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Remark 0.1. To learn more about this circle of ideas, I highly recommend On a nilpotence conjecture of
J.P. May by Akhil Mathew, Niko Naumann, and Justin Noel. Also, Haynes Miller wrote excellent and easily
googled notes deriving the full Nishida relations.

1. Theorems of Nishida and Mahowald

Last week, Hood discussed the Dyer-Lashof algebra, which acts on the homotopy of any E∞-ring in
HF2-modules. Like Hood, I will focus on the prime p = 2 for simplicity, though everything I say has an
analogue for odd primes. Today I would like to explain the following theorem, which was one of the earliest
and most striking applications of power operations:

Theorem 1.1 (Nishida, 1973). Suppose x ∈ π∗(S) for ∗ > 0. Then x is nilpotent.

What we will actually prove today is:

Theorem 1.2. Suppose x ∈ π∗(S) is simple 2-torsion, meaning 2x = 0. Then x is nilpotent.

Remark 1.3. Suppose α is an element in π2k+1(S). Since the stable homotopy groups of spheres form a
graded-commutative ring, α2 = −α2. By the previous theorem, α is nilpotent.

Remark 1.4. Suppose α is an element in π2k(S). A simple argument with the Kahn-Priddy theorem shows
that, if 2mα = 0, then 2m−1 kills some large power of α. Assembling the analogous remarks at every prime
recovers the full strength of Nishida’s result. (In fact, this style of argument can work even when m = 1,
circumventing most of the hard work in Nishida’s paper. However, the explicit k for which αk = 0 is much
more accurately estimated using that hard work.)

Armed with modern understanding, it is conceptually enlightening to recast Nishida’s result as a corollary
of the following theorem of Mahowald:

Theorem 1.5 (Mahowald). The free E2-algebra with 2 = 0 is HF2.

Remark 1.6. Most of this talk will be devoted to the explanation and proof of Mahowald’s theorem. A
crucial ingredient is his use of the so-called ‘Nishida relations’: hence the connection to Nishida’s original
proof of the nilpotence result.

Corollary 1.6.1. Let A denote an E2-algebra (e.g., A = S), and suppose that x ∈ πn(A) is simple 2-torsion.

Then x : Sn → A is nilpotent if and only if the composite Sn
x→ A∧S→ A∧HF2 is nilpotent.



Proof. We will show that A[x−1] is 0 if and only if A[x−1]∧HF2 is 0. Notice that A[x−1] is an E2-algebra
in which 2 = 0. By Mahowald’s theorem, A[x−1] receives an E2-algebra map from HF2, and so A[x−1] is an
HF2-module spectrum.

Since F2 is a field, every HF2-module splits as a wedge of suspensions of HF2. Furthermore, π∗(HF2 ∧HF2)
is not trivial (it is the dual Steenrod algebra). It follows that, if X is any HF2-module, then X is 0 if and
only if X ∧HF2 is 0. �

2. A bit of E2-algebra theory

For the rest of the talk, we will discuss the proof of Mahowald’s theorem:

Theorem 2.1 (Mahowald). The free E2-algebra with 2 = 0 is HF2.

Definition 2.2. We begin by recalling (and/or introducing) the objects in question:

• If X is a spectrum, then the free E2-algebra (in spectra) on X is given by

FE2
(X) ' S ∨X ∨

(
X∧ 2 ∧Σ2

Σ∞+ Config2(R2)
)
∨
(
X∧ 3 ∧Σ3

Σ∞+ Config3(R2)
)
∨ ...

• If X is a connected space, then a theorem of Snaith gives an equivalence

FE2(Σ∞X) ' Σ∞+ Ω2Σ2X.

• For any spectrum X, the free E2-HF2-algebra on X is HF2 ∧FE2
(X).

Definition 2.3. The free E2-algebra with 2 = 0 is given by the pushout (in the category of E2-algebras) of
the diagram

FE2
(S) S ' FE2

(0)

S

2

0

Here, m : FE2(S)→ S denotes the adjoint to m : S→ S. Notice that 0 : FE2(S0)→ S0 is just FE2(0 : S→ 0),
but 2 is not FE2 applied to any morphism of spectra.

Remark 2.4. It is difficult to compute a colimit of E2-algebras. The general strategy is to note that
the forgetful functor U : E2-algebras → Spectra preserves sifted colimits. One can hope to decompose
an arbitrary colimit into a series of coproducts and sifted colimits, but it is not always easy to compute
coproducts in E2-algebras or sifted colimits in spectra.

We will use R to denote the free E2-algebra with 2 = 0 for the remainder of the talk. Our eventual goal
is to compute π∗(R), and to see that this is a single F2 concentrated in degree 0. It is much easier, however,
to compute H∗(R;F2).

Proposition 2.5. HF2 ∧R ' HF2 ∧FE2(S1).

Proof. In the category of HF2-modules twice the identity is nullhomotopic. It follows that

HF2 ∧ 2 : HF2 ∧FE2
(S) −→ HF2 ∧S.

is equivalent to

HF2 ∧ 0 : HF2 ∧FE2
(S) −→ HF2 ∧S.

Since free functors preserve pushouts, the pushout diagram defining HF2 ∧R degenerates into

HF2 ∧FE2

 S 0

0 S1

 .

�

Remark 2.6. Mahowald noticed that R is a Thom spectrum. The above proposition can be seen as an
instance of the Thom isomorphism theorem.



By the universal property of R there is a natural map

R→ HF2.

We will show that this map is an equivalence. Since π∗(R) is a graded-commutative ring in which 2 = 0, all
the homotopy groups of R are F2-algebras. It follows that R is 2-complete, so to show that R→ HF2 is an
equivalence it suffices to show that

HF2 ∧FE2
(S1) ' HF2 ∧R→ HF2 ∧HF2

is an equivalence.

