§1. Quick recap from last week: context

Recall that the goal this semester is to follow Hopkins – Lurie to prove that, in the ∞-category of $K(n)$-local spectrum, limits and colimits indexed by π-finite Kan complexes coincide. In order to do this, Hopkins and Lurie construct a norm map from the colimit to the limit (generalizing the example from homotopy orbits to homotopy fixed points that we talked about last week), and show that it is an equivalence.

The latter part can be reduced to a calculation for diagrams constant at $K(n)$ and of shape $K(\mathbb{Z}/p\mathbb{Z}, m)$. Vaguely, proving the norm map is an equivalence is then reduced to an explicit calculation of a map between $K(n)$-homology groups, which can be analyzed using Dieudonné theory.

Our first goal today will be to construct a symmetric monoidal product \boxtimes on the category of Hopf algebras over a fixed commutative ring k.

The main result of chapter 1 is then to prove a universal property of the Dieudonné module associated to the product of Hopf algebras.
(which determines the product since the functor DM to be defined next time is fully faithful and compatible with \boxtimes in an appropriate sense):

1.1. **Theorem** (Goerss, Buchstaber–Lazarev; see [HL], 1.3). Let H and H' be connected Hopf algebras over k. Then the Dieudonné module $DM(H \boxtimes H')$ is characterized by the following universal property: for any left D_k-module M, there is a bijective correspondence between D_k-module maps $DM(H \boxtimes H') \to M$ and $W(k)$-bilinear maps $\lambda: DM(H) \times DM(H') \to M$ such that

$$V\lambda(x, y) = \lambda(Vx, Vy),$$

$$F\lambda(Vx, y) = \lambda(x, Fy),$$

$$F\lambda(x, Vy) = \lambda(Fx, y).$$

In order to do this, we develop some results on Witt vectors, which is our second objective for today.

Dexter will talk about Dieudonné modules and the proof of the main theorem of Chapter 1 (above) next week; today is about setting up algebraic foundations.

§2. **Categories of Hopf algebras**

The goal in this section is to construct a product \boxtimes making the category Hopf_k of (commutative, cocommutative) Hopf algebras over k symmetric monoidal.

The strategy of [HL]1.1 is to construct a symmetric monoidal product on a larger category BiAlg_k. Then one shows that the full subcategory Hopf_k closed under the product constructed.

First, some facts about the category CoAlg_k of coalgebra objects in k-modules:

2.1. **Proposition** ([HL]1.1.3). CoAlg_k is locally presentable: it admits small colimits, and has a τ-compact generating set for some regular cardinal τ (meaning that for every element X in the generating set, the representable functor $\text{CoAlg}_k(X, -)$ preserves τ-filtered colimits.

This implies that CoAlg_k admits small limits and colimits.

2.2. **Proposition** ([HL] 1.1.9). The Yoneda embedding

$$h: \text{CoAlg}_k \to \text{Fun}(\text{CoAlg}_k^{\text{op}}, \text{Set})$$

admits a left adjoint L which commutes with finite products.
As mentioned previously, the goal is to study bialgebras which contain Hopf algebras as a subcategory. These are obtained from CoAlg_k by taking monoid objects: we define BiAlg_k to be the set of commutative monoid objects in CoAlg_k. More generally, given any category \mathcal{C} with finite products, we get a natural association $\mathcal{C} \mapsto \text{CMon}(\mathcal{C})$. Abusing notation slightly, let CMon be the category of objects in Set.

Applying CMon to the adjunction $L \dashv h$, we get:

$\text{CMon}(\text{Fun}(\text{CoAlg}_k^{\text{op}}, \text{Set})) \xrightarrow{\text{BiAlg}_k} \text{CMon}(h)$

$\text{CMon}(h) \xleftarrow{\text{CMon}(L)} \text{BiAlg}_k$

Note that since both h and L preserve products, they take monoid objects in one category to monoid objects in the other. Moreover a morphism in either category is a monoid map if and only if its transpose is, and hence $\text{CMon}(L) \dashv \text{CMon}(h)$.

