Gieseker varieties, affine Springer fibers, and higher rank q, t-Catalan numbers

José Simental MPIM Bonn

MIT Infinite Dimensional Algebra Seminar

March 12, 2021

• Quantized Gieseker varieties (joint work with P. Etingof, V. Krylov, I. Losev)

- Quantized Gieseker varieties (joint work with P. Etingof, V. Krylov, I. Losev)
 - ► Gieseker varieties.
 - Quantizations.
 - ► Finite-dimensional representations.

- Quantized Gieseker varieties (joint work with P. Etingof, V. Krylov, I. Losev)
 - ► Gieseker varieties.
 - Quantizations.
 - ▶ Finite-dimensional representations.
- 2 Geometric construction of representations (joint work with E. Gorsky, M. Vazirani)

- Quantized Gieseker varieties (joint work with P. Etingof, V. Krylov, I. Losev)
 - Gieseker varieties.
 - Quantizations.
 - ▶ Finite-dimensional representations.
- 2 Geometric construction of representations (joint work with E. Gorsky, M. Vazirani)
 - ▶ Coulomb branches.
 - ▶ BFN Springer theory.
 - ▶ Hilbert schemes of points on singular curves.

- Quantized Gieseker varieties (joint work with P. Etingof, V. Krylov, I. Losev)
 - Gieseker varieties.
 - Quantizations.
 - ► Finite-dimensional representations.
- 2 Geometric construction of representations (joint work with E. Gorsky, M. Vazirani)
 - ▶ Coulomb branches.
 - ▶ BFN Springer theory.
- 3 Higher rank (q, t)-Catalan numbers (joint work with V. Krylov)

- Quantized Gieseker varieties (joint work with P. Etingof, V. Krylov, I. Losev)
 - Gieseker varieties.
 - Quantizations.
 - ▶ Finite-dimensional representations.
- 2 Geometric construction of representations (joint work with E. Gorsky, M. Vazirani)
 - ▶ Coulomb branches.
 - ► BFN Springer theory.
 - ▶ Hilbert schemes of points on singular curves.
- 3 Higher rank (q, t)-Catalan numbers (joint work with V. Krylov)
 - ► Affine Springer fibers.
 - ▶ Affine pavings via the affine symmetric group.
 - \blacktriangleright Higher rank (q, t)-Catalan numbers.

Fix positive integers n, r > 0. Define

•
$$R := \mathfrak{gl}_n(\mathbb{C}) \oplus \operatorname{Hom}(\mathbb{C}^r, \mathbb{C}^n)$$

•
$$\overline{R} := \mathfrak{sl}_n(\mathbb{C}) \oplus \mathrm{Hom}(\mathbb{C}^r, \mathbb{C}^n).$$

The group $G := \operatorname{GL}_n(\mathbb{C})$ acts naturally both on R and \overline{R} , and the action lifts to the cotangent bundles $T^*R, T^*\overline{R}$. This action is Hamiltonian, with the same formula for the moment map

with the same formula for the moment in Hom (
$$\mathfrak{S}^{\gamma}, \mathfrak{S}'$$
)
$$\mu(A, B, i, j) = [A, B] - ij \in \mathfrak{gl}_n^* = \mathfrak{gl}_n.$$

$$gh \text{ Hom}(\mathfrak{S}^{\gamma}, \mathfrak{S}')$$

$$\mu(A, B, i, j) = [A, B] - ij \in \mathfrak{gl}_n^* = \mathfrak{gl}_n.$$

$$gh \text{ Hom}(\mathfrak{S}^{\gamma}, \mathfrak{S}')$$

$$hom(\mathfrak{S}^{\gamma}, \mathfrak{S}')$$

$$hom(\mathfrak{S}^{\gamma}, \mathfrak{S}')$$

$$hom(\mathfrak{S}^{\gamma}, \mathfrak{S}')$$

$$hom(\mathfrak{S}^{\gamma}, \mathfrak{S}')$$

$$hom(\mathfrak{S}^{\gamma}, \mathfrak{S}')$$

Definition

We define the Gieseker variety $\mathcal{M}(n,r)$ (resp. $\overline{\mathcal{M}}(n,r)$) to be the Hamiltonian reduction (at level 0) of G acting on T^*R (resp. $T^*\overline{R}$).

$$M(r,r) = \mu^{-1}(0)/G = Spec(CT^2)/G = Spec(CT^2)/G = Spec(GT^2)/G = Spec(GT^2)/$$

Definition

We define the Gieseker variety $\mathcal{M}(n,r)$ (resp. $\overline{\mathcal{M}}(n,r)$) to be the Hamiltonian reduction (at level 0) of G acting on T^*R (resp. $T^*\overline{R}$).

Note that

$$\mathcal{M}(n,r) = \overline{\mathcal{M}}(n,r) \times \mathbb{C}^2.$$

Definition

We define the Gieseker variety $\mathcal{M}(n,r)$ (resp. $\overline{\mathcal{M}}(n,r)$) to be the Hamiltonian reduction (at level 0) of G acting on T^*R (resp. $T^*\overline{R}$).

