Factorization algebra as an extended TFT

Tashi Walde

November 17, 2020

This are notes for a talk given during the Juvitop seminar in Fall 2020. The main references are

- Lurie’s paper “On the classification of Topological Field Theories”
- Scheimbauer’s Ph.D. thesis “Factorization Homology as a Fully Extended Topological Field Theory”

Throughout, we let (\mathcal{C}, \otimes) be a symmetric monoidal ∞-cat; we assume that \mathcal{C} admits sifted colimits and that $\cdot \otimes \cdot$ preserves them in each component. We fix a natural number $n \in \mathbb{N}$.

1 E_n-algebras

We start by recalling the definition of an E_n-algebra. Let Man_{fr}^n the symmetric monoidal ∞-category obtained as the coherent nerve of the topological category with

- objects: framed n-dimensional smooth manifolds;
- morphism spaces $\text{Emb}_{fr}^n(M,N)$ of framed embeddings $M \hookrightarrow N$ between manifolds.
- The monoidal product is given by disjoint union.

We denote by $\text{Disk}_{fr}^n \subset \text{Man}_{fr}^n$ the full ∞-subcategory spanned by those framed n-manifolds which are isomorphic to a finite disjoint union $\bigsqcup_{\text{finite}} \mathbb{R}^n$ (with the standard framing).

Definition 1. An E_n-algebra in \mathcal{C} is a symmetric monoidal functor from Disk_{fr}^n to \mathcal{C}.

If $A: \text{Disk}_{fr}^n \to \mathcal{C}$ is an E_n-algebra, we say that $A(\mathbb{R}^n) \in \mathcal{C}$ is the underlying object of A; by abuse of notation, we also denote it by A. Unraveling the definition, we see that A is equipped with multiplication maps

\[A^\otimes k = A \otimes \cdots \otimes A \simeq A(\mathbb{R}^n \sqcup \cdots \sqcup \mathbb{R}^n) \longrightarrow A(\mathbb{R}^n) = A \] \hspace{1cm} (1)
parameterized by the space of framed embeddings $\text{Emb}^{fr}(\mathbb{R}^n \sqcup \cdots \sqcup \mathbb{R}^n, \mathbb{R}^n)$ of k disks into a bigger disk.

For example, for $n = 1$, the space $\text{Emb}^{fr}(\coprod^k \mathbb{R}^1, \mathbb{R}^1)$ is homotopy equivalent to the discrete set of permutations of $\{1, \ldots, k\}$; hence the multiplication maps are parameterized by choosing a linear order on the input copies of A. Unraveling the coherence conditions, one sees that an E_1-algebra in C is precisely an associative (and unital) algebra object.

The goal of this talk is to explain a construction which takes as input an E_n-algebra A and produces an n-dimensional topological field theory $\text{Bord}^n_0 \to \text{Alg}_n$ with values in an (∞, n)-category Alg_n which we can heuristically describe as follows:

- The objects of Alg_n are E_n-algebras;
- a 1-morphism $A \to A'$ between E_n-algebras is an A-A'-bimodule, i.e., an $E_{(n-1)}$-algebra B on which A and A' act compatibly from the left and from the right, respectively;
- a 2-morphism

$$
\begin{array}{c}
B \\
A \quad C \\
A'
\end{array}
\xrightarrow{\subseteq}
\begin{array}{c}
C \\
B'
\end{array}
$$

between two bimodules B, B': $A \to A'$ is a B-B'-bimodule C, by which we mean an $E_{(n-2)}$-algebra C on which A, A', B, B' act compatibly from the top, the bottom, the left and the right, respectively;
- 3-morphisms are bimodules of bimodules of E_n-algebras;
- \ldots
- n-morphisms are (bimodules of)n of E_n-algebras.

Composition in Alg_n is defined as a suitable tensor product which, for instance, sends an A-A'-bimodule B and an A'-A''-bimodule B' to the A-A''-bimodule $B \otimes_{A'} B'$.

The topological field theory associated to the E_n-algebra A is supposed to send the point $\mathbb{R}^0 \in \text{Bord}^n_0$ to the object $A \in \text{Alg}_n$. According to the cobordism hypothesis, this property uniquely characterizes this TFT. We will in fact give an explicit formula to compute this TFT on an arbitrary k-morphism M in Bord^n_0 ($0 \leq k \leq n$) as the factorization homology $\int_M \times \mathbb{R}^{n-k} A$; heuristically, we take the local data encoded by the E_n-algebra A and “integrate” it over the n-manifold $M \times \mathbb{R}^{n-k}$.
2 Factorization Algebras

The first challenge is to give a rigorous definition of the (∞, n)-category Alg_n.

One approach makes use of factorization algebras, which we introduce now.