How does this help us put a symmetric monoidal structure on BiAlg_k? Observe first the left hand side of the above equation is equivalent to $\text{Fun}(\text{CoAlg}_k, \text{CMon})$. Following [HL], we’ll use the following notation for the previous adjunction rewritten:

$\text{Fun}(\text{CoAlg}_k^{\text{op}}, \text{CMon}) \xrightarrow{\text{BiAlg}_k} \text{Fun}(\text{CoAlg}_k, \text{CMon})$

where $L \dashv h$.

First, we will describe a symmetric monoidal structure on $\text{Fun}(\text{CoAlg}_k, \text{CMon})$ which arises from one on CMon object-wise.

CMon has a symmetric monoidal structure given by “tensor product of monoids”: the tensor product of two monoids M, M' is the universal monoid amongst those receiving a bilinear map from $M \times M'$. Here, bilinearity means that the map λ is additive in each component and takes an element with either component zero to the zero element of the target:

$\lambda(x + x', y) = \lambda(x, y) + \lambda(x', y), \lambda(x, y + y') = \lambda(x, y) + \lambda(x, y')$ (1)

$\lambda(0, y) = 0 = \lambda(x, 0)$ (2)

Then the goal is to pass the product on $\text{Fun}(\text{CoAlg}_k, \text{CMon})$ along the adjunction $h \dashv L$ in order to endow BiAlg_k with a symmetric monoidal structure. A general fact:
2.3. **Lemma.** Let $R \vdash L$ with $R : \mathcal{C} \to \mathcal{D}$ and (\mathcal{C}, \otimes) symmetric monoidal. Suppose that for any isomorphism $h : C \to C'$ and any object C'' in \mathcal{C}, the induced map $L(C \otimes C'') \to L(C)$ is an isomorphism. Then \mathcal{D} has a symmetric monoidal structure given by $(D, D') \mapsto L(R(D) \otimes (D'))$ which makes L symmetric monoidal. This structure is unique up to a canonical isomorphism.

We need only check that $L \dashv h$ as defined above satisfies the lemma to obtain:

2.4. **Theorem.** BiAlg_k has a symmetric monoidal product $\boxtimes : \text{BiAlg}_k \times \text{BiAlg}_k \to \text{BiAlg}_k$ making L symmetric monoidal. \boxtimes is unique as such, up to canonical isomorphism.

Proof. Let L be the left adjoint to yoneda, and let $\alpha : F \to F'$ be a morphism in $\mathcal{C} := \text{Fun}(\text{CoAlg}_k^{op}, \text{CMon})$.

Suppose that the induced map $\beta : L(F) \to L(F')$ is an isomorphism of bialgebras (and hence of coalgebras, too), and let G be arbitrary in \mathcal{C}.

We must show that β induces a bijection

$$\theta : \text{Fun}_{\text{BiAlg}_k}(L(F' \otimes G), H) \to \text{Fun}_{\text{BiAlg}_k}(L(F \otimes G), H),$$

for H arbitrary in BiAlg_k.

Transposing, this corresponds to

$$\theta' : \text{Fun}_{\mathcal{C}}(F' \otimes G, h_H) \to \text{Fun}_{\mathcal{C}}(F \otimes G, h_H).$$

The domain and codomain of θ' are identified with bilinear maps $F' \times G \to h_H$ and $F \times G \to h_H$, respectively. Since L commutes with finite products, both sides are identified with the same subset of

$$\text{Fun}_{\text{CoAlg}_k}(L(F') \otimes_k L(G), H) \simeq \text{Fun}_{\text{CoAlg}_k}(L(F) \otimes_k L(G), H).$$

□

Now let’s try to understand what \boxtimes does.

As we’ll see, it’s very different from the tensor product of underlying modules. Consider $H' \boxtimes H \to H''$ in BiAlg_k. By definition, this is a map in BiAlg_k from $L(h_{H'} \otimes h_H)$ to H''. Transposing by the adjunction, we obtain

$$h_{H'} \otimes h_H \Rightarrow h_{H''}$$

which is defined via the properties of \otimes on $\text{Fun}(\text{CoAlg}_k^{op}, \text{CMon})$. By yoneda, this translates into a map $H \otimes_k H' \to H''$ satisfying concrete relations.