3. Dyer-Lashof Operations and Free En-algebras

In light of the above, our goal should be to compute

H∗(FE2
(S1);F2) ∼= H∗(Ω

2S3;F2).

In general, one might want to understand the homology of loop spaces of spheres. This computation is
highly related to what Hood discussed last week.

Construction 3.1. Suppose A is an En-algebra and x ∈ Hi(A;F2) for i > 0. Then one obtains another
element Qx ∈ Hj(A;F2) for every Q ∈ Hj(Ω

nSn+i;F2).

Proof. We may represent x by a map Si → HF2 ∧A. Since HF2 ∧A is an En-algebra in HF2-modules, we
can use the free-forgetful adjunction to produce a map

HF2 ∧FEn
(Si)→ HF2 ∧A.

Finally, we can compose with

Q : Sj → HF2 ∧Σ∞+ ΩnSn+i ' HF2 ∧FEn
(Si).

�

In other words, power operations for En-algebras in HF2-modules are controlled by the homologies of loop
spaces of spheres. To compute these homologies, one can proceed inductively using Eilenberg-Moore spectral
sequences. All of the relevant spectral sequences degenerate nicely on the E2-page.

Remark 3.2. To prove Mahowald’s theorem, one does not even need to know that the spectral sequences
computing H∗(Ω

2S3) degenerate. The spectral sequences are only needed to establish an upper bound on
the size of this homology.

A summary of the calculation, which should look familiar following Hood’s talk, is contained in the
following:

Theorem 3.3. If A is an En-algebra in HF2-modules, then there are operations Qr : π∗(A)→ π∗+r(A) for
each r ≥ 0 satisfying

(1) For i > 0 and xi ∈ πi(A), Qr(xi) = 0 when r < i or r > i+ n− 1
(2) Qi(xi) = x2

i .
(3) The Qr satisfy the Adem relations and Cartan formula.

As n tends to ∞ we recover the action of the Dyer-Lashof algebra that Hood spoke about last week.
We can draw a picture of H∗(FE2

(S1);F2) ∼= H∗(Ω
2S3;F2) ∼= H∗(R;F2). [DRAW PICTURE]

4. The Nishida relations and a proof of Mahowald’s Theorem

To recap, there is a natural map

H∗(Ω
2S3;F2) ∼= H∗(R;F2)→ H∗(HF2;F2),

which we are trying to show is an equivalence. The calculations summarized in the previous section show
that both graded vector spaces have the same ranks, but it remains to understand why the map has no
kernel.

Recall that, if X is any spectrum, H∗(X;F2) receives a degree-lowering action on the right by the Steenrod
algebra. If X is furthermore an En-algebra, then H∗(X) is also acted on by Dyer-Lashof operations. The



map H∗(R)→ H∗(HF2) must preserve both Steenrod operations and Dyer-Lashof operations. This gives two
(highly related) strategies to finish the proof:

(1) Compute the Steenrod algebra action on H∗(R;F2)
(2) Compute the Dyer-Lashof algebra action on H∗(HF2;F2)

Both strategies lead to a proof. Pursuing the first strategy in its full generality leads to the following very
useful relations:

Theorem 4.1 (Nishida relations). For A an En-algebra, t ≥ k, and y ∈ H∗(A),

(Qty)Sqk =
∑
i

(
t− k
k − 2i

)
Qt−k+i(ySqi).

Proof. See, e.g., Haynes Miller’s notes. �

Proof of Mahowald’s Theorem. Since R is the free E2-algebra with 2 = 0, it receives a map from the free
spectrum with 2 = 0, which is the mod 2 Moore spectrum. This means that the bottom two classes in
H∗(R;F2) are connected by a Sq1. The Nishida relations then completely determine the Steenrod algebra
action on H∗(R;F2). The map H∗(R;F2)→ H∗(HF2) must preserve Steenrod operations, and it follows that
the map is an isomorphism. �

5. Dyer-Lashof operations on H∗(HF2;F2)

Recall that H∗(HF2) = F2[ξ1, ξ2, ...] where the degree of ξi is 2i − 1. The following result is enough to
prove Mahowald’s theorem:

Proposition 5.1. For each i ≥ 1, Q2i

(ξi) = ξi+1

Proof. Consider the map
x : RP∞ → ΣHF2

which picks out the generator in cohomology. In homology, x∗ sends b2i ∈ H2i(RP∞;F2) to ξi. There is a
sequence of C2-equivariant maps

RP∞ ∆→ RP∞ × RP∞ (x,x)→
(
S1 ∧HF2

)
∧
(
S1 ∧HF2

)
' S1+σ ∧HF2 ∧HF2

Taking homotopy orbits, we get maps

RP∞ × RP∞
∆hC2−→ (RP∞ × RP∞)hC2

' BD8

→ (S1+σ ∧HF2 ∧HF2)hC2

' Σ∞ΣRP∞ ∧ (HF2 ∧HF2)hC2

m→ Σ∞ΣRP∞ ∧HF2,
x→ Σ2HF2 ∧HF2,
m→ Σ2HF2

This fits into a commutative triangle

RP∞ × RP∞ BD8

Σ2HF2

(x,x)

∆hC2

In homology, the top map in the above triangle will take b1 ⊗ b2i+1 to b1 ⊗ b2i ⊗ b2i . By what Hood spoke

about last time, this maps down to Q2i

(ξi). On the other hand, the third map in the triangle takes b1⊗ b2i+1

to ξi+1. �


