(V') of fpgc sheaves.

(iii) The map V induces an epimorphism G'P) — ker(F) of fpqc sheaves.

Moreover, if these conditions are satisfied, then ker(F') and ker(V') are finite flat group schemes over

R

The proof of Proposition 3.1.5 will require the following observation:

Lemma 3.1.6. Let R be a commutative ring, let ¢ : G — H be a map of group schemes which are finite
and of finite presentation over R, and assume that G is flat over R. Then there exists a quasi-compact open

subset U C Spec R with the following property: a map of schemes X — Spec R factors through U if and only
if the induced map X Xgpecr G — X Xspec g H 15 faithfully flat. Moreover, H Xgpecr U is flat over U.
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Proof. Since G and H are of finite presentation over R, we can find a finitely generated subring Ry C R,
group schemes Gy and Hy which are of finite presentation over Ry, and a map of group schemes ¢g : Gy — Hy
such that ¢ is isomorphic to the induced map Spec R Xgpec R, Go — Spec R Xgpec R, Ho. Enlarging Ry if
necessary, we may suppose that Gy and Hj are finite over Ry, and that Gy is flat over Ry. Replacing R by
Ry, we can reduce to the case where R is a finitely generated commutative ring, and in particular Noetherian.

For each point x € Spec R, let x(x) denote the associated residue field. Let U denote the subset of
Spec R consisting of those points x for which the induced map Spec k() Xgpec r G — Spec k(x) Xspec r H 18
faithfully flat. The main point is to establish the following:

(*) Suppose that © € U. Then there exists an open subset V' C Spec R containing x, such that V' Xgpec r H
is flat over V.

Assume that () is satisfied. Let = be a point of Spec R and choose V satisfying (*). Note that the fiber-by-
fiber flatness criterion (Corollary 11.3.11 of [6]) implies that the map V Xgpec r G = V Xgpec g H is flat. In
particular, its image is an open subset of V Xgpec g H, with closed complement K. Since the projection map
V Xspec rH — V is finite, the image of K is a closed subset of V', which does not contain the point . We may
therefore shrink V' if necessary to reduce to the case where K = {), so that the map V Xgpec rG — V Xspec R H
is faithfully flat. It follows that V' C U. It follows that U is open (since it contains an open neighborhood of
each point z € U), that the fiber product U Xgpec r H is flat over U (since this can be tested locally on U),
and that the induced map U Xgpec r G — U Xgpec g H is faithfully flat. It is clear that any map of schemes
X — Spec R for which the induced map X Xgpec r G = X Xspec g H much factor through U, so that U has
the desired properties (the quasi-compactness of U is automatic, since R is Noetherian).

It remains to prove (x). Choose a point x € U, and let R, denote the corresponding localization of R.
We will prove that Spec R, Xgspec g H is flat over R,. Writing R, as a direct limit of R-algebras of the form
Rla™1], we will then deduce that Spec Rla™!] xspec g H is flat over R[a™!] for some element a € R which
does not vanish in k(x), so that V = Spec R[a~!] has the desired properties.

Replacing R by R,, we may reduce to the case where R is a local Noetherian ring with maximal ideal m
and residue field k = R/m, and that the map Spec k Xgpec R G — Speck Xgpec g H is faithfully flat. We will
complete the proof of by showing that H is flat over R.

Write H = Spec A and G = Spec B, for some finite R-algebras A and B. We wish to prove that A is flat
over R. Choose elements aq,...,a, € A whose images form a basis for A/mA as a vector space over k. This
determines a map of finitely generated R-modules 6 : R™ — A; we claim that 6 is an isomorphism. Since R
is a Noetherian local ring, it will suffice to show that 6 induces an isomorphism after m-adic completion. In
fact, we claim that 6 induces an isomorphism

(R/mb)" = A/mtA

for each ¢ > 0. This is equivalent to the requirement that A/m'A is flat as an R/m'-module. We may
therefore replace R by R/m!, and thereby reduce to the case where R is a local Artin ring.

For every finitely generated R-module M, let I(M) denote the length of M. By Nakayama’s lemma,
we have a surjection of R-modules R" — A, and we wish to show that this map is an isomorphism. Let
K denote the kernel of the epimorphism of group schemes Spec & Xgpec R G — Spec K Xsgpec g H, and let 7
denote the rank of K over k. Then Speck Xgpec r G has rank nr over .

Since A is a finite R-algebra, it is an Artinian ring. It therefore admits a finite filtration by ideals

0=I(0)cI(l)c---ClI(k)=A4,

where each quotient I(j)/I(j — 1) is isomorphic (as a A-module) to some residue field x; of A, which is a
finite extension of k. Then I(j)B/I(j—1)B is a quotient of the tensor product I(j)/I(j—1)®4B ~ k; @4 B.
Note that k; ® 4 B is a torsor for the group scheme Spec 1 Xgpec /£ Over s, so that x; ® 4 B has dimension r
as a vector space over £;, and length r dim,(x;) as an R-module. Since G is flat over R, B is a free R-module
of rank nr, so we have

nrl(R) =1(B) = Y II(j)B/I(j—1)B) < Y rdim,(k;) = ri(A).

1<5<k 1<j<k
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Dividing by 7, we deduce that nl(R) < I(A), so that any surjection of R-modules R™ — A is automatically
an isomorphism. O

Corollary 3.1.7. Let R be a commutative ring and let ¢ : G — H be a map of group schemes which are
of finite presentation over R. Assume that G and H are finite over R, that G is flat over R, and that the
induced map Spec £() Xspec R G — Spec k() Xspec g H s faithfully flat, for each point x € Spec R. Then
¢ is faithfully flat, and H is flat over R.

Proof of Proposition 8.1.5. Suppose first that G is a truncated p-divisible group over R of height n and level
t > 2. We will show that the map [p] : G — G[p'~!] is faithfully flat, and that G[p'~'] is flat over R
(repeating this argument, we may deduce that G[p?] is flat over R for 0 < a < t). Using Corollary 3.1.7, we
can reduce to the case where R is a field k. Without loss of generality, we may assume that « is algebraically
closed. If the characteristic of « is different from p, the desired result follows immediately from condition (c)
of Definition 3.1.3.

Suppose therefore that x has characteristic p. For each 0 < a < t, let r, denote the rank of the group
scheme G[p®] over k. Using the exact sequence

0 G[F] = G5 Gv|®,
and condition (d) of Definition 3.1.3, we deduce that r; < p™. Using the exact sequence
0 — Glp] = G[p*] = Glp"~ 1],

we obtain the inequality r, < r17,_1, so by induction we have r, < r¢ < p®. Since G has rank p", each
of these inequalities must be an equality. In particular, the maps p : G[p®] — G[p*~!] are surjective for
0 < a <t, as desired.

Conversely, suppose that ¢ > 2 and that the map p : G — G[p'~!] is an epimorphism for the flat topology;
we wish to prove that G is a truncated p-divisible group of height n and level ¢. Conditions (a) and (b) of
Definition 3.1.3 are automatic. To verify (c), let k be an algebraically closed field of characteristic different
from p. The surjectivity of the map p : G — G[p'~!] implies the surjectivity of the maps G[p?] — G[p®~}]
for 0 < a < t, so that G is a successive extension of ¢ copies of G[p]. It follows that G[p](x) has order p",
and is therefore an n-dimensional vector space over Z /pZ. It follows that the group G(k) is a direct sum
of n cyclic groups of order < p'. Since G(k) has order p™ by assumption, we conclude that G(k) is a free
Z /p* Z-module of rank n.

Now suppose that ¢t = 1. We will show that conditions (¢) and (i) are equivalent; the equivalence of (4)
and (4i7) then follows by the same argument. Suppose first that (i) is satisfied; we wish to prove that the
sequence

0 — ker(F) — G’ — ker(V)

is exact on the right (and that, in this case, ker(V') and ker(F') are flat over R/pR). Using Corollary 3.1.7,
we can reduce to the case where R = k is a field of characteristic p. In this case, it suffices to show that the
rank of G’ is equal to the sum of the ranks of ker(F') and ker(V'), which follows immediately from condition
(d) of Definition 3.1.3.

Now suppose that (i7) is satisfied; we will show that G is a truncated p-divisible group of height n and
level 1. By assumption, G satisfies conditions (a) and (b) of Definition 3.1.3, and condition (c) is automatic
(since every Z /pZ-module is free). It remains to verify condition (d). Without loss of generality, we may
assume that R = r is a perfect field of characteristic p. Write G = Spf HY and let M = DM(H). Condition
(7i) gives an exact sequence

0—ker(F:M—M)—>M—ker(V:M— M)—0,

so that dim ker(F') + dim,, ker(V) = dim,, M = n. O
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Corollary 3.1.8. Let R be a commutative ring, let G be a finite flat commutative group scheme of rank
p™ over R, and suppose that G is annihilated by pt. Then there exists a quasi-compact open subscheme
U C Spec R with the following property: for any commutative R-algebra A, the map Spec A — Spec R
factors through U if and only if Ga = G Xgpec r Spec A is a truncated p-divisible group of height n and level
t over A.

Proof. If t > 2, the desired result follows by applying Lemma 3.1.6 to the map of group schemes p : G —
G[p'~!] and invoking Proposition 3.1.5. If + = 1, we apply Lemma 3.1.6 to the map F : G’ — ker(V :
G'®) — G') appearing in Proposition 3.1.5 (note that if U is a quasi-compact open subset of Spec R/pR,
then U U Spec R[p~1] is a quasi-compact open subset of Spec R). O

Remark 3.1.9. Let R be a commutative ring, and let G be either a p-divisible group over R, or a truncated
p-divisible group of level ¢ > 1 over R. Let Gy = Spec R/pR Xspec g G and let Gép ) denote its pullback
along the Frobenius map ¢ : R/pR — R/pR, and let F : Gy — G(()p ) denote the relative Frobenius map.
Proposition 3.1.5 implies that Go[F| = ker(F) C Gy[p] is a finite flat group scheme over Spec R/pR. It follows
that the rank of Gy[F] is a locally constant function on Spec R/pR. We will say that G has dimension d if
the Go[F] has rank p? over R/pR.

Warning 3.1.10. Let G be a p-divisible group (or a truncated p-divisible group of level ¢ > 1) over a
commutative ring R. If p is invertible in R, then the dimension of G is not uniquely determined: according
to our definition, G has dimension d for every integer d > 0.

We will need the following converse of Proposition 3.1.4:

Theorem 3.1.11 (Grothendieck). Let k be a perfect field of characteristic p > 0, and let R be a complete
local Noetherian ring with residue field k. Let G be a truncated p-divisible group of height n and level t over
R. Then there erists a p-divisible group H over R and an isomorphism G ~ Hp']

For a proof, we refer the reader to [11].

3.2 Group Schemes of Alternating Maps

Let G be an abelian group and BG its classifying space. We have canonical isomorphisms
H,(BG;Z)~G  Hy(BG;Z)~ N\G.
If A is another abelian group, the universal coefficient theorem gives an exact sequence
0 — Ext'(G, A) — H%(BG; A) 5 Hom(A2G, A) — 0. (1)
Here HZ(G; A) can be interpreted as the set of isomorphism classes of central extensions

03A->G—=G—=0

and the map [ assigns to every such extension the associated commutator pairing G x G — A. From this
description, it is obvious that the kernel of 5 can be identified with the set Extl(G7 A) of isomorphism classes
of extensions of G by A in the category of abelian groups. However, the exactness of the sequence 1 on the
right is more subtle: it depends crucially on the vanishing of the group Ext*(G, A).

If we work in the setting of group schemes rather than ordinary groups, the analogue of the sequence (1)
need not be exact. For example, let k£ be a field of characteristic 2, and let as denote the group scheme over
k representing the functor ag(A) = {x € A : 22 = 0} (regarded as a group with respect to addition). Then
there is an alternating bilinear map

b: Q2 XSpeck 2 — Gm7
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given on points by the formula
(z,y) = 14 zy.

However, we will see below that b cannot arise as the commutator pairing for any central extension
0—-G,, >0y > ay—0
(see Example 3.2.7).

Definition 3.2.1. Let R be a commutative ring, and let CAlgp denote the category of commutative R-
algebras. Let G' be a commutative group scheme over R and let ¢ : G Xgpec G — Gy, be a map of R-schemes.
If Ain CAlgp and we are given points x,y € G(A), we let ¢(z,y) € G, (A) = A* denote the image of (z,y)
under c¢. We say that c is:

o bilinear if c(z,y + z) = c(z,y)c(x, 2) and c(z + vy, z) = c(z, 2)c(y, z) for all x,y,z € G(A).

e skew-symmetric if c is bilinear and c(z,y) = c(y,z) ! for all z,y € G(A)).

o a 2-cocycle if c(x,y)c(x + vy, 2) = c(x,y + 2)c(y, z) for all x,y € G(A).

e a symmetric 2-cocycle if it is a 2-cocycle and ¢(z,y) = ¢(y, z) for all z,y € G(A).

For each A € CAlgp, we let G4 denote the fiber product G Xgpec r Spec A, regarded as a group scheme
over A. We let CoCycq(A) denote the set of all 2-cocycles ¢ : G4 x G4 — Gy, CoCyc(A) the set of

all symmetric 2-cocycles ¢ : G4 Xgpeca G4 — Gy, and Skewg)(A) the set of all skew-symmetric maps
b: Ga Xgpeca Ga — Gy,. We regard CoCyc, CoCycgy, and Skewg)
category of sets.

If G is a finite flat group scheme over R, then each of these functors is representable by an affine scheme of
finite presentation over R (they can be described as a closed subschemes of the affine scheme parametrizing
all maps from ¢ : G Xgpec G = Gy,). The collection of 2-cocycles (symmetric 2-cocycles, alternating maps)

as functors from CAlgp to the

is closed under multiplication, so that we can regard CoCyc, CoCycg, and Skewg) as commutative group
schemes over R.

Every 2-cocycle ¢ : G Xgpec R G — Gy, determines an alternating bilinear map b : G Xgpec R G = G,
given on A-valued points by the formula b(x,y) = c(z,y)c(y, #)~L. Note that b(x,y) is trivial if and only if
c is symmetric. We therefore have an exact sequence of group-valued functors

0 — CoCycg — CoCycq — Skewg) .
Notation 3.2.2. Let G be a finite flat commutative group scheme over a commutative ring R. For every
A € CAlgp, we let GS’;(A) denote the set of all morphisms of schemes G4 — G,,,. Then A — Gg’;(A) is
a functor from CAlg, to the category of sets. Note that Gﬁ is representable by a group scheme over R.
Every map of schemes A : G — G, determines a symmetric 2-cocycle ¢ : G Xgpec G — Gy, given on points
by
c(z,y) = Mz +y) — M) — A(y).

This construction determines a map of functors GS — CoCyct,. The kernel of this map is the Cartier dual
D(G) of G: that is, the finite flat group scheme parametrizing group homomorphisms from G into Gy,,.

Proposition 3.2.3. Let G be a finite flat commutative group scheme over a commutative ring R. Then the
complez of group schemes

0 — D(G) = GY — CoCycy — 0
is exact for the fppf topology.
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Proof. The exactness of the sequence
0— D(G) = GY — CoCyc?

is clear. To prove the exactness on the right, it will suffice to show that every symmetric 2-cocycle c :
G Xgpec R G —+ Gy, arises from a map A : G — Gy, at least locally in the fppf topology. Let G denote the

product G x G,,,, and equip G with the structure of a group scheme via the formula
(@,y)(@",y) = (z2’, yy'c(z, 2")).
We have a sequence of group schemes
05Gn—=G5G—0

which is exact (even as a sequence of presheaves). Since ¢ is a symmetric 2-cocycle, G is a commutative group
scheme. We can think of G as the space of nonzero sections of a line bundle £ over G. Write G = Spec A4,
so that £ determines an invertible A-module M. The group structure on G determines a comultiplication
M — M ®g M, which determines a commutative ring structure on the R-linear dual M"Y of M. Unwinding
the definitions, we see that the affine scheme Spec MV parametrizes splittings of the sequence

0-5G,, -G5G 0.

Since MV is faithfully flat over R, we deduce that this sequence splits locally for the fppf topology. We may
therefore assume (after changing R if necessary) that there is a map of group schemes ¢ : G — G such that
mo ¢ =idg. Then we can write ¢ = idg X\ for some map A : G — G, which clearly satisfies

A(@) + Ay) + ez, y) = Az +y).
O

Corollary 3.2.4. Let G be a finite flat commutative group scheme over a commutative ring R. Then
CoCycg is a smooth affine group scheme over R.

Proof. The assertion is local on R; we may therefore assume that G = Spec A where A is a finite free
R-module. Write A ~ R™. Then G can be identified with an open subscheme of the affine space A™
of dimension m over R. In particular, Gﬁ is a smooth R-scheme. Proposition 3.2.3 implies that the map
GY — CoCycy, is faithfully flat. The group scheme G is flat over R, so that CoCycS, is likewise flat over
R.

The scheme CoCycg is also of finite presentation over R. Consequently, to verify its smoothness, we may
reduce to the case where R is an algebraically closed field k. Then CoCycg; is an affine group scheme over
K, which is smooth if and only if it is reduced. Because the map G,Cfl — CoCycy, is faithfully flat, it suffices
to check that GS is reduced, which follows immediately from the fact that GS is smooth over . O
Definition 3.2.5. Let GG be a finite flat commutative group scheme over a commutative ring R. We let Altg )
denote the quotient of CoCycq by the subgroup CoCyc¢ (in the category of fppf sheaves on CAlgpy). Since
CoCycy; is a smooth group scheme, we can regard Altg)
since CoCycy, is a closed subgroup of CoCycg).

as an algebraic space over R (which is separated,

In the situation of Definition 3.2.5, the exact sequence

0 — CoCycg; — CoCycy — Skew'?)

(2)

induces a monomorphism Altg) — Skewg). In particular, we see that the map Alt;’ — Skewg)

is quasi-

finite and therefore quasi-affine. It follows that Altg ) is representable by a quasi-affine scheme over R.
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Proposition 3.2.6. Let G be a finite flat group scheme over a commutative ring R. If there exists an odd

integer n such that multiplication by n annihilates G, then the map Alt(GQ) — Skewg) s an isomorphism.

Proof. We wish to prove that the sequence
0 — CoCycg — CoCycen — Skewg) —0
is exact. In fact, we will prove that is exact as a sequence of presheaves: that is, that the sequence of groups
0 = CoCycl (A) = CoCycq(A) — Skew? (A) = 0

is exact for every R-algebra A. Replacing R by A, we are reduced to proving that for every alternating bilinear
map b : G Xgpec r G — Gy, has the form b(x,y) = c(z, y)c(y, z) ", for some 2-cocycle ¢ : G Xgpec R G — G-
Write n = 2m — 1 for some integer m, and define ¢ by the formula c¢(z,y) = b(x, my). Since ¢ is bilinear, it
is a 2-cocycle. We now compute

c(z,y)e(y, )" = b(x, my)b(y, mz) " = b(x, my)b(y, =)™ = b(z, my)b(z,y)™ = b(z,2my) = b(x,y).
O

Example 3.2.7. Let R be a commutative ring in which 2 = 0 and let G = a3 be the finite flat group
scheme over k given by the functor G(A) = {x € A : 22 = 0} (regarded as a group under addition). Then

Skewg) is isomorphic to the additive group G,, where the isomorphism carries a scalar A € G,(A) to the
skew-symmetric map

GA XSpec A GA — Ga
given by (z,y) — 1+ Axy. However, the group scheme Altg) is trivial. To prove this, it will suffice to show
that the map CoCycg: — CoCycq is an isomorphism of group schemes. Let A € CAlgy and let ¢ by an
A-point of CoCycg. Write G4 = Spec A[z]/(z?), so that we can identify ¢ with an invertible element c(x,y)
of the ring A[x,y]/(2?,y?) satisfying the equation

c@ye(z+y,z) = clr,y+2)c(y,2) (2)
Write ¢(z,y) = Ao + A1z + Aoy + Aszy. Comparing the coefficients of x in (2), we obtain
AoA1 + A1Ao = Ao

Since \g is invertible, we deduce that A\; = 0. Similarly, comparing the coefficients of z in 2, we obtain
Ao = 0. It follows that the cocycle ¢ is symmetric.

Remark 3.2.8. The construction G — Skewg) is contravariantly functorial in G. Moreover, for every map

q : G — G’ of finite flat commutative group schemes over R, the induced map Skewg,) — Skewg) carries

Altg,) into Altg). If ¢ is faithfully flat, we can say a bit more: the diagram

ALZ) — > ALt

L

Skewg/) —_— Skewg)

is a pullback square. To prove this, we must verify the following:

() Suppose that b : G' Xgpec R G' = Gy, is a skew-symmetric bilinear map and that the induced map
b: G Xspec R G = Gy, is the commutator pairing associated to a central extension

O%Gm%é%G%O.

Then, locally for the fppf topology, the map by has the same property.
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To prove (x), set G” = ker(q) and let G" denote the fiber product G x¢ G”, so that we have a central
extension _
0—-G,—=>G" =G —0.

Since the pairing b vanishes on G”, this extension is abelian. Passing to an fppf covering of R, we may
suppose that this sequence splits (see the proof of Proposition 3.2.3). A choice of splitting gives a closed
embedding of group schemes ¢ : G’ — G. For z € G’ (A), y € G(A), we have

P(x)go(z) 'y = blz,y) =1,

where y denotes the image of § in G(A). It follows that the image of ¢ is a central subgroup of G. We then
have a central extension _
0— G, = G/o(G") — G — 0,

whose commutator pairing is given by bg.
We now generalize the above discussion to multilinear functions of several variables.

Definition 3.2.9. Let R be a commutative ring and G a finite flat commutative group scheme over R. For
each integer d > 1, we let G denote the dth power of G in the category of R-schemes. We will say that
amap b: G* = G,, is skew-symmetric if it is multilinear and, for every commutative R-algebra A, every
tuple of points z1,...,24 € G(A), and every pair 1 < ¢ < d, we have

b(.’L‘l, ey (L‘d) = b(ﬂ?l, ey L1 T 1, Ly T2y v - - 7.’L‘d)_1 S Gm(A)

For each A € CAlgp, we let Skew(él)(A) denote the set of all skew-symmetric maps G4 — G,,. We

regard Skewg) as a functor from CAlgy to the category of abelian groups. It is easy to see that Skewgl ) is
representable by an affine group scheme of finite presentation over R.

Notation 3.2.10. Let R be a commutative ring, let X be a finite flat R-scheme, and let Y be an arbitrary
R-scheme. We let Y denote the Weil restriction of X Xspec R Y along the projection map X — Spec R.
That is, YX denotes the functor CAlg, — Set given by

Y*(A) = Hom(X4,Y),

where the Hom-set on the left hand side is computed in the category of R-schemes. This construction has
the following properties:

(a) IfY is affine, then Y is representable by an affine R-scheme.
(b) If Y is quasi-affine, then YX is representable by a quasi-affine R-scheme.
(¢) In cases (a) or (b), if Y is of finite presentation over R, then so is Y.

Construction 3.2.11. Let R be a commutative ring and let G be a finite flat commutative group scheme
d 2 | —

over R. For each integer d > 2, we have a canonical isomorphism Gg o~ (Gg )Gd * which restricts to a

closed immersion Skew(Gd ) o (Skewg ))Gd_g. We let Alt(éi) denote the fiber product

(2)\Ggi—2 (d)
(Altc)) G

X (Skewg) )Gd—Z Skew

If d = 1, we simply set Alt(él) = Skew((‘;i).

Remark 3.2.12. In the situation of Construction 3.2.11, Altg) is a quasi-affine group scheme over R
equipped with a quasi-finite monomorphism Alt(él) — Skew(g). Note that Skewg) is a closed subscheme of
GS[‘, and therefore of finite type over R. It follows that Alt(g) is also of finite type over R.
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Remark 3.2.13. The isomorphism GS' ~ (G,C,f)Gd_2 depends on a choice of a pair of elements of the set

{1,...,d}. However, the subscheme Altgi) of Skew(éi) given in Construction 3.2.11 is independent of this
choice.

Remark 3.2.14. When d = 1, we have Altg) o~ Skowg) ~ D(G), where D(G) denotes the Cartier dual
group scheme of G.

Remark 3.2.15. When d = 2, the group scheme Alt(g) of Construction 3.2.11 agrees with the group scheme
ALY introduced in Definition 3.2.1.

Remark 3.2.16. Suppose that the finite flat group scheme G is annihilated by multiplication by n, for some

odd integer n. Using Proposition 3.2.6, we see that the map Altg) — Skewg ) is an isomorphism.

Example 3.2.17. Let G be a finite flat commutative group scheme over R which is annihilated by some

(4)
G

odd number n. Then the monomorphism Alt(g ) < Skew'? is an isomorphism; this follows immediately from

Proposition 3.2.6.

We conclude this section by analyzing the behavior of the construction G — Alt(Gd) with respect to

products. First, we need to introduce a bit of notation.

Definition 3.2.18. Let Gy and G; be finite flat commutative group schemes over a commutative ring R,
and let dy and d; be nonnegative integers. For every R-algebra A, we let Skewgé)”éll)(A) denote the set of
all maps of A-schemes

(GO)i0 X Spec A (Gl)il = G,

which are multilinear and skew-symmetric in each variable. We regard the construction A — SkeW(Gdg”gll) (A)

as a functor from CAlgp to the category of abelian groups, which we will denote by Skewggﬁ’gll). Note that

since Gy and G; are finite and flat over R, the functor Skewgf’gll) is representable by an affine scheme of

finite presentation over R.
There are evident closed immersions

(Skew(P*)) %1 = Skew o d) s (Skew()) ",
We let Altgl(?”gll) denote the fiber product

(ALU)GL 4y Skew $0:01) o (AL,

d,
(Skew(gg))c’l (Skew(y1)%0

Construction 3.2.19. Let Gy and G; be finite flat commutative group schemes over a commutative ring
R, and let G = Gy Xgpec g G1, which we also regard as a commutative group scheme over R. Let dy,d; > 0

be nonnegative integers, and let d = dy + d;. The inclusion maps Gy — G < G induce a closed immersion

VE Ggo X Spec R G"li1 — G¢. Composition with j induces a map of R-schemes Ydo,ds ° Skewgl) — Skewgg”éll).

Proposition 3.2.20. Let Gy and Gy be finite flat commutative group schemes over a commutative Ting R,
and let d be a positive integer. Then the maps va,,q4, constructed above induce an isomorphism

v Skewg) — H Skewgé’,’éll)
d=do+d;

in the category of R-schemes. Moreover, v restricts to an isomorphism

Al — I1 Alt((;l;’;gll).
d=do+dy
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Proof. Tt is easy to see that ~ is an isomorphism which carries Alt(éi ) into the product [[;_g 1, Altgj;”éll)

7d1)).

(which we will identify with a closed subscheme of the product [[;_; , 4, Skevvg;’)(;1 To complete the

proof, it will suffice to show that if A € CAlgy and b is an A-valued point of Skew(g) such that vq4,.4, (b) €
Alt(gg:éll) (A) for all dy,dy with dy + dy = d, then b € Alt(Gd ) (A). We may assume without loss of generality

that A = R and d = 2. Since composition with the projection map G — Gq carries Altgg to Altg), we may
(after modifying b by a point in the image of this map) assume that v2,0(b) = 1. Similarly, we may assume
v0,2(b) = 1. It will therefore suffice to verify the following:

(¥) Let b : G Xgpecr G = Gy, be a skew-symmetric bilinear map which vanishes on Gy Xgpec  Go and
G1 Xspec R G1- Then b arises as the commutator pairing of a central extension

OHGm%CNJ%GHO.