Conclusion: $H' \boxtimes H$ is a quotient of the symmetric algebra on $H \otimes_k H$.
2.5. Remark. All the maps in the diagram (which is commutative up to canonical isomorphism)

\[
\begin{array}{ccc}
\text{BiAlg}_k & \xrightarrow{h} & \text{Fun}(\text{CoAlg}^\text{op}_k, \text{CMon}) \\
\downarrow & & \downarrow \alpha \\
\text{CoAlg}_k & \xrightarrow{h} & \text{Fun}(\text{CoAlg}^\text{op}_k, \text{Set})
\end{array}
\]

admit left adjoints. The adjoint to the forgetful functor \(\text{BiAlg}_k \rightarrow \text{CoAlg}_k\) is given by \(C \mapsto \text{Sym}^* (C)\), while the adjoint to \(\alpha\) is given by pointwise composite with the free monoid functor \(\mathbb{Z}_{\geq 0}[-]\). Therefore the diagram of left adjoints also commutes up to isomorphism. Since \(\mathbb{Z}_{\geq 0}[-]\) is symmetric monoidal (where \(\text{Set}\) is considered with the cartesian product), we get that for \(C, D \in \text{CoAlg}_k\),

\[
\text{Sym}^* (C \otimes_k D) \simeq \text{Sym}^* C \boxtimes \text{Sym}^* D.
\]

There’s also a “reduced” version of this, where \(\text{CoAlg}_k\) is replaced with augmented coalgebras, \(\text{Set}\) is replaced with \(\text{Set}^*\) – see end of 1.1. It is (apparently) useful for computations involving Hopf algebras with augmentations. The upshot:

\[
\text{Sym}^{*\text{red}} (C) \boxtimes \text{Sym}^{*\text{red}} (D) \simeq \text{Sym}^{*\text{red}} (C \wedge D).
\]

This is computationally useful:

2.6. Example. \(k[x]\) with \(x \mapsto 1 \otimes x + x \otimes 1\). Note that \(k[x] \wedge k[x] \simeq k[x]\) (induced by \(x \mapsto x \otimes x\). Moreover, \(k[x] = \text{Sym}^{*\text{red}} (C)\) where \(C\) is the subcoalgebra of \(k[x]\) generated by 1 and \(x\). Thus deduce: \(k[x] \boxtimes k[x] \simeq k[x]\).

2.7. Example. \(k\) as a \(k\)-coalgebra is the unit with respect to \(\otimes_k\) on \(\text{CoAlg}_k\). Since \(\text{Sym}^*\) is symmetric monoidal, it follows that \(\text{Sym}^* k \simeq k[x]\) is the unit for \(\boxtimes\) on \(\text{BiAlg}_k\).

A Hopf algebra is an abelian group object in the category of bialgebras. Equivalently, Hopkins – Lurie’s definition:

2.8. Lemma–Definition. Note that \(\mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}\) induces an in \(\text{CMon}\)

\(\mathbb{Z} \simeq \mathbb{Z}_{\geq 0} \otimes \mathbb{Z} \rightarrow \mathbb{Z} \otimes \mathbb{Z}\). Hence \(\mathbb{Z}\) is idempotent as a monoid, and the category \(\text{Mod}_{\mathbb{Z}}(\text{CMon})\) is a full subcategory of \(\text{CMon}\). Moreover, admitting a \(\mathbb{Z}\)-module structure in \(\text{CMon}\) is equivalent to being an abelian group. Thus, \(\text{Ab}\) inherits a symmetric monoidal structure from \(\text{CMon}\) with the same product, but with different monoidal unit.

\(H \in \text{BiAlg}_k\) is a Hopf algebra if the functor \(h_H : \text{CoAlg}^\text{op}_k \rightarrow \text{CMon}\) factors through the full subcategory \(\text{Ab} \subset \text{CMon}\). We denote the full subcategory of \(\text{BiAlg}_k\) spanned by such \(H\) by \(\text{Hopf}_k\).
Our next goal is to show that Hopf algebras inherit a symmetric monoidal structure from \boxtimes. To do this, we try to understand Hopf algebras.

