The (uncolored) HOMFLY-PT polynomials $H(q, a)$, generalizing the Jones and other knot invariants of are defined as follows:

$$
a^{1 / 2} H(\mathbb{X})-a^{-1 / 2} H(\mathbb{X})=\left(q^{1 / 2}-q^{-1 / 2}\right) H(\uparrow \uparrow), H(\bigcirc)=1
$$

We will consider algebraic knots: intersections of unibranch plane curve singularities $0 \in \mathcal{C} \subset \mathbb{C}^{2}$ with small $\mathbb{S}^{3}$ centered at 0 . Let $\widetilde{H}$ be $a^{\bullet} q^{\bullet} H$ such that $\widetilde{H} \in \mathbb{Z}[q, a]$ and $\widetilde{H}(a=0) \in 1+q \mathbb{Z}[q]$. Their $t$-refinements, the Khovanov-Rozansky stable reduced polynomials $\widetilde{\mathcal{H}}(q, t, a)$, are significantly more involved. The connection is $\widetilde{\mathcal{H}}(q, q, a \mapsto-a)=\widetilde{H}(q, a)$.

Conjecturally, $\widetilde{\mathcal{H}}$ coincide with the geometric-motivic superpolynomials $\mathcal{H}_{\mathcal{C}}$, given in terms of the Jacobian factors $J_{\mathcal{C}}$ of $\mathcal{C}$ (Ch-Philipp). Moreover, conjecturally $\mathcal{H}_{\mathcal{C}}(q \mapsto q t, t, a)=L(q, t, a) \xlongequal{\text { def }}(1-t) Z(q, t, a)$ for the flagged generalization of the Galkin-Stöhr zeta-function $Z$ of the ring of $\mathcal{C}$ over a finite field $\mathbb{F}_{q} ; Z(q, t, a)$ are related to the so-called ORS polynomials. For any $a$-coefficient of $\mathcal{H}_{\mathcal{C}}(q t, t, a)$, the Riemann Hypothesis for $t$-zeros holds for sufficiently small $q$ (a theorem); presumably at least for $0<q \leq 1 / 2$ at $a=0$ (so "distant" from $q=|\mathbb{F}|$ ).

Furthemore, conjecturally $\mathcal{H}_{\mathcal{C}}=\mathcal{H}_{\mathcal{C}}^{\text {daha }}$, where the latter are given in terms of the projective action of $\operatorname{PSL}(2, \mathbb{Z})$ in DAHA; the chains of $\gamma \in \operatorname{PSL}(2, \mathbb{Z})$ encode the topological types of $\mathcal{C}$. The DAHAsuperpolynomials exist for any colores and torus iterated links (not only algebraic); this is the setting of arXiv:1709.07589v6. The latter contains a technique of recurrence relations for $\mathcal{H}_{\mathcal{C}}^{\text {daha }}$ in "families" of $\mathcal{C}$, which can be hopefully used to prove their coincidence with $\mathcal{H}_{\mathcal{C}}$.

From the physics perspective, (spherical) DAHA are closely related to CFT at $t=q$ and, generally, to $q$-VOA, $q$ - $W$-algebras, and so on. On the other hand, the geometric-motivic direction is probably related to the Landau-Ginzburg Sigma Models for superpotentials $W$ (equations of $\mathcal{C}$ ). The program in Vafa-Warner's paper "Catastrophes..." (1989) was to study Field Theories associated with LGSM as directly as possible in terms of $W$; motivic superpolynomials do exactly this.