To prove this, we take G to be the product Go Xspec B G1 Xspec B Gm, equipped with the group structure
given on points by the formula

(z,y,t) (2", 1) = (x + 2’y + 9/, t'b(x,y))).
]

Remark 3.2.21. Let R be a commutative ring, and let G denote the commutative group scheme over R
associated to the finite abelian group Z /nZ. Then every central extension

0—>Gm—>(~¥—>G—>O.

is commutative. It follows that the group scheme Alt(g ) is trivial for d > 2. More generally, if H is a finite
flat group scheme over R, we have canonical isomorphisms

A ifd=0
Al = A D] ifd=1
0 if d > 2,

where Altg)[n] denotes the subscheme of n-torsion points of Altg?/). Consequently, if H is annihilated by
n, we Proposition 3.2.20 supplies isomorphisms Proposition 3.2.20 supplies isomorphisms

d d— .
Alt(d) ~ Altgq) XSpec R Altgq b ifd > 2.
@specnll D(H) XSpec R Hn ifd=1.

3.3 The Case of a Field

In this section, we will study the construction G — Alt(® (G) in the case where G is a finite flat group scheme
over a perfect field k of characteristic p > 0. Our main result is conveniently stated using the language of
Dieudonne modules:

Theorem 3.3.1. Let k be a perfect field of characteristic p > 0 and let G be a truncated p-divisible group
over k of height n, level t, and dimension 1. Write G = Spec HY and write Alt(g) = Spec A for some Hopf
algebras H and A over k. Then there is a surjective map of Dieudonne mdoules

DM, (H)® DM (H)®--- @ DM, (H) — DM, (A),

which induces an isomorphism
AW () () DM (H) — DM (A)

of modules over W (k) /p'W (k).
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From Theorem 3.3.1, we immediately deduce the following special case of Theorem 3.5.1:

Corollary 3.3.2. Let k be a field, and let G be a truncated p-divisible group over k of height n, level t, and
dimension 1. Then Alt(g) s a truncated p-divisible group of height (Z), level t, and dimension (”gl).

Proof. Without loss of generality, we may assume that x is algebraically closed. We proceed by induction
on n. Note that if d = 1, then Altg) is the Cartier dual of GG, and the result is obvious. We will therefore
assume that d > 2.

Suppose first that G is disconnected. Then (since & is algebraically closed) we can write G = G’ Xgpecx
Z /p' Z, where Z /p' Z denotes the constant group scheme associated to the cyclic group Z /p* Z. Since d > 2,

Remark 3.2.21 supplies an isomorphism Altgl) ~ Altgl,) X Spec i Altgifl). From the inductive hypothesis, we

deduce that Altg,) and Alt(gfl) are truncated p-divisible groups of heights (";1) and (Z:}), level t, and

dimensions (";2) and (Z:f) It follows that Altg ) is a truncated p-divisible group of height (";1) + (Zj) =
(Z), level ¢, and dimension ("d_z) + (Z:f) = (";1).

We now treat the case where G is connected. If k has characteristic different from p, then G ~ 0 and there
is nothing to prove. We may therefore assume that » has characteristic p. Write G = Spec H" for some Hopf
algebra H over k, and let M = DM, (H) be its Dieudonne module. Then M is a free W (x)/p'W (k)-module
of rank n. Theorem 3.3.1 implies that Alt(g) = Spec A, with DM (A) ~ A%(R)/ptW(RM, so that DM, (A) is

a free W (k) /p'W (k)-module of rank (7). If ¢ > 2, this implies that Alt(él) is a truncated p-divisible group of
height (Z) and level ¢ (Proposition 3.1.5). Moreover, to show that it has dimension ("d_l), we may replace
G by G[p] and thereby reduce to the case where t = 1.

Since G has dimension 1, the quotient M/V M is a 1-dimensional vector space over x. Choose an
element * € M having nonzero image in M/VM. Let m be the largest integer for which the elements
z,Vx,...,V™ lz € M are linearly independent, and let M’ C M be the subspace they span. Note that
since we can write V™2 as a linear combination of the elements Vz for 0 < i < m, the subspace M’ C M
is closed under the action of V. We claim that M’ = M (so that m = dim, (M) = n). We will prove that
VeM C M’ for all a > 0, using descending induction on a. Since G is connected, the action of V on M is
locally nilpotent, hence nilpotent (since M is finite-dimensional), so that VM = 0 C M’ for a > 0. Assume
now that @ > 0 and that V*M C M’; we wish to prove that V~'M C M’. Fix y € M; we will show that
Vae=ly € M'. Since the image of x generates M/V M, we can write y = cx + V' for some 3’ € M and some
scalar ¢ € k. Then Vo ly = Ve lz 4 V. Since V* 1z and V%' belong to M, so does V¢~ 1y.

We next claim that V"z = 0. Suppose otherwise, write V"z =3 ., ¢;Vix, and let k be the smallest
integer such that ¢, # 0. Let N C M be the linear subspace spanned by Viz for £ < i < n. Then N is
stable under the action of V. Moreover, if y =3, ., a;V'z, then we have

Vy =cro Han_1)VFx + Z (cio™ an—1) + ¢ Hai1))Viz.

k<i<n

Suppose that Vy = 0. Examining the coefficient of V*x in the above expression, we deduce that a,_; = 0.
Examining the coefficient of V' for k < i < n, we deduce that a;_; = 0. It follows that y = 0: that is, the
restriction of V' to N is injective. Since V is locally nilpotent on M, we conclude that N = 0 and obtain a
contradiction.

Since V™z = 0, the element V" !z is a nonzero element of ker(V). Since G is 1-dimensional, ker(V) is a
1-dimensional vector space over «, and is therefore spanned by V" ~'z. In particular, we have Fz = A\V" 1z
for some scalar \ € x. Note that Fz spans the image of F' (since F annihilates Viz for i > 0). The equality
im(F') = ker(V) (Proposition 3.1.5) implies that X is nonzero.

For each subset I = {i; < iy < ... <ig} C{0,...,n— 1}, let VIz denote the image of Viiz A Vizz A
- AViag in DM, (A) ~ A2M, so that the elements V/x form a basis for DM, (A). We then have

V{i1+1<...<id+1}x if id <n

0 otherwise.

V(Vig) = {
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:I:)\V{i271<i3*1<~~<id71<n71} if ’il =0

0 otherwise.

F(Vig) = {

It follows that the kernel of V on DM (A) has dimension (}~}) over x, and the kernel of F' on DM (A) has

dimension ("51). We have
n—1 n—1 n .
(d_l) + ( . > = (d> — dim,, DM, (4),

so that Spec A is a truncated p-divisible group of height (Z) and level 1. The dimension of Spec A is given

by dim, DM (A)[F] = (","). O

Corollary 3.3.3. Let Gg be a smooth connected 1-dimensional formal group over a perfect field k of char-
acteristic p > 0, and let X = K(Z /p* Z,d). Then we have a canonical isomorphism

Spec K (n)o(X) ~ Altg?) ']

of group schemes over k.

Proof. Combine Theorem 3.3.1 with Theorem 2.4.10. O

The proof of Theorem 3.3.1 will occupy our attention for the rest of this section. Our strategy is roughly
as follows. First, let M = DM (G) and write Alt(cff ) = Spec A. We will show by explicit construction that
the exterior power /\‘VIV( K) /Pt W (1) admits the structure of a Dieudonne module, and construct a surjective map

DM, (A) — /\%V(R)/ptw(m). The main step of the proof is to show that DM (A) is an Artinian W (x)-module
having length < t(Z). We can rephrase this assertion as follows:
Proposition 3.3.4. Let k be a field of characteristic p > 0 and let G be a truncated p-divisible group of
height n, level t, and dimension 1 over k. For each d > 1, Alt(g) is a finite flat group scheme over k rank
S pt(g) .

We first prove Proposition 3.3.4 in the simplest nontrivial case.

Lemma 3.3.5. Let k be a field of characteristic p > 0 and let G be a connected truncated p-divisible group
of height n, level 1, and dimension 1 over k. For each d > 1, Alt(g) is a finite flat group scheme over k rank
Proof. We may assume without loss of generality that x is perfect. Write G = Spec HY for some Hopf
algebra H over k, and let M = DM, (H) denote the Dieudonne module of H. The proof of Corollary 3.3.2
shows that there exists an element = € M such that the elements x, Vz,..., V" 'z form a basis for M as a

vector space over k. Moreover, we have V"z = 0, and Fz = AV" !z for some nonzero scalar \ € .
Let X denote the scheme parametrizing multilinear maps G* — Gy, so that X ~ Spec H®4 (here H Xd

denotes the dth tensor power of H, with respect to the tensor product X of §1.1. Write Alt(g ) = Spec A for

some Hopf algebra A over k. We have a monomorphism of group schemes Alt(g) — X, which induces an
epimorphism of Hopf algebras H®¥¢ — A, hence a surjection of Dieudonne modules

p: MRM®--- @M — DM, (A)
(Proposition 1.4.14), which we can identify with a xk-multilinear map

0:MxMx---x M- DM,(A4).

Since Alt(él) - Skew(g ), the map 6 is antisymmetric in its arguments.
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Let N C DM, (A) be the linear subspace spanned by elements of the form §(Viiz, Vi2x, ... Viiz), where
0<1i <ig<...<ig <n. Using the formulas

. . O(Virtle, ... Viatly) ifig<n—1
VO(Vite, Vizg, ... Viig) = vtz 7) e <n
0 ifig=n—1.
0 if iy >0

FO(V 2, Vg, Vi) == : '
(Vi Vi ?) {(—1)‘1—%9(%—1%...,Vld—lx,V"‘lfc) if iy = 0.

we deduce that N is a D.-submodule of DM (A). By construction, N has dimension < (7)) as a vector
space over k. Consequently, to show that Alt(él) has rank < p(g), it will suffice to show that N = DM, (A).

Because p is surjective, DM (A) is generated by the image of 8 as a D;-module. It is therefore generated
as a D,-module by elements of the form §(Vix, ..., Viig). It will therefore suffice to show that each of these
elements belongs to N. If the integers i1, ...,iq are distinct, this follows from the definition of N (and the
antisymmetry of #). We will complete the proof by showing that 6(Viiz, ..., Viiz) = 0 whenever i; = i
for j # j'. Using the antisymmetry of 6, we may assume that i; = i5. The vanishing of §(Viiz, ..., Viig)
follows by antisymmetry if p # 2; let us therefore assume that p = 2.

By construction, the map G% Xgpec Altg ) 4 G,, induces a map

v G2 Xgpeen AL — ALLE)

Write Altg) = Spec B, so that the above construction yields a s-linear map 6’ : M x M — DM, (B). Then
v determines a map of Hopf algebras
BXH®2 5 4,

hence a x-multilinear map
0" : DMy (B) x M x --- x M — DM, (A).
satisfying
a(yh cee 7yd) = ell(el(yla 92)79& s ayd)'
Consequently, to prove that §(Viiz, ..., Viig) = 0 when iy = ig, it will suffice to prove that 6'(Viz, Vizg) =
0. We may therefore reduce to the case where d = 2.

Using Corollary 1.4.15, we see that the epimorphism of Dieudonne modules DM, (A) — DMy (A)/N
induces an epimorphism of Hopf algebras A — C', which classifies a bilinear map of group schemes

w:Ge XSpec C Gec — G,

over C. We will complete the proof by showing that yu is trivial.
For 0 < m < n, let M(m) denote the r-linear subspace of M spanned by {Viz},,<;<n, so that

0=M(n) C M(n—1)C---C M(0) = M.

Using Corollary 1.4.15, we can write M (m) as DM (H(m)) for some Hopf subalgebra H(m), so that
Spec H(m)V is a closed subgroup G(m) C G. Let p,, denote the restriction of 4 to the product G(m)c Xspec ¢
G¢. We will prove that each of the maps p,, vanishes, using descending induction on m. If m = n, the
result is obvious. To carry out the inductive step, let us suppose that p,,11 vanishes. We can identify p,,
with a trilinear map of group schemes over x

G(m) X Spec k G XSpec k SpecC — Gm’

which is classified by a map of Hopf algebras H(m)X H — C. To show that this map is trivial, it will suffice
to show that the composite map

M(m) x M < M x M % DM, (A) — DM_.(A)/N
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vanishes. That is, it suffices to show that §(Vz,V/x) € N whenever i > m. This follows from the inductive
hypothesis if 4 > m, and follows from the definition of N if i # j. We are therefore reduced to proving that
O(V™z, V™) = 0. For this, it suffices to show that the composite map

M(m) x M(m) < M x M % DM, (A) — DM (A)/N

vanishes: that is, that the map p vanishes when restricted to G(m)c Xspecc G(M)c.
Let ¢/ denote the restriction of p to G(m)c Xspecc G(m)c. We have an exact sequence of finite flat
group schemes over C'

0= G(m+1)c — Gim)e — (G(m)/G(m+1))c — 0.
Since p' vanishes on G(m + 1)¢ Xgpec ¢ G(m)¢, it descends to a skew-symmetric pairing
p"(G(m)/G(m +1))c Xspecc (G(m)/G(m +1))c = G,
classifies by a map of group schemes Spec C' — Skewg()m) /G (mt1)" Using Remark 3.2.8, we see that this map

factors through the subscheme Altg()m) /G (mt1)" But this map is automatically trivial, because the group

scheme Altg()m)/G(m+l) is trivial (this follows from Example 3.2.7, since G(m)/G(m + 1) is isomorphic to
the group scheme oy = ker(F : G, — G,) ). O

We now discuss some general principles which will allow us to reduce Proposition 3.3.4 to Lemma 3.3.5.

Construction 3.3.6. Let G be a finite flat commutative group scheme over a commutative ring R. Let
n > 0 be an integer, and suppose that the map n : G — G factors as a composition

a4a 4 a,

where G’ is a finite flat group scheme over R, the map g is faithfully flat, and j is a closed immersion. Let
d > 1 be an integer. Given a-skew symmetric map b : G* = G,,, we can define a new skew-symmetric map
b : G'" — G,, by the formula

b (q(z1),q(wa),...,q(xq)) = b(x1,...,29)"

for all z1,...,24 € G(A), A € CAlgy. The well-definedness of b’ follows from the fact that ¢ is a surjection
for the fppf topology, and the observation that ¢(x;) = ¢(z}) implies that x; — «} is annihilated by n (so

that b(z1,...,2,)" = b(z1,...,2i—1, %}, Tit1, ..., 24)" for any multilinear b). The construction b — b is

functorial, and determines a map of schemes 1, : Skewg) — Skew(g,) .

Proposition 3.3.7. Let G be a finite flat group scheme over a commutative ring R and n > 0 an integer
satisfying the requirements of Construction 3.3.6, so that G fits into a short exact sequence

(Y N Y
where G' is the image of the map [n] : G — G as an fppf sheaf. Let d > 1 be an integer. Then:

(1) We have a short exact sequence
0 — Skew'?) 2 Skew®? 3 Skew'?,

where v is determined by the functoriality of the construction H Skewg}i) and o, s defined as in
Construction 3.3.6.

(2) The map 1y, restricts to a morphism B, : Alt(g) — Altgl,),
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(3) The exact sequence of (1) restricts to an exact sequence
0 — AltSD — Al{D 23 A

Proof. Since G — G” is an epimorphism of fppf sheaves, it is clear that the restriction map = : Skew((?,), —

Skew(él) is a monomorphism. Let b : G — G,, be a skew-symmetric map, and let
¢Ltaba
be the factorization appearing in Construction 3.3.6. We then have
(Yn 0 7)(0)(q(z1), - - q(za)) = () (z1,...,2a)"
(b)(nml, Xyeney Xg)
)

= y0)((joq)x1,x2,...,2q)
((u ]OQ)xlv ($2)7...,U(Id))

2

=

—_

since v o j = 0. Since ¢ is an fppf surjection, this proves that ¥, o~y is trivial.

To complete the proof of (1), it will suffice to show that the kernel of ,, is contained in the image of ~.
To this end, suppose we are given a skew-symmetric map b : G — G, such that ¢, (b) is trivial. Then for
each x1,...,x4 € G(A), we have

b((joq)x1,xa,...,24) =b(x1,22,...,2)" = (¥ub)(q(z1),...,q9(zq)) = 1.

Since the map ¢ is an fppf surjection, we deduce that

b(j(y), @2, ..., zq) =1

for all y € G'(A), xa,...,xq4 € G(A). It follows that the map b(z1,x2,...,24) depends only on the image of
z1 in G’(A). The same argument shows that b(x1,...,z4) depends only on the image of each x; in G'(A):
that is, b is given by the composition
Gl G G

for some map b'. Since b is skew-symmetric, it is easy to see (using the faithful flatness of the map G — G”)
that &’ is also skew-symmetric, so that b = v(d’) lies in the image of ~.

We now prove (2). Suppose that R’ € CAlgy and that b € Al (R’), which we will identify with a
subset of SkeW(Gd) (A). We wish to show that v, (b) € Alt(d)(R’) - Skewgl,)(R’). Replacing R by R/, we
may assume that R = R'. If d = 1, there is nothing to prove; let us therefore assume that d > 1. The

(2)

skew- symmetric map 9, (b) determines a map G'¥~? — Skew ./, and we wish to show that this map factors

through Alt . Since the map j : G — G’, it will suffice to show that the composite map
G972 & G'2 - Skew'?)

factors through Altg,). By construction, this map is given by the composition

G942 = Skew® 3 Skew®,

where ¢/, is obtained by applying Construction 3.3.6 in the case d = 2. We are therefore reduced to proving
(2) in the case d = 2.
Suppose that b : G Xgpec G — Gy, is an alternating bilinear map which arises as the commutator pairing
of a central extension _
0-G,—-G—=G—0.
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Let us regard p,, as a closed subgroup of é, and let G denote the quotient G /in- We have another central
extension

0-G,—G—=G—=0,

whose commutator pairing is given by b". Let K denote the kernel of the multiplication map n : G — G,
and let K denote the inverse image K xg G. For z,y € K(A), we have b(x,y)" = b(nz,y) = b(0,y) = 1. It
follows that K is an abelian extension of K by G,,. Passing to a finite flat covering of R, we may suppose
that this extension splits (as in the proof of Proposition 3.2.3). A choice of splitting gives a closed embedding
of group schemes ¢ : K — G. If z € K(A) and 5 € G(A), then we have

P(x)yp(x) "'y = b(x,y)" = b(nz,y) = b0,y) =1

where 3 € G(A) denotes the image of 7. It follows that the image of K is a central subgroup over G. Let
G’ denote the quotient G/¢(K). We then have a central extension

05Gn—G =G =0,

and a simple calculation shows that the commutator pairing of this extension coincides with 1, (b).
We now prove (3). Using (1) and (2), we are reduced to proving the following assertion:

(¥) Let R’ € CAlgpg. Then the inverse image of Alt((;i)(R’) - Skew(g)(R’) under the map ~ : Skew(g,), (R') —
Skew'® (R') is given by Alt'Y) (R') C Skew) (R').

Replacing R by R’, we may reduce to the case where R = R’. We may also assume d > 2 (otherwise there

is nothing to prove). Let by € Skewgl,), (R) and let b = ~y(by) € SkeW(Gd)(R), and assume that b € Alt(Gd)(R).
Note that b and by determine maps

¢: G2 5 Skew? gy G"? 5 SkewD)

Moreover, ¢ is given by the composition

G2 5 G142 2 Skew®) 3, Skew ),

where ~/ is the map given by composition with u. Since ¢ factors through Alt(Gz) and the map u is faithfully

flat, we conclude that v’ o ¢g factors through Altg) (see Remark 3.2.8). O

Proof of Proposition 3.3.4. We proceed by induction on t. Since G is a truncated p-divisible group of level
t, we have an exact sequence

0= Gl = cBap-1-0
Applying Proposition 3.3.7, we obtain a short exact sequence

d)

d d
0 — Al — Al — Al

The inductive hypothesis implies that Altgl[)pt,l] is a finite flat group scheme over s of rank < p(t’l)(z).

Consequently, to prove that Altg) is a finite flat group scheme of rank < pt(g)’ it will suffice to show that

Alt(éi[)p ] is a finite flat group scheme of rank < p(Z). Replacing G by G[p], we may reduce to the case where
t=1.

Without loss of generality, we may suppose that x is algebraically closed. We now proceed by induction
on the height of G. If G is connected, the desired result follows from Lemma 3.3.5. Otherwise, we can write
G =G X Z /pZ, where G’ has height n — 1 and Z /p Z denotes the constant group scheme over x associated
to the finite group Z /pZ. In this case, Remark 3.2.21 supplies an isomorphism

AL ~ ALY Xgpee w AL
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The inductive hypothesis implies that Altg,) and Altgfl) are finite flat group schemes over k of rank at
n—1 n—1

most p( ") and p(d—l), respectively. It follows that Alt(Gd) is a finite flat group scheme over k of rank at
most p(ngl)ﬂzj) =p(}), as desired. O

Lemma 3.3.8. Let G be a finite flat commutative group scheme over a commutative ring R, and suppose
that the map [2] : G — G factors as a composition

e AN

where G’ is a finite flat group scheme over R, q is faithfully flat, and j is a closed immersion. For eachd > 1,
the map s : Skewg) — Skewg) of Construction 3.3.6 factors through the closed subscheme Alt(g,) C Skewgf,).

Proof. Fix a skew-symmetric multilinear map b : G¢ — G,,, and let b’ : G’ — G,, be defined as in
Construction 3.3.6. We wish to prove that ' determines an R-point of Altgl,). If d = 1 there is nothing to
prove; let us therefore assume that d > 2. Let A € CAlgy and suppose we are given points zs,...,zq €
G'(A); we wish to show that the map
b'(e,0,23,...,24) : G’y Xspeca G4 = Gy,

determines an A-point of Skew(g,). The assertion is local on A with respect to the flat topology. We may
therefore suppose that x; = ¢(y;) for some A-points y; € G(A). Replacing R by A, we may suppose that
A = R. Replacing b by the map G Xgpec r G = Gy, given by (u,v) — b(u,v,ys,...,yq), we may reduce to
the case d = 2.

Let H = G Xgpec r G- We regard H as a group scheme, with the multiplication given on points by the
formula (z,t)(2',t') = (z + 2/, 1t'b(z, 2")). Let K = G[2] denote the kernel of g. We note that K is a central

subgroup of H. Let G denote the quotient H/K. We then have an exact sequence
035Gy -GG =0

which exhibits G as a central extension of G’ by G,,. A simple calculation shows that the commutator
pairing of this extension is given by ¥'. O

Proof of Theorem 8.3.1. Without loss of generality, we may assume that the field x is algebraically closed.
According to Theorem 3.1.11, there exists a p-divisible group G over k of height n and an isomorphism
G ~ GJ[p']. For each integer m, write G[p™]| = Spec H(m)" for some finite-dimensional Hopf algebra H(m)
over k, and let M denote the inverse limit l<i£1{DM+(H(m))}mZO. Then M is a left D,-module which is free
of rank n as a module over W (), and we can identify M with the quotient M /p*M.

We first claim the following: for every sequence of elements w1, ..., yq € M, the wedge product

Fyi NN Fyqg

is divisible by p?~! in /\gv(n)ﬂ' To prove this, we write G as the product of a connected p-divisible group Gy
with a constant p-divisible group (Q,, / Z,)?, so that we have a corresponding decomposition of D,-modules

M = My x W(k)*. Let z1,...,2, be the standard basis for W (k)% so that the action of F on W(k)* is
given by Fz; = pz;. The proof of Corollary 3.3.2 shows that there exists an element o € M /pM such

that o, Vo, .. ., Vn=a=lyy form a basis for Mo/pM, as a vector space over k. Let x be an element of
Mg representing xg, so that the elements x,Vz,..., V”*ilx form a basis for My over W (k). Then the
set S ={x,Va,...,V" %ty 21 ..., 2,} freely generates M as a W (k)-module. We may therefore assume

without loss of generality that y1,...,yq is a collection of distinct elements of S. Note F'y is divisible by p
for every element y € S — {z}, so that Fy; A ... A Fy, is divisible by p?~1.
Let ¢ : W(k) — W(k) denote the Frobenius map. It follows from the preceding argument that the
construction
YL A Ay p Ty A A Fyg
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determines a @-semilinear endomorphism of M. Similarly, the construction

YA Aya Vi A A Vg

determines a ¢~ !-semilinear automorphism of M. These endomorphisms evidently commute, and their

composition is the W(k)-linear map given by multiplication by p. It follows that these endomorphisms
determine the structure of a D,-module on the exterior power N = /\%V( M.

For each integer m > 0, let X (m) = Spec H(m)®? denote the scheme parametrizing multilinear maps
G[p™]¢ = G,,. Choose a Hopf algebra A(m) over x with DM (A(m)) ~ N/p™N. Using Corollary 1.4.15,
we see that the W (k)-multilinear map

U : M /p™M x -+ x M/p™M — N/p™N

%)

determines a multilinear map of Hopf algebras
H(m) @y - @, H(m) = A(m),

hence a map u,, : Spec A(m) — X(m). Since v is skew-symmetric, we can regard u,, as a map from
Spec A(m) to the closed subscheme Skewgfpm] C X(m).

For m > 0, multiplication by p induces an injective map M /p™M — M /p™T* M, hence a monomorphism
of Hopf algebras A(m) — A(m+1). The induced map of affine group schemes fits into a commutative diagram

Spec A(m + 1) SAES Skew(((;ifperl}
-

(4)

Spec A(m) —= > Skew g mi»

where 9, is defined as in Construction 3.3.6. When p = 2, it follows from Lemma 3.3.8 that the composite
map
Spec A(m + 1) — Spec A(m) — Skewg)

p]
factors through the closed subscheme Altg%pm] - Skew((gfpm}. In the case p > 2, the existence of this
factorization is automatic (since Altgfpm] = Skewg) [p™]; see Example 3.2.17). It follows that we may

identify wu,, with a map of group schemes from Spec A(d) to Altggpm].
To complete the proof, it will suffice to show that the map u; : Spec A(t) — Altgfpt] = Alt(cgl) is an

isomorphism. Note that /\%V(N) Jptw () 18 generated (as a module over W (x)) by the image of v;. Consequently,

v; induces a surjection of D,-modules

M®---@M — N/p'N,
and therefore an epimorphism of Hopf algebras H(t)®? — A(t). Tt follows that the map u; : Spec A(t) —
Alt(él) is a monomorphism of group schemes over . By construction, Spec A(t) is a finite flat group scheme
of rank pt(:) over k. Consequently, to prove that u; is an isomorphism, it will suffice to show that Altg) is

a finite flat group scheme of rank < pt(g), which follows from Proposition 3.3.4. O

3.4 Lubin-Tate Cohomology of Eilenberg-MacLane Spaces

Throughout this section, we fix a perfect field x of characteristic p > 0 and a smooth connected 1-dimensional
formal group Gy of height n < co over k. Let E denote Lubin-Tate spectrum corresponding to (x, Go), and

let K(n) denote the associated Morava K-theory. Corollary 3.3.3 asserts that for each d > 1, the Morava
K-theory K (n)oK(Z /p' Z,d) can be described as the ring of functions on the (affine) group scheme Alt(ci)) o]
Our goal in this section is to prove an analogous result for the Lubin-Tate spectrum E:
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Theorem 3.4.1. Let d > 1 and t > 0 be integers, and let X = K(Z /p' Z,d). Then E°(X) and E{(X) are

free modules of rank pt(:lL) over the Lubin-Tate ring R = moE ~ W (k)[[v1,...,vn_1]]. Let G = Spf E°(CP>)
denote formal group over R given by the universal deformation of Gg. Then we have a canonical isomorphism

Spec EJ(X) ~ Alt(éifp,]

t( ) '] s a finite flat group scheme of rank pt(g).

of group schemes over R. In particular, Al
Though Theorem 3.4.1 is a statement about homotopy theory, it has purely algebraic consequences:

Corollary 3.4.2. Let A be a complete local Noetherian ring with perfect residue field k, and let G4 be a

p-divisible group over A lifting Go. Then, for each t > 0, Altgl '] is a finite flat group scheme of rank p t()
over A.