Note that

$$\mathcal{M}(n,r) = \overline{\mathcal{M}}(n,r) \times \mathbb{C}^2.$$

Example

- $\mathcal{M}(n,1) = (\mathbb{C}^{2n})/S_n$, $\overline{\mathcal{M}}(n,1) = (\mathfrak{h} \oplus \mathfrak{h}^*)/S_n$, where \mathfrak{h} is the reflection representation of S_n .
- $\overline{\mathcal{M}}(1,r) = \overline{\mathcal{O}}_{\min}$, the closure of the minimal nilpotent orbit in \mathfrak{sl}_r .

$$\|2x \in Slr\| \chi^2 = 0$$
, $\operatorname{rosk} \chi \leq 19$

Note that we have an action of the 1-dimensional torus \mathbb{C}^{\times} on T^*R and $T^*\overline{R}$ by dilations. This action commutes with that of G, and descends to $\mathcal{M}(n,r)$, $\overline{\mathcal{M}}(n,r)$. These varieties are conical, singular, of dimension 2nr and 2nr-2, respectively. Moreover, they carry a Poisson bracket of degree -2. We can construct symplectic resolutions $\mathcal{M}^{\theta}(n,r)$, $\overline{\mathcal{M}}^{\theta}(n,r)$ using GIT Hamiltonian reduction.

$$\theta: GL_n \rightarrow C^*$$
 $M^{\theta}(n,r) = \mu^{-1}(0) / G$
 $\mu is flat = M^{\theta}(n,r) (\theta \neq 4) is a resolution of M(n,r)$

Note that we have an action of the 1-dimensional torus \mathbb{C}^{\times} on T^*R and $T^*\overline{R}$ by dilations. This action commutes with that of G, and descends to $\mathcal{M}(n,r)$, $\overline{\mathcal{M}}(n,r)$. These varieties are conical, singular, of dimension 2nr and 2nr-2, respectively. Moreover, they carry a Poisson bracket of degree -2. We can construct symplectic resolutions $\mathcal{M}^{\theta}(n,r)$, $\overline{\mathcal{M}}^{\theta}(n,r)$ using GIT Hamiltonian reduction.

Example

- $\mathcal{M}^{\theta}(n,1) = \mathrm{Hilb}^n(\mathbb{C}^2)$. $\overset{\mu^{\zeta}}{\longrightarrow} \overset{\mu^{\zeta}}{\longrightarrow} \overset{\chi}{\longrightarrow} \overset{\chi}{$

We have an action of the group $\mathbb{C}^{\times} \times \operatorname{GL}_r$ on T^*R (resp. $T^*\overline{R}$):

$$(t,g).(A,B,i,j) = (tA,t^{-1}B,ig^{-1},gj)$$

Note that this descends to an action of $\mathbb{C}^{\times} \times \mathrm{PGL}_r$ on $\mathcal{M}(n,r)$ (resp.

 $\overline{\mathcal{M}}(n,r)$).

Quantized Gieseker varieties

We will be interested in quantizations of $\mathcal{M}(n,r)$, $\overline{\mathcal{M}}(n,r)$ which can be produced using quantum Hamiltonian reduction, as follows. Fix a parameter $c \in \mathbb{C}$. For each element $\xi \in \mathfrak{gl}_n$, let ξ_R denote the vector field given by the infinitesimal action on R. Note that we can see ξ_R as a differential operator, $\xi_R \in D(R)$. Then,

$$\mathcal{A}_c(n,r) := \left[\frac{D(R)}{D(R) \{ \xi_R - c \operatorname{tr}(\xi) \mid \xi \in \mathfrak{gl}_n \}} \right]^G$$

and similarly, define $\overline{\mathcal{A}}_c(n,r)$ with \overline{R} instead of R. Note that

$$\mathcal{A}_c(n,r) = \overline{\mathcal{A}}_c(n,r) \otimes D(\mathbb{C}).$$

According has a filt induced by Bernsten filtration on DCR)

gr Accord ELM(n,n) as gooded Poisson de Sour

Quantized Gieseker varieties

The action of $\mathbb{C}^{\times} \times \mathrm{PGL}_r$ on $\mathcal{M}(n,r)$ is Hamiltonian, and gives a quantum comoment map $\Upsilon: \mathbb{C} \oplus \mathfrak{sl}_r \to \mathcal{A}_c(n,r)$. Etropf-Gnzburg

Example

- (Gan-Ginzburg, Losev) When $r=1, \mathcal{A}_c(n,1)$ (resp. $\mathcal{A}_c(n,1)$) is the spherical rational Cherednik algebra of type \mathfrak{gl}_n (resp. \mathfrak{sl}_n).
- When n = 1, $\overline{\mathcal{A}}_c(1, r) = D_c(\mathbb{P}^{r-1})$ and $\mathcal{A}_c(1, r) = D_c(\mathbb{P}^{r-1} \times \mathbb{C})$.

$$CeZ$$
, $\overline{A}_{C}(\underline{1}_{r}) = D(O(C))$

Theorem (Losev)

The algebra $\overline{\mathcal{A}}_c(n,r)$ admits a finite-dimensional representation if and only if $c = \frac{m}{n}$ with $\gcd(m;n) = 1$ and $c \notin (-r,0)$. In this case, $\overline{\mathcal{A}}_c(n,r)$ admits a unique irreducible finite-dimensional representation that we call $\overline{L}_{m/n,r}$. This representation doesn't admit self-extensions.