We can characterize Hopf algebras handily: let \mathbb{Z} be the constant functor $\text{CoAlg}_{\text{op}}^k \to \text{Ab}$ with value \mathbb{Z}, and L as before be the left adjoint to yoneda. Then $L(\mathbb{Z})$ can be identified with the ring of Laurent polynomial $k[\mathbb{Z}] = k[t^{\pm 1}]$, with comultiplication $t \mapsto t \otimes t$. L is symmetric monoidal, so $k[\mathbb{Z}]$ is idempotent in BiAlg_k wrt \boxtimes. Moreover, $k[\mathbb{Z}]$ is a Hopf algebra: the set of coalgebra maps from any coalgebra to $k[\mathbb{Z}]$ are multiplicative invertible: the inverse of a given map $X \to k[\mathbb{Z}]$ is given by postcomposing with a bialgebra automorphism of $k[\mathbb{Z}]$.

By definition, we have that for any $H \in \text{BiAlg}_k$: $h_H \boxtimes k[\mathbb{Z}] \simeq h_H \otimes h_{k[\mathbb{Z}]}$. Since the latter takes values in Ab, we see that $H \boxtimes k[\mathbb{Z}]$ is a Hopf algebra for any $H \in \text{BiAlg}_k$. If H is already a Hopf algebra, then $H \boxtimes k[\mathbb{Z}] \simeq L(h_H) \simeq L(h_H \otimes \mathbb{Z}) \simeq H \boxtimes k[\mathbb{Z}]$.

This shows that the subcategory of Hopf algebras can be identified with the category of modules over the idempotent object $k[\mathbb{Z}]$ in BiAlg_k, and, as such, has symmetric monoidal structure given by \boxtimes restricted to Hopf_k with monoidal unit $k[\mathbb{Z}]$.

§3. Witt Vectors and associated Hopf Algebras

In order to prove 1.1 next week, we need some algebraic background.

For R a commutative ring, define $W_{\text{Big}}(R)$ to be the subset of $R[[t]]$ of elements with constant term 1. These form a group under multiplication: the group of big Witt vectors of R. We also define $W_{t_{\text{Big}}}$ to be the polynomial ring $\mathbb{Z}[c_1, c_2, \ldots]$ on countably many variables. Then:

$$W_{\text{Big}}(R) \simeq \text{Fun_{Ring}}(W_{t_{\text{Big}}}, R),$$

via

$$f \mapsto 1 + f(c_1)t + f(c_2)t^2 + \ldots.$$

Since $R \to W_{\text{Big}}(R)$ takes values in abelian groups, we can regard $W_{t_{\text{Big}}}$ as a Hopf algebra over \mathbb{Z}.

(Note: this is kind from what was done before, i.e. we start with algebra structure and use a covariant functor to produce a coalgebra
structure. Not an issue.)

The comultiplication $W_{t \text{Big}} \rightarrow W_{t \text{Big}} \otimes W_{t \text{Big}}$ that induces the group structure on $W_{\text{Big}}(R)$ for each R is given by

$$c_n \mapsto \sum_{i+j=n} c_i \otimes c_j :$$

we can just check this does the trick and use uniqueness.

The goal of the rest of this section is to study this Hopf algebra and some sub-Hopf algebras.

Note also that $W_{t \text{Big}}$ is the cohomology ring of BU with integer coefficients. Each c_n can be identified with a virtual Chern class of the tautological bundle on BU.

3.1. Lemma–Definition. $1 + c_1 t + \cdots = \prod_{n>0} (1 - a_n t^n)$, for $a_n \in R$. Each c_n can be written as an integer polynomial in a_i’s, and vice versa. If we take $R = W_{t \text{Big}}$, we get a sequence of elements $a_n \in W_{t \text{Big}}$, where a_n is an integer polynomial in c_i’s and is called the n-th Witt component. These determine an isomorphism $\mathbb{Z}[a_1, a_2, \ldots] \simeq W_{t \text{Big}}$.

If $f(t) \in W_{t \text{Big}}[[t]]$ is the element $1 + c_1 t + c_2 t^2 + \ldots$ where c_i’s are the polynomial variables of $W_{t \text{Big}}$, then:

$$td \log f(t) = tf'(t)/f(t) = w_1 t + w_2 t^2 + \ldots$$

for some $w_i \in W_{t \text{Big}}$. We call w_n the n-th ghost component. Moreover, each w_n is primitive: $\Delta(w_n) = w_n \otimes 1 + 1 \otimes w_n$.