Proof. Let R = myE. Since the formal group G = Spf E°(CP®) is a universal deformation of Gg, the
quotient map R — & lifts uniquely to a ring homomorphism R — A such that G4 ~ Spec A Xgpecr G. It

will therefore suffice to show that Altgfpt] is a finite flat group scheme of rank pt@) over R, which follows
immediately from Theorem 3.4.1. O

The first part of Theorem 3.4.1 is an immediate consequence of Theorem 2.4.10 together with the following
standard result:

Proposition 3.4.3. Let X be a space. Suppose that K(n)1X ~ 0 and that K(n)oX is a vector space of
dimension m < oo over k. Then:

(1) There is an equivalence of E-module spectra Ly E[X] ~ E™.
(2) There is an equivalence of E-module spectra EX ~ E™.

(3) The modules E§(X) and E°(X) are free of rank m over the Lubin-Tate ring R = moE, canonically
dual to one another, and we have EN(X) ~ 0 ~ E*(X) when i is odd.

(4) The canonical maps
k®pr B} (X) = K(n)oX  rogpEX)—= K0n)X
are isomorphisms.

Proof. Choose a basis x1, ...,z for K(n)yX as a vector space over k. According to Lemma 2.1.25, we can
lift these to classes Z1,...,Tm € E§(X) = mo(Lk ) E[X]). The choice of such elements determines a map
of E-module spectra 0 : E™ — L,y E[X]. After smashing over E with K(n), 6 reduces to a map

0o : K(n)™ = K(n) ®g LgnE[X] ~ K(n) ®g E[X] ~ K(n)[X].

By construction, 6y induces an isomorphism on homotopy groups, and is therefore an equivalence. Since
the domain and codomain of 6 are K(n)-local, we conclude that 6 is also an equivalence. This proves (1).

Moreover, it shows that the elements T, ..., Ty, freely generate E}(X) as a module over R, so that the
reduction map k ®p EJ(X) — K(n)oX is an isomorphism. This proves half of (3) and (4); the remaining
assertions now follow by duality. O

Notation 3.4.4. Let X be a space satisfying the hypotheses of Proposition 3.4.3. We let ESpec(X) denote
the 7y E-scheme Spec E%(X).
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Remark 3.4.5. Let X and Y be spaces satisfying the hypotheses of Proposition 3.4.3. It follows from
Remark 2.1.22 that X x Y also satisfies the hypotheses of Proposition 3.4.3. In particular, E°(X), E°(Y),
and E%(X x Y) are free modules of finite rank over R = moE. Moreover, the canonical map

E°(X)®r E°(Y) = E%(X xY)

induces an isomorphism after tensoring with the residue field x of R, and is therefore an isomorphism of
R-modules. It follows that the canonical map

ESpec(X x Y) = ESpec X Xgpec g ESpecY
is an isomorphism of R-schemes.

Now suppose that X is a space satisfying the hypotheses of Proposition 3.4.3, and that X is equipped
with a multiplication map m : X x X — X endowing it with the structure of a commutative group object
in the homotopy category of spaces. The construction Y +— ESpecY commutes with products, we conclude
that ESpec X has the structure of a commutative group object in the category of R-schemes: that is, it is a
finite flat commutative group scheme over X.

Example 3.4.6. Let G = Spf E°(CP*) be the universal deformation of Gy, regarded as a formal group over
R = moE. The canonical map K(Z /ptZ,1) — CP* induces a map of R-schemes ESpec K(Z /ptZ,1) —
G[p']. This map is an isomorphism on special fibers (Proposition 2.4.4), and therefore an isomorphism (since
the domain and codomain and finite and flat over R).

Construction 3.4.7. Fix integers ¢ > 0 and d > 1, and consider the iterated cup product map
K(Z /p'Z,1)! — K(Z /p' Z,d).

Since K(Z /p'Z,1) and K(Z /p'Z,d) satisfy the hypotheses of Proposition 3.4.3 (see Theorem 2.4.10), we
obtain a map of R-schemes

c¢: (G[p']) (ESpec K(Z /p' Z,1))* — ESpec K (Z /p' Z,d).

Since the cup product is multilinear and skew-symmetric up to homotopy, the map ¢ has the same properties.
Passing to Cartier duals, we obtain a map of R-schemes

0: : Spec B K (Z /p' Z,d) — Skew() .
Proposition 3.4.8. Letd > 1 andt > 0 be integers. Then the map
0; : Spec B K (Z /p' Z,d) — Skew(s)

of Construction 3.4.7 factors through the subscheme Alt((gfpt] C Skewgqu introduced in Construction 3.2.11.

Proof. If p is odd, there is nothing to prove (Proposition 3.2.17). Assume therefore that p = 2, and consider
the map « : Spec E)} K(Z /p**' Z,d) — Spec E) K (Z /p Z, d) induces by the multiplication-by-p map

K(Z /p'Z,d) — K(Z [p"™ Z,d).

We have a commutative diagram of R-schemes

Spec B) K (Z [p'* Z,d) — Skew ) 1,

Y iwp

Spec By K(Z /p' Z,d) —— Skew(s)
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where 1), is defined as in Construction 3.3.6. Using Lemma 3.3.8, we deduce that the composite map

Spec By K (Z /p'* Z,d) % Spec E) K(Z [p' Z, d) — Skew ()

factors through Altg?pt]. To complete the proof, it will suffice to show the E) K (Z /p'™! Z, d) is faithfully flat
over By K(Z /p*Z,d). Using the fiber-by-fiber flatness criterion (Corollary 11.3.11 of [6]) and Proposition
3.4.3, we are reduced to proving that the map K (n)oK (Z /p'*' Z,d) — K(n)oK(Z /p' Z,d) is faithfully flat,
or equivalently that it induces a surjection of Dieudonne modules

DM, (K ()oK (Z /91 Z,d) = K(n)oK(Z [p' Z,d).
This follows immediately from Theorem 2.4.10. O

The final ingredient we will need for our proof of Theorem 3.4.1 is the following purely algebraic fact:

Proposition 3.4.9. Let R be a Noetherian local ring with mazimal ideal m and residue field k, and suppose
we are given a map of R-schemes f: X — 'Y satisfying the following conditions:

(a) The map X — Spec R is finite flat of rank r, for some integer r > 0.

(b) For every map from R to a field k, the fiber product Speck Xspecr Y is a finite flat k-scheme of rank
.

(¢) The map Y — Spec R is separated and of finite type.
(d) The map of closed fibers fo : Speck Xgpec R X — Speck Xgpec r Y 18 an isomorphism.
Then f is an isomorphism.

Proof. Conditions (b) and (¢) imply that Y is quasi-finite over Spec R. Using Zariski’s main theorem, we
deduce that there is a finite R-scheme Z = Spec R’ and an open immersion j : Y — Z. Condition (a) implies
that X = Spec A for some finite flat R-algebra A of rank r. Let ¢ = j o f be the resulting map from X to
Z, and let ¢ : R" — A be the corresponding map of R-algebras. Using (d), we see that the induced map
10 : Spec Kk Xgpec R X — SPEC K Xspec R 4 is an open immersion. Since both sides are finite over the field &, the
map 14 is also a closed immersion. Since ig is a closed immersion, ¢ induces a surjection R'/mR — A/mA.
Using Nakayama’s lemma, we deduce that ¢ is surjective: that is, the map i is a closed immersion. It follows
that f is a closed immersion.

Let x € Spec R be a point and let k& denote the residue field of R at x. Then f induces a closed immersion

fa : Speck Xspec R X — Speck Xgpec R Y.

Using (a) and (), we see that the domain and codomain of f, are finite flat k-schemes of the same rank. It
follows that f, is an isomorphism. It follows that the map f is a bijection at the level of topological spaces.

Let Oy denote the structure sheaf of Y, and let J C Oy denote the quasi-coherent ideal sheaf defining the
closed immersion f. Since f is bijective, every local section of J is nilpotent. Since Y is Noetherian, it follows
that J is a nilpotent ideal sheaf. Since (Y, Oy /J) ~ (X, Ox) is affine, we conclude that Y is affine, hence of
the form Spec B for some commutative ring B which is finitely generated over R. The closed immersion f
determines a surjective map of commutative rings B — A having nilpotent kernel I C B.

Since B is Noetherian, [ is finitely generated. It follows that each quotient I*/I**+1 is finitely generated
as an A-module, and therefore also as an R-module. Because [ is nilpotent, we conclude that B admits a
finite filtration by finitely generated R-modules, and is therefore finitely generated over R. We have an exact
sequence of R-modules

0—-I—-B—A—0.

Since A is projective as an R-module, this sequence splits. It follows that the quotient I/mI can be identified
with the kernel of the map kK ® g B — k ®r A. This kernel vanishes by assumption (d), so that I = ml.
Applying Nakayama’s lemma, we deduce that I = 0. This implies that f is an isomorphism, as desired. [
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Proof of Theorem 3.4.1. According to Proposition 3.4.8, the map 6; : Spec E}K(Z /p* Z,d) — Skewg%pt]
factors through Altgfpt], and can therefore be identified with a map f : Spec E{ K(Z /p' Z,d) — Altg) [pt].
We will prove that f is an isomorphism of R-schemes by verifying the hypotheses of Proposition 3.4.9:

(a) Tt follows from Proposition 3.4.3 and Theorem 2.4.10 that E) K(Z /p' Z,d) is a finite flat R-module of
rank ¢(7).

(b) Let k be a field and suppose we are given a ring homomorphism R — k. Then we have a canonical
isomorphism
(d) . A14(d)
Spec k XSpCCR AItG[pt] ~ AltG[p‘]k,’
where G[p']); denotes the group scheme over k given by Spec k Xgpec r G[p']. Since G[p']y is a truncated

p-divisible group of height n, level ¢, and dimension 1, Theorem 3.3.1 implies that Altg%pt]k is a finite

flat k-scheme of rank pt(Z).

(¢) The group scheme Alt((g) [p?] is separated and of finite type over R by Remark 3.2.12.

(d) The map f induces an isomorphism
Spec K Xspec k Spec B) K (Z /p' Z,d) ~ Spec K (n)o K (Z /p' Z,d)) ~ Aty ) ~ Spec ks Xspec r Altl)

by virtue of Proposition 3.4.3 and Corollary 3.3.3.

3.5 Alternating Powers in General

Let G be a finite flat commutative group scheme over a commutative ring R, and let d > 1 be an integer.

In §3.2 we introduced an R-scheme Altg) parametrizing alternating multilinear maps from G¢ into the
multiplicative group G,,,. In this section, we will show that this construction is well-behaved, provided that
G satisfies some reasonably hypotheses. We can state our main result as follows:

Theorem 3.5.1. Let R be a commutative ring, let p be a prime number, let d > 1 be a positive integer,
and let G be an truncated p-divisible group over R of height n, level t, and dimension 1. Then Alt(g) is a
truncated p-divisible group over R of height (Z), level t, and dimension (”gl).

Corollary 3.5.2. Let G be a truncated p-divisible group of height n, level t, and dimension 1 over a com-
mutative ing R. For d > n, we have Alt(g) ~ Spec R.

Corollary 3.5.3. Let G be a truncated p-divisible group of height n, level t, and dimension 1 over a com-
mutative ring R. Then the inclusion map 1 : Alt(g) — Skew(g) is a closed immersion.

Proof. Theorem 3.5.1 implies that Alt(g) is finite and flat over R, hence proper over R. Since Skewg) is an
affine R-scheme of finite presentation, we conclude that the map 4 is proper. Since i is also a monomorphism,
it must be a closed immersion. O

Corollary 3.5.4. Let R be a commutative ring, let d > 1 be an integer, and let G be a p-divisible group of
height n and dimension 1 over R. For each t > 0, let ¢y : Altgl[)pt] — Altg[)ptﬂ] be the map induced by the
epimorphism [p] : G[p'™1] — G[p']. Then the colimit of the sequence

(d) ¢ (d) @ (d)
Al = Alt g, = Altgre

]‘Q...

is a p-divisible group H over R, having height (g) and dimension (";1). Moreover, each of the canonical

maps Altgj[)pt] — H induces an isomorphism from Altg[)pt] to H[p'].
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Proof. Since each of the group schemes Alt(g[)p . is annihilated by p?, the action of p on H is locally nilpotent:

that is, we can write H = lim H [p']. We next claim that multiplication by p induces an epimorphism
0 : H — H of sheaves with respect to the flat topology. Note that we can write 6 as a filtered colimit of
maps 6, : H[p!™] — H[p']; it will therefore suffice to show that each 6, is an epimorphism of flat sheaves.
We may further write 6; as a filtered colimit of maps

. AltY

o] [ t+1] —)Alt(d)

Glp® ][pt]
It follows from Theorem 3.5.1 that Alt [) ‘] is a truncated p-divisible group of level s for each s > 0, so that
0; s is an epimorphism whenever s > ¢.

We next show that for each ¢ > 0, the canonical map ¢; : Alt [ 0 = HJ[p'] is an isomorphism. Using
Theorem 3.5.1, we deduce that each H[pf] is representable by a finite flat group scheme over R, so that H
is a p-divisible group. Since Theorem 3.5.1 asserts that the truncated p-divisible group H|[p] ~ Altgi[)p ] has

height () and dimension ("gl) over R, we conclude that H also has height (7}) and dimension (”;1).
Note that ¢; can be written as a filtered colimit of maps

Alt(d[) g

d
— Alel) ]
It will therefore suffice to show that each ¢; 5 is an isomorphism. Working by induction on s, we are reduced
to proving that each of the maps ¢; induces an isomorphism Altgl[)pt] — Alt(g[)ptﬂ][pt], which follows from

Proposition 3.3.7. O
Passing to Cartier duals, we obtain the following close relative of Corollary 3.5.4:

Corollary 3.5.5. Let R be a commutative Ting, let d > 1 be an integer, and let G’ be a p-divisible group of
height n and dimension 1 over R. For each t > 0, let v : (Alt(d) ) — D(AItG[ t+1]) the map induced by
the inclusion G[pt] — G[p'*Tt] Then the colimit of the sequence

P P
D(ALS ) % DA ) DALS) ) %5 -

is a p-divisible group H over R, having height (”) and dimension (Z:i) Moreover, each of the canonical

maps D(Alté[)p ) = H induces an isomorphism from D(Alt(d) ) to H[p'].

Example 3.5.6. Let E be a Lubin-Tate spectrum of height n. Using Corollary 3.5.5 and Theorem 3.4.1,
we deduce that the colimit of the sequence

ESpecK(p™*Z/Z,d) — ESpec K(p 2 Z /Z,d) — ESpec K(p™*Z / Z,d) —

is a p-divisible group of height (Z) and dimension (Z:i) over the Lubin-Tate ring R = mgFE. This p-
divisible group can also be described as the formal spectrum of power series ring given by ECK (Q,/Zy,d) =

E°K(Z,d+1).

Proof of Theorem 3.5.1. Let R be a commutative ring and let G be an truncated p-divisible group over R

of height n, level ¢, and dimension 1. We wish to prove that Alt(g ) is a truncated p-divisible group of height

(Z), level ¢, and dimension ("51). Note that Alt(él) is annihilated by p’. By virtue of Corollaries 3.1.8 and

3.3.2, it will suffice to prove that Altg) is a finite flat group scheme over R.

Write R as a union of its finitely generated subrings R,. Then we can write G = G, Xgpec R, Spec R
for some o and some finite flat group scheme G, over R,. Using Corollary 3.1.8 and Remark 3.1.9, we
conclude that there exists a quasi-compact open subset U C Spec R,, such that, for every R,-algebra B, the
fiber product G = Spec B Xgpec r, Go is a truncated p-divisible group of height n, level ¢, and dimension
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1 over A if and only if the induced map Spec B — Spec R, factors through U. In other words, there exists
a finite sequence of elements rq,...,r; € R, such that Gp is a truncated p-divisible group of height n, level
t, and dimension 1 over B if and only if the elements 71, ..., 7, generate the unit ideal in B. In particular,
the elements r; generate the unit ideal in R. Enlarging « if necessary, we may assume that the r; generate
the unit ideal in R,, so that U = Spec R, and G, is a truncated p-divisible group of height n, level ¢, and
dimension 1. We may therefore replace R by R, and thereby reduce to the case where R is Noetherian.

The map Alt(éi) — Skew(g )isa monomorphism of finite presentation, hence quasi-finite and in particular
quasi-affine. It follows that Alt(éi) is a quasi-affine scheme. Let A denote the ring of global sections of the
structure sheaf of Alt(éf)7 so that the canonical map j : Altg) — Spec A is a open immersion. It follows that
the complement of the image of j is the vanishing locus of some ideal I C A.

We first prove the following:

(%) Let p be a prime ideal of Spec R for which the induced map
Spec Ry Xgpec R Altg) — Spec R,

is finite flat of degree pt(Z). Then there exists an open neighborhood U C Spec R containing p such
that the induced map
U XSpec R Ah}( ) —U

is finite flat of degree pt(Z).

Let p be as in (x), so that so that the localization A, is a finitely generated projective R, module of rank

pt( ), and I, = A,. In particular, the identity element 1 € A, belongs to I,. It follows that there exists an
element f € R —p whose image in A belongs to the ideal I. Replacing R by R[f], we may suppose that

1 € I: that is, that Alt(g ) = Spec A is affine. Since Alt(g ) is an R-scheme of finite presentation, we deduce
that A is finitely presented as an R-algebra. Choose a finite set of R-algebra generators xi,...,z4 € A.
Enlarging this list if necessary, we may assume that the images of the x; generate A, as a module over R,,.
We may therefore write

Tilj = Z cﬁjxk

in A, for some coefficients c ; € Ry. Tt follows that there exists f' ¢ p such that

_ § k
Tilj = Ci,jxk

in A[fi} for some coefficients ¢} ; € R[ |- Replace R by R[%], and set
A=R[Xy,...,X]/(X:X; = > e} X).

Then A is a finitely presented as an R-algebra and finitely generated as an R-module. There is an evident
map ¢ : A — A, carrying X; to ;. Since the z;’s form algebra generators for A over R, the map A — A
is surjective. Since A is finitely presented as an R-algebra, the ideal ker(¢) is finitely generated as an A-
module. Since A is finitely generated as an R-module, we conclude that ker(¢) is finitely generated as an

R-module. It follows that A ~ A/ker(¢) is finitely presented as an R-module. Let D = pt(g), so that Ay is
a free Ry-module of rank D. Choose a collection of elements y1,%s,...,yp € A whose images in A, form a
basis. This choice determines a map of R-modules ¢ : R” — A. By construction, coker(¢), = 0. Since A
is finitely generated as an R-module, it follows that there exists an element f” € R — p such that coker(z))
is annihilated by h. Replacing R by R[ﬁ], we may suppose that ¢ is surjective. We then have an exact
sequence of R-modules

0—+K—-RP A0

88



Since A is finitely presented as an R-module, we conclude that K is finitely generated. Note that K, ~ 0.
It follows that there exists f” € R — p such that K[ﬁ] ~ (. Replacing R by R[ﬁ], we may reduce to the
case where 1 is an isomorphism: that is, A is a free R-module of rank d. This completes the proof of (x).

To complete the proof of Theorem 3.5.1, it will suffice to show that every prime ideal p C R satisfies the
hypothesis of (). Replacing R by R,, we may suppose that R is a local ring. Suppose first that the residue
characteristic of R is different from p. Then the group scheme G is étale. Passing to finite étale covering of
R, we may suppose that G ~ (Z /p' Z)". Invoking Remark 3.2.21 repeatedly, we obtain an isomorphism

AIED ~ (1,0 ()

which is evidently a finite flat R-scheme of rank D.

Now suppose that the residue field x of R has characteristic p. Using Proposition 10.3.1 of [5], we can
choose find a faithfully flat morphism R — R’ of local Noetherian rings, such that the residue field of R’ is
perfect. Replacing R’ by its completion if necessary, we may assume that R’ is complete. Using faithfully
flat descent, we are reduced to proving that the map Altg) Xspec R Spec R’ — Spec R’ is finite flat of degree
D. We may therefore replace R by R’ and thereby reduce to the case where R is a complete Noetherian
local ring whose residue field is perfect. Invoking Theorem 3.1.11, we deduce that there exists a p-divisible
group G over R and an isomorphism G ~ G[p™].

We have an exact sequence of p-divisible groups

0= G =G = Gg =0
which determines an exact sequence of finite flat group schemes
0 = Gine[p™] = G = Gg[p™] — 0.

Replacing R by a finite flat extension if necessary, we may assume that the latter sequence splits and that
Gy [p'] is a constant group scheme. Let Gy = Gine[p!], so that we have an isomorphism

G~ GO XSpCCR (Z /pt Z)k

for some integer k. Applying Remark 3.2.21 repeatedly, we obtain an isomorphism

k & >
gf) ><SchR H (Alt(Go))(did )
1<d’'<d

Alt(éi) ~pu

It will therefore suffice to show that each of the group schemes Alt(g;) is finite flat of rank pt(ngk). We may
therefore replace G by Ginr and thereby reduce to the case where G is connected, in which case the desired
result follows from Corollary 3.4.2. O

4 Ambidexterity

Let M be a compact oriented manifold of dimension d. Poincare duality asserts that cap product with the
fundamental homology class of M induces an isomorphism H*(M;Z) — Hy_.(M;Z). More generally, if
A is any local system of abelian groups on M, then we obtain an isomorphism H*(M;A) ~ Hy_.(M;A)
between homology and cohomology with coefficients in A. In this section, we will study a somewhat different
situation in which an analogous duality phenomenon occurs.

Let € be an oo-category and let X be a Kan complex. We define a C-valued local system on X to be
a map of simplicial sets X — C. We will typically use the symbol £ to denote a C-valued local system on
X, and £, to denote the value of £ at a point x € X. The collection of all C-valued local systems can be
organized into an co-category €~ = Fun(X,C). If C is an object of C, we let C'y denote the constant map
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X — C taking the value C'. The construction C' — C'x determines a functor § : € — CX. If we assume
that € admits small limits and colimits, then the functor § admits both left are right adjoints, which we will
denote by £ — C,(X;L) and £ — C*(X; L), respectively. More concretely, these functors are given by the
formulas

=

Cu(X;£) =lim £,  C*(X;£) = lim £, .

zeX

it}

Our goal is to describe some special situations (depending on the space X and the ambient co-category
C) in which the functors £ — C.(X;£) and £ — C*(X; L) are equivalent. We begin by describing some
ways to think about

Construction 4.0.7. Let X be a Kan complex, let C be an oco-category which admits small limits and
colimits, and let p : C*(X;e) — C.(X;e) be a natural transformation. Suppose we are given a pair of
objects C, D € € and a map of Kan complexes f : X — Mape(C, D). We will abuse notation by identifying
f with a morphism from C'y to Dy in the co-category ¥ of C-valued local systems on X. We define another
map fX fdu € Mape(C, D) to be the composition

C = C*(X;Cy) L C"(X;Dy) % C.(X;Dy) — D.
We will refer to fX fdu as the integral of f with respect to .

Remark 4.0.8. In the situation of Construction 4.0.7, we can reconstruct the natural transformation u
from the collection of maps [ « fdp. To see this, suppose we are given a local system £ € €X. Then the
map pu(£L) : C*(X;L) — C.(X; L) is given by [y fdu, where f : X — Mape(C*(X;L),C.(X; L)) is the
map which assigns to each point z € X the composite map

C*"(X;L) = L, = C(X;0).

Suppose now that X is an arbitrary Kan complex. For every pair of points z,y € X, let P, =
{2} Xpun(fo},x) Fun(Al, X) XFun({1},X) 1y} be the space of paths from 2 to y in X. Suppose that for each
r,y € X, we are given a natural transformation pp, , : C*(Pyy;®) — Ci(Pyy;e). Every local system £ on
X determines a map ¢, : Py, — Mape(£Ly, £y), so that we obtain a map sz,y bz,ydpp, , from L, to L,

in €. If the natural transformations up, , are chosen functorially on z and y, then the maps / b Peydip,,
: ey :
also depend functorially on x and y, and therefore determine a map

Nimx (£) : lim £, — lim £, .
reX yeX

This construction itself depends functorially on £, and can therefore be regarded as a natural transformation
Nmy : C(X;0) = C*(X;e).

We would like to apply the above construction iteratively to construct equivalences py : C*(X;e) —
C.(X;e). More precisely, we will introduce the following:

e For every oco-category € which admits small limits and colimits, we introduce a collection of Kan
complexes which we call C-ambidextrous.

e For every C-ambidexterous Kan complex X, we define an equivalence py : C*(X;e) — Ci(X;e).
We say that a Kan complex X is C-ambidextrous if it satisfies the following three conditions:
(a) The Kan complex X is n-truncated for some integer n.

(b) For every pair of points x,y € X, the path space P, , is C-ambidextrous.
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(c) The natural transformation Nmy : C,(X;e) — C*(X;e) constructed above is an equivalence.

If these conditions are satisfied, then we define the natural transformation px to be the inverse of the
equivalence Nmx .

Remark 4.0.9. The construction of the natural transformations px : C*(X;e) — C.(X;e) is recursive: if
X is n-truncated for n > —1, then each path space P, , is (n — 1)-truncated, and so we may assume that the
natural transformations pp, , have already been defined. A special case occurs when n = —2: that is, when
X is contractible. In this case, the functor C' — C'y induces an equivalence from € to GX, and we take px
to be the evident identification between the right and left adjoints of this equivalence.

Let us now outline the contents of this section. We begin in §4.1 by giving a more detailed construction of
the natural transformation Nmy. With an eye towards future applications, we carry out the construction in
the context of an arbitrary Beck-Chevalley fibration of co-categories (see Definition 4.1.3). The specialization
to local systems on a Kan complex will be carried out in §4.3.

In §4.2, we study the naturality properties of the norm map. In particular, our results show that for a
Kan fibration f : X — Y, the norm map Nmyx can be reconstructed from the norm map Nmy, together
with the norm maps Nmyx, associated to the fibers of f (see Propositions 4.2.1 and 4.2.2).

Let X be a Kan complex and let € be an oo-category which admits small limits and colimits. The
requirement that X be C-ambidextrous imposes conditions on both X and €. On X, it should be regarded as
a finiteness condition: it is generally only reasonable to expect ambidexterity in the case where the homotopy
groups of X are finite (though there are exceptions for some values of C; see Example 4.3.11). As a condition
on €, ambidexterity amounts to a kind of generalized additivity: it implies, in particular, that there is a
canonical way to “integrate” a family of morphisms in € indexed by X. In §4.4, we will make these ideas
more precise, and use them to produce some simple examples of pairs (€, X) which satisfy ambidexterity.
For example, we will show that an Eilenberg-MacLane space X = K(Z /pZ,d) is C-ambidextrous whenever
C is a stable co-category having the property that p acts invertible on each object of € (Proposition 4.4.20).

4.1 Beck-Chevalley Fibrations and Norm Maps

Our goal in this section is to give an account of the theory of ambidexterity, including a precise construction
of the associated norm maps (which were described informally in the introduction to §4). With an eye toward
future applications, we will work in a somewhat general context:

(a) We will view ambidexterity as a property of maps of spaces, rather than spaces. For every co-category C
which admits finite limits and colimits, we will introduce a collection of C-ambidextrous maps f : X —Y
between Kan complexes, having the following property: if f: X — Y is C-ambidextrous, then the left
and right adjoints to the pullback functor f* : Fun(Y,€) — Fun(X,C) are (canonically) equivalent.
This does not really result in any additional generality: we will later see that the C-ambidexterity of
amap f: X — Y is really a condition on the homotopy fibers of f (Corollary 4.3.6). However, it is a
convenient mechanism for encoding the naturality properties of the norm, which play an essential role
in our definition.

(b) If € is an oo-category which admits small limits and colimits, then the theory of C-ambidexterity
depends on the construction X +— Fun(X, €) which assigns to each Kan complex X the collection of
C-valued local systems on X. We will develop our theory in the more general case of a construction
X — Cx, which assigns an oco-category Cx to each object X of an ambient co-category X, and a pair
of adjoint functors

fi
Cx=——=Cy
=
to each morphism f: X — Y in X.