We remark that we have an isomorphism $\overline{\mathcal{A}}_c(n,r) \cong \overline{\mathcal{A}}_{-c-r}(n,r)$. So we will focus on the case c > 0.

Theorem (Losev)

The algebra $\overline{\mathcal{A}}_c(n,r)$ admits a finite-dimensional representation if and only if $c = \frac{m}{n}$ with $\gcd(m;n) = 1$ and $c \notin (-r,0)$. In this case, $\overline{\mathcal{A}}_c(n,r)$ admits a unique irreducible finite-dimensional representation that we call $\overline{L}_{m/n,r}$. This representation doesn't admit self-extensions.

We remark that we have an isomorphism $\overline{\mathcal{A}}_c(n,r) \cong \overline{\mathcal{A}}_{-c-r}(n,r)$. So we will focus on the case c > 0.

Example

- When r = 1, this is a theorem of Berest-Etingof-Ginzburg.
- When n = 1, the theorem says that $D_c(\mathbb{P}^{r-1})$ admits a finite-dimensional representation if and only if we have an algebra of differential operators on a line bundle, $D(\mathcal{O}(m))$. In this case, $\overline{L}_{m/1,r} = \Gamma(\mathbb{P}^{r-1}, \mathcal{O}(m)) = Sym^m(\mathbb{C}^{r*})$.

To describe the representation $\overline{L}_{m/n,r}$, we need finite-dimensional representations of the full rational Cherednik algebra.

Definition (Etingof-Ginzburg)

The rational Cherednik algebra of type \mathfrak{sl}_n , $\overline{H}_c(n)$, is the quotient of the semidirect product algebra $\mathbb{C}\langle x_1,\ldots,x_n,y_1,\ldots,y_n\rangle \rtimes S_n$ by the relations

- $x_1 + \cdots + x_n = y_1 + \cdots + y_n = 0.$
- $[x_i, x_j] = [y_i, y_j] = 0.$
- $[x_i, y_j] = \frac{1}{n} cs_{ij} \ (i \neq j)$

To describe the representation $\overline{L}_{m/n,r}$, we need finite-dimensional representations of the full rational Cherednik algebra.

Definition (Etingof-Ginzburg)

The rational Cherednik algebra of type \mathfrak{sl}_n , $\overline{H}_c(n)$, is the quotient of the semidirect product algebra $\mathbb{C}\langle x_1,\ldots,x_n,y_1,\ldots,y_n\rangle \rtimes S_n$ by the relations

- $x_1 + \cdots + x_n = y_1 + \cdots + y_n = 0.$
- $[x_i, x_j] = [y_i, y_j] = 0.$
- $[x_i, y_j] = \frac{1}{n} cs_{ij} \ (i \neq j)$

Theorem (Berest-Etingof-Ginzburg)

The algebra $\overline{H}_c(n)$ admits a finite-dimensional representation if and only if $c = \frac{m}{n}$ with $\gcd(m; n) = 1$. In this case, $\overline{H}_c(n)$ has a unique in finite-dimensional representation that we call $\overline{F}_{m/n}$. This representation doesn't admit self-extensions.

Since $\overline{\mathcal{A}}_{m/n}(n,1)$ is the spherical Cherednik algebra, we have

$$\overline{L}_{m/n,1} = \overline{F}_{m/n}^{S_n}.$$

This is, however, not the best way to think about $\overline{L}_{m/n,1}$.

Since $\overline{\mathcal{A}}_{m/n}(n,1)$ is the spherical Cherednik algebra, we have

$$\overline{L}_{m/n,1} = \overline{F}_{m/n}^{S_n}.$$

This is, however, not the best way to think about $\overline{L}_{m/n,1}$.

Theorem (Etingof-Krylov-Losev-S.)

We have an isomorphism of $\mathbb{C}^{\times} \times \operatorname{GL}_r$ -modules:

$$\overline{L}_{m/n,r} \cong (\overline{F}_{n/m}^{\circ} \otimes (\mathbb{C}^{r*})^{\otimes m})^{S_m}$$

Since $\overline{\mathcal{A}}_{m/n}(n,1)$ is the spherical Cherednik algebra, we have

$$\overline{L}_{m/n,1} = \overline{F}_{m/n}^{S_n}.$$

This is, however, not the best way to think about $\overline{L}_{m/n,1}$.

Theorem (Etingof-Krylov-Losev-S.)