Over the rationalized ring $W_{t \text{Big}}$, which we denote $W_{t \text{Big}}^\mathbb{Q}$, we have that

$$\log(f(t)) = \sum_{n \geq 0} w_n/nt^n,$$

so that

$$f(t) = \exp(\sum w_n/nt^n),$$

and each c_n can be written as a rational polynomial in w_i’s. In particular, $W_{t \text{Big}}^\mathbb{Q}$ is a polynomial ring on the ghost components:

$$W_{t \text{Big}}^\mathbb{Q} \simeq \mathbb{Q}[w_1, w_2, \ldots].$$

Also note that, we actually have formulas for w_n in terms of a_m as defined before,
\[\sum_{n>0} \frac{w_n}{nt^n} = \sum_{m>0} \log(1 - a_m t^m) = \sum_{m>0, d>0} \frac{a^d_m t^m}{d} = \sum_{n>0} \sum_{d \mid n} \frac{a^d_{n/d} t^{n/d}}{d}. \]

3.2. Lemma–Definition.

For \(S \subset \mathbb{Z}_{>0} \) closed under multiplication, let \(Wt_S \) be the subalgebra of \(Wt_{\text{Big}} \) generated by \(a_n \) for \(n \in S \), and let \(Wt_Q^S \) be the tensor with \(\mathbb{Q} \). Then \(Wt_S \) inherits the structure of a Hopf algebra from \(Wt_{\text{Big}} \).

Proof. The following steps lead to the conclusion:

- \(Wt_S = Wt_Q^S \cap Wt_{\text{Big}} \).
- \(Wt_S \) is a polynomial algebra over \(\mathbb{Q} \) on \(w_n \) for \(n \in S \).
- \(Wt_S \) is preserved by the antipode map \(w_n \mapsto -w_n \).
- For \(n \in S \), \(\Delta(w_n) = 1 \otimes w_n + w_n \otimes 1 \in Wt_S \otimes Wt_S \subset Wt_{\text{Big}} \otimes Wt_{\text{Big}} \), so that comultiplication on \(Wt_{\text{Big}} \) carries \(Wt_S \) to \(Wt_S \otimes Wt_S \) and \(Wt_S \) has the structure of a Hopf algebra.

\[\square \]

Example: ring of \(p \)-typical Witt vectors, \(\mathbb{Z}[a_1, a_p, a_{p^2}, \ldots] \subset Wt_{\text{Big}} \).

The goal for the remainder of the section is to study the structure of \(Wt_{\text{Big}} \otimes Wt_{\text{Big}} \) and \(Wt_S \otimes Wt_S \) (with \(S \subset \mathbb{Z}_{>0} \) as before), and how different \(\otimes \)-products of these are related.

The next four results (and their generalizations) will be referenced in [HL] 1.3, which we’ll talk about next week. An idea of some of the proofs is given after the statements.

3.3. Proposition ([HL] 1.2.13).

Let \(S \) and \(T \) be finite subsets of \(\mathbb{Z}_{>0} \) which are divisibility-closed. Then \(Wt_S \otimes Wt_T \) is smooth over \(\mathbb{Z} \).

This generalizes to finite collections \(S_1, \ldots, S_n \). I.e. [HL] 1.2.14.

3.4. Theorem ([HL] 1.2.16).

Let \(S \) be closed under divisibility. Then the canonical map \(Wt_S \otimes Wt_S \rightarrow Wt_{\text{Big}} \otimes Wt_{\text{Big}} \) is injective, and identifies \(Wt_S \otimes Wt_S \) with \(Wt_Q^S \otimes Wt_Q^S \cap Wt_{\text{Big}} \otimes Wt_{\text{Big}} \subset Wt_Q^S \otimes Wt_Q^S \).

3.5. Theorem ([HL] 1.2.20).

There exists a unique Hopf algebra map \(\iota : Wt_{\text{Big}} \rightarrow Wt_{\text{Big}} \otimes Wt_{\text{Big}} \) such that \(\iota(w_n) = \frac{w_n \otimes w_n}{n} \).