Let X be a topological space. Denote by \mathcal{U}_X the colored operad\(^1\) with

- colors/objects are the open subsets of X;
- there is a unique operation/morphism $U_1, \ldots, U_k \to U$, whenever $U_1, \ldots, U_k \subseteq \cup U \in \mathcal{U}_X$ are pairwise disjoint subsets of $U \in \mathcal{U}_X$.

Definition 2. A prefactorization algebra F on X with values in \mathcal{C} is an \mathcal{U}_X-algebra in \mathcal{C}, i.e. a map of ∞-operads $\mathcal{U}_X \to \mathcal{C}$.

Unraveling the definition, F assigns an object $F(U) \in \mathcal{C}$ to each open subset $U \in \cup U_X$, and a morphism $F(U_1) \otimes \cdots \otimes F(U_k) \to F(U)$, whenever U_1, \ldots, U_k are pairwise disjoint open subsets of $U \in \mathcal{U}_X$; it needs to be functorial in the obvious sense.

A factorization algebra is a prefactorization algebra F which additionally satisfies

1. If $U_1, \ldots, U_k \in \mathcal{U}_X$ are pairwise disjoint open subsets of X, the induced map $F(U_1) \otimes \cdots \otimes F(U_k) \simeq F(U_1 \sqcup \cdots \sqcup U_k)$ is an equivalence (in particular, for $k = 0$, the object $F(\emptyset)$ is identified with the monoidal unit of \mathcal{C}).

2. A suitable descent condition, which allows the value $F(U)$ to be computed as a colimit of values on sufficiently well behaved open covers. We shall not spell it out here.

A factorization algebra F on X is called **locally constant**, if the inclusion $F(D) \to F(D')$ is an equivalence, whenever $D \subseteq D'$ are both (homeomorphic to) \mathbb{R}^n.

3 Factorization homology

The following construction shows how an E_n-algebra gives rise to a factorization algebra on each framed n-manifold M.

Construction 1. Let $A : \text{Disk}^n \to \mathcal{C}$ be an E_n-algebra. We denote by

\[
\left(\int A \right) : \text{Man}_n^F \to \mathcal{C}
\]

\(^1\)One way to think of a colored operad is a “multi-category” which has objects (usually called colors) and between them not just 1-to-1-morphisms $x \to y$, but also many-to-1-morphisms $(x_1, \ldots, x_k) \to y$. It needs to satisfy the suitable analogs of associativity and unitality.

\(^2\)Each symmetric monoidal (\infty-)category is canonically an (\infty-)operad, by declaring a multi-morphism $x_1, \ldots, x_k \to y$ to simply be a morphism $x_1 \otimes \cdots \otimes x_k \to y$ in \mathcal{C}.
the left Kan extension of A and call it **factorization homology with coefficients in A**. For any framed n-manifold M, it is computed explicitly by the pointwise formula:

$$\int_M A := \operatorname{colim} \left(\text{Disk}^\text{fr}_n/M \to \text{Disk}^\text{fr}_n A \to C \right)$$

(4)

where $\text{Disk}^\text{fr}_n/M$ denotes the overcategory of all possible embeddings of disjoint disks into M. By construction, $\int_M A$ is functorial along embeddings of manifolds; hence in particular along inclusions of open subsets. Moreover one can check that the ∞-category $\text{Disk}^\text{fr}_n/M$ is sifted, hence the monoidal product in C commutes with the limit in (4); a direct calculation produces a canonical identification

$$\left(\int_{U_1} A \right) \otimes \cdots \otimes \left(\int_{U_k} A \right) \cong \left(\int_U A \right)$$

(5)

whenever $U = U_1 \sqcup \cdots \sqcup U_k$ arises as a pairwise disjoint union of open subsets U_1, \ldots, U_k of M. This exhibits $\int_{\subseteq M} A$ as a factorization algebra on M. It is locally constant because the inclusion $D \subseteq D'$ of two disks is an equivalence in the ∞-category Man^fr_n.

An important special case arises when we consider $M = \mathbb{R}^n$. In this case, we have $\int_{\subseteq}^n A = A$ and in fact the factorization algebra $\int_{\subseteq \subset \mathbb{R}^n} A$ on \mathbb{R}^n encodes the same data as the E_n-algebra A. More precisely we have the following theorem.

Theorem 1 (Lurie). The assignment $A \mapsto \int_{\subseteq} A$ assembles to an equivalence of ∞-categories between E_n-algebras in C and locally constant factorization algebras on \mathbb{R}^n with values in C.

4 Stratified factorization algebras

To systematically encode the (bimodules of ...) which make up the (∞, n)-category $\text{Alg}_{\infty,n}$, it is convenient to study a stratified variant of factorization algebras.

Let X be a topological space. A stratification of X consists of an ascending chain $\emptyset = X_{-1} \subset X_0 \subset X_1 \subset \cdots \subset X_l = X$ of closed subspaces. The **index** of an open subset $U \subset X$ is the smallest i such that $U \cap X_i \neq \emptyset$.

Definition 3. Let X be a topological space with stratification X_*. A factorization algebra F on X is called **locally constant with respect to the stratification**, if the inclusion $D \subseteq D'$ induces an equivalence $F(D) \cong F(D')$ whenever D and D' are disks of the same index i which both remain connected when intersected with X_i.

Note that we get the previous notion of locally constancy with respect to the trivial stratification $\emptyset \subset X$.

Finally, let us remark that factorization algebras which are locally constant with respect to stratifications can be pushed forward along suitable maps
f : X → Y of stratified spaces by declaring f_*F(U) = F(f^{-1}(U)) for each open subset U ⊂ Y.

5 The Morita category

We can now finally say, at the very least, what the morphisms are in the (∞, n)-category Alg_n.

For each k, a k-morphism in Alg_n is a factorization algebra on R^n which is locally constant with respect to the stratification

S^k : ∅ ⊂ ⋯ ⊂ ∅ ⊂ R^n_{-k} × \{0\}^k ⊂ ⋯ ⊂ R^{n-1} × \{0\} ⊂ R^n. \tag{6}

Inside the stratified space (6) we find the two subspaces

R^{n-k} × (-∞, 0) × R^{k-1} ⊂ R^n \quad \text{and} \quad R^{n-k} × (0, +∞) × R^{k-1} ⊂ R^n \tag{7}

which are both isomorphic as stratified spaces to (R^n, S^{k-1}). Thus we can restrict each factorization algebra F on (R^n, S^k) to two factorization algebras on (R^n, S^{k-1}) which we declare to be the source and target (k - 1)-morphism of F, respectively.

The composition in Alg_n can be roughly described as follows: Given two composable k-morphisms E \xrightarrow{F} E' \xrightarrow{F'} E'', we can reparameterize them and glue them to a factorization algebra on the stratified space

∅ ⊂ ⋯ ⊂ ∅ ⊂ R^{n-k} × \{-1, 1\} × \{0\}^k ⊂ ⋯ ⊂ R^{n-k+1} × \{0\}^k ⊂ ⋯ ⊂ R^{n-1} × \{0\} ⊂ R^n, \tag{8}

where E, E', E'' are identified with the restriction to

R^{n-k} × (-∞, -1) × R^{k-1}, \tag{9}

R^{n-k} × (-1, 1) × R^{k-1}, \tag{10}

R^{n-k} × (+1, +∞) × R^{k-1}, \tag{11}

respectively. This factorization algebra can then be pushed forward along the map R^n → R^n which in the (n - k + 1)-th coordinate sends [-1, 1] to 0 and identifies

+1 : (-∞, -1] \xrightarrow{=} (-∞, 0] \quad \text{and} \quad -1 : [+1, +∞) \xrightarrow{=} [0, +∞). \tag{12}

6 Factorization homology as a TFT

Finally we sketch how to make \int_A into a functor of (∞, n)-categories

\left(\int_A \right) : \text{Bord}_n^{fr} \to \text{Alg}_n. \tag{13}
If we are given a k-morphism N in Bord^n_{fr}, we can consider the factorization algebra $\int_{-\subseteq M} A$ on $M := N \times \mathbb{R}^{n-k}$. For $k = 0$, i.e., $N = \mathbb{R}^0$ gives rise to the factorization algebra $\int_{-\subseteq \mathbb{R}^n} A$ which is exactly the object corresponding to A in Alg_n.

For $k \neq 0$, we have to push forward along a suitable map to a stratified space by choosing appropriate collars. For example, if we are given a 1-morphism, i.e. a cobordism N between N_0 and N_1, we can choose collars

\[N_0 \times (-\infty,0] \hookrightarrow N \hookleftarrow N_1 \times [0,\infty) \quad (14) \]

and define a map $f : N \to \mathbb{R}$ as follows:

- on the collars it is given by projecting onto $(-\infty,0]$ or $[0,\infty)$, respectively;
- all other points go to 0.

Finally, we can define the value of our TFT on N to be the factorization algebra obtained by pushing $\int_{-\subseteq N \times \mathbb{R}^{n-1}}$ forward along $f \times \text{id} : N \times BR^{n-1} \to \mathbb{R}^n$.

The construction for higher k is similar by repeatedly choosing collars in $M := N \times \mathbb{R}^{n-k}$ and then pushing forward along an analogous collapse map $M \to \mathbb{R}^n$, where the right side is stratified as in (6). See the following picture for $k = n = 2$:
Figure 1: An example of a 2-morphism in Bord_2^G with collars and the associated collapse map to the stratified space \mathbb{R}^2.

$\mathbb{R}^0 < \mathbb{R}^4 < \mathbb{R}^2$