We begin by introducing some definitions.
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Notation 4.1.1. Let X be an oco-category and let ¢ : € — X be a map which is both a Cartesian fibration
and a coCartesian fibration. For each object X € X, we let Cx denote the fiber ¢ 1 {X} = Cx{X}. If
f: X — Y is a morphism in X, then f determines a pair of adjoint functors

i
@X<f—ey

In this situation, we let
¢p: fif* —ide, Yy ridey — [ fi

denote the associated counit and unit transformations.
Given a commutative diagram o :

x Ly
lgl ig
f
x—1oy

in X, we have a canonical equivalence of functors ¢’* o f* = g* o f*, which induces a natural transformation
BClo]: flg"™* — g*fi. We will refer to BC|o] as the Beck-Chevalley transformation associated to o.

Remark 4.1.2. Given a commutative diagram o :

the Beck-Chevalley transformation BC[o] is given by the composition

* * * % d) !
He™ 5 flg™ r fo f g R gt
Definition 4.1.3. Let X be an oco-category which admits pullbacks. We will say that a map of simplicial
sets q : € — X is a Beck-Chevalley fibration if the following conditions are satisfied:

(1) The map q is both a Cartesian fibration and a coCartesian fibration.

(2) For every pullback square o :

X/L_Y/

\Lgl ig
f
X——Y

in the co-category X, the Beck-Chevalley transformation BC[o] : f/¢* — g¢*fi is an equivalence of
functors from Gy to Cx.

Remark 4.1.4. When condition (2) of Definition 4.1.3 is satisfied, we let BC[o]™! : g*fi — f/¢’* denote
a homotopy inverse to the Beck-Chevalley transformation BC[o], so that BC[o]~! is well-defined up to
homotopy.

Remark 4.1.5. Let X be an oo-category which admits pullbacks and let ¢ : € — X be both a Cartesian
and a coCartesian fibration. Then condition (2) of Definition 4.1.3 admits either of the following equivalent
formulations:
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(2') Let 7 :

Y/ L) ?/

o

x1.¥v

be a commutative diagram in € whose image in X is a pullback square. If f is g-coCartesian and both
—
g and g’ are ¢g-Cartesian, then f is g-coCartesian.

(2"”) Let 7 :
P
x1.v

be a commutative diagram in € whose image in X is a pullback square. If §’ is ¢-Cartesian and both
— —
f and f are g-coCartesian, then g is ¢g-Cartesian.

Let g : € — X be a Beck-Chevalley fibration. Then every morphism f : X — Y in X induces a pair of
functors

f!IeX—>ey f*tey—)ex.

The functor f, is characterized by the fact that it is a left adjoint to f*. We will be interested in studying
situations in which f is also a right adjoint to f*.

Notation 4.1.6. Let ¢ : € — X be a map of oco-categories which is both a Cartesian fibration and a
coCartesian fibration. Let f : X — Y be a morphism in X, and suppose we are given a natural transformation
@ ide, = fif*. Let C' and D be objects of Cy. For every morphism v : f*C — f*D in Cx, we let
ff udp € Mape,, (C, D) denote the composite map

i (u

e e’ D% p

The construction u + [ udu determines a map
dp : Mape  (f*C, f*D) — Mape, (C, D).

Remark 4.1.7. In the situation of Notation 4.1.6, suppose that the functor f* also denotes a right adjoint
f«. Then giving a natural transformation p : ide, — fif* is equivalent to giving a natural transformation
f+ = fi. Note that the “integration” procedure of Notation 4.1.6 can be regarded as a generalization of
Construction 4.0.7.

Construction 4.1.8. Let X be an co-category which admits pullbacks and let g : € — X be a Beck-Chevalley
fibration. We will define the following data for n > —2:

(a) A collection of morphisms in X, which we call n-ambidextrous morphisms.

(b) For each n-ambidextrous morphism f : X — Y in X, a natural transformation ,ugc") tidey, — fio f¥,

which is well-defined up to homotopy and exhibits f, as a right adjoint to f*.

The construction proceeds by induction on n. If n = —2, we declare that a morphism f: X - Y in X

is m-ambidextrous if and only if f is an equivalence. In this case, we define u(fn) to be a homotopy inverse
to the counit map ¢ : fi o f* — ide, (which is an equivalence, since the adjoint functors fi and f* are
mutually inverse equivalences).
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Assume now that the collection of n-ambidextrous morphisms have been defined for some n > —2, and
that the natural transformation Mén) :ide, — ¢10¢* has been specified for every n-ambidextrous morphism
g. Let f: X — Y be an arbitrary morphism in €, and let 6 : X — X Xy X be the diagonal map, so that we

have a commutative diagram

Let o be the square appearing in this diagram. Since o is a pullback square and ¢ : € — X is a Beck-
Chevalley fibration, the Beck-Chevalley transformation BC[o] : m1im5 — f*fi admits a homotopy inverse
BC[o]™t : f*fi — mums. We will say that f is weakly (n + 1)-ambidextrous if the diagonal map § is

n-ambidextrous. In this case, we define a natural transformation V}nﬂ) : f*fi = idz, to be the composition

BC[o]™! /J«(n) . . .
f*f! A 7T1!7T3< L)ﬂ'lg(S!(;*ﬂ'IﬁldeXOId@X =1deX.

We will say that f is a (n + 1)-ambidextrous if the following condition is satisfied:

(%) For every pullback diagram

X/ fH/ Y/

L,

X ——Y

in X, the map f’ is weakly (n + 1)-ambidextrous and the natural transformation VJ(Z,LH) is the counit

for an adjunction between f”* and f}.

If condition (x) is satisfied, we let ugfnﬂ) tide, — fif* denote a compatible unit for the adjunction

*

Cx=——=Cy

fi

determined by l/;”-i_l).

Remark 4.1.9. In the situation of Construction 4.1.8, let f : X — Y be a weakly (n + 1)-ambidextrous

morphism. Then we can describe the natural transformation UJ(,"H)

object C' € Cx, the map UJ(JLH)(C) : f*fiC — C' is the image of

more informally as follows: for each

/5idc d,ugn) € MapeXXyX(ﬂ;‘C, w1 C)
under the homotopy equivalence
Map@nyx (m5C, 7 C) ~ Mapg  (mum5C, C) ~ Mape  (f*/1C,C).

Our first observation is that the natural transformations introduced in Construction 4.1.8 are independent
of n, provided that n is sufficiently large.

Proposition 4.1.10. Let X be an co-category which admits pullbacks and let q : € — X be a Beck-Chevalley
fibration. Then:
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(1) If f: X =Y is an n-ambidextrous morphism in X, then f is n-truncated (that is, the induced map
Mapy(Z, X) — Map(Z,Y) has n-truncated homotopy fibers, for each Z € X).

(2) Let f: X =Y be an n-ambidextrous morphism in X. Then any pullback of f is also n-ambidextrous.

(3) Let f : X = Y be a weakly n-ambidextrous morphism in X. Then any pullback of f is also weakly
n-ambidextrous.

(4) Let =1 < m < n. If f is a weakly m-ambidextrous morphism in X, then f is weakly n-ambidextrous.

(m)  (n)
f f

Moreover, the natural transformations vy /' vy’ : f*fi — ide, agree up to homotopy.

(5) Let —2 < m <mn. If f is an m-ambidextrous morphism in X, then f is n-ambidextrous. Moreover, the
natural transformations u;m),ugcn) sidey, = fif* agree up to homotopy.

(6) Let =2 < m < n and let f be a (weakly) n-ambidextrous morphism in X. Then f is (weakly) m-
ambidextrous if and only if f is m-truncated.

Proof. By definition, a morphism f : X — Y is (—2)-ambidextrous if and only if it is an equivalence, and
if f:X — Y is an n-ambidextrous for n > —2 then the diagonal map § : X — X xy X is an (n — 1)-
ambidextrous. Assertion (1) follows immediately by induction on n (see Lemma HTT.5.5.6.15). Assertion
(2) is immediate from the definitions, and (3) follows from (2).

To prove (4) and (5), it suffices to treat the case n = m + 1. We proceed by a simultaneous induction
on m. The implication (4) = (5) is clear. Conversely, if assertion (5) holds for some integer m > —2, then
assertion (4) holds for the integer m + 1. It will therefore suffice to prove assertion (4) in the special case
m = —2, so that f is an equivalence in X. In this case, the diagonal map § : X — X xy X is also an
equivalence, and therefore (—2)-ambidextrous. In this case, the functors f; and f* are homotopy inverse
to one another, and a simple calculation shows that the map oY s a homotopy inverse to the unit map
Yy tide, — f*fi. In particular, this map exhibits f* as a left adjoint to fi, so that f is (—1)-ambidextrous.
Moreover, the maps qul) and u§¢_2)
counit map fif* — ide, ).

We now prove (6), again using induction on m. The “only if” direction follows from (1). To prove
the converse, let us assume that f is m-truncated and n-ambidextrous; we wish to show that f is m-
ambidextrous (the corresponding assertion for weakly ambidextrous morphisms follows immediately from
this). If m = —2, then f is an equivalence and there is nothing to prove. Assume therefore that m > —2,
and let § : X — X Xy X be the diagonal map. Replacing f by a pullback if necessary (and invoking (2)),
we are reduced to proving that 0 is (m — 1)-ambidextrous and that the map V)(cm) : f*fi > ide, is the counit
of an adjunction between f* and fi. Since § is (n — 1)-ambidextrous and (m — 1)-truncated, the inductive

hypothesis implies that § is (m — 1)-ambidextrous and that the unit maps ,u((;mfl) and u((;nfl) are homotopic.

(m), u}(cn) : f*fi = ide, are homotopic. Since )
(m)

of an adjunction, the natural transformation Vi

are homotopic (both can be described as homotopy inverses to the

It follows that the natural transformations v is the counit

has the same property. O

Definition 4.1.11. Let X be an oo-category which admits pullbacks and let g : € — X be a Beck-Chevalley
fibration. We will say that a morphism f : X — Y in X is a weakly ambideztrous if it is weakly n-ambidextrous
for some integer n > —1. In this case, we let vy : f* fi — ide, denote the natural transformation A appear-
ing in Construction 4.1.8 (by virtue of Proposition 4.1.10, the homotopy class of this natural transformation
is independent of n). We will say that f is ambideztrous if it is n-ambidextrous for some n: that is, if every
pullback f’ of f is weakly ambidextrous and the map vy exhibits f'* as a left adjoint of f/. In this case, we
let g :ide, — fif* denote a compatible unit for this adjunction (so that puy = ,ugc")
that f is n-truncated).

for any integer n such
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Remark 4.1.12. Let g : € — X be a Beck-Chevalley fibration. Let f : X — Y be a morphism in X. If the
pullback functor f* : Cy — Cx admits a right adjoint, we will denote that right adjoint by f. : Cx — Cy.
We then have an evident homotopy equivalence

MapFun((?x,GX(f*f!vidGX) = Ma’pFun(@X,ey)(f!a fe)-

If f is weakly ambidextrous, we let Nmy : fi — f. denote the image of the natural transformation vy under
this homotopy equivalence. We will refer to Nmy as the norm map associated to f. It follows that f is
ambidextrous if and only, for every pullback diagram

x Iy

o
the following conditions are satisfied:

(a) The map f’ is weakly ambidextrous.

(b) The functor f* admits a right adjoint f.

(¢) The norm map Nmy : f{ — f/ is an equivalence.

4.2 Properties of the Norm

Let ¢ : € — X be a Beck-Chevalley fibration of co-categories (Definition 4.1.3). In §4.1, we introduced the
notion of an ambidextrous morphism f : X — Y in X, and associated to each ambidextrous morphism f a
natural transformation py : ide,, — fif*. Our goal in this section is to establish two naturality properties
enjoyed by this construction:

Proposition 4.2.1. Let X be an co-category which admits pullbacks and let g : € — X be a Beck-Chevalley
fibration. Suppose we are given a pullback diagram T :

X/ fH Y/

-

(1) Assume that f is weakly ambidextrous. Then [’ is also weakly ambidextrous. Moreover, the diagram
of natural transformations

in the co-category X. Then:

* * BC[T] * % ~ * Lk
fHox —= " fi——=gx " h

lyf, | luf

gx 9x

commutes up to homotopy.
(2) If f is ambidextrous, then the diagram of natural transformations

id

9y

Hyr lﬂf
BC|[1]

gy —— ok " —= g  hf*

9y
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commutes up to homotopy.

Proposition 4.2.2. Let X be an oco-category which admits pullbacks, let q : € — X be a Beck-Chevalley
fibration, and suppose we are given a pair of morphisms f: X —Y and g:Y — Z in X.

(1) Assume that f and g are weakly ambidextrous. Then the composition gf is weakly ambidextrous.
Moreover, the natural transformation vyy : (gf)*(gf) — idey is homotopic to the composition

Gf) (gf)h = Frg*afi 2% £ fi 2o idg,

(2) Assume that f and g are ambidextrous. Then the composition gf is ambidextrous. Moreover, the
natural transformation pgy :ide, — (9f)i1(gf)* is homotopic to the composition

ide, 5 9" S afif g ~ (gf)(gf)"

Remark 4.2.3. In the situation of Proposition 4.2.1, assume that f and f’ are weakly ambidextrous and
that the pullback functors f* and f* admit right adjoints f, and f.. Then assertion (1) reduces to the
statement that the composite transformation

BC N
A L Lt

is homotopic to the map induced by the norm Nmy.

Remark 4.2.4. In the situation of Proposition 4.2.2, assume that f and g are weakly ambidextrous and
that the pullback functors f* and ¢g* admit right adjoints f, and g., respectively. Then the pullback functor
(gf)* admits a right adjoint, given by the composition g. o f.. In this case, we can reformulate assertion (1)
as follows: the norm map Nmgyys : (9f)1 — (gf)« is given by the composition

G~ g f S g fi 'S gufe ~ (gf)..

Remark 4.2.5. Propositions 4.2.1 and 4.2.2 barely scratch the surface of the problem of describing all of
the coherence and naturality properties enjoyed by the constructions f ~ py. To address this problem more
completely, it is convenient to use the language of (oo, 2)-categories. Let ¢ : € — X be a Beck-Chevalley
fibration. We can associate to ¢ an (0o, 2)-category Z, which we may describe informally as follows:

(a) The objects of Z are the objects of X.

(b) Given a pair of objects X,Y € X, a I-morphism from X to Y in Z is given by another object M € X
equipped with a pair of maps f: M — X, g: M =Y.

(¢) Composition of 1-morphisms in Z is given by composition of correspondences: that is, the composition
of a morphism X < M — Y with a morphism Y + N — Z is given by X «+ M xy N — Z.

(d) Given a pair of objects X,Y € Z and a pair of morphisms X + M - Y and X + N - Y in Z, a
2-morphism from M to N is given by a commutative diagram

M

SN

X<~—P——Y

N

in the co-category €, where u is ambidextrous and v is arbitrary. Composition of 2-morphisms is again
given by composition of correspondences.

97



Then one can construct an essentially unique functor © from Z to the (oo, 2)-category of oo-categories, given
informally as follows:

(a’) To each object X € Z, the functor © assigns the oo-category Cx.
(/) To each 1-morphism X LM&yin Z, the functor © assigns the functor g f* : Cx — Cy.

(¢") Given a pair of composable morphisms X fmMbyamdy LN 2 , consider the commutative
diagram o :
M Xy N

2N

M N

\/
Y.

Then the compatibility of © with composition of 1-morphisms is witnessed by the equivalence

* x\ 0+ BClo] * * * *
@' g NS = agi(g [ = gt (f ) f" = (9 f") o (9uf")
(d") To each 2-morphism in Z, given by a commutative diagram

M
VN
X<~—P——Y
N
N,
the functor © associates the natural transformation

af* 25 g = gl (o) 1 28 gl 7

Proposition 4.2.2 expresses a special case of the compatibility of © with composition of 2-morphisms, while
Proposition 4.2.1 expresses a special case of the compatibility of ® with the combination of horizontal and
vertical compositions in Z.

We will defer the precise definition of the (0o, 2)-category Z, and the existence of the functor © to a
future work; the comparatively crude Propositions 4.2.1 and 4.2.2 will be sufficient for our applications in
this paper.

From Proposition 4.2.1, we can deduce the following related result:

Corollary 4.2.6. Let X be an oco-category which admits pullbacks and let ¢ : € — X be a Beck-Chevalley
fibration. Suppose we are given a pullback diagram T :

x' 9X. x

b

v Y.y

in the co-category X. Then:
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(1) Assume that [ is weakly ambidextrous. Then f' is weakly ambidextrous, and the diagram of natural
transformations

* BClr] * ~ *
gx1f" fl ——= fovifl —— f* figx:

lvf/ lz/f
id

gx! gx!

commutes up to homotopy.
(2) If f is ambidextrous, then [’ is ambidextrous, and the diagram of natural transformations

id
gy! - gy!

l#f/ llﬂf
BC|r]

g [l [ —= figxi [ —= fif*gv

commutes up to homotopy.

Proof. To prove (1), we use the adjointness between gx and g% to obtain homotopy equivalences

Mappun(e,,,ex) (9xtf fls 9x1) = Mappneyex (F7f 9% 9x1) = Mabpune ., o) (f " g%, 9%)-

Under this homotopy equivalence, the two natural transformations appearing in the statement of (1) corre-
spond to the two natural transformations appearing in the first assertion of Proposition 4.2.1. It then follows
from Proposition 4.2.1 that these natural transformations are homotopic. The proof of (2) is similar. O

We now turn to the proofs of Propositions 4.2.1 and 4.2.2.

Proof of Proposition 4.2.1. Tt follows immediately from our definitions that if f is (weakly) ambidextrous,
then f is also (weakly) ambidextrous. If f is weakly ambidextrous, then f is n-truncated for some integer
n > —2. We proceed by induction on n. In the case n = —2, the maps f and f’ are equivalences and
assertions (1) and (2) are easy. We will therefore assume that n > —1. To prove (1), let us assume that f
and f’ are weakly ambidextrous, so that we have a pullback square p :

X - X xy X
ng \ng
X— o X xy X

where § and ¢ are (n — 1)-truncated and ambidextrous. Let o denote the pullback square

X xy X — s X

]

%}/’

let ¢’ denote the pullback square

!
s
X' xyr X! —2> X!

s

f

X —r oy
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and let v denote the pullback square
X' xyr X' —s X!

lgﬂ' lgx
X xy X —1s X,

and consider the diagram of natural transformations

BC[o’]7! Iy
/ / NI
f *fl g9x —— 7T1l72 9% ‘>7T1,5 o T 9% >gX
BC[7] ~ m1,0{8"* gEms id
Mg’
’ / Y ~
I 9y T1Yr TS 0195 0" T —— gk
m
\ BClp]
~ BC] a0 s
BCv]
BClo]™*

s ~
gx " fr ——=gxmums ——> gxm010" 1 ——> gX.

We wish to prove that the outer rectangle of this diagram commutes up to homotopy. In fact, we claim
that the entire diagram commutes up to homotopy. For all parts of the diagram except for the middle and
the square on the left, this is routine. The middle part commutes by virtue of the inductive hypothesis. To
prove the commutativity of the rectangle on the left, it suffices to show that the diagram

gy fi TS
\LN \LBC[V]
BClo]
gx [ fi =—— g%k mums

commutes up to homotopy. This is clear, because both compositions can be associated with the Beck-
Chevalley transformation associated to the pullback square

X' xyr X s X
L,
x—1 v
We now prove (2). Assume that f is ambidextrous, so that the natural transformations
ve: fr A —=idey v [ f = idey,
are counits of adjunctions. It follows that the composite map

o Mappun(ey e, 9y, 9y if ) = Mabpuncey e, 9y 1o 97 [1Lf " i) = Mappugex.e,) (9 1 93 1)
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is a homotopy equivalence, where the first map is given by precomposition with f; and the second map is
given by composition with 1. We note that the natural transformation g5- — gy fif* determined by py can
be identified with an inverse image of the identity transformation under the equivalence . Consequently,
the commutativity of the diagram appearing in (2) is equivalent to the assertion that the composite map

* Ky * % « v p BCIT] * v *
G i =5 fF g fo flax PP h = gy hif fi =5 gy fi

is homotopic to the identity. To prove this, consider the diagram

* Py * ok ~ kL% BC[T] * * v *
Gy h——= 1" —— fox " h ——= G N i —— g

vr
ol N2
’ Vf/

70 ! I pre £1 ok 7k
19 —= [ Nk 19x

The middle trapezoidal diagram commutes up to homotopy by (1), and the outer parts of the diagram
obviously commute up to homotopy. Since g is a Beck-Chevalley fibration, the map BC|[r] is an equivalence.
Consequently, to prove that composition appearing in the upper part of the diagram is homotopic to the
identity, it suffices to show that the composition appearing in the lower part of the diagram is homotopic to
the identity. This follows immediately from the compatibility between the unit p with the counit vy, [

Proof of Proposition 4.2.2. If f and g are weakly ambidextrous, then there exists an integer n such that
both f and g are n-truncated. We will prove (1) and (2) by a simultaneous induction on n. If n = —2 (so
that both f and g are equivalences) then the result is obvious. Let us therefore assume that n > —2. We
first prove (1). Assume that f and g weakly ambidextrous. Let 6(f) : X - X Xy X and §(g9) : Y =Y xz YV
denote the diagonal maps determined by Y and Z. Then §(f) and §(g) are ambidextrous. We will also
consider the ambidextrous maps

X(S(g):X—>XXzY X(S(g)x:XXyX%XXzX (S(Q)XZX—)YXZX
given by base change of §(g). The diagonal map
5(gf) i X = X xz X

is given by the composition x(g)xod(f). It follows from the inductive hypothesis that §(g f) is ambidextrous.
Moreover, we deduce that the unit map ps(gp) : id — 0(gf)1d(gf)* is given by the composition

id % 2 3(9)x1x0(9)x —5 x0(9)xi8(F)O(f)" x0(9)x = 8(gfd(gf)*

where h = 6(g)y-
Let p denote the pullback diagram

and consider also the commutative diagram

Xxy X e xx, v X" x

N

Yy, X v, v "y

SN

X y — % -7
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We will denote the lower right square of this diagram by o, the upper right square by ¢’, and the rectangle
on the left by 7. Consider the diagram of natural transformations (in the co-category Fun(Cx, Cx))

g g f
BClo]?!
* * Hs(g) * k% ~ * k% ~ *
froums fr ———— frmud(g)é(g) ns f ————— fro(g)*'ns fr —————f*f
BC[o']7! BC[o']7!
* % Hs(9) * k%
xTufyms fr ————— xm f30(9)10(g)* 73 fi ~
W; h
BO[r) ! xTix0(9)ix0(9)" fyms fr ———= x8(9)" fym5 f, BClp) !
BC[r]~!
* * Pxs(a) * * % 1
xTux /i X x™ —— x T x0(9) x0(9)x x [1 /X7 BC[p]
W N

X7T1!Xf!x‘s(g)xsxé(g)}f;cxﬂz ——m,0(9) fxms —————— Ty

Hs(f)
TS (1) mh
ide, .

Using the formula for p5.,5) given by the inductive hypothesis (and the transitivity properties of Beck-
Chevalley transformations), we see that v,s is given by a a counterclockwise circuit around the diagram,
from the upper left corner to the lower right corner. On the other hand, the composition

(9/)" () = f*g"gufy = f* f = id
is given by a clockwise circuit around the same diagram. It therefore suffices to prove that the diagram
commutes. This follows by inspection except in the case of the two triangles, which commute by virtue of
Proposition 4.2.1 and Corollary 4.2.6.
We now prove (2). Assume that f and g are ambidextrous; we wish to show that g o f is ambidextrous.
Let Z' — Z be any morphism in X, and form a pullback diagram
f! g’

X =Y =<7

L

X'y .7

We wish to prove that ¢’ o f’ is ambidextrous. Replacing Z by Z’, we are reduced to proving that g o f is
ambidextrous. It follows from (1) that g o f is weakly ambidextrous. Consider the composite map

ide, % g9 5 g fif*g" =~ (9f )(gf)*

We will complete the proof by showing that p and v4¢ are compatible unit and counits for an adjunction
between (gf)* and (gf)i. In other words, we claim that the composite maps

(@) 5 () (af)(gf)* 2 (gf)*
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1 * Vyf,
(9f)r = (9f (g f) (g f)r == (9f):
are homotopic to the identity transformations. We will prove that the first composition is homotopic to the
identity; the proof in the second case is similar. Unwinding the definitions and using the description of v
supplied by (1), we see that the relevant composition is given by a clockwise circuit around the diagram

9" —= f*g*qg* —— f*g*afif*g

i ——

I

frg*
The desired result now follows from the fact that this diagram commutes up to homotopy (the commutativity
of the triangles follows from the compatibility of the pairs (uyr,vs) and (ug,vg)). O

4.3 Local Systems

In §4.1, we described the theory of ambidexterity associated to an arbitrary Beck-Chevalley fibration ¢ : Y —
X. In this section, we will specialize to the case where X = 8 is the co-category of spaces, and the fiber of ¢
over an object X € X is the oo-category of local systems on X with values in some ambient co-category C.
Our main result (Proposition 4.3.5) asserts that in this case, the ambidexterity of a map f: X — Y can be
regarded as a condition on the homotopy fibers of f.

We begin by introducing some notation.

Construction 4.3.1. Let C be an oo-category. The construction X — Fun(X, €) determines a simplicially
enriched functor from the (opposite of the) category of Kan complexes to the category of co-categories.
Passing to the coherent nerve, we obtain a functor of oo-categories Fun(e,C) : 8 — €. We let ¢ :
LocSys(C) — 8 denote a Cartesian fibration classified by this functor. More informally, we let LocSys(@)
denote the co-category whose objects are pairs (X, £), where X is a Kan complex and £ € Fun(X,C) is a
local system on X with values in C.

For each object X € §, the inverse image LocSys(€)x = ¢ '{X} is canonically equivalent to the oo-
category Fun(X,C) of C-valued local systems on X. For every map of Kan complexes f : X — Y, the
pullback functor f* : LocSys(C)y — LocSys(€)x can be identified with the functor Fun(Y, €) — Fun(X, @)
given by composition with f.

Remark 4.3.2. Let € be an oco-category which admits small colimits. Then for every functor f : J — J
between small oo-categories, the associated functor f* : Fun(d,C) — Fun(J,C) admits a left adjoint fi,
given by left Kan extension along f (see §HTT.4.3.3). It follows in particular that the Cartesian fibration
LocSys(€) — 8 is also a coCartesian fibration (see Corollary HTT.5.2.2.5).

Proposition 4.3.3. Let C be an co-category which admits small colimits. Then the forgetful functor
LocSys(C) — 8
is a Beck-Chevalley fibration (Definition 4.1.3).

Proof. Suppose we are given a pullback diagram o :



in 8. Unwinding the definitions, we must prove the following: if we are given local systems Lx : X — C and
Ly : Y — € and a natural transformation o : Lx — Ly of which exhibits £y as a left Kan extension of
Lx along f, then the induced natural transformation 3 : £Lx ogx — Ly ogy o f’ exhibits Ly ogy as a left
Kan extension of £ x ogx along f’. Fix a point ¢ € Y’. We wish to prove that the canonical map

0 lim((Lx ogx)|(X" xyr Y),1) = (Ly ogy)(y')
is an equivalence. Since ¢ is a pullback diagram, we can identify 6 with the canonical map
lm(Lx |X xy Yyy) = Ly (y),

where y = gy (y’) denotes the image of ¥’ in Y. The desired result now follows immediately from the
assumption that a exhibits £y as a left Kan extension of £ x along f. O

Definition 4.3.4. Let C be an co-category which admits small colimits and let ¢ : LocSys(€) — 8 denote the
Beck-Chevalley fibration of Proposition 4.3.3. We will say that a Kan complex X is weakly C-ambidextrous if
the projection map X — = is weakly ambidextrous in the sense of Definition 4.1.11 (for the Beck-Chevalley
fibration ¢). We will say that X is C-ambidextrous if it is weakly C-ambidextrous and the natural transfor-
mation vy : f* fi — idpun(x,e) is the counit of an adjunction.

We are now ready to state our main result:

Proposition 4.3.5. Let C be an oo-category which admits small colimits, and let f : X — Y be a Kan
fibration between Kan complexes. Then:

(1) The map f is ambidextrous (for the Beck-Chevalley fibration ¢ : LocSys(C) — 8) if and only if it is
n-truncated for some integer n and each fiber X, of f is C-ambidexstrous.

(2) The map f is weakly ambidextrous (for the Beck-Chevalley fibration q : LocSys(C) — 8) if and only if
it is n-truncated for some integer n and each fiber X, of f is weakly C-ambidextrous.

Corollary 4.3.6. Let C be an oo-category which admits small colimits, and let f : X — Y be a Kan
fibration between truncated spaces. If Y is C-ambidextrous and each fiber X, of f is C-ambidextrous, then X
is C-ambidextrous.

Proof. Combine Propositions 4.2.2 and 4.3.5. O

Remark 4.3.7. Let C be an co-category which admits small colimits. Using Proposition 4.3.5, we see that
a Kan complex X is weakly C-ambidextrous if and only if, for every pair of vertices x,y € X, the path space
P, , is C-ambidextrous. In particular:

e If X is empty, then it is automatically weakly C-ambidextrous.

e If X is connected, then it is weakly C-ambidextrous if and only if the loop space Q(X) (formed with
any choice of base point) is C-ambidextrous.

e If X has more than one connected component, then it is weakly C-ambidextrous if and only if the empty
space () is C-ambidextrous (this is equivalent to the assumption that the oo-category € is pointed: see
Remark 4.4.6) and the loop space Q(X) is C-ambidextrous, for every choice of base point = € X.

Our proof of Proposition 4.3.5 will require the following simple observation:

Lemma 4.3.8. Let C be an oco-category which admits small colimits and let X be a Kan complex. Then
Fun(X, C) is generated (under small colimits) by objects of the form i,C, where i : {x} — X is the inclusion
of a vertex and C' € € ~ Fun({z}, ).
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Proof. Let 6 : X — X x X denote the diagonal map and let p: X x X — X denote the projection onto the
second factor. Then left Kan extension along § and p determine functors

o : Fun(X, €) — Fun(X x X, C) pr o Fun(X x X, €) — Fun(X, @),

and the composition p; o d; is homotopic to the identity. Note that we can identify Fun(X x X, €) with the
oo-category of diagrams Fun(X, Fun(X, €)), and that the functor p; is given by the formation of colimits of
X-indexed diagrams in Fun(X, €). It follows that every object £ € Fun(X, @) is given by the colimit of a
diagram ¢ : X — Fun(X,C), where ¢(z) = (6:X)|({z} x X). Applying Proposition 4.3.3 to the homotopy
pullback square

{e} —={a} x X

L

X2 o X xX,

we can identify ¢(z) with the left Kan extension i, £(z), where i, : {x} — X is the inclusion map and
L(z) € € =~ Fun({z}, C) is the value of £ at the point x. O

Proof of Proposition 4.3.5. The “only if” directions of (1) and (2) are clear. To prove the reverse implica-
tions, we may suppose that f is n-truncated for some integer n. We prove (1) and (2) by a simultaneous
induction on n.

If n = —2 then f is an equivalence and there is nothing to prove. Suppose now that n > —2 and that
each fiber of f is weakly C-ambidextrous. Let § : X — X xy X be the diagonal map. We wish to show that
d is ambidextrous. Since d is (n — 1)-truncated, it will suffice (by virtue of the inductive hypothesis) to show
that each homotopy fiber of § is C-ambidextrous. Fix a vertex of X xy X, which we can identify with a pair
of vertices (x,2’) € X x X having the same image y € Y. Let P, ,» denote the homotopy fiber of § over the
point (z,z’), which we can identify with the space of paths from x to 2’ in the Kan complex X,,. Since X,
is weakly C-ambidextrous, the diagonal map X, — X, x X, is ambidextrous. Using the homotopy pullback
diagram

Py oy —— {(z,2')}

.

X, — X, x X,,,

we deduce that P, ,+ is C-ambidextrous as desired.

Now suppose that f is n-truncated and that fibers of f are C-ambidextrous; we wish to show that f is
ambidextrous. It follows from the previous step that f is weakly ambidextrous. Replacing f by a pullback
of f, we are reduced to showing that the map vy : f*fi — id is the counit of an adjunction between the
functors f* and f;. Fix a pair of local systems Lx : X — € and Ly : Y — C; we wish to show that the
composite map

a: MapFun(Y,@) (LY7 f! [“X) - Ma‘pFun(X,(?) (f* Ly, f*f' 'C’X) _f> Ma‘pFun(X,C) (.f* LYaLX)

is a homotopy equivalence. The collection of those local systems Ly for which this condition is satisfied
is closed under small colimits. We may therefore use Lemma 4.3.8 to reduce to the case where Ly = ,C,
where i : {y} — Y denotes the inclusion of a vertex and C' € C is a fixed object. Let f’ : X, — {y} denote
the projection map. We have a diagram

* * Vs *
MapFun(Y,C)(LY7f!'C’X)%Ma‘pFun(X,C)(f Ly, f f!LX)%MapFun(X,G)(f LYVC’X)

| | |

Mape (C, (fi £x)(y)) —— Mapguy(x,, ) (/7 C, f* (i £x)(y)) - Mapguy(x, e (fC, £x |Xy)
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where the commutativity of the right square follows from Proposition 4.2.1. It follows from Proposition 4.3.3
that the vertical map on the right is a homotopy equivalence. We are therefore reduced to showing that the
lower horizontal composition is a homotopy equivalence, which follows immediately from our assumption
that the fiber X, is C-ambidextrous. O

We now use Lemma 4.3.8 to give an alternate characterization of C-ambidextrous spaces, which does
make explicit mention of the natural transformations v.

Proposition 4.3.9. Let C be an oo-category which admits small colimits, let X be a truncated Kan complez,
and let f : X — x be the projection from X to a point. Then X is C-ambidextrous if and only if the following
conditions are satisfied:

(1) The Kan complex X is weakly C-ambidextrous (that is, each path space Py, = Fun(Al, X) X Fun(d A1,X)
{(z,y)} is C-ambidextrous: see Remark 4.3.7).

(2) The pullback functor f*: C — Fun(X,C) admits a right adjoint f..
(3) The functor f. preserves small colimits.

Proof. Suppose X is C-ambidextrous. Then condition (1) is obvious, and conditions (2) and (3) follow from
the observation that f is right adjoint to f*. Conversely, suppose that conditions (1), (2), and (3) are
satisfied. Using condition (2), we can identify vy : f* fi = idpun(x,e) With a norm map Nmx : fi — f. (see
Remark 4.1.12); we wish to show that Nmy is an equivalence. For this, it suffices to show that for every
local system £ : X — €, the induced map fi L — f. £ is an equivalence in C. The collection of those objects
L € Fun(X, €) for which this condition is satisfied is closed under small colimits in Fun(X, €) (by virtue of
condition (3)). Using Lemma 4.3.8, we can assume that £ = 4C, where C' € C is an object and i : {z} - X
is the inclusion of a point. Assumption (1) guarantees that ¢ is ambidextrous. Using Remark 4.2.4, we see
that the composite map

N .
Co(fiNC~= il B £ L™ fi.C~C
is homotopic to the identity. Since ¢ is ambidextrous, the map Nm; is an equivalence; it follows that Nm/ is

an equivalence as well. O

Remark 4.3.10. In the situation of Proposition 4.3.9, suppose that the co-category € admits small limits
(this is satisfied, for example, if € is presentable). Then hypothesis (2) is automatically satisfied. Moreover,
we can replace hypothesis (3) by the following variant:

(3") The functor fi preserves small limits.

Assuming (3’), the collection of those objects £ € Fun(X,€) for which the norm map Nmy induces an
equivalence fi L — f, £ is closed under small limits. Invoking the dual of Lemma 4.3.8, we can reduce to
the case where £ = i,C where 7 is the inclusion of a point x € X and C € C is some object. We have a
commutative diagram

e e feirC
lei Nmi
FiinC — £.i,C.

Since i is ambidextrous, the vertical maps are equivalences, and the diagonal map is an equivalence by
Remark 4.2.4. Tt follows that the lower horizontal map is also an equivalence.

Example 4.3.11. Let Pr" denote the oo-category whose objects are presentable co-categories and whose
morphisms are functors which preserve small colimits. Let X be an arbitrary simplicial set equipped with a
map x : X — Prl, classifying a coCartesian fibration ¢ : X — X with presentable fibers. Using Propositions
HTT.5.5.3.13 and HTT.3.3.3.1, we can identify @X with the full subcategory of Funx (X, X) spanned by
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those sections of ¢ which carry each edge of X to a g-coCartesian edge of X. In the special case where X is a
Kan complex, this condition is automatic so that @1 x ~ Funy (X, X). In this case, we can also view y as a
functor ' : X — Pr®, where Pr® denotes the co-category of presentable co-categories and functors which are
accessible and preserve small limits. Using Corollary HTT.5.5.3.4, Theorem HTT.5.5.3.18, and Proposition
HTT.3.3.3.1, we obtain an equivalence of oo-categories @X ~ 1’£1x’ ~ Funx (X, X). Combining these
observations, we obtain a canonical equivalence hgq X = @ X. This equivalence is natural in y. If f: X — x
is the projection map, we obtain an equivalence o between the functors f,, fi : Fun(X,Pr%) — Pr*. In
particular, the functor f, preserves small colimits and the functor f, preserves small limits. Repeatedly
applying Proposition 4.3.9, we deduce that every truncated space X is Pr-ambidextrous. With more effort,
one can show that the equivalence a : fi ~ f, constructed above is homotopic to the norm map Nmy of
Remark 4.1.12.

4.4 Examples

Let € be an co-category which admits small limits. In §4.3, we introduced the notion of a C-ambidextrous
space. In this section, we will study conditions on € which guarantee the existence of a good supply of
C-ambidextrous spaces.

Definition 4.4.1. Let X be a space. We will say that X is a finite n-type if the following conditions are
satisfied:

(1) The space X is n-truncated: that is, the homotopy groups 7,, (X, ) vanish for m > n (for every choice
of base point = € X).

(2) For every point € X and every integer m, the set m,, (X, z) is finite.

Definition 4.4.2. Let C be an co-category which admits small colimits, and let n > —2 be an integer. We
will say that C is n-semiadditive if every finite n-type X is C-ambidextrous.

Remark 4.4.3. Let n > —2 be an integer, and let € be an n-semiadditive oco-category. For every finite
n-type X, let p : X — % denote the projection map from X to a point, and let ux denote the natural
transformation p, : ide — pip* of Definition 4.1.11. For every pair of objects C, D € €, the construction
described in Notation 4.1.6 determines a map of spaces

dpx : Fun(X, Mape(C, D)) — Mape(C, D),

which we will denote by f — f « Jdux. This is our motivation for the terminology introduced in Definition
4.4.2: an n-semiadditive oo-category is an oo-category € in which is it possible to “add” a collection of
morphisms parametrized by a finite n-type.

Remark 4.4.4. Let X be a finite (n + 1)-type. For every pair of vertices x,y € X, the path space P, , is
a finite n-type. It follows from Remark 4.3.7 that if C is an n-semiadditive co-category, then X is weakly
C-ambidextrous.

Example 4.4.5. A Kan complex X is a finite (—2)-type if and only if it is contractible. It follows that
every oo-category € which admits small colimits is (—2)-semiadditive.

Remark 4.4.6. Let € be an co-category which admits small colimits. The empty Kan complex ) is always
weakly C-ambidextrous (since the diagonal map () — () x @ is an isomorphism). Note that Fun(f), ) ~ A°
has a unique object, which we will denote by E. Let f : ) — % be the inclusion, so that the pullback functor

f*: €~ Fun(x,€) — Fun(,C) ~ A°

is the constant map and its left adjoint f; : Fun(f), ) — @ carries E to an initial object of €. Unwinding
the definitions, we see that the empty Kan complex is C-ambidextrous if and only if the identification
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vy @ f*o fi ~id is the counit of an adjunction. This is equivalent to the assertion that for every object
C € @€, the canonical map

Map@(ca f’(E)) - MapFun(@,G)(f*C7 .f*f'(E)) H} MapFun(@,C)(f*C7 E) =

is a homotopy equivalence. In other words, () is C-ambidextrous if and only if € is a pointed oco-category:
that is, the initial object of € is also a final object.

Example 4.4.7. Note that a Kan complex X is a finite (—1)-type if and only if it is either empty or
contractible. Consequently, if € is an oo-category which admits small colimits, then € is (—1)-semiadditive if
and only if it is pointed. In this case, for every pair of objects C, D € C, Remark 4.4.3 produces a canonical
map

dpg : Fun(d, Mape (C, D)) — Mape(C, D),

which we can identify with a morphism from C to D. Unwinding the definitions, we see that this is the zero
morphism from C to D: that is, it is given by the composition C — 0 — D, where 0 denotes a zero object
of C.

Example 4.4.8. Let € be an co-category which admits small limits and colimits and let X be a set, which we
regard as a discrete space. Then we can identify objects of LocSys(€C)x with sequences of objects {Cy }rex
of the oco-category C, indexed by the set X. If p : X — % denotes the projection from X to a point, then the
functors

pr: Fun(X,€) — @ P« : Fun(X,€) — €

are given by

{CI}IEX — H Cx {Cx}IEX — H Cw

zeX zeX

Assume that € is pointed, and therefore (—1)-semiadditive. It follows from Remark 4.3.7 that X is weakly
C-ambidextrous. Unwinding the definitions, the norm map Nm, : pr — p. associates to each {Cy}zex €

Fun(X, C) the map
0: ] c. - [] ¢
reX yeX

whose (x,y)-component is given by ide, for = y, and is otherwise given by the zero map (see Example
4.4.7). Tt follows that X is C-ambidextrous if and only if 6 is an equivalence, for every collection of objects

{Cz}mEX-

Proposition 4.4.9. Let C be an oo-category which admits small limits and colimits. Then € is 0-semiadditive
ide O

0 idD] induces an

if and only if it is pointed and, for every pair of objects C,D € C, the matrix [
equivalence CII D — C x D.

Proof. We will prove the “if” direction; the converse is an immediate consequence of Examples 4.4.7 and
4.4.8. Assume that C satisfies the conditions of the Proposition; we wish to show that every finite discrete
space X is C-ambidextrous. We proceed by induction on the number of elements of X. If X is empty, then the
desired result follows from our assumption that € is pointed (Example 4.4.7). Otherwise, choose an element
z € X. Set Y = {x,y}, and define a map p : X — Y which carries = to itself and X — {z} to y. The fiber
p~1{x} is contractible (hence C-ambidextrous), and the fiber p~1{y} has cardinality < |X| and is therefore
C-ambidextrous by the inductive hypothesis. It follows from Example 4.4.8 that Y is C-ambidextrous, so
that X is C-ambidextrous by Corollary 4.3.6. O

Remark 4.4.10. In the situation of Proposition 4.4.9, it is not really necessary to assume that € admits
small limits. If € is a pointed oco-category which admits small colimits, then for every pair of objects C, D € C
we obtain a canonical pair of maps

C«+~ClUD — D.
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The 0-semiadditivity of € is equivalent to the requirement that this pair of maps exhibits C' I D as a product
of C' with D in the oco-category C.

Remark 4.4.11. Let C be a 0-semiadditive co-category. For every pair of objects C, D € C and every finite
set X, the construction of Remark 4.4.3 determines a map

dux : Fun(X, Mape(C, D)) — Mape(C, D).
In particular, taking X to be a set with two elements, we obtain an addition map
+ : Mape(C, D) x Mape(C, D) — Mape(C, D).

It is not difficult to see that this addition map is commutative and associative up to homotopy, with unit
given by the zero map 0 € Mape(C, D). With more effort, one can show that this addition is commutative
and associative up to coherent homotopy: that is, it underlies an Eo.-structure on the space Mape(C, D).

Remark 4.4.12. Let A be an ordinary category. Recall that A is said to be additive if the following
conditions are satisfied:

(1) The category A is pointed.
(2) The category A admits finite products and coproducts.

da

(3) For every pair of objects A,B € A, the matrix [10

coproduct AII B to the product A x B.

0 . . .
i ] determines an isomorphism from the
B

(4) For every pair of objects A, B, the set of maps Homy4 (A, B) is an abelian group under the addition
law which carries a pair of maps f,g: A — B to the sum

frg: A= AxAYY BxB~BUB - B.

Note that if A admits small colimits, then conditions (1), (2), and (3) are equivalent to the 0-semiadditivity
of the nerve N(A). We may therefore regard the theory of 0-semiadditive oco-categories as a generalization of
the theory of additive categories (modulo the assumption of the existence of small colimits, which is mostly
a matter of convenience).

Remark 4.4.13. Let C be an oo-category which admits small limits and colimits. The characterization
of Proposition 4.4.9 shows that the O-semiadditivity of € is really a condition on the homotopy category
hC. Namely, the homotopy category hC automatically satisfies condition (2) of Remark 4.4.12, and € is
0O-semiadditive if and only if hC also satisfies conditions (1) and (3).

Example 4.4.14. Let C be a stable co-category which admits small limits and colimits. Then € is 0-
semiadditive. Consequently, for every finite group G, the classifying space BG is weakly C-ambidextrous.
Let p : BG — * denote the projection map. Then the norm map Nm,, : p1 = p, determines a map Cg — ce,
for every G-equivariant object C' of €. We denote the cofiber of this norm map by C*¢, and refer to it as the
Tate construction for the action of G on C (see Definition HA.7.1.6.24). Note that the classifying space BG
is C-ambidextrous if and only if, for every G-equivariant object C' of €, the Tate construction C*¢ vanishes.

We now turn our attention to 1-semiadditivity.

Notation 4.4.15. Let C be a 0-semiadditive co-category. For every integer n > 0 and every object C' € €, we
let [n] : C' — C denote the n-fold sum of the identity map id¢ with itself, under the addition on Mape(C, C)
described in Remark 4.4.11. More explicitly, we let [n] denote the composite map
ci [ e~ ] ¢c%e
1<i<n 1<j<n

Here 6 and &’ denote the diagonal and codiagonal, respectively, and the middle equivalence is supplied by
Example 4.4.8.
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Proposition 4.4.16. Let C be a 0-semiadditive co-category which admits small limits and colimits. Assume
that there is a prime number p with the following property:

(x) For every integer n > 1 which is relatively prime to p and every object C € C, the map n: C — C is
an equivalence.

Then C is 1-semiadditive if and only if the Filenberg-MacLane space K(Z /pZ,1) is C-ambidextrous.

Proof. The “only if” direction is obvious. For the converse, suppose that K(Z /pZ,1) is C-ambidextrous.
Let X be any finite 1-type; we wish to show that X is C-ambidextrous. Applying Corollary 4.3.6 to the map
X — meX, we can reduce to the case where X is connected, so that X ~ BG for some finite group G. Let
P C G be a p-Sylow subgroup, and consider the maps

BP % BG s «.

We wish to show that the norm map Nmy : fi — f. is an equivalence. Let £ € Fun(BG, C) be an arbitrary
object. The map g is equivalent to a covering space with finite fibers, and is therefore ambidextrous. Let
a: L — L denote the composition

L—g.g" L2gg"L— L.

We claim that « is an equivalence. To prove this, it suffices to show that « induces an equivalence z* £ — x* £
for every point * € BG. Unwinding the definitions, we see that z*(«a) is given by the multiplication map
[n] : L, — L., where n is the cardinality of the quotient G/P. Since P is a p-Sylow subgroup of G, the
number n is relatively prime to p so that [n] is an equivalence. It follows that £ is a retract of gig* L.
Consequently, to prove that Nm, induces an equivalence p1 L — f, L, we are free to replace £ by fif* L,
and may therefore assume that £ = f; £’ for some £’ € Fun(BP, €). Consider the composite map

f!g! L/ Ni; f*g! L/ Nﬂ f*g* L/.

Since g ambidextrous, the second map is an equivalence. To prove that the first map is an equivalence, it
suffices to show the composite map is an equivalence. According to Remark 4.2.4, the composite map can
be identified with the norm for the composition fg. We may therefore replace G by P and reduce to the
case where G is a p-group. We now proceed by induction on the cardinality of G. If G is trivial there is
nothing to prove. Otherwise, we can choose a normal subgroup G’ € G of order p. It follows from the
inductive hypothesis that B(G/G’) is C-ambidextrous. We have a fibration BG — B(G/G’), whose fibers
are homotopy equivalent to the Eilenberg-MacLane space BG' ~ K(Z /pZ,1). Applying Corollary 4.3.6, we
deduce that BG is C-ambidextrous as desired. O

Proposition 4.4.17. Let € be a 0-semiadditive oco-category, let p be a prime number. Assume that for each
C € @, the map [p] : C — C is an equivalence. Then, for every finite p-group G, the Eilenberg-MacLane
space BG is C-ambidextrous.

Proof. Arguing as in the proof of Proposition 4.4.16, we can reduce to the case where G = Z /pZ. Consider
the maps

« % BG L«
We wish to show that the norm map Nmy : fi — f. is an equivalence. Let £ € Fun(BG, €) be an arbitrary
object. The map ¢ is equivalent to a covering space with finite fibers, and therefore ambidextrous. Let

a: L — L denote the composition
L—=g.g " Lgg"L— L.

As in the proof of Proposition 4.4.16, we see that for each x € BG, the map £, — £, determined by « is
homotopic to p : £ — L, and therefore an equivalence. It follows that £ is a retract of g L', for £’ = ¢* L.
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It will therefore suffice to show that Nmj induces an equivalence figi L' — f.gi £’. Remark 4.2.4 implies
that the composite map

f!g! L/ Nﬂ; f*g! L/ N—mg f*g* L/.

is an equivalence. Using the two-out-of-three property, we are reduced to proving that Nm, induces an
equivalence f.gi L' — f.g. L'. This follows from our assumption that € is O-semiadditive. O

Corollary 4.4.18. Let C be a 0-semiadditive co-category. Assume that for each integer n > 1 and each
object C € C, the map [n] : C — C is an equivalence. Then C is 1-semiadditive.

Proof. Combine Propositions 4.4.16 and 4.4.17. O

Proposition 4.4.19. Let C be an co-category which admits small limits and colimits, and let n > 2 be an
integer. Then C is n-semiadditive if and only if the following conditions are satisfied:

(1) The oco-category C is (n — 1)-semiadditive.
(2) For every prime number p, the Filenberg-MacLane space K(Z [pZ,n) is C-ambidextrous.

Proof. Tt is clear that conditions (1) and (2) are necessary. To prove sufficiency, assume that (1) and (2) are
satisfied and let X be a finite n-type; we wish to show that X is C-ambidextrous. Using Corollary 4.3.6, we
are reduced to proving that the homotopy fibers of the truncation map X — 7<,_1 X are C-ambidextrous.
We may therefore assume that X is an Eilenberg-MacLane space K(A,n) for some finite abelian group
A. We proceed by induction on the cardinality of A. If A is trivial there is nothing to prove, and if A
is isomorphic to Z /pZ for some prime number p then the conclusion follows from (2). Otherwise, we can
choose a short exact sequence
04 —>A—-A">0

where A’ and A” are smaller than A. Then there is a fibration X — K(A” n) whose homotopy fibers are
equivalent to K(A’,n). The inductive hypothesis implies that K(A”,n) and K(A’,n) are C-ambidextrous.
It follows from Corollary 4.3.6 that X is C-ambidextrous, as desired. O

Proposition 4.4.20. Let C be a stable co-category which admits small limits and colimits. Let p be a prime
number with the following property: for every object C € @, the multiplication map [p] : C — C is an
equivalence. Then the Filenberg-MacLane spaces K(Z /pZ, m) are C-ambidextrous for m > 1.

Proof. We proceed by induction on m. The case m = 1 follows from Proposition 4.4.17. Assume that m > 2.
The inductive hypothesis implies that K(Z /pZ,m — 1) is C-ambidextrous, so that K(Z /pZ,m) is weakly
C-ambidextrous (Remark 4.3.7). Let X = K(Z /pZ, m) and let f : X — x denote the projection map. To
complete the proof, it will suffice to show that the functor f, : Fun(X, €) — € preserves small colimits. We
will complete the proof by showing that f. is an equivalence of oco-categories. Equivalently, we will show
that the diagonal embedding € — Fun(X, €) is an equivalence of co-categories. For this, it suffices to show
that for every simplicial set K, the induced map

Fun(K, C)~ — Fun(K, Fun(X, €))~
is a homotopy equivalence of Kan complexes. Replacing € by Fun(K, €), we are reduced to proving that the
diagonal map €~ — Fun(X, €)= ~ Fun(X, C~¥) is a homotopy equivalence.
We will prove by induction on n that the diagonal map

8y T<pn €& — Fun(X, 7<,, €7)

is a homotopy equivalence (the desired result then follows by passing to the homotopy limit in n). When
n = 1, this follows immediately from the fact X is 2-connective (since m > 2). Assume that §,, is a homotopy
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equivalence and consider the diagram

~ Ont1 ~
T<nt+1 €& ——Fun(X, 7<p41 C7)

| l

T<pn €& —— Fun(X, 7<, €7).

To prove that d,,41 is a homotopy equivalence, it will suffice to show that §,,+1 induces a homotopy equivalence
between the homotopy fibers taken over any chosen vertex of 7<,, €=. Such a vertex depends on a choice of
object C' € C. Unwinding the definitions, we are reduced to proving that the diagonal map

K(Ext,"(C,C),n+1) = Fun(X, K (Ext"(C,C),n + 1))

vanishes. This is equivalent to the vanishing of the reduced cohomology groups H;.4(X; A), where A =
Exto,"(C,C). The vanishing now follows from the observation that the abelian group A is a module over
Z[1]. O

Corollary 4.4.21. Let C be a stable co-category which admits small limits and colimits. Assume that for
each object C € €, the endomorphism ring EX‘L%(C’, C) is an algebra over the field Q of rational numbers.
Then € is n-semiadditive for every integer n.

Proof. Combine Corollary 4.4.18, Proposition 4.4.20, and Proposition 4.4.19. O

Example 4.4.22. Let R be an E;-ring, and suppose that myR is a vector space over the field Q of rational
numbers. Then the co-category LModpg of left R-module spectra is n-semiadditive for every integer n.

Corollary 4.4.23. Let C be a stable co-category which admits small limits and colimits, and let p be a
prime number. Assume that for each object C' € C, the endomorphism ring EXt%(C, C) is a module over
the local ring Zyy. Then C is n-semiadditive if and only if the Eilenberg-MacLane spaces K(Z [pZ,m) are
C-ambideztrous for 1 < m < mn.

Proof. Combine Propositions 4.4.19, 4.4.16, and 4.4.20. O

5 Ambidexterity of K(n)-Local Stable Homotopy Theory

Let C be an oo-category which admits small limits and colimits. In §4.3, we introduced the notion of a
C-ambidextrous space. If X is a C-ambidextrous space, then for any C-valued local system £ on X, we have
an equivalence

Nmy : Cu(X;£) — C*(X; L).

In §4.4, we studied some situations in which the C-ambidexterity of a space X can be proven by purely
formal arguments. However, the cases considered in §4.4 are not particularly interesting: our arguments
required assumptions which rule out the existence of interesting local systems (see the proof of Proposition
4.4.20), and the similarity between C,(X; L) with C*(X; L) reflects the vanishing of both sides.

Our goal in this section is to establish ambidexterity in a more interesting setting. Our main result
(Theorem 5.2.1) asserts that if C is the oo-category of K(n)-local spectra (Definition 2.1.13) and X is
a Kan complex with finitely many finite homotopy groups, then X is C-ambidextrous. The proof is not a
formal exercise: it depends crucially on the Ravenel-Wilson calculation of the K (n)-cohomology of Eilenberg-
MacLane spaces discussed in §2.

Suppose that € = Spg,, is the co-category of K (n)-local spectra, and that X is a Kan complex which is
known to be weakly C-ambidextrous. Then X is C-ambidextrous if and only if, for every C-valued local system
L on X, the norm construction of Remark 4.1.12 determines an equivalence Nmy : C.(X; L) — C*(X; L).
In §5.1 we show that it suffices to prove this in the case where £ is the trivial local system on X (Example
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5.1.10). In this case, we can think of Nmyx as a kind of bilinear form on the K (n)-local suspension spectrum
Lk )X (X), and ambidexterity is equivalent to the nondegeneracy of this bilinear form.

We carry out the proof of Theorem 5.2.1 in §5.2. Roughly speaking, the idea is to reduce to the case where
X is an Eilenberg-MacLane space, so that the Lubin-Tate homology E{'(X) is well-understood by means of
the calculations of §3.4. The map Nmyx determines a bilinear form on E{(X), and this formal properties
of the norm (specifically, Remark 5.1.12 and Proposition 5.1.18 from §5.1) are sufficient to determine this
bilinear form explicitly. The desired nondegeneracy is then a consequence of a general algebraic fact about
p-divisible groups (Proposition 5.2.2).

In §5.4, we study the structure of the oo-category Fun(X, Spg,,) of K(n)-local spectra on a Kan complex
X. It follows from Theorem 5.2.1 that if X has finitely many finite homotopy groups, then the construction
L — C*(X; L) determines a colimit-preserving functor from Fun(X,Spg,,)) to Spk(,,). Note that for any
L € Fun(X, Sp), the spectrum C*(X; L) is naturally a module over the function spectrum C*(X; S) (here S
denotes the K (n)-local sphere spectrum). Our main result asserts that if X is n-truncated and its homotopy
groups are p-groups, then every K (n)-local module over C*(X; S) arises via this construction: more precisely,
the global sections functor determines an equivalence of co-categories

C* (X5 0) : Fun(X;Spge(,)) = Mode-(x.5)(SPk (n))-

Our proof relies on a duality phenomenon enjoyed by the Morava K-theory of Eilenberg-MacLane spaces,
which we review in §5.3.

5.1 Ambidexterity and Duality

Let C be an oo-category which admits small limits and colimits. Our goal in this section is to develop some
tools for proving that a Kan complex X is C-ambidextrous. Assume that X is weakly C-ambidextrous.
Then the construction of Remark 4.1.12 supplies a map Nmyx from the homology of X to the cohomology
of X, taken with respect to an arbitrary C-valued local system on X. Roughly speaking, we can think
of a map from homology to cohomology as something like a bilinear pairing on the homology of X. The
C-ambidexterity of X is then equivalent to the nondegeneracy of this pairing. Our first goal is to make this
idea more precise. We begin by reviewing some general facts about duality in monoidal co-categories (for a
more detailed discussion, we refer the reader to [14]).

Definition 5.1.1. Let C be a monoidal category with unit object 1. A map
e: XY =1

in € is said to be a duality datum if there exists a map ¢: 1 — Y ® X such that the composite maps

X Xxoyox Ny

Yy ¥ yexeoy ¥y
coincide with the identity maps idx and idy, respectively. In this case, we say that e and ¢ are compatible
with one another.
If € is a monoidal co-category, we say that a map e : X ® Y — 1 is a duality datum if it is a duality
datum when regarded as a morphism in the homotopy category of €.

Definition 5.1.2. Let C be a symmetric monoidal co-category. We say that an object X € C is dualizable
if there exists another object Y € € and a duality datum e: X ® Y — 1. In this case, choose c: 1 - Y ® X
to be compatible with e. We define dim(X) € mg Mape(X, X) = Hompe (X, X) to be the morphism given
by the composition

15YX~XeV 51

Remark 5.1.3. In the situation of Definition 5.1.2, the object Y and the morphisms e and ¢ are determined
by X up to a contractible space of choices. In particular, dim(X) depends only on the object X.
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Remark 5.1.4. Let € be a symmetric monoidal co-category and let e : X ® X — 1 be a duality datum
in €. Assume that e is symmetric up to homotopy (that is, e is homotopic to its composition with the
self-equivalence of X ® X given by swapping the two factors). Then dim(X) is given by the composition

15X2X 51,
where ¢ is compatible with e.

Example 5.1.5. Let R be a commutative ring, and let € denote the ordinary category of R-modules. An
object M € C is dualizable if and only if it is finitely generated and projective as an R-module. If M is
a projective R-module of rank n, then dim(M) € Hom(R, R) ~ R coincides with the image of n in the
commutative ring R.

Example 5.1.6. Let R be an E-ring. We say that an R-module spectrum M is projective if mgM is a
projective module over myR and the canonical map

Tm R Qror oM — 70 M

is an isomorphism for every integer m. Let Mod%roj denote the full subcategory of Modgr spanned by
the projective R-modules. According to Corollary HA.8.2.2.19, the construction M + myM determines
an equivalence from the homotopy category of Mod® to the category of projective modules over the
commutative ring moR. In particular, we see that if M and N are projective R-modules, then a map

e:M®rN — R
is a duality datum if and only if the induced map
oM Qror TN = TR
is a duality datum in the category of myR-modules.

Notation 5.1.7. Let ¢ : € — X be a Beck-Chevalley fibration. For every morphism f: X — Y in X, we let
[X/Y] denote the functor fio f*: Cy — Cy. If f is weakly ambidextrous, we let TrFmy : [X/Y]o[X/Y] —id
denote the natural transformation given by
* *\ * * Vf . * * % .
LSAST) = AT = filide ) [T = AifF = id.
We will refer to TrFm/y as the trace form of f.

Proposition 5.1.8. Let g : € — X be a Beck-Chevalley fibration and let f : X — Y be a weakly ambidextrous
morphism in X. The following conditions are equivalent:

(1) The map vy : f*fi — idey is the counit of an adjunction between f* and fi.

(2) The trace form TrFmy : [X/Y] o [X/Y] — ide, ezhibits the functor [X/Y| as its own dual in the
monoidal co-category Fun(Cy, Cy ).

Proof. Suppose first that (1) is satisfied, and let p1f : ide,, — [X/Y] be a unit map which is compatible with
vp. We define a natural transformation ¢ : ide,, — [X/Y] o [X/Y] given by the composition

id % [x/y] = frid s fp gt = [X/Y] 0 [X/Y).
We claim that ¢ and TrFm/ exhibit [X/Y] as a self-dual object of Fun(Cy, Cy): in other words, the composite

maps
id x¢ TrFmy x id

[(X/Y] — [X/Y]o [X/Y]o[X/Y] =~ — = [X/Y]
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id x Trme

[X/Y]Z5 [X/Y] 0 [X/Y] o [X/Y] [X/Y]

are homotopic to the identity. We will prove that the first composition is homotopic to the identity; the
proof in the second case is similar. We have a commutative diagram

id X[ idXVind

(X/Y] [(X/Y]o[X/Y] [X/Y]

id x4y xid id x4y xid
id xc

[X/Y] o [X/¥] o [x/ V2% v o [x/Y]

¢f xid
TrFmy x i

[X/Y]

The upper horizontal and right vertical compositions are homotopic to the identity, by virtue of the com-
patibilities between the pairs (¢f,1f) and (g, vy).

Now suppose that (2) is satisfied, so that there exists a coevaluation map ¢ : ide, — [X/Y]o [X/Y]
compatible with TrFmy. We define natural transformations p, p’ : id — [X/Y] to be the compositions

f><1d

peid 5 [X/Y] 0 [x/Y] 25 [x/ Y]

W oid S [X/Y] o [X/Y) Y (XY
We will prove:

() The composite transformation

/,1,><1d id ><1/f

fi— hf*Hh — h

is homotopic to the identity.

(#4) The composite transformation
e
is homotopic to the identity.
Assuming (¢) and (i¢), we deduce that the composite transformation

id ><Vf><1d

id X5 f At

is homotopic to both p and p/. It follows that p ~ p’ is the unit for an adjunction compatible with the
counit map vy.

It remains to prove (i) and (i¢). We will prove (¢); the proof of (i¢) is similar. Since ¢ is the counit for
an adjunction between f, and f*, the composite map

* xy\ Pro £ -
Mappyn (e ey) (fis 1) = Mabpun(ey .y ) (S5 fuf*) = Mappun(ey ey (S5 idey )
is a homotopy equivalence. It will therefore suffice to show that the composition

id ><l/f xid

A1 S e e £if % ide,

is homotopic to ¢. Using the definitions of TrFm¢ and i, we can rewrite this composition as

¢f>< id
— [

X/Y] S (X/Y] o [X/Y] o [X/Y] 5 [X/Y] 0 [X/Y] 5 ide, -
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The desired result now follows from the commutativity of the diagram

/Y] (x/¥) o [%/¥] 0 [X/¥] 275 (X/] 0 [X/Y]

id xe e
P

X/Y] id.

We now restrict our attention to the Beck-Chevalley fibrations arising in the study of local systems.

Notation 5.1.9. Let € be an oco-category which admits small colimits, let X be a Kan complex, and let
f+ X — « be the projection map. We let [X] denote the functor from € to itself given by [f] = fio f* (see
Notation 5.1.7). Unwinding the definitions, we see that [X] is simply the functor given by tensoring with
X (since € admits small colimits, it is naturally tensored over the oo-category of spaces). In particular, it
depends functorially on X. If we are given another map ¢ : Y — X, then the counit map ¢i¢g* — id induces
a natural transformation [Y] = figig* f* — fif* = [X], which we will denote by ay.

If X is weakly C-ambidextrous, then we let TrFm y denote the natural transformation TrFmy : [X]o[X] —
ide described in Notation 5.1.7.

Example 5.1.10. Let X be a Kan complex, and let € be the image of an accessible exact localization
functor L : Sp — Sp (see Proposition 2.1.1). Then the smash product monoidal structure on Sp induces a
symmetric monoidal structure on € (Corollary 2.1.3), and the action of € on itself determines a monoidal
equivalence from € to the full subcategory of Fun(C, €) spanned by those functors which preserves small
colimits (Proposition 2.1.5). Under this equivalence, the functor [X] : € — € corresponds to the object
XI(L(S)) = L(ETX) € €.

If X is weakly C-ambidextrous, then Notation 5.1.7 determines a map

TrFmy : L(ZfX)@L(EfX) — L(9),
which is a duality datum if and only if X is C-ambidextrous (Proposition 5.1.8).

It will be useful to have a more explicit description of the trace form TrFmyx assocated to a weakly
C-ambidextrous Kan complex X.

Notation 5.1.11. Let C be an oco-category which admits small colimits, and let X be a Kan complex
equipped with a base point e : * — X. Assume that e is ambidextrous (this is automatic, for example, if
the Kan complex X is weakly C-ambidextrous). We let Tr. : [X] — ide denote the natural transformation
given by

(X]= A" 5 fiee f* ~ide.

Remark 5.1.12. Let € be an co-category which admits small colimits, let X be a Kan complex, let f : X — *
be the projection map, and let e : ¥ — X be an ambidextrous map. Then the composite transformations

Aff T ide ~ e f* 25 fif = [X]

fif LR g g e TS g g
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are homotopic to one another. This follows from the commutativity of the diagram

id X9y xid

N ———— fif* fif*
fye!e*f*i‘dﬂi(}”!e!e*f*f!f*
be Pe
N g
id o xid

hre.

Proposition 5.1.13. Let C be an co-category which admits small colimits, let X be a weakly C-ambideztrous
space, and suppose that X admits the structure of a simplicial group. Let f : X — x be the projection map,
e : * — X in the inclusion of the identity, and s : X x X — X denote the subtraction map (given on simplices
by (x,y) = = 1y). Then the trace form TrFmx : [X] o [X] — ide is given by the composition

(X]o[X]~[X x X] B [X] = fif* " fiee” f* ~id.

Proof. For every map of Kan complexes g : Y — Z, we let ¢4 : ¢1g" — id denote the counit for the natural
adjunction between g and g*. Consider the diagram
X

o

XxX—=X
S
f
X —— x.
Unwinding the definitions, we see that the trace form TrFmy is given by the composition
FFAF = fimums 5 5 fmndi 6w 5~ fif* 2.

Note that fm; and fmr are both homotopic to fs. We can therefore identify the functor fif* fif* ~ fimuns f*
with fisis* f*. Under this identification, TrFmx is given by

fsis® F* 13 fadiots e %50 id
Consider the pullback diagram o :

XxX-= X

Using this diagram, we can identify ¢¢ss with the composition

Fisidid* st f* = fisisteie* fo 5 free* £* 05 fif* X ide .

Since e o f is homotopic to the identity, the composition of the last two of these natural transformations is
homotopic to the identity. It follows that TrFmy is given by the composition

fisis™f* 53 fis10,:07s™ f* =~ fisis*ere” f* % frewe” f* ~ide .
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The desired result therefore now follows from the diagram

fisis* f* —2s £1516,6%s* f*
X J/N
b fisis*ere* f*

|+

hf" —— free” [,
which commutes up to homotopy by virtue of Proposition 4.2.1. O

Corollary 5.1.14. Let C be a stable co-category which admits small limits and colimits and let p be a prime
number. Assume C is (n—1)-semiadditive and that for each object C € €, the endomorphism ring Ext®(C, C)
is a module over the local ring Z,y. The following conditions are equivalent:

(1) The oco-category C is n-semiadditive.

(2) The composition
[K(Z [pZ,n)] x [K(Z [pZ,n)] — [K(Z [pZ.n) x K(Z [pZ,n)] > [K(Z /pZ,n)] ™ ide

exhibits the functor [K(Z /pZ,n)] as a self-dual object of the monoidal co-category Fun(€, C). Here
Tr. is defined as in Notation 5.1.11 (where e denotes the base point of K(Z /pZ,n)), and « is induced
by the subtraction map

K(Z /pZ,n) x K(Z [pZ,n) — K(Z /pZ,n)

(where we view K(Z /pZ,n) as a simplicial abelian group).
Proof. Combine Corollary 4.4.23, Proposition 5.1.13, and Proposition 5.1.8. O

Let X be a pointed connected Kan complex which is weakly C-ambidextrous, and let § : X — X x X be
the diagonal map. Then the trace form TrFmy : [X]o [X] — ide is defined using the natural transformation
s, whose existence is a reflection of the nondegeneracy of the trace form TrFmg x). Consequently, it is
natural to expect a relationship between the trace form TrFmx of X and the trace form TrFmgqx) of the
loop space of X. We close this section by establishing such a relationship. First, we need to introduce a bit
of terminology.

Notation 5.1.15. Let C be an oco-category which admits small colimits and let X be a C-ambidextrous
Kan complex, so that the trace form TrFmy : [X] o [X] — ide exhibits [X] as its own dual in the monoidal
oo-category Fun(C, €) (Proposition 5.1.8). We let dim(X) denote the dimension of the functor [X], as in
Definition 5.1.2. That is, we let dim(X) denote the endomorphism of ide given by the composition

ide % [X] o [X] "X ide,
where ¢ denotes a coevaluation natural transformation which is compatible with TrFmy .

Remark 5.1.16. Let f : X — x denote the projection map. Using the definition of TrFmy and the proof
of Proposition 5.1.8, we see that dim(X) is given by the composition

ide X fif* ~ fride £ X A Af D fide £5~ fif* 2 ide
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Notation 5.1.17. Let € be an oco-category which admits small colimits, let X be a Kan complex, and let
B : [X] — ide be a natural transformation of functors from € to €. Given a point e : * — X, we let 5(e)
denote the natural transformation from ide to itself given by composing « with the map ide ~ [*] — [X]
induced by e. More concretely, if f : X — * denotes the projection map, then 3(e) is given by the composition

ide =~ fiere f* 2 fif* 2ide.

We will be particularly interested in the case where e is ambidextrous and 8 = Tr.. In this case, Tr.(e)
is given by

ide = fiere f* 25 fif S fee” f* ~ide.
Our goal in this section is to prove the following:

Proposition 5.1.18 (Product Formula). Let C be an co-category which admits small colimits, let G be a
simplicial group which is C-ambidextrous. Let e : x — G denote the inclusion of the identity element, and let
E :x — BG be the inclusion of the base point. Then there is a canonical homotopy

dim(G) ~ Tr.(e) o Trg(FE)
of natural transformations from the identity functor ide to itself.

Proof. Let f denote the projection map from G to a point, so that we have a pullback square o :

G ! *
lf lE
x+ —25 BG.
Consider the diagram of natural transformations
ide — T fif T fif T ide

iw.f lﬂ)E le
BC(o] @

R > ff*E*E — > E*E,

iyf l ¢ i

fff ——— fiff —L > ide.

This diagram commutes up to homotopy (this is obvious except for the lower left square, which commutes
by virtue of Proposition 4.2.1). Remark 5.1.16 implies that dim(G) is given by traversing this diagram via a
counterclockwise circuit. It follows that we can write dim(G) = « o 8, where a denotes the composite map

ide vE E*E) %% ide and S the composite map ide =4 Nr g ide. To complete the proof, it will suffice to
prove the following:

(a) The natural transformation « is homotopic to Tr.(e).
(b) The natural transformation f is homotopic to Trg(E).

We begin by proving (a). Unwinding the definitions, we see that « and Tr.(e) are given by the compo-
sitions N
a:ide 25 BB P e ey feet £~ ide

Tre(e) :ide ~ fiere™ f* ey nre Mey fee' f*f~id.
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It will therefore suffice to show that the composite map

e~ fiee 25 fif "K B R
is homotopic to ¥g. Note that the diagram o determines a (nontrivial) homotopy h from the constant map
(Eof): G — BG to itself, which determines a homotopy v from the functor f*E* to itself. The desired
result now follows by inspecting the diagram
frere* f* —2s fif*
YE
free® f*E*E), N Nf*E*E)
I :
fee f*E*E 2~ [ f*E*E,

~

[oFs

E*E)

(note that the composition of the column on the right is homotopic to the Beck-Chevalley transformation
BCo]; see Remark 4.1.2).
We now prove (b). Let F': BG — % denote the projection map. We can write 5 as a composition

ide ~ B F* " (i B F* % B P ~ide
Using Proposition 4.2.1, we can rewrite this composition as
ide ~ FEE*F* 2 EEE*(E\E*)F* 2z, FEEF* ~ide.
We have a commutative diagram

FEEEE PSR p e F

TBC[U] l¢FE
FEfif B F* —2  ide

oot o
REE*EE F* X p B F

from which it follows that the upper and lower horizontal maps are homotopic to one another. It follows
that S is equivalent to the composition

ide ~ REE*F*
idxupxid  p o p* B E*F*
1d><ﬂ>><1d FgEgE*F*
~ ide

Assertion (b) now follows from the commutativity of the diagram

FE E*F* — 2% FF*

J/id Xupg Xid qu

REEEE F SR pE P,
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5.2 The Main Theorem

Our goal in this section is to prove the following result:

Theorem 5.2.1. Let K(n) be a Morava K-theory spectrum (Notation 2.1.10), let Spg, denote the oo-
category of K(n)-local spectra, and let X be a Kan complex which is a finite m-type for some integer m
(Definition 4.4.1). Then X is Sp(y,)-ambidextrous.

The proof of Theorem 5.2.1 will occupy our attention throughout this section. Here is an outline of our
basic strategy:

(a) Using Corollary 4.4.23, we can reduce to proving Theorem 5.2.1 in the special case where X is an
Eilenberg-MacLane space K(Z /pZ,m).

(b) Using Example 5.1.10, we are reduced to proving that the trace form TrFmx exhibits L )X (X) as
a self-dual object of the oo-category Sp (-

(¢) Let E denote the Lubin-Tate spectrum corresponding to the Morava K-theory K(n). Using the fact
that all K (n)-local spectra can be built from K (n)-local E-modules (Proposition 5.2.6), we are reduced
to proving that TrFmx exhibits Ly (,)E[X] as a self-dual object of the oo-category Modg(Spg (,,))-

(d) Since Ly (n)E[X] is free as an E-module spectrum (Theorem 2.4.10 and Proposition 3.4.3), the claim
that TrFmy is a perfect pairing reduces to a purely algebraic assertion: namely, that TrFmx exhibits
E{(X) as a self-dual module over the commutative ring moFE (Example 5.1.6).

(e) Using Remark 5.1.12 and Proposition 5.1.18, we see that the pairing on E{(X) determined by TrFm x
can be identified with a certain multiple of the usual trace pairing on Ej (X).

(f) According to Theorem 3.4.1, we can identify F{'(X) with the ring of functions on the p-torsion subgroup
of a p-divisible group over mgE. The nondegeneracy of TrFmyx can now be deduced from a general
algebraic fact (Proposition 5.2.2).

Our starting point is the following result, which we prove using an argument of Tate (see [20]).

Proposition 5.2.2. Let R be commutative ring, p a prime number which is not a zero-divisor in R, and let
G be a truncated p-divisible group over R of level 1 and dimension d. Write G = Spec A where A is a finite
flat R-algebra. Then:

(1) The trace map tr : A — R is divisible by p?.

(2) The construction (z,y) — tr;—ﬁy) determines a duality datum AQr A — R in the category of R-modules.

Proof. Writing R as a direct limit of its finitely generated subrings, we can choose a finitely generated
subalgebra Ry C R such that G ~ Gg Xspec R, Spec R, for some finite flat group scheme Gy over Ry.
Enlarging Ry if necessary, we may suppose that G is a p-divisible group of dimension d and level 1. Note
that since Ryg C R, p is not a zero divisor in Ry. We may therefore replace R by Ry and thereby reduce to
the case where R is Noetherian.

Assertion (1) is equivalent to the statement that the map A % R — R/p?R is zero. If this condition is
satisfied, then (z,y) — p~?tr(zy) determines a map from A to its R-linear dual AV, and assertion (2) says
that this map is an isomorphism. To show that a map f: M — N between finitely generated R-modules is
zero or an isomorphism, it suffices to show that the induced map of localizations M, — N, is an isomorphism,
for every prime ideal p C R. To prove this we may replace R by its localization R,, and thereby reduce
to the case where R is local. Using Proposition 10.3.1 of [5], we can choose find a faithfully flat morphism
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R — R’ of local Noetherian rings, such that the residue field of R’ is perfect. Replacing R’ by its completion
if necessary, we may assume that R’ is complete. Using faithfully flat descent, we can replace R by R/, and
thereby reduce to the case where R is a complete local Noetherian ring whose residue field « is perfect.

If k is a field of characteristic different from p, then p is invertible in R. In this case, the group scheme G
is automatically étale, so that A is an étale R-algebra and the trace pairing (z,y) — tr(zy) is nondegenerate.
Let us therefore assume that x has characteristic p. Applying Theorem 3.1.11, we conclude that there exists
a p-divisible group G over R and an isomorphism G ~ G[p).

Let Ginr and Gg; denote the connected and étale parts of G, respectively, so that we have an exact
sequence of p-divisible groups

0= G —>G—=Gg —0

and therefore an exact sequence of finite flat group schemes
0 — Gint[p] = Glp] = Gelp] — 0.

Passing to a finite flat covering of Spec R, we may assume that this second sequence splits. It will therefore
suffice to prove assertions (1) and (2) after replacing G by either Gins or Ggt.

Assume first that G is étale. Then d = 0 so that assertion (1) is vacuous. To prove assertion (2), we
can pass to a finite étale cover of Spec R and thereby reduce to the case where G[p] is the constant group
scheme associated to a Z /p Z-module M. Then A ~ ] ., R, and assertion (2) is clear.

Now suppose that G is connected, and can therefore be identified with smooth formal group of dimension
d over R. We have a pullback diagram (of formal schemes)

G[p] —— Spec R

L,

Gc—" -aG.

Let B and B’ denote the ring of functions on the formal scheme G, and regard the map p : G — G as
determining a finite flat map from B to B’. It will then suffice to prove the following:

(1') The trace map tr : B’ — B is divisible by p.

(2') The construction (x,y) — @Y) Jetermines a duality datum B’ ®5 B’ — B in the category of B-

pd
modules.

Let © denote the B-module of sections of the cotangent bundle of G over R, and let €' denote the
same abelian group regarded as a B’-module. Then the top exterior powers /\dBQ and /\dB,Q’ are invertible
modules over B and B’, respectively. There is a canonical trace map tr’ : /\dB,Q’ — /\%Q7 and the construction
(f,w) — tr'(fw) determines a perfect pairing

B' @5 (AL,Q) — AEQ.
Tensoring with the inverse of A%, we can regard this as a duality datum
MN: B @p (A Q) @5 (M) — B.
Unwinding the definitions, we see that the trace pairing (x,y) — tr(zy) is given by the composition
B'@p B B @5 (MpQ) @5 (\G2) ™) S B,
where a corresponds to the map of B’-modules
B' @5 ALQ — ALQY

given by pullback of differential forms. To complete the proof, it will suffice to prove the following;:
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(1”) The map « is divisible by p®.

(2”) The quotient % is an isomorphism.

Since « is given by the dth exterior power of a map 8 : B’ @5 Q — ', we are reduced to proving the
following:

(1”) The map B is divisible by p.
(2") The quotient g is an isomorphism.

Let €y denote the R-module of translation-invariant differential forms on G. Then 2 is a projective R-
module of rank d, and we have canonical isomorphisms

QﬁB@RQO Q/ZBI(@RQ().
Under these isomorphisms, we see that 5 corresponds to the map
B ®r Q% T2 B ®r Q,

where 7y : Qg — € is given by differentiating the multiplication-by-p map from G to itself. It follows that
~ is just given by multiplication by p, from which assertions (1”) and (2”) immediately follow. O

To apply Proposition 5.2.2 in practice, it will be useful to have a criterion for recognizing the trace map.

Proposition 5.2.3. Let R be a commutative ring, let p be a prime number which is not a zero-divisor on
R, let G be a p-divisible group over R of height h and level 1, and write G = Spec A, so that A is a finite
flat R-algebra of rank p". Suppose that X : A — R is an R-linear map satisfying the following conditions:

(1) The map X\ carries 1 € A to p" € R.

(2) Let A: A— A®pr A be the ring homomorphism classifying the multiplication on the group scheme G.
Then the composite map
AB Ao AN A

is given by a — A(a).
Then X\ coincides with the trace map tr : A — R.
Proof. Replacing R by R[%], we may assume that p is invertible in R, so that the group scheme G is étale.
Passing to a finite flat cover, we may assume that G is the constant group scheme associated to some finite
abelian group M. We can then identify A with the ring AM of functions f : M — A. Then ) is given
by A(f) = > ,car o f(x) for some constants ¢, € R; we wish to show that each ¢, is equal to 1. For each

x € M, let e, € A be given by
1 ifx=y
e (y) =
2 {0 otherwise.

Then A(ey) = Y,y pn €ar @ g, 50 assertion (2) gives

Cp — E Cyt €t

r=x'4x'

in the ring A. It follows that the function  — ¢, is constant. Now (1) = > .,/ ¢ = pleq. Since p is
invertible, condition (1) implies that ¢; = 1, so that each ¢, is equal to 1. O
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Corollary 5.2.4. Let R be a commutative ring, p a prime number which is not a zero-divisor of R, and G
a truncated p-divisible group over R of dimension d, height h, and level 1. Write G = Spec A where A is a
finite flat R-algebra (of rank p"). Let o : A — A denote the antipodal map (that is, the ring homomorphism
which induces the map [—1]: G — G), and let A : A — R be an R-linear map with the following properties:

(1) The map X carries 1 € A to p"~?¢ € R.

(2) Let A: A— A®pr A be the ring homomorphism classifying the multiplication on the group scheme G.
Then the composite map

AB Awp A A
is given by a — A(a).
Then the map (a,b) — A(a’b) determines a duality datum
A®rA—=R

in the category of R-modules.

Proof. Since o is an R-module automorphism of A, it will suffice to show that the map (a,b) — A(ab)
determines a duality datum. Using Proposition 5.2.2, we are reduced to proving that p?\ coincides with the
trace map of A, which follows from Proposition 5.2.3. O

We now return to Theorem 5.2.1. The main step in the proof is to establish the following:

Corollary 5.2.5. Let E be a Lubin-Tate spectrum of height n, let p be the characteristic of the residue
field of E, and let K(n) denote the associated Morava K -theory spectrum. Assume that m > 0 and that
K(Z/pZ,m—1) is SPk (n)-ambidextrous. Let X = K(Z /pZ,m), and consider the map

determined by the trace form TrFmx of Example 5.1.10, where ® denotes the tensor product on the symmetric
monoidal co-category Modg (Spg (). Then B is a duality datum.