We have an isomorphism of $\mathbb{C}^{\times} \times \operatorname{GL}_r$ -modules:

$$\overline{L}_{m/n,r} \cong (\overline{F}_{n/m} \otimes (\mathbb{C}^{r*})^{\otimes m})^{S_m}$$

Remark

When r=1, the isomorphism $\overline{F}_{m/n}^{S_n}\cong \overline{F}_{n/m}^{S_m}$ is due to Calaque-Enriquez-Etingof. Further ramifications are due to Gorsky-Oblomkov-Rasmussen-Shende, Etingof-Gorsky-Losev and more.

The representation $\overline{F}_{n/m}$ has been intensively studied in recent years and character formulas are known for it. In particular, we can compute the $\mathbb{C}^{\times} \times \mathrm{GL}_r$ -character of $\overline{L}_{m/n,r}$:

$$\operatorname{ch}_{\mathbb{C}^{\times}\times\operatorname{GL}_{r}}(\overline{L}_{m/n,r}) = \frac{1}{[n]_{q}} \sum_{\substack{\lambda \vdash m \\ r(\lambda) \leq \min(n;r)}} s_{\lambda}(q^{\frac{1-n}{2}}, \dots, q^{\frac{n-1}{2}})[W_{r}(\lambda)^{*}].$$

$$\text{Shur-fundion}$$

$$\text{Shur-fundion}$$

The representation $\overline{F}_{n/m}$ has been intensively studied in recent years and character formulas are known for it. In particular, we can compute the $\mathbb{C}^{\times} \times \operatorname{GL}_r$ -character of $\overline{L}_{m/n,r}$:

$$\operatorname{ch}_{\mathbb{C}^{\times}\times\operatorname{GL}_{r}}(\overline{L}_{m/n,r}) = \frac{1}{[n]_{q}} \sum_{\substack{\lambda \vdash m \\ r(\lambda) \leq \min(n;r)}} s_{\lambda}(q^{\frac{1-n}{2}}, \dots, q^{\frac{n-1}{2}})[W_{r}(\lambda)^{*}].$$

Definition

Let m and n be coprime positive integers and r > 0. We call

$$C_{m/n}^r := \dim(\overline{L}_{m/n,r}) = \frac{1}{n} \binom{nr+m-1}{m} = \frac{1}{n} \dim Sym^m(\mathbb{C}^{nr})$$

the rank r rational m/n-Catalan number.

$$gcd(m;n)=1$$

When r = 1:

$$C_{m/n}^{1} = \frac{1}{n} {n+m-1 \choose m} = \frac{1}{n+m} {n+m \choose m} = C_{n/m}^{1}$$

counts the number of Dyck paths in an $m \times n$ -rectangle.

When r=1:

$$C_{m/n}^{1} = \frac{1}{n} {n+m-1 \choose m} = \frac{1}{n+m} {n+m \choose m} = C_{n/m}^{1}$$

counts the number of Dyck paths in an $m \times n$ -rectangle.

Theorem (Etingof-Krylov-Losev-S.)

The number $C_{m/n}^r$ counts the number of rank r semistandard parking functions on an $m \times n$ -rectangle, that is, a Dyck path together with a function from its vertical steps to $\{1, \ldots, r\}$ that is weakly increasing on consecutive vertical steps.

Example: $C_{3/2}^2$

$$C_{3/2}^2 = \frac{1}{2} {4+3-1 \choose 3} = 10.$$

1		/
1		,
1	/	

1		/
1		/
2	/	

Goal

Use geometry to:

• Explain why the m, n-switch in the formula

$$\overline{L}_{m/n,r} = (\overline{F}_{n/m} \otimes (\mathbb{C}^r)^{\otimes m})^{S_m}$$

is a natural thing to expect.

② Produce a q, t-deformation $C_{m/n}^r(q, t)$.

The relation with geometry is clearer for the algebra $\mathcal{A}_c(n,r)$ (as opposed to $\overline{\mathcal{A}}_c(n,r)$). Recall that we have a decomposition

$$\mathcal{A}_c(n,r) = \overline{\mathcal{A}}_c(n,r) \otimes D(\mathbb{C})$$

so the representation

$$L_{m/n,r} := \overline{L}_{m/n,r} \otimes \mathbb{C}[x]$$

is a representation of $\mathcal{A}_c(n,r)$. We will realize this and other representations geometrically.

