Zeta-functions of plane curve singularities, Jacobian factors and DAHA Ivan Cherednik, UNC Chapel Hill

The (uncolored) HOMFLY-PT polynomials H(q, a), generalizing the Jones and other knot invariants of are defined as follows:

 $a^{1/2}H(\mathfrak{N}) - a^{-1/2}H(\mathfrak{N}) = (q^{1/2} - q^{-1/2})H(\uparrow\uparrow), \ H(\bigcirc) = 1.$ We will consider algebraic knots: intersections of unibranch plane curve singularities $0 \in \mathcal{C} \subset \mathbb{C}^2$ with small \mathbb{S}^3 centered at 0. Let \widetilde{H} be $a^{\bullet}q^{\bullet}H$ such that $\widetilde{H} \in \mathbb{Z}[q, a]$ and $\widetilde{H}(a=0) \in 1+q\mathbb{Z}[q]$. Their *t*-refinements, the Khovanov-Rozansky stable reduced polynomials $\widetilde{\mathcal{H}}(q, t, a)$, are significantly more involved. The connection is $\widetilde{\mathcal{H}}(q, q, a \mapsto -a) = \widetilde{H}(q, a)$.

Conjecturally, $\widetilde{\mathcal{H}}$ coincide with the geometric-motivic superpolynomials $\mathcal{H}_{\mathcal{C}}$, given in terms of the Jacobian factors $J_{\mathcal{C}}$ of \mathcal{C} (Ch-Philipp). Moreover, conjecturally $\mathcal{H}_{\mathcal{C}}(q \mapsto qt, t, a) = L(q, t, a) \stackrel{\text{def}}{=} (1-t)Z(q, t, a)$ for the flagged generalization of the Galkin-Stöhr zeta-function Z of the ring of \mathcal{C} over a finite field \mathbb{F}_q ; Z(q, t, a) are related to the so-called ORS polynomials. For any *a*-coefficient of $\mathcal{H}_{\mathcal{C}}(qt, t, a)$, the Riemann Hypothesis for *t*-zeros holds for sufficiently small q (a theorem); presumably at least for $0 < q \le 1/2$ at a = 0 (so "distant" from $q = |\mathbb{F}|$).

Furthemore, conjecturally $\mathcal{H}_{\mathcal{C}} = \mathcal{H}_{\mathcal{C}}^{daha}$, where the latter are given in terms of the projective action of $PSL(2,\mathbb{Z})$ in DAHA; the chains of $\gamma \in PSL(2,\mathbb{Z})$ encode the topological types of \mathcal{C} . The DAHAsuperpolynomials exist for any colores and torus iterated links (not only algebraic); this is the setting of arXiv:1709.07589v6. The latter contains a technique of recurrence relations for $\mathcal{H}_{\mathcal{C}}^{daha}$ in "families" of \mathcal{C} , which can be hopefully used to prove their coincidence with $\mathcal{H}_{\mathcal{C}}$.

From the physics perspective, (spherical) DAHA are closely related to CFT at t = q and, generally, to q-VOA, q-W-algebras, and so on. On the other hand, the geometric-motivic direction is probably related to the Landau-Ginzburg Sigma Models for superpotentials W (equations of C). The program in Vafa-Warner's paper "Catastrophes..." (1989) was to study Field Theories associated with LGSM as directly as possible in terms of W; motivic superpolynomials do exactly this.