Similarly, we also have the following:

3.6. Corollary ([HL] 1.2.21).

Let \(S \) be a divisibility-closed set. Then there exists a unique Hopf algebra map \(\iota_S : Wt_S \rightarrow Wt_S \otimes Wt_S \) such that \(\iota_S(w_n) = \frac{w_n \otimes w_n}{n} \).
3.7. Theorem ([HL] Scholium 1.2.15). Let $S' \subset S \subset \mathbb{Z}_{>0}$ and $S' \subset S \subset \mathbb{Z}_{>0}$. Then the inclusion maps

$$Wt_{S'} \hookrightarrow Wt_S$$

and

$$Wt_{T'} \hookrightarrow Wt_T$$

induce a faithfully flat map

$$\phi: Wt_{S'} \boxtimes Wt_{T'} \to Wt_S \boxtimes Wt_T.$$

Proof notes. This proof is more or less a stand-alone algebraic result, although it does use some observations from the proofs of other results.

Step 1: reduce to finite sets S, T using direct limit argument. Factor ϕ to assume $T = T'$.

Step 2: Work by induction on size of $S - S'$; reduce to case of $S = S' \cup \{n\}$ with n maximal. We get a cofiber sequence:

$$Wt_{S'} \to Wt_S \to Wt_1,$$

where the second map is V_n, the Verschiebung map defined as follows:

$$V_n(c_m) = c_{m/n}, \quad n|m,$$

$$V_n(c_m) = 0, \quad \text{else}.$$

This map will come up later.

Step 3:
Apply \boxtimes to get a cofiber sequence

$$Wt_S \boxtimes W_T \to Wt_{S'} \boxtimes W_T \to Wt_1 \boxtimes Wt_T,$$

where the first map is ϕ.

After tensoring with \mathbb{Q}, can explicitly check that φ is flat. Use fibre-by-fibre flatness criterion to reduce to checking each ϕ_p is flat, and check this.

□

To prove [HL] 1.2.13 and 1.2.20, we need some general results about constructions on Hopf algebras:

3.8. Lemma ([HL] 1.2.8). Let H_1, \ldots, H_n be a finite collection of bialgebras over \mathbb{Z} which are free when regarded as \mathbb{Z}-modules. If each H_i is finitely generated as a commutative ring, then $H_1 \boxtimes \cdots \boxtimes H_n$ is finitely generated as a commutative ring.
3.9. **Proposition ([HL]1.2.10).** Let H be a Hopf algebra which is finitely generated over \mathbb{Z}. Assume that for each prime p, the affine scheme $\text{spec} H/pH$ is connected. Then the following are equivalent:

1. The Hopf algebra H is smooth over \mathbb{Z}.
2. The module of indecomposable $Q(H)$ is free.
3. For every prime p,

$$\dim_{\mathbb{Q}}(Q(H) \otimes_{\mathbb{Z}} \mathbb{Q}) \geq \dim_{F_p}(Q(H) \otimes_{\mathbb{Z}} F_p).$$

Given these, we have:

Proof for [HL] 1.2.13. Sketch:

- Using 1.2.8, we conclude that $Wt_S \boxtimes Wt$ is finitely generated as a \mathbb{Z}-algebra.
- Next, we show that the rationalization is a polynomial algebra and hence smooth (can be explicitly computed using observations about “commuting” Sym^* with \boxtimes from 1.1.26).
- Finally, from 1.2.10 is suffices to show $\text{spec} H/pH$ is connected and of dimension st. This is proven by induction on st.

Proof for [HL] 1.2.20. Sketch:

- Prove over \mathbb{Q}, using that Wt_{Big}^Q is a polynomial ring on the ghost components w_n. From this, we get a unique ring homomorphism: we need to show it’s a map of bialgebras.
- Show that ι restricted to Wt_{Big} inside Wt_{Big}^Q factors through $Wt_{\text{Big}} \boxtimes Wt_{\text{Big}}$. (This is pretty non-trivial.)

Another results that comes up:

3.10. **Remark ([HL] 1.2.23).** Let $S,T \subset \mathbb{Z}_{>0}$ be closed under divisibility. Let $n > 0$, and suppose $nm \in S \implies m \in T$. Then:

$$\begin{align*}
Wt_S & \xrightarrow{ts} Wt_S \boxtimes Wt_S \\
\downarrow V_n & \quad \downarrow ts \boxtimes is \\
Wt_T & \xrightarrow{\iota r} Wt_T \boxtimes Wt
\end{align*}$$

By the way that we constructed ι, it’s enough to show this over \mathbb{Q}!

References