We also have the \mathfrak{gl}_n -version of the rational Cherednik algebra $H_c(n)$, satisfying

$$H_c(n) = \overline{H}_c(n) \otimes D(\mathbb{C})$$
 Shankononth

and the representation $F_{m/n} = \overline{F}_{m/n} \otimes \mathbb{C}[x]$ It is still true that

$$L_{m/n,r} = (F_{n/m} \otimes (\mathbb{C}^r)^{\otimes m})^{S_m}.$$

Let G be a reductive group acting on a vector space V. We will denote:

- $\mathcal{O} := \mathbb{C}[[\epsilon]].$
- $\mathcal{K} := \mathbb{C}((\epsilon))$.
- $G_{\mathcal{O}} = G[[\epsilon]], G_{\mathcal{K}} = G((\epsilon)).$
- $V_{\mathcal{O}} := \mathcal{O} \otimes V = V[[\epsilon]], V_{\mathcal{K}} := \mathcal{K} \otimes V = V((\epsilon)).$
- $I \subseteq G_{\mathcal{O}}$ consisting of elements $g \in G_{\mathcal{O}}$ so that $g|_{\epsilon=0} \in \mathcal{B}$ for a fixed Borel $\mathcal{B} \subseteq G$.
- $\mathfrak{i} \subseteq \mathfrak{g}[[\epsilon]]$ the Lie algebra of I, consisting of elements $X \in \mathfrak{g}[[\epsilon]]$ so that $X|_{\epsilon=0} \in \mathfrak{b}$.

Associated to these data, Braverman-Finkelberg-Nakajima construct a Poisson algebra $\mathcal{A}(G,V)$ and its quantization $\mathcal{A}_{\hbar}(G,V)$. We will not need the precise definition, but we will use the fact that it is supposed to model equivariant homology of the "Steinberg variety"

$$\mathcal{A}(G,V) = H_*^{G_{\mathcal{K}}}(\mathfrak{X}_V \times_{V_{\mathcal{K}}} \mathfrak{X}_V)$$

here, $\mathfrak{X}_V := (G_{\mathcal{K}} \times V_{\mathcal{O}})/G_{\mathcal{O}}$ is a bundle over the affine Grassmannian. The quantization $\mathcal{A}_{\hbar}(G,V)$ appears when considering equivariant homology for the loop rotation action.

Associated to these data, Braverman-Finkelberg-Nakajima construct a Poisson algebra $\mathcal{A}(G,V)$ and its quantization $\mathcal{A}_{\hbar}(G,V)$. We will not need the precise definition, but we will use the fact that it is supposed to model equivariant homology of the "Steinberg variety"

$$\mathcal{A}(G,V) = H_*^{G_{\mathcal{K}}}(\mathfrak{X}_V \times_{V_{\mathcal{K}}} \mathfrak{X}_V)$$

here, $\mathfrak{X}_V := (G_{\mathcal{K}} \times V_{\mathcal{O}})/G_{\mathcal{O}}$ is a bundle over the affine Grassmannian. The quantization $\mathcal{A}_{\hbar}(G,V)$ appears when considering equivariant homology for the loop rotation action. Webster extended BFN's construction to the parahoric setting, by considering now spaces of the form $\mathfrak{X}_{N,P} := (G_{\mathcal{K}} \times N)/P$, where P is a parahoric subgroup and $N \subseteq V_{\mathcal{O}}$ is a "nice" subspace stable under P. The resulting algebra $\mathcal{A}(G,N,P)$ may no longer be commutative.

$$\mathcal{L}(G, V_O, I) = \mathcal{M}at_{\mathcal{J}WI}(\mathcal{L}(G, V))$$

All the algebras we have seen are, in fact, examples of quantized Coulomb branches.

• The spherical rational Cherednik algebra $\mathcal{A}_c(n,1)$ appears taking $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$, the adjoint plus fundamental representation. (Kodera-Nakajima, Webster)

All the algebras we have seen are, in fact, examples of quantized Coulomb branches.

- The spherical rational Cherednik algebra $\mathcal{A}_c(n,1)$ appears taking $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$, the adjoint plus fundamental representation. (Kodera-Nakajima, Webster)
- The full rational Cherednik algebra $H_c(n)$ appears taking again $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$, but using Webster's construction with P = I and $N = \mathfrak{i} \oplus \mathbb{C}^n[[\epsilon]] \subseteq V[[\epsilon]]$.

 (Braveman-Etingof-Finkelberg, Webster)

Coulomb branches

All the algebras we have seen are, in fact, examples of quantized Coulomb branches.

- The spherical rational Cherednik algebra $\mathcal{A}_c(n,1)$ appears taking $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$, the adjoint plus fundamental representation. (Kodera-Nakajima, Webster)
- The full rational Cherednik algebra $H_c(n)$ appears taking again $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$, but using Webster's construction with P = I and $N = \mathfrak{i} \oplus \mathbb{C}^n[[\epsilon]] \subseteq V[[\epsilon]]$. (Braveman-Etingof-Finkelberg, Webster)
- For the quantized Gieseker variety $\mathcal{A}_c(n,r)$, we take $G = \operatorname{GL}_n^{\times r}$ and $V = \mathfrak{gl}_n^{\oplus r} \oplus \mathbb{C}^n$, with action given by $(g_0, \ldots, g_{r-1}) \cdot (X_0, \ldots, X_{r-1}, v) = (g_1 X_1 g_0^{-1}, \ldots, g_0 X_{r-1} g_{r-1}^{-1}, g_0 v)$ (Nakajima-Takayama+Losev)

BFN Springer theory

Hilburn-Kamnitzer-Weekes developed a Springer theory for Coulomb branches (extended to the parahoric setting by Garner-Kivinen). Consider an element $v \in V_{\mathcal{K}}$. The generalized affine Springer fiber is

$$Spr_{P,N}(v) := \{[g] \in G_{\mathcal{K}}/P \mid gv \in N\}.$$

Under certain conditions on \mathbb{Z} , there is an action of the Coulomb branch algebra $\mathcal{A}_{\hbar}(G, N, P)$ on

$$H^{L_v}_*(Spr_{P,N}(v))$$

where $L_v := \operatorname{Stab}_{G_{\mathcal{K}} \rtimes \mathbb{C}_{\mathrm{rot}}^{\times}}(v)$.

BFN Springer theory

Now consider the element

$$(Y,v):=egin{pmatrix} 0&0&\cdots&0&\epsilon^m \ 1&0&\cdots&0&0 \ 0&1&\cdots&0&0 \ dots&dots&\ddots&dots&dots \ 0&0&\cdots&1&0 \end{pmatrix}, egin{pmatrix} 1\ 0\ 0\ dots \ dots \ 0 \end{pmatrix}\in\mathfrak{gl}_n[[\epsilon]]\oplus\mathbb{C}^n[[\epsilon]]$$

BFN Springer theory

Now consider the element

$$(Y,v) := \begin{pmatrix} 0 & 0 & \cdots & 0 & \epsilon^m \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathfrak{gl}_n[[\epsilon]] \oplus \mathbb{C}^n[[\epsilon]]$$
 sing a basis, we can identify

Choosing a basis, we can identify

$$\mathbb{C}^{n}[[\epsilon]] = \mathbb{C}[[\epsilon]][1, y, \dots, y^{n-1}]$$

Note that the action of the matrix Y amounts to multiplication by y in this basis, and the vector v is identified with 1.

Let us specialize now to the rational Cherednik algebra case, so $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$.

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)

Assume gcd(m; n) = 1 and let $C = \{y^n = x^m\} \subseteq \mathbb{C}^2$. Then:

Let us specialize now to the rational Cherednik algebra case, so $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$.

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)

Assume gcd(m; n) = 1 and let $C = \{y^n = x^m\} \subseteq \mathbb{C}^2$. Then:

- 2 $Spr_{I,i\oplus\mathbb{C}^n[[\epsilon]]} = PHilb(C,0)$, where PHilb(C,0) is the moduli space of flags of ideals $\chi \sim \varepsilon$

$$I_k \supseteq I_{k+1} \supseteq \cdots \supseteq I_{k+n} = xI_k$$

where $I_j \in \text{Hilb}(C,0)$ and $\dim(I_j/I_{j+1}) = 1$.

$$Sp(J,V_0(Y,V) = J_{k,2}. \quad 2J_{k,n} = \chi J_k \quad s.t \quad J_k \in Hilb(C,0)$$

$$= Hilb(C,0) \times \mathcal{F} I_n$$

Let us specialize now to the rational Cherednik algebra case, so $G = \operatorname{GL}_n$ and $V = \mathfrak{gl}_n \oplus \mathbb{C}^n$.

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)

Assume gcd(m; n) = 1 and let $C = \{y^n = x^m\} \subseteq \mathbb{C}^2$. Then:

- ② $Spr_{I,i\oplus\mathbb{C}^n[[\epsilon]]} = PHilb(C,0)$, where PHilb(C,0) is the moduli space of flags of ideals

$$I_k \supseteq I_{k+1} \supseteq \cdots \supseteq I_{k+n} = xI_k$$

where $I_j \in \text{Hilb}(C,0)$ and $\dim(I_j/I_{j+1}) = 1$.

Remark

More generally, Garner and Kivinen show that if C is any planar curve and $0 \in C$, then Hilb(C, 0) can be realized as a generalized affine Springer fiber for the same quiver gauge theory.

Garrer-Kivinen

We still take $C = \{x^m = y^n\}$ with gcd(m; n) = 1.

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)

We have an action of $\mathcal{A}_{m/n}(n,1)$ on $H_*^{\mathbb{C}^{\times}}(\mathrm{Hilb}(C,0))$ and of $H_{m/n}(n)$ on $H_*^{\mathbb{C}^{\times}}(\mathrm{PHilb}(C,0))$. Moreover,

- $H_*^{\mathbb{C}^{\times}}(\operatorname{Hilb}(C,0)) = L_{m/n,1}$.
- $H_*^{\mathbb{C}^{\times}}(\mathrm{PHilb}(C,0)) = F_{m/n}$.

What about $L_{m/n}(n,r)$?

We now consider the following element in $V[[\epsilon]]$ where, recall, V is the space of representations of the cyclic quiver with dimension vector (n, \ldots, n) and framing $(1, 0, \ldots, 0)$.

Its affine Springer fiber $Spr_{G_{\mathcal{O}},V_{\mathcal{O}}}((Y,\mathrm{Id},\ldots,\mathrm{Id},v))$ is a subset of the product of affine Grassmannians $(\mathrm{GL}_{n,\mathcal{K}}/\mathrm{GL}_{n,\mathcal{O}})^r$.

Theorem (Gorsky-S.-Vazirani)

Assume gcd(m; n) = 1 and let $C = \{y^n = x^m\}$. Then $Spr_{G_{\mathcal{O}}, V_{\mathcal{O}}}(Y, Id, ..., Id, v)$ is the moduli space of flags

$$J_0 \supseteq \cdots \supseteq J_r = yJ_{\bullet}$$

where $J_k \in \text{Hilb}(C,0)$ for every k.

Assume gcd(m; n) = 1 and let $C = \{y^n = x^m\}$. Then $Spr_{G_{\mathcal{O}}, V_{\mathcal{O}}}(Y, Id, ..., Id, v)$ is the moduli space of flags

$$J_0 \stackrel{\text{a.}}{\supseteq} \cdots \stackrel{\text{a.}}{\supseteq} J_r = yJ_1$$

where $J_k \in \text{Hilb}(C,0)$ for every k.

Let us call $CPHilb^y(C,0)$ this moduli space. We have

$$= H_*^{\mathbb{C}^{\times}}(\mathrm{CPHilb}^y(C,0)) = (H_*^{\mathbb{C}^{\times}}(\mathrm{PHilb}^y(C,0)) \otimes (\mathbb{C}^r)^{\otimes m})^{S_m}$$

which is a geometric manifestation of the m, n-switch.

If
$$(a_1, a_r) \models m$$
 $a_i \geqslant 0$, $\sum a_i = m$

Theorem (Gorsky-S.-Vazirani)

Assume gcd(m; n) = 1 and let $C = \{y^n = x^m\}$. Then $Spr_{G_{\mathcal{O}}, V_{\mathcal{O}}}(Y, Id, ..., Id, v)$ is the moduli space of flags

$$J_0 \supseteq \cdots \supseteq J_r = yJ_1$$

where $J_k \in \text{Hilb}(C,0)$ for every k.

Let us call $CPHilb^y(C,0)$ this moduli space. We have

$$H_*^{\mathbb{C}^{\times}}(\mathrm{CPHilb}^y(C,0)) = (H_*^{\mathbb{C}^{\times}}(\mathrm{PHilb}^y(C,0)) \otimes (\mathbb{C}^r)^{\otimes m})^{S_m}$$

which is a geometric manifestation of the m, n-switch.

Remark

Using results of Garner-Kivinen, one can show that given any curve C, a similar moduli space is a generalized affine Springer fiber for the cyclic quiver. Algebraically, this should be manifested by the correspondence between minimally supported representations of $A_{m/n}(n,r)$ and $H_{n/m}(m)$ given in joint work with Etingof, Krylov and Losev.

Back to the finite case

For the representation $\overline{L}_{m/n,r}$, Oblomkov-Yun realize the representation $\overline{F}_{n/m}$ geometrically as the associated graded (with respect to the perverse filtration) of the cohomology of a certain affine Springer fiber. We can interpret these Springer fibers as a certain moduli space of $\mathbb{C}[[z^m, z^n]]$ -invariant subsets of $\mathbb{C}((z))$. Consider:

$$X_{m/n}^r := \{L_0 \supseteq \cdots \supseteq L_r = z^m L_0\}$$

where

- L_i is a $\mathbb{C}[[z^m, z^n]]$ -submodule of $\mathbb{C}((z))$.
- $\dim(L_0/(\mathbb{C}[[z]] \cap L_0)) \dim(\mathbb{C}[[z]]/(\mathbb{C}[[z]] \cap L_0)) = 0.$

Oblonker-Vin:
$$\underline{a} = (1, ..., 1)$$

 $\underline{g} = (m)$

The space $X_{m/n}^r$ is obviously disconnected. For each composition $\mathbf{a} := (a_1, \dots, a_r) \vDash_r m$, we may consider the space

$$\mathcal{Q}_i$$
 > 0
$$\overline{\mathcal{Z}}_{\mathcal{Q}_i} = \mathsf{M} \qquad \qquad X_{m/n}^{\mathbf{a}} \subseteq X_{m/n}^r$$

given by the conditions that $\dim(L_{i-1}/L_i) = a_i$. It is then clear that

$$X_{m/n}^r = \bigsqcup_{\mathbf{a} \vDash_r m} X_{m/n}^{\mathbf{a}}$$

Each $X_{m/n}^{\mathbf{a}}$ is an affine Springer fiber on a partial affine flag variety. Each of these admits an affine paving (Lusztig-Smelt, Goresky-Kottwitz-MacPherson...) that can be described using the combinatorics of the affine symmetric group \widehat{S}_m .

We think of \widehat{S}_m as the space of *m*-periodic bijections $\sigma: \mathbb{Z} \to \mathbb{Z}$, subject to the condition that $\sum_{i=1}^m (\sigma(i) - i) = 0$.

Definition

We say that an element $\sigma \in \widehat{S}_m$ is *n*-stable if $\sigma(x+n) \geq \sigma(x)$ for every $x \in \mathbb{Z}$. Let us denote by \widehat{S}_m^n the space of *n*-stable elements of \widehat{S}_m .

If $\mathbf{a}=(1,1,\ldots,1)$, a theorem of Gorsky-Mazin-Vazirani (after Lusztig-Smelt and Hikita) tells us that $X_{m/n}^{\mathbf{a}}$ admits an affine paving with cells indexed by \widehat{S}_m^n . We now do a parabolic version of this construction.

For $\mathbf{a} \vDash_r m$, let $S_{\mathbf{a}} = S_{a_1} \times S_{a_2} \times \cdots \times S_{a_r} \subseteq S_m \subseteq \widehat{S}_m$ be the correspoding parabolic subgroup. We denote by $(S_{\mathbf{a}} \setminus \widehat{S}_m) \subseteq \widehat{S}_m$ the set of minimal length right coset representatives. More precisely, $(S_{\mathbf{a}} \setminus \widehat{S}_m)$ consists of elements $\sigma \in \widehat{S}_m$ satisfying:

•
$$\sigma^{-1}(1) < \cdots < \sigma^{-1}(a_1)$$
.

•
$$\sigma^{-1}(a_1+1) < \cdots < \sigma^{-1}(a_1+a_2)$$
.

•

•
$$\sigma^{-1}(a_1 + \dots + a_{r-1} + 1) < \dots < \sigma^{-1}(m)$$

$$2=(1,...,1)$$
 $(S_2 \setminus S_m) = S_m$

$$a = (m)$$
 $S_a \setminus \hat{S}_m = affne Grassmann on possitations$

Lemma

The space $X_{m/n}^{\mathbf{a}}$ has an affine paving with cells in bijection with

$$\widehat{S}_m^n \cap (S_{\mathbf{a}} \backslash \widehat{S}_m).$$

The dimension of the cell C_{σ} associated with $\sigma \in \widehat{S}_{m}^{n} \cap (S_{\mathbf{a}} \backslash \widehat{S}_{m})$ is given by

$$\dim(C_{\sigma}) = \#\{(i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n-1\} \mid \sigma(i+j) < \sigma(i)\}\$$

Geometrically, we have a projection $X_{m/n}^{(1,\ldots,1)} \to X_{m/n}^{\mathbf{a}}$. This projection maps cells to cells, but it may decrease the dimension of a cell. If a cell in $X_{m/n}^{(1,\ldots,1)}$ is indexed by $\sigma \in \widehat{S}_m^n \cap (S_{\mathbf{a}} \setminus \widehat{S}_m)$, its dimension is preserved.

We define the higher rank m/n (q,t)-Catalan number as:

$$C_{m/n}^{r}(q, t; q_1, \dots, q_r) := \sum_{\mathbf{a} \models_r m} q_1^{a_1} \cdots q_r^{a_r} \sum_{\sigma \in \widehat{S}_m^n \cap (S_{\mathbf{a}} \setminus \widehat{S}_m)} q^{\operatorname{coarea}(\sigma)} t^{\dim_{\mathbb{C}}(C_{\sigma})}$$

We define the higher rank m/n (q,t)-Catalan number as:

$$C_{m/n}^{r}(q, t; q_1, \dots, q_r) := \sum_{\mathbf{a} \vDash_r m} q_1^{a_1} \cdots q_r^{a_r} \sum_{\sigma \in \widehat{S}_m^n \cap (S_{\mathbf{a}} \setminus \widehat{S}_m)} q^{\operatorname{coarea}(\sigma)} t^{\dim_{\mathbb{C}}(C_{\sigma})}$$

•
$$C_{m/n}^r(1,1;1,\ldots,1) = C_{m/n}^r$$
.

We define the higher rank m/n (q, t)-Catalan number as:

$$C_{m/n}^{r}(q, t; q_1, \dots, q_r) := \sum_{\mathbf{a} \vDash_r m} q_1^{a_1} \cdots q_r^{a_r} \sum_{\sigma \in \widehat{S}_m^n \cap (S_{\mathbf{a}} \setminus \widehat{S}_m)} q^{\operatorname{coarea}(\sigma)} t^{\dim_{\mathbb{C}}(C_{\sigma})}$$

- $C_{m/n}^r(1,1;1,\ldots,1) = C_{m/n}^r$.
- $C_{m/n}^r(1, t^2; 1, \dots, 1) = \mathcal{H}(X_{m/n}^r; t).$

We define the higher rank m/n (q, t)-Catalan number as:

$$C_{m/n}^{r}(q, t; q_1, \dots, q_r) := \sum_{\mathbf{a} \models_r m} q_1^{a_1} \cdots q_r^{a_r} \sum_{\sigma \in \widehat{S}_m^n \cap (S_{\mathbf{a}} \setminus \widehat{S}_m)} q^{\operatorname{coarea}(