Proof. We have already seen that Ly (,,)E[X] is a a projective E-module of finite rank (Theorem 2.4.10 and
Proposition 3.4.3). Let R = moE. Using Example 5.1.6, we are reduced to proving that 8 induces a duality
datum

B: Ep(X)or E)(X) = R

in the category of R-modules. Let e : x — X denote the inclusion of the base point, so that the map of spectra
Tre : Lgn) (3 X) — Lin)(S) induces a map of R-modules X : Eg(X) — R. Let 0 : Eg(X) — Ef(X)
denote the antipode for the Hopf algebra structure on E}(X). Using Proposition 5.1.13, we see that 8
classifies the bilinear map (z,y) — A(z%y). Consequently, to show that 3 is a duality datum, it will suffice
to show that A satisfies conditions (1) and (2) of Corollary 5.2.4.

(1) According to Theorems 3.4.1 and 3.5.1, Spec B K(Z /pZ,m) is a truncated p-divisible group of height
n—1

(::L), dimension ("_1)7 and level 1. We must show that A(1) = p(::t)f( m) = p(:':ll). We proceed

m

by induction on m. Let €' : * — K(Z /pZ,m — 1) denote the inclusion of the base point, so that e’
induces a trace map Tres : L)X K(Z /pZ,m — 1) = Lk (S) and therefore a map of R-modules
N :E}K(Z /pZ,m—1) — R. Note that A(1) € R ~ mg MapMOdE(SpK(n))(E, E) is the image of the map
Tr.(e) € Mapg,,, (L) (S), Lkn)(S)), and similarly A'(1) € R is the image of Tr.s ¢/. Combining
Proposition 5.1.18 and Example 5.1.5, we obtain an equality

AN (1) = dim B)K(Z Jp Zym — 1) = pla).
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We are therefore reduced to proving that

n—1

N(1) = pla=)=(05) = plo=2) ifm > 2
1 if m = 1.

This follows from the inductive hypothesis if m > 2, and from a straightforward calculation when
m = 1.

(2) Let A: EfN(X) = EH(X) ®@g E(X) denote the comultiplication on EJ(X) (induced by the diagonal
embedding X — X x X). Then the composite map

A A®id
ENX) B ENX) @r ENX) S BN (X)

coincides with the composition Ef (X) AR E§(X). This follows immediately from Remark 5.1.12.
O

We can use Corollary 5.2.5 to show that Ly ) E[K(Z /pZ,m)] is self-dual as an E-module spectrum.
To deduce consequences for the K'(n)-localization Ly (,,)X K (Z /pZ, m), we need the following fact:

Proposition 5.2.6. Let E be a Lubin-Tate spectrum of height n, let K(n) denote the associated Morava
K-theory spectrum, and let € be the smallest stable subcategory of Spg(,,) which is closed under retracts and
contains the image of the forgetful functor Modg (Spg (n)) = SPx(n)- Then C = Spg (-

Proof. Let E(n) denote the nth Johnson-Wilson spectrum, and let €’ be the smallest stable subcategory
of Sp which contains E(n) ® X for every spectrum X and is closed under retracts. Since Ly (,)£(n) can
be written as a retract of E, the functor Ly, carries € C Sp into € C SPi(n)- According to Theorem
5.3 of [10], every E-local spectrum belongs to €. It follows that for every K (n)-local spectrum X, we have
X ~ Lg(n)(X) € Ly (¢) C €. -

Corollary 5.2.7. Let E be a Lubin-Tate spectrum of height n, let p be the characteristic of the residue
field of E, and let K(n) denote the associated Morava K-theory spectrum. Assume that m > 0 and that
K(Z [pZ,m — 1) is Spg(,)-ambidextrous. Then X = K(Z [pZ,m) is also Sp g, -ambideztrous.

Proof. Let TrFmx : Lgn)X(X) ® Lgm)EF(X) — Lgn)S be defined as in Example 5.1.10; we wish
to show that TrFmx exhibits Ly ,)X3°(X) as a self-dual object of the symmetric monoidal co-category
SpK(n). In other words, we must show that for every pair of objects Y, Z € SpK( the map 6y, z given by
the composition

Mapg, (V. Lgm)(3FX)® Z) — Mapg,, (L) (5T X)®Y, L) (55 X) @ L) (3T X)®Z)
— Mapg, (Lr@m)(E5X)®Y,2)

n)s

is a homotopy equivalence. Let C denote the full subcategory of Spy(,) spanned by those objects Z for
which the map fy,z is a homotopy equivalence for every Y € Sp K(n)- It is easy to see that C is a stable
subcategory of Spg(,) which is closed under retracts. Using Proposition 5.2.6, we are reduced to proving
that 0y, z is an equivalence whenever Z admits the structure of an F-module. In this case, we can identify
Oy,z with a map

MapModE(SpK(n))(E Y, (E® L) (25 X))®r Z) — MapModE(SpK(n))((E ® Li(n)(ZX X)) @5 (EQY), Z),
which is a homotopy equivalence by Corollary 5.2.5. O

Proof of Theorem 5.2.1. Let K(n) be a Morava K-theory, and let p denote the characteristic of the field
moK (n). Applying Corollary 5.2.7 repeatedly, we deduce that each Eilenberg-MacLane space K(Z /pZ,m)
is Sp K (ny-ambidextrous. Note that if [ is an integer not divisible by p, then multiplication by [ induces a
homotopy equivalence from K (n) to itself. It follows that for every spectrum X, multiplication by ! induces
a K (n)-homology equivalence, so that [ acts invertibly on L ,)(X). Invoking Corollary 4.4.23, we deduce
that every finite m-type is Sp(,,)-ambidextrous. O
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5.3 Cartier Duality

Throughout this section, we fix a perfect field x of characteristic p > 0, and a smooth connected 1-dimensional
formal group Gg of height n < co over k. Let E denote the Lubin-Tate spectrum determined by the pair
(K, Go), let R =moFE ~ W(k)][[v1,...,vn_1]] be the Lubin-Tate ring classifying deformations of Gy, and let
G denote the universal deformation of Gy (regarded as a p-divisible group over R). Let A be a finite abelian
p-group. It follows from Theorem 2.4.10 that for 0 < d < n, Spec K(n)°K(A,d) is a finite flat commutative
group scheme over k. We begin this section by reviewing a result of Buchstaber and Lazarev, which gives
a topological description of the Cartier dual of Spec K(n) K (A, d) (Theorem 5.3.6). Using this result, we
construct an analogous duality in the setting of finite flat commutative group schemes over the Lubin-Tate
spectrum E itself (Theorem 5.3.25). From this, we reprove a result of Bauer concerning the convergence
properties of the Eilenberg-Moore spectral sequence in Morava K-theory (see Corollary 5.3.27 and Remark
5.3.28), which will play an important role in §5.4.
We begin by introducing some terminology.

Definition 5.3.1. Let A be a commutative ring, and let G be a p-divisible group over A of height n and
dimension 1. According to Corollary 3.5.4, the direct limit ligt Alt(g[;t] is again a p-divisible group over R,
of height 1 and dimension 0. A normalization of G is an isomorphism of p-divisible groups

Qu/ 2y = lig Al

Here Q, / Z,, denotes the constant p-divisible group associated to the abelian group Q, | Zy.

Remark 5.3.2. In the situation of Definition 5.3.1, we can think of a normalization as given by a compatible
family of isomorphisms
Z/p'Z~ Altl)
Such an isomorphism is determined by an A-valued point of Altgﬁ)t]: that is, by an alternating multilinear
map
G[pt]n — ppt © G,,.

Remark 5.3.3. Let G be a p-divisible group over a commutative ring A, which has height n and dimension
1. Then hﬂt Altg};t] is an étale p-divisible group of height 1 over A. It follows that a normalization of G
always exists after replacing A by a direct limit of étale A-algebras. In particular, if A is a separably closed
field, then G always admits a normalization.

Remark 5.3.4. Let A be a Henselian local ring with residue field x, and let x denote the residue field of
A. Then category of étale local systems on Spec A is equivalent to the category of étale local systems on
Spec k. In particular, if G is a p-divisible group of height n and dimension 1 over A and Gy is the associated

p-divisible group over &, there is a bijective correspondence between normalizations of G and normalizations
of Go.

Let G be a smooth connected formal group of height n < co over a perfect field x, and let K (n) denote
the associated Morava K-theory. According to Proposition 2.4.10, KSpec(K(Q, /Zp,n)) is a connected

(n)
tGo[Pt]'

a bijective correspondence between normalizations Go and isomorphisms v : KSpec(K(Q,, / Zy,n)) =~ CA}m,

p-divisible group of dimension 1 over x, which is Cartier dual to ligt Al In this situation, there is

where ém denotes the formal multiplicative group over k. In what follows, we will generally identify v with
the corresponding normalization of Gy.

Notation 5.3.5. Let A be a finite abelian p-group. We let A* denote the Pontryagin dual of A, which we
will identify with the set Hom(A,Q,, /Z;) of all homomorphisms from A to Q, /Z,. If G = Spec H is a
finite flat commutative group scheme over a commutative ring A, we let D(G) = Spec H" denote the Cartier

dual of G.
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Let A be a finite abelian p-group and let 0 < d < n be an integer. The bilinear map A x A* — Q,, / Z,
determines map of spaces
c: K(A,d) x K(A*,n —d) = K(Q, / Zy,n),

classifying the cup product operation U : H?(e; A) x H" %(e; A*) — H"(e; Q, /Z,). Using Theorem 2.4.10
and Remark 2.1.21, we deduce that the spaces K(A,d) and K(A*,n —d) are K(n)-good, so that we obtain
a map of formal schemes

c: KSpec(K (A, d)) Xspecx KSpec(K (A*,n —d)) — KSpec(K(Q, / Zy,n)).

~

It follows from the bilinearity of the cup product that ¢ is bilinear. If v : KSpec(K(Q, / Zy,n)) =~ G, is a
normalization of Gg, then c is classified by a map

KSpec(K(A*,n — d)) — D(KSpec(K (A4, d))).
of group schemes over k.

Theorem 5.3.6 (Buchstaber-Lazarev [2]). Let A be a finite abelian p-group and let 0 < d < n be an integer,
and fix a normalization v of the p-divisible group Gg over k. Then the above construction produces an
isomorphism

04 : KSpec(K(A*,n —d)) — D(KSpec(K (A, d)))
of finite flat group schemes over k.

Proof. Since the cup product of cohomology classes is bilinear, we obtain a map of Hopf algebras
K(n)oK(A,d) X K(n)oK(A*,n—d) — K(n)oK(Q,/Zp,n).
Using Proposition 1.4.14, we can identify this with a map of Dieudonne modules
B: DM, (K (n)oK(A,d)) x DMy (K (n)oK(A*,n —d)) — DM (K(n)oK(Q, / Zp,n).

Using the normalization v of Gy, we can identify Spr(n)OK(Qp/Zp,n) with the formal multiplicative
group over &, so that the codomain of 3 can be identified with W (x)[p~!]/W (k) (where the actions of F' and V'
on W (k)[p~1]/W (k) are induced by the maps A = ¢(\), pp~1(\) from W (k) to itself). Using Example 1.4.18,
we see that 64 is an isomorphism if and only if 5 determines an isomorphism from DM (K (n)oK (A*,n—d))
to Homyy (.. (DM (K (n)oK (A, d)), W (x)[p~']/W (k)). The collection of those finite abelian p groups A which
satisfy this condition is closed under products. We may therefore assume without loss of generality that A
is a cyclic group of the form Z /p' Z. Let M denote the Dieudonne module of K(n)oK (Z /ptZ,1). Using
Theorem 2.4.10, we can identify v with the composition

d n—d n

—t
AN Mx AN Mo N MeWE/PWE) S WE)p/W(s).
W(r)/p*W (k) W(r)/p*W (k) W(k)/p*W (k)

To prove that v is a perfect pairing, it suffices to show that M is a free module of rank n over W (k)/p*W (k),
which follows immediately from our assumption that Gg is a p-divisible group of height n over k. O

The remainder of this section is devoted to proving an analogue of Theorem 5.3.6 in the setting of spectral
algebraic geometry. That is, we want a version of Theorem 5.3.6 which gives an identification of finite flat
group schemes over the Lubin-Tate spectrum E, rather than over the residue field k. We begin by reviewing
some definitions.
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Notation 5.3.7. For every oo-category € which admits finite products, we let CMon(€) denote the oo-
category of commutative monoid objects of C (see §HA.2.4.2). In particular, we let CMon(8) denote the
oo-category of commutative monoid objects of the co-category 8 of spaces (that is, the co-category of Eo-
spaces). We will generally abuse notation by identifying an object X € CMon(8) with its image under
the forgetful functor CMon(8) — 8. Note that if X € CMon(8), then moX inherits the structure of a
commutative monoid. We say that X is grouplike if mpX is an abelian group. We let CMon®?(8) denote
the full subcategory of CMon(8) spanned by the grouplike E..-spaces. The passage to zeroth spaces defines
an equivalence of oo-categories Q2°° : Sp™ — CMon®P(8), where Sp™" denotes the co-category of connective
spectra.

Definition 5.3.8. Let A be an E.-ring, and let CAlg, denote the oo-category of E..-algebras over A. A
finite flat commutative group scheme over A is a functor G : CAlg, — Sp® with the following property: the
composite functor 2> o G : CAlg, — 8 is corepresentable by an A-algebra B € CAlg, which is finite flat
over A. We let FF 4 denote the full subcategory of Fun(CAlg 4, Sp®") spanned by the finite flat commutative
group schemes over R.

Remark 5.3.9. Let A be an E-ring, and let CAlgi denote the full subcategory of CAlg, spanned by
those Ey-algebras which are finite and flat over A. Combining the equivalence Q> : Sp™" ~ CMon®P(8)
with the Yoneda embedding (CAlg)°P — Fun(CAlg,,,8), we obtain an equivalence of oo-categories

FF 4 ~ CMon®P ((CAlg')°P).

Put more informally: we can identify finite flat group schemes over A with commutative and cocommutative
Hopf algebras in the oo-category of finite flat A-module spectra.

Notation 5.3.10. The functor 2 : Sp — 8§ is lax symmetric monoidal, where we endow Sp with the smash
product symmetric monoidal structure, and 8 with the usual symmetric monoidal structure. In particular,
if A is an E-ring, then the multiplication on A determines a commutative monoid structure on 2> A.
We let GL;(A) denote the union of those connected components of 2°° A which are invertible in mgA. The
construction A — GL;(A) determines a functor GL; : CAlg — CMon®”(8). We will generally abuse notation
by identifying GL; with the corresponding functor CAlg — Sp®*. We will also abuse notation by identifying
GL; with its restriction to CAlg,, where A is an arbitrary E..-ring.

Definition 5.3.11. Let A be an E.-ring, and let G, H : CAlg, — Sp°" be finite flat commutative group
schemes over A. A Cartier pairing between G and H is a natural transformation

of functors from CAlg, to Sp. We let
Cart(G, H) = MapFun(CAlgA,SpC“) (G ®H, GLl)

denote the space of Cartier pairings of G with H. The construction (G, H) — Cart(G, H) determines a
functor (FF4 x FF4)°P — 8.

Let 8 : G® H — GL; be a Cartier pairing of finite flat commutative group schemes over A. We say that
B is left universal if, for every H' € FF 4, evaluation on 8 induces a homotopy equivalence

Mapg, (H', H) — Cart(G,H').
In this case, we say that H is the Cartier dual of G, and write H = D(G).

Remark 5.3.12. Let G be a finite flat commutative group scheme over an E,.-ring A. It follows immediately
from the definitions that a Cartier dual of G is determined uniquely (up to a contractible space of choices) if
it exists. For existence, we refer the reader to [15]. Moreover, it is proven in [15] that if the functor Q* oG is
representable by an E.-algebra H, then Q% o D(G) is representable by the A-linear dual H" of A, endowed
with an E,.-algebra structure which is A-linear dual to the comultiplication on H.
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Remark 5.3.13. In the situation of Definition 5.3.11, we also have the dual notion of a right universal
Cartier pairing: a natural transformation § : G ® H — GL; with the property that, for every finite flat
commutative group scheme G’ over A, evaluation on 8 induces a homotopy equivalence

Mapgp , (G',G) — Cart(G', H).

A Cartier pairing is left universal if and only if it is right universal (see [15]). In other words, a Cartier
pairing 5 : G ® H — GL; exhibits G as a Cartier dual of H if and only if it exhibits H as a Cartier dual of
G.

Remark 5.3.14. Let A be an E,,-ring. The formation of Cartier duals determines an equivalence of
oo-categories (FF4)°P ~ FF 4.

Our next goal is to produce some examples of finite flat commutative group schemes over ring spectra.
In what follows, we fix a perfect field x of characteristic p > 0 and a connected p-divisible group Gg of finite
n < oo over . Let E denote the Lubin-Tate spectrum determined by (k, Go), and K(n) the associated
Morava K-theory spectrum.

Definition 5.3.15. We say that a space X is K(n)-perfect if K(n)oX is a finite-dimensional vector space
over k, and K(n);X ~ 0 when ¢ is odd. We let SP' denote the full subcategory of 8 spanned by the
K (n)-perfect spaces. It follows from Remark 2.1.21 that $P! is closed under finite products.

Notation 5.3.16. For every Kan complex X, we let C*(X; E) denote a limit of the constant diagram
X — Sp taking the value E, and C.(X;FE) the colimit of the same diagram (so that C*(X;E) is the
function spectrum of maps from X to E, and C.(X; E) is obtained by tensoring E with X). We will regard
C*(X; FE) as an E,-ring with the following universal property: for every E,,-ring A, there is a canonical
homotopy equivalence

Mapga (A, C*(X; E)) ~ Mapg (X, Mape (4, E)).

The construction X — C*(X; E) determines a functor from 8° to the co-category CAlgy of E..-algebras
over . In particular, for every pair of spaces X and Y, there is a canonical map

C'(X;E)®g C*(Y;E) - C*(X x Y} E)

Using Proposition 3.4.3 and Remark 2.1.21, we deduce that this map is an equivalence whenever X and Y
are K (n)-perfect.

Definition 5.3.17. Let X be a K(n)-perfect space. We let * ESpec(X) denote the functor CAlg, — 8
given by the formula

Remark 5.3.18. Let X be a K (n)-perfect space. Proposition 3.4.3 implies that EX is a free E-module
of finite rank. It follows that ¥ ESpec(X) is representable by an affine nonconnective spectral Deligne-

Mumford stack which is finite flat over E. Moreover, the underlying ordinary scheme of ™ ESpec(X) is given
by ESpec(X) = Spec E°(X).

Remark 5.3.19. The construction X — * ESpec(X) determines a functor from 8P — Fun(CAlg, $) which
commutes with finite products. In particular, if X is a grouplike commutative monoid object of 8, then we
can regard ¥ ESpec(X) as a finite flat commutative group scheme over E.

Using Theorem 2.4.10 and Remark 5.3.19, we can produce a large class of examples of finite flat commu-
tative group schemes over F.

Definition 5.3.20. Let Z denote the ring of integers. We will identify Z with a discrete Eo-ring, and let
Modz denote the oo-category of module spectra over Z (equivalently, we can described Modz as obtained
from the ordinary category of chain complexes of abelian groups, by inverting quasi-isomorphisms). We will
say that an object M € Modg is p-finite if each homotopy group 7, M is a finite abelian p-group, and the
groups m,, M vanish for m > 0 and m < 0. We let Mod’{ﬁn denote the full subcategory of Modz spanned
by the p-finite Z-module spectra.
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Remark 5.3.21. The construction M — mwyM induces an equivalence from the co-category of discrete
Z-module spectra to the ordinary category of abelian groups. We will abuse notation by identifying an
abelian group A with its preimage under this equivalence (that is, with the corresponding Eilenberg-MacLane
spectrum).

Since the commutative ring Z has projective dimension < 1, every object M € Modz splits (noncanon-
ically) as a direct sum @, 5 X" (7, M). In particular, M is p-finite if and only if it can be obtained as a
finite product of Z-module spectra of the form X™(Z /p' Z).

Construction 5.3.22. Let M be a p-finite Z-module spectrum. Using Proposition 2.4.10 and Remark
5.3.21, we see that the space 2°M is K (n)-perfect. We can therefore view * ESpec(2°M) as a finite flat
commutative group scheme over E. We will regard the construction M — * ESpec(Q2°° M) as a functor from
Mod% ™ to the oo-category FFy of finite flat commutative group schemes over E.

Let M be a p-finite Z-module spectrum. Our next goal is to describe the Cartier dual * ESpec(Q>°M).
First, we need to introduce a bit more terminology.

Definition 5.3.23. Let M be a p-finite Z-module spectrum. We define the Pontryagin dual M* of M to
be the mapping object (Q, / Z,)™, formed in the symmetric monoidal oo-category Modz. More precisely,
M* is an object of Modz equipped with a map

B:M®ZM*_>QP/Z1)’

satisfying the following universal property: for every Z-module spectrum N, composition with § induces a
homotopy equivalence
Mapyjod, (N, M*) — Mapyod, (M ®z N, Q, /Zy).

Remark 5.3.24. Let M be a finite abelian p-group, regarded as a discrete Z-module spectrum. Then the
Pontryagin dual M* of Definition 5.3.23 is also discrete (since Q,, / Z,, is an injective Z-module), and agrees
with the Pontryagin dual of M defined in Notation 5.3.5.

More generally, the Pontryagin dual M* of an arbitrary p-finite Z-module spectrum is determined up to
equivalence by the existence of natural isomorphisms

7M™ >~ Hom(mw_,,, M, Q,, / Zy).
We are now ready to state our main result.

Theorem 5.3.25. Let k be a perfect field of characteristic p > 0, let Gg be a connected p-divisible group of
height n over k, and let E denote the Lubin-Tate spectrum associated to (k,Go), and K(n) the associated
Morava K-theory. Fir a normalization v : KSpec K(Q, /Zy,n) ~ ém of Gg. Then for every p-finite
Z-module spectrum M, v determines an equivalence of finite flat commutative group schemes

D(() T ESpec(Q>®M)) ~ T ESpec(Q>°~"M*),
depending functorially on M € Mod%_ﬁ”.

Before giving the proof of Theorem 5.3.25, let us collect up some consequences. Note that the the
construction X +— Ly (n)Cy(X; E) determines a symmetric monoidal functor from 8 into Modg(Spg (),
which carries grouplike commutative monoid objects of 8§ to E.,-algebras over E. In the special case where
X is K (n)-perfect, the induced comultiplication on the E-linear dual C*(X; E) of Lk ,)Cy(X; E) underlies
the Hopf algebra structure on C*(X; E) which determines the group structure on = ESpec(X). Combining
this observation with Theorem 5.3.25, we obtain the following:

Corollary 5.3.26. In the situation of Theorem 5.53.25, a normalization v of Gg determines equivalences
LK(n)C*(QOOM, E) ~ C*(Qooan*; E)

of Ewo-algebras over E, depending functorially on M € ModZ{ﬁ”.

130



Corollary 5.3.27. Suppose we are given a pullback diagram o :
M —— M,

L

My —— My,

mn Mod’{ﬁ". Assume that each of the objects appearing in this diagram is n-truncated. Then the associated
diagram
C*(Q®°M; E) <—— C*(Q2>®My; E)

C*(Q®°My; E) =<— C*(Q*°Mo1; E)
is a pushout square in CAlg(Modg(Spg(,)))-

Proof. Using Corollary 5.3.26, we are reduced to proving that the diagram

Lgn)Cu(Q°"M*; E) =<—— Lg(n)Cx([Q°7" Mg E)

T |

Lgn)Cu(QX°"M*; E) <—— L (n)Ci(Q°7" Mgy E)

is a pushout square in CAlg(Mods(Spg(,,))). Since the functor X = Ly (,,)C«(X; E) is symmetric monoidal,
it suffices to show that the diagram 7 :

Qoe—n \[* Qooanék

| |

QXM <—— Q="M

is a pushout square in CAlg(8) ~ CMon(S). Note that the full subcategory CMon®P(8) is closed under
pushouts in CMon(8); it will therefore suffice to show that 7 is a pushout diagram in CMon®P(8). The
functor Q% is an equivalence from Sp“" to CMon®”(8); we are therefore reduced to proving that the diagram

ZTLM* Zn M()k

]

SnMy ~—— S M

is a pushout diagram in Sp“". This follows immediately from our assumption that o is a pullback diagram
(the connectivity of the spectra appearing in this diagram follows from our assumption that o is a diagram
of n-truncated Z-module spectra). O

Remark 5.3.28. The conclusion of Corollary 5.3.27 is equivalent to the convergence of the Filenberg-Moore

spectral sequence i
Tor K ¥ Moy (¢ (n)*Q>® My, K (n)*Q®M;) = K(n)* Q> M.

We refer the reader to [1] for another proof of this convergence result.

Remark 5.3.29. In §5.4 we will prove a generalization of Corollary 5.3.27 (Theorem 5.4.8), where we replace
E by an arbitrary K (n)-local E.-ring A, and allow Kan complexes which are not generalized Eilenberg-
MacLane spaces.
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We will reduce Theorem 5.3.25 to Theorem 5.3.6 by means of the following result:

Proposition 5.3.30. Let k be a perfect field of characteristic p > 0, let G be a connected p-divisible group
of height n over k, and let E denote the Lubin-Tate spectrum associated to (k, Go), and K(n) the associated
Morava K -theory. Define functors 0,0’ : (ModI;ﬁ”)Op — FFg by the formulas

O(M) = T ESpec(Q>""M*) ¢'(M) = D(T ESpec(Q>M)).

Then every normalization v of Gqo determines a natural transformation « : 0 — 0" with the following property:
in the special case where A is a finite abelian p-group and M = Y%A, the map of finite flat group schemes

* ESpec(K (n — d, A*) — D(* ESpec(K (A, d)))

induces a map of ordinary schemes ESpec(K(n — d, A*)) — D(ESpec(K (A, d))) which extends the isomor-
phism KSpec K (n — d, A*) ~ D(KSpec K(A,d)) of Theorem 5.3.6.

Proof of Theorem 5.3.25 from Proposition 5.3.30. It will suffice to show that the natural transformation
a: 0 — 0 is an equivalence. Fix an object M € Mod’{ﬁn; we wish to show that the map

a(M) : T ESpec(Q>®~"M*) — D(T ESpec(Q>M))

is an equivalence of finite flat group schemes over E. To prove this, it suffices to show that o (M) induces an
equivalence of 8-valued functors: in other words, we must show that it underlies an equivalence of F-module

spectra
LK(n)C*(QOOM, E)— C*(Qoo_nM*; E)

Since both sides are finite and flat over E, we are reduced to proving that the underlying map of commutative
rings

¢ EN(Q®M) — E°(Q>""M*)

is an isomorphism. The collection of those objects M &€ Mod%_ﬁn which satisfy this condition is closed under
finite products. We may therefore assume without loss of generality that M has the form £?¢A, for some
finite abelian p-group A. Note that the domain and codomain of ¢ are free modules of finite rank over the
local ring mgE. It follows that ¢ is an isomorphism if and only if the induced map of closed fibers

K @mor BN QM) — k @y EX(Q®°"M*)

is an isomorphism of vector spaces over k. If d < 0 or d > n, then both sides are isomorphic to x and there
is nothing to prove. Otherwise, the desired result follows from Theorem 5.3.6. O

The remainder of this section is devoted to the construction of the natural transformation « appearing
in the proof of Proposition 5.3.30. Essentially, our goal is mimic the construction that precedes Theorem
5.3.6, working over the Lubin-Tate spectrum F rather than . Our first goal is to construct an analogue of
the isomorphism v : KSpec K(Q,, / Zy,n) =~ Gp,.

Definition 5.3.31. Let A be an E.-ring and let G be a finite flat commutative group scheme over A. We
will say that G is étale if the functor Q°° o G is corepresentable by an étale A-algebra H. We let FFS denote
the full subcategory of FF 4 spanned by the finite flat commutative group schemes which are étale over A.

Remark 5.3.32. The equivalence of co-categories FF 4 ~ CMon®P ((CAlg™ )P) restricts to an equivalence
FF¢ ~ CMongp((CAlgfft)(’p), where CAlngfét denotes the full subcategory of CAlg, spanned by those A-
algebras which are finite étale over R. Using Theorem HA.8.5.0.6, we see that CAIngt is equivalent to
(the nerve of) the ordinary category of finite étale (moR)-algebras. It follows that the co-category FFS is
equivalent to the nerve of the ordinary category of étale local systems of finite abelian groups on the affine
scheme SpecmgA. In particular, if M is a finite abelian group, then the constant local system on Spec myA
taking the value M determines a finite flat group scheme over A, which we will denote by M.

If A is a Henselian local ring with residue field s, we further obtain an equivalence of FF¢ ~ FFit.
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Example 5.3.33. Let A be an Ey-ring. The functor GL; : CAlg, — CMon®P(8) admits a left adjoint,
which carries a grouplike commutative monoid object M € CMon®?(8) to the spectrum C.(M; A), which
we can think of as the group algebra of M over A (it is a commutative algebra object of Mod 4, since the
construction X — C,(X; A) determines a symmetric monoidal functor from 8 to Mod,4). In particular, for
each M € CMon®P(8), the Ey-ring C.(M; A) corepresents the functor GL{V[ : CAlg, — 8, given by the
formula

GLY'(B) = Mapcyion(s) (M, GL1(B)).

Note that GL{VI has the structure of a grouplike commutative monoid in Fun(CAlgg, 8). Let us now specialize
to the case where M is a finite abelian group (regarded as a discrete space), so that C.(M; A) is a free A-
module of finite rank. Then we can regard GL{VI as a finite flat commutative group scheme over A. In the
special case where M = Z /mZ for some integer m > 0, we will denote GLf/[ by tm,. Note that the unit
element 1 € Z /m Z determines a natural transformation u,, — GL;.

Remark 5.3.34. Let A be an E,-ring, let M be a finite abelian group, and let GL{W be the finite flat
group scheme over A described in Example 5.3.33, so that 2 o GLi” is corepresented by the group algebra
H = C,(M;A). The dual Hopf algebra H" is étale over R, and is therefore determined up to equivalence by
an étale local system of finite abelian groups on the affine scheme Spec mypA (Remark 5.3.32). By inspection,
this is the constant local system with value M. We therefore obtain a canonical equivalence D(GL{VI )~ M
of finite flat commutative group schemes over A. Specializing to the case where M = Z /mZ is a cyclic
group, we obtain equivalences

D(Z/mZ)~ up, D(pm) ~Z /mZ.

Remark 5.3.35. Let A be an E.-ring and let G be a finite flat commutative group scheme over A, so that
the underlying functor 2°° oG : CAlg 4 — 8§ is corepresentable by an A-algebra H which is finite flat over A.
Then 7y A is a commutative cocommutative Hopf algebra over the commutative ring my A, so we can regard
SpecmoH as a finite flat group scheme Gg over mpA (in the sense of classical algebraic geometry). Suppose
that Gg is split multiplicative: that is, that there is a finite abelian group M such that mpA is isomorphic
(as a Hopf algebra) to the group algebra (moR)[M]. Then the Cartier duals of G and GL} are étale and
determine the same local system of finite abelian groups on Spec mgA. Applying Remark 5.3.32, we see that
the isomorphism woH ~ (moA)[M] lifts uniquely (up to a contractible space of choices) to an equivalence
G ~ GLY of finite flat commutative group schemes over A.

Example 5.3.36. Let £ and G be as in Proposition 5.3.30, and let v : KSpec K(Qp/Zp,n) o~ ém be a
normalization of Gy. Using Remark 5.3.35, we see that v determines a compatible family of equivalences

+ESpec(K(Z /0 Z,n)) = jis
of finite flat commutative group schemes over F.

Construction 5.3.37. Note that every p-finite Z-module spectrum M is a compact object of Modz. It
follows that the inclusion Mod% ™ < Modz extends to a fully faithful embedding ¢ : Ind(Mod% ™) < Modg,

which preserves filtered colimits; the essential image of ¢ is the full subcategory Mod%_ml spanned by those
Z-module spectra M such that M[p~!] ~ 0.

Let W : Mod%™ ™ — Fun(CAlg, CMon®?(8)) ~ Fun(CAlg, Sp™) denote the functor given by W(M) =
T ESpec(Q2°°M). Then ¥ admits an essential unique extension to a functor

T Mod’{ml — Fun(CAlgg, CMon®?(8))

which commutes with filtered colimits. Using Example 5.3.36, we see that a normalization v of the p-divisible
group Gg determines a natural transformation

7:W(2"Q, [ Zy) = lim e — GLy .
t>0

in the oo-category Fun(CAlgg, Sp™).
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We now turn to the construction of the natural transformation a appearing in Proposition 5.3.30. For
this, it will be convenient to use the language of pairings of co-categories developed in §SAG.4.3.1, together
with the description of the smash product of spectra given in [15].

Notation 5.3.38. Let VPair denote the co-category
(MOd%_ﬁn X Mod’%_ﬁn) XModz (Modz)/zn Qp/zp

whose objects are triples (M, N, «), where M and N are p-finite Z-module spectra and « is a map of
Z-modules from M ®z N into X" Q,, / Z,.
We let WPair denote the co-category

(FFE x FFE) Xpun(CAlg,spen) Fun(CAlg 5, Sp™) / ar,

whose objects are triples (G, H, 3), where G and H are finite flat commutative group schemes over E, and
is a natural transformation from the pointwise smash product G ® H into the functor GL; : CAlg, — Sp®".

Remark 5.3.39. The projection map A : VPair — 1\/[od1;ﬁ][1 X Mod]%ﬂo”1 is a right fibration, which we can
regard as a pairing of the co-category Mod%_ﬁn with itself, in the sense of Definition SAG.4.3.1.1. We note
that for M, N € Mod%_hn7 we have a canonical homotopy equivalence

MapModz (M Rz N7 " Qp / Zp) = MapModZ (M, En]\f*)7

so that the pairing A is left and right representable (see Definition SAG.4.3.1.2), with associated duality
functor(s) given by N — X" N*.

Similarly, the projection map A : WPair —+ FFg x FFg is a right fibration, which we can regard as
a pairing of FFg with itself. This pairing is also left and right representable, with the associated duality
functor(s) given by Cartier duality on FFg.

Construction 5.3.40. Let v be a normalization of Gg. Let v : Modz — CMon®”(8) denote the composition
of the forgetful functor Modz — Sp with the functor Q> : Sp — Moné‘}ung(S). Suppose we are given an
object (M, N,«) € VPair. Then a determines a natural transformation

ag (M) Ry (N) = ~v(3"Q, / Zp) o A
of functors from N(Fin,) x N(Fin,) to 8. We therefore obtain, for each A € CAlgy, a natural transformation
U(M)(A) R U(N)(A) = U(E"Q, / Zy)(A) o A.

Composing with the map 7 : \iJ(Z" Q, /Z,) — GL; of Construction 5.3.37, we obtain a natural transforma-
tion 8 : ¥(M) ® U(N) — GL; of functors from CAlgy to Sp™. The construction

(M, N,a) = (¥(M), ¥(N), )
determines a functor VPair — WPair, which fits into a commutative diagram

VPair WPair

| |

Mod, ™ x Modl " X% FFy x FFy .

Proof of Proposition 5.3.30. Apply Proposition SAG.4.3.3.4 to the map of pairings given by Construction
5.3.40. O
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5.4 The Global Sections Functor

Let K (n) denote a Morava K-theory spectrum, fixed throughout this section. Let A be a K (n)-local Eo-ring,
and let X be a Kan complex. The formation of global sections F — C*(X;F) determines a functor

Fun(X, Moda(Spg(,))) = Moda(Spk(n))-

It follows from Theorem 5.2.1 that if X is a finite m-type for some integer m, then this functor preserves small
colimits. Our first main result in this section asserts that, if X satisfies some slightly stronger conditions, then
F can be recovered from C*(X;J), regarded as a module over the function spectrum C*(X; A) (Theorem
5.4.3). First, we need to introduce a bit of terminology:

Definition 5.4.1. Let X be a Kan complex and p a prime number. We will say that X is p-finite if the
following conditions are satisfied:

(a) The set mpX is finite.
(b) For each x € X and each k > 0, the homotopy group (X, z) is a finite p-group.
(¢) The Kan complex X is m-truncated for some integer m.

Remark 5.4.2. The notion of p-finite Kan complex (Definition 5.4.1) is closely related to the notion of p-
finite Z-module spectrum (Definition 5.3.20). More precisely, a connective Z-module spectrum M is p-finite
if and only if QM € 8§ is p-finite.

Throughout this section, we regard Spg(,) as a symmetric monoidal oo-category with respect to the
K (n)-localized smash product (Corollary 2.1.3), which we will denote by ® : Spy(,y X SP(n) = SPx(n)- For
any Kan complex X, the symmetric monoidal structure on Sp,,) induces a symmetric monoidal structure
on Fun(X, SpK(n)), given by pointwise tensor product. If f : X — Y is a map of Kan complexes, then
the pullback functor f* : Fun(Y,Spg(,)) — Fun(X,Spg(,)) is symmetric monoidal. It follows that the
pushforward functor f, : Fun(X, SpK(n)) — Fun(Y, Sp K(n)) is lax symmetric monoidal. In particular, f,
carries algebra objects A € Alg(Fun(X,Spg,))) to algebra objects of Fun(Y, Spy,,), and A-module objects
of Fun(X, Spg(y,) to fi A-module objects of Fun(Y, Spy ).

We can now state our main result:

Theorem 5.4.3. Let K(n) be a Morava K -theory spectrum of height n > 0, let p denote the characteristic
of the residue field moK (n), let f: X =Y be a map of Kan complezes, and let A € Alg(Fan(X,Spg(,,))) be
a local system of K (n)-local Eq-rings on X. Then:

(1) Assume that the homotopy fibers of f are finite m-types, for some integer m. Then the pushforward
functor
G : LMod 4 (Fun(X, Spg(,,))) = LMody, 4 (Fun(Y,Spg(y,))

has a fully faithful left adjoint.

(2) Assume that each homotopy fiber of f is p-finite and n-truncated. Then the functor G is an equivalence
of co-categories.

Corollary 5.4.4. In the situation of Theorem 5.4.3, let X be a Kan complex which is n-truncated and
p-finite. Then for any K (n)-local Eq-ring, the global sections functor

Fun(X, LMOdA (SpK(n))) — LMOdc* (X;A) (SpK(n))
is an equivalence of co-categories.

Corollary 5.4.5. Let f: X — Y be a map of Kan complezes.
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(1) If the homotopy fibers of f are finite m-types and (n + 1)-connective, then the pullback functor
£ Fun(Y, SpK(n)) — Fun(X, SpK(n))
is fully faithful.

(2) If the homotopy fibers of f are finite m-types and (n + 2)-connective, then f* is an equivalence of
oo-categories.

Proof. Let S denote the K(n)-local sphere spectrum. For every space Z, let S, denote the constant local
system on Z taking the value S. We first show that the following properties of a map f : X — Y are
equivalent:

(a) The homotopy fibers of f are finite m-types and the pullback functor f* is fully faithful.

(b) The homotopy fibers of f are finite m-types and the unit map uy : Sy — f.f*Sy =~ f.Sx is an
equivalence.

The implication (a) = (b) is obvious, and the converse follows from Theorem 5.4.3. Let us say that a map
f: X = Y is good if it satisfies the equivalent conditions (a) and (b). We immediately conclude the following:

(1)) Amap f: X =Y is good if and only if, for each point y € Y, the induced map X xy {y} — {y} is
good (this follows immediately from description (b)).

(i) ¥ f: X Y and g: Y — Z are good, then the composite map go f : X — Z is good (this follows
immediately from description (a)).

To prove (1), we must show that if the homotopy fibers of f : X — Y are (n + 1)-connective finite
m-types, then f is good. Using (), we can reduce to the case where Y is a single point. Then X is a finite
m-type for some integer m. We proceed by induction on m. If m < n, then X is contractible and the
result is obvious. Otherwise, we have m > n and the inductive hypothesis implies that 7<,,_1 X is good.
Using (i1), we are reduced to proving that the map X — 7<,,,—1X is good. Using (i), we are reduced to
showing that for every finite abelian group A, the map K(A, m) — * is good. We proceed by induction on
the order of A. If A is trivial, then K (A, m) is contractible and the result is obvious. Otherwise, there exists
a subgroup A’ C A which is cyclic of prime order. Set A” = A/A’. The inductive hypothesis implies that
K(A”,m) is good. Using (b), we are reduced to showing that the map K (A4, m) — K(A”,m) is good. Using
(a), we are reduced to proving that K(A’,m) is good. Write A’ = Z /I Z for some prime number [, and let
X = K(A',m). We wish to show that the unit map S — C*(X;S) is an equivalence. We note that this
unit map is the Spanier-Whitehead dual of canonical map v : Lg(,,) X5 (X) — S. It will therefore suffice to
show that v is an equivalence in Sp K(n)- This is equivalent to the assertion that v induces an isomorphism
on K (n)-homology groups K(n),X — m,K(n). For | # p this is easy (and valid for any m > 0); when [ = p
it follows from Theorem 2.4.10. This completes the proof of (1).

We now prove (2). Suppose that the homotopy fibers of f are (n + 2)-connective finite m-types; we wish
to show that f* is an equivalence of co-categories. We may assume without loss of generality that Y is a
point, so that there exists a section e : Y — X of the map f. Let M € LocSys(SpK(n))X; we wish to show
that f lies in the essential image of f*. We note that e* M ~ e* f*e*M. Since the functor e* is fully faithful
by (1), we deduce that M is equivalent to f*e*M, and therefore belongs to the essential image of f*, as
desired. O

The proof of Theorem 5.4.3 will require some preliminaries.

Proposition 5.4.6 (Push-Pull Formula). Let f : X — Y be a map of spaces. Suppose we are given local
systems A € Alg(Fun(Y,Spg(,,))), M € RMod+ 4 (Fun(X, Spg(,,))), and N € LModa (Fun(Y,Spg(,,))- If
the homotopy fibers of f are finite m-types, then the canonical map

By (fe M) @A N = fu(M@p 4 f*N)

is an equivalence in Fun(Y, Spg(y,))-
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Proof. We may assume without loss of generality that Y consists of a single point, so that we can identify
the local system A with a K(n)-local Ei-ring A. Let us regard M as fixed, and let C C LModa(Spg(y))
denote the full subcategory spanned by those objects N for which 55 x is an equivalence. Since the functor
f« preserves small colimits (Proposition 5.2.1), we conclude that € is closed under small colimits. Since
LModa(Spg(n)) is generated under small colimits by the objects {¥™A}ez, we are reduced to proving
that Sy, is an equivalence when N has the form ¥™ A, which is clear. O

Corollary 5.4.7. Let X be a finite m-type, let A be an E;-ring which is K(n)-local, and let M be a left
A-module which is K(n)-local. Then the canonical map C*(X;A) @ M — C*(X; M) is an equivalence of
K (n)-local spectra.

Proof of Theorem 5.4.3. The functor G admits a left adjoint F', given by the formula

Assume that the homotopy fibers of f are finite m-types; we will show that F' is fully faithful. To prove
this, we must show that for each N' € LMody, 4(Fun(Y,Spg(,))), the unit map ux : N — (G o F)(N) is
an equivalence in LMod, »(Fun(Y, Spg,,))). To prove this, it suffices to show that for each point y € Y,
uy induces an equivalence N, — (G o F')(N),. Replacing X by the homotopy fiber X Xy {y}, we can
reduce to the case where Y consists of a single point. Let € = LMody, 4(Spg (), and let €y denote the
full subcategory of € spanned by those objects N for which the unit map us is an equivalence. Since f is
SP g (n)-ambidextrous (Theorem 5.2.1), the pushforward functor f. preserves small colimits. It follows that
Cp is closed under small colimits in €. Since C is generated under small colimits by objects of the form
¥ f, A and Qg is closed under shifts, we are reduced to proving that the unit map wuy is an equivalence in
the special case N = f, A, in which case the result is clear. This completes the proof of (1).

We now turn to the proof of (2). Assume that the homotopy fibers of f are p-finite and n-truncated; we
wish to show that G is an equivalence of oco-categories. The first part of the proof shows that G admits a
fully faithful left adjoint F'. It will therefore suffice to show that G is conservative. For this, it suffices to
show that the global sections functor

fe : Fun(X, SpK(n)) — Fun(Y, SpK(n))

is conservative. That is, we wish to show that if M € Fun(X, Spg,) is nonzero, then f. M is nonzero. In
fact, we claim that if M, is nonzero for some point x € X, then (f. M) ¢(,) is nonzero. To prove this, we can
replace f by the map X xy {f(x)} — {f(x)} and thereby reduce to the case where Y is a single point.

We now prove by induction on m that if m < n and X is m-truncated, then the global sections functor
fx : Fun(X, Sp K(n)) — Sp K(n) I8 conservative. If m = 0, then X is homotopy equivalent to a discrete space
and the result is obvious. To carry out the inductive step, it suffices to show that the pushforward functor
Fun(X, Spg(n)) — Fun(r<;-1X, Spk(,,)) is conservative. Repeating the above argument, we can reduce to
the case where 7<,,—1X is contractible. Then X is an Eilenberg-MacLane space K (G, m), where 1 <m <n
and G is a finite p-group (which is abelian if m > 1).

We now proceed by induction on the order of G. If G is trivial, then X is contractible and there is
nothing to prove. Otherwise, G contains a normal subgroup of order p. We then have an exact sequence of
groups

0—-Z/pZ—G— G —0,

which gives rise to a fiber sequence of spaces
K(Z/pZ,m) — K(G,m) — K(G',m).

The inductive hypothesis implies that the global sections functor Fun(K(G’,m), Sp (,)) — SPx (n) is con-
servative. We are therefore reduced to proving that the pushforward functor Fun(K(G,m),Spg,) —
Fun(K(G’,m),Sp K(n)) 18 conservative. Working fiberwise, we are reduced to proving that the global sections
functor Fun(K(Z /pZ,m), Spk(n)) — SPk(n) is conservative. To prove this, it will suffice to verify assertion
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(2) in the special case where X = K(Z /pZ,m), Y is a point, and A is the constant local system taking the
value S, where S denotes the K (n)-local sphere spectrum (that is, the unit object of the symmetric monoidal
oo-category Spg (n))-

For M € Fun(X,Spg(,,)), let vy : (F o G)(M) — M denote the counit map. Let D C Fun(X, Spg,,))
be the full subcategory spanned by those objects M for which vy is an equivalence. We wish to show that
D = Fun(X, Sp K(n)). Since the functor f, preserves small colimits, the co-category D is closed under small
colimits in LocSys(Spg(,,))x. Choose a base point z € X, and let e : {x} — X denote the inclusion. We
have a canonical equivalence of co-categories Spy(,) ~ Fun({z}, Spg(,)); we will henceforth identify S with
its image in Fun({z}, Spk(,,)). Since X is connected, Lemma 4.3.8 implies that Fun(X, Spy,,) is generated
under small colimits by the essential image of the functor e;. Since Sp K(n) 18 generated under small colimits
by the objects {3¥S},cz, we are reduced to proving that e;S € D. Since the map e is SP ¢ (n)-ambidextrous
(Theorem 5.2.1), we have an equivalence 1.5 ~ e,S. We are therefore reduced to proving that e,S € D. In
other words, we wish to show that the canonical map

« :§®f*0*(X;S) (f*f*e*S) — xS

is an equivalence in Fun(X,Spg(,)); here S denotes the unit object of Fun(X,Spg(,)). Choose a point
y € X, and let P, , = {2} xx {y} denote the space of paths from x to y in X. Unwinding the definitions,
we see that « induces an equivalence after evaluation at y if and only if the diagram o :

C*(X;8) ——=C*({z}; S)

! i

C*({y}; S) ——= C*(Pry; 5)

is a pushout square in CAlg(SpK(n)). This follows from Corollary 5.3.27.

We may assume without loss of generality that the field mo K (n) is algebraically closed. Let E denote the
Lubin-Tate spectrum associated to , and let ® : CAlg(Spy(,,)) — CAlg(Modg(Spg (,,))) denote a left adjoint
to the forgetful functor. Since ® is conservative, we are reduced to proving that ®(c) is a pushout square in
CAlg(Modg(Spk (s))), which follows from Corollaries 5.4.7 and 5.3.27. O

We now use Theorem 5.4.3 to prove a generalization of Corollary 5.3.27.

Theorem 5.4.8. Let A be a K(n)-local Es-ring. Suppose we are given a pullback diagram of spaces.

X —=X
L
v oy

Assume that Y is n-truncated and p-finite and that X is a finite m-type, for some integer m. Then the
diagram

C*(X'A) =— C*(X; A)
C*(Y'; A) <— C*(Y; 4)
is a pushout square in CAlg(Spg(y,))-
Remark 5.4.9. Like Corollary 5.3.27, Theorem 5.4.8 can also be deduced from the main result of [1].
We will give the proof of Theorem 5.4.8 at the end of this section. For now, let us deduce some conse-

quences.
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Corollary 5.4.10. Let A be a K(n)-local Eo-ring, and let Sﬂ;ﬁ" denote the full subcategory of & spanned
by those spaces which are p-finite and n-truncated. The following conditions are equivalent:

(1) The functor Sg;ﬁn — CAlg9® given by X — C*(X; A) is fully faithful.

(2) For every n-truncated, p-finite space X, the canonical map X — Mapcyig, (C*(X;A), A) is a homotopy
equivalence.

(3) If X = K(Z /pZ,n), then the canonical map X — Mapcy,, (C*(X; A), A) is a homotopy equivalence.

Proof. The implications (1) = (2) = (3) are obvious. We next show that (2) implies the following stronger
version of (1):

(1) Let X and Y be spaces. If X is n-truncated and p-finite, then the canonical map
Ox,y : Mapg(Y, X) = Mapcyg, (C*(X;A4),C* (Y5 A))
is a homotopy equivalence.

Note that the collection of those spaces Y for which fx y is a homotopy equivalence is closed under small
colimits in 8. Consequently, to show that x y is a homotopy equivalence for all Y € §, it suffices to show
that fx . is a homotopy equivalence: that is, that X satisfies condition (2).

We now complete the proof by showing that (3) — (2). Let F' : 8§ — 8 denote the functor given by
F(X) = Mapcyyg, (C*(X; A), A). We have an evident natural transformation a : id — F. Let € C SZ;Lﬁn
denote the full subcategory spanned by those spaces X for which the map ax : X — F(X) is an equivalence.
We wish to prove that C = S’;nﬁn. We proceed in several steps:

(a) Using assumption (3), we see K(Z /pZ,n) € C.

(b) Theorem 5.4.8 implies that the restriction of F' to SI;Lﬁn preserves finite limits. It follows that C is
closed under finite limits in Szgqﬁn.

(¢) Combining (a) and (b), we deduce that K(Z /pZ,m) € C for m < n.

(d) Taking m =0 in (c), we conclude that the finite set Z /pZ belongs to €. Combining this with (b), we
deduce that C contains every finite discrete space.

(e) Suppose we are given a fibration f : X — Y, where X and Y belong to SZZLﬁn. Assume that each fiber
X, belongs to €. Using the left-exactness of F, we deduce that the diagram

X——Y

L

F(X) —> F(Y)

is a pullback square. If we also assume that Y € @, it follows that X € C.

(f) Let 1 <m < n, and let G be a p-group which is abelian if m > 1. We claim that K (G, m) belongs to
C. The proof proceeds by induction on the order of G. If G is trivial, the result is obvious. Otherwise,

we can Choose an exact sequence
0-G —-G—=G" =0,

where G’ is isomorphic to the cyclic group Z /pZ. Then K(G';m) € C by (¢), and K(G",m) € C by
the inductive hypothesis. Using (e), we deduce that K (G, m) belongs to C.

139



(g9) We now prove that if X € S’gjn for m < n, then X € €. The proof proceeds by induction on m.
If m = 0, then the desired result follows from (d). Otherwise, the inductive hypothesis implies that
T<m-1X € C. Since the homotopy fibers of the map X — 7<,,,_1X belong to € by (f), we conclude
that X € C using (e).

We now complete the proof by taking m = n in step (g). O

Remark 5.4.11. Let A be a K(n)-local Eoc-ring, and let Z(A) = Mapgp,, (C*(K(Z /pZ),n), A). The
evident map K(Z /pZ,n) — Z(A) determines a base point n € Z(A).

Since the functor F' appearing in the proof of Corollary 5.4.10 is left exact when restricted to S’me, we
have a canonical homotopy equivalence

0"Z(A) ~Mapcay, (C*(Z /pZ; A), A).

Since C*(Z /pZ; A) is an étale A-algebra, Theorem HA.8.5.0.6 implies that Mapc s, , (C*(Z /pZ; A), A) is
homotopy equivalent to the discrete space of all Ty A-algebra maps from (ﬂ'oA)Z /pZ

if the affine scheme Spec(mpA) is connected, we obtain isomorphisms

into mgA. In particular,

0 ifm>n

Consequently, A satisfies the equivalent conditions of Corollary 5.4.10 if and only if the space Z(A) is
n-connective.

Remark 5.4.12. In the case where A is a Lubin-Tate spectrum, Remark 5.4.11 is a theorem of Sati and
Westerland; see [19].

Remark 5.4.13. Let F be a Lubin-Tate spectrum of height n, and suppose that the residue field of E
is algebraically closed. In this case, Example 5.3.36 gives an isomorphism of finite flat group schemes
tESpecK(Z /pZ,n) ~ p,. We therefore obtain a canonical homotopy equialence Z(E) =~ p,(E) =

MapCMon(S)(Z /p Za GLl(E))

Conjecture 5.4.14. Let E be a Lubin-Tate spectrum of height n with algebraically closed residue field.
Then F satisfies the equivalent conditions of Corollary 5.4.10. Equivalently, the space

IU‘P(E) = MapCMon(S)(z /p Zv GLl(E))
is n-connective (and therefore homotopy equivalent to an Eilenberg-MacLane space K(Z /pZ,n)).

We now turn to the proof of Theorem 5.2.1. We begin by considering the special case where the fiber
product is an ordinary product.

Lemma 5.4.15 (KinnethFormula). Let X and Y be spaces, and let A be a K(n)-local BEo-ring. If X is
finite m-type, then the canonical map

C*"(X;A) @4 C*(Y;A) - C*(X xY; A)
is an equivalence of K (n)-local Eoo-rings.
Proof. Let f: X — % denote the projection map. Using Corollary 5.4.7 we obtain equivalences
C' (X xY;4) ~ [f.f'C*(Y;A)

(fof"A) @4 C*(Y; A)
C*(X;A) @4 C*(Y; A).

R
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Proof of Theorem 5.4.8. For every space Z, let A, denote the constant local system on Z taking the value
A. Since Y is n-truncated and p-finite, Theorem 5.4.3 yields an equivalence of co-categories

Mody,, (LocSys(Spg (n))y) — Modc-(v;4)(SPx (n))-

This equivalence is right adjoint to a symmetric monoidal functor, and therefore symmetric monoidal. Con-
sequently, to prove that the diagram C*(o; A) is a pushout square, it will suffice to show that the diagram

Ay gxAx

L

f*AY/ — q*AX/

is a pushout square in CAlg(Fun(Y, Spg,,))), where g : X" — Y denotes the map appearing in the diagram
0. This assertion can be checked pointwise on Y. We may therefore reduce to the case where Y is a point,
in which case the desired result follows from Lemma 5.4.15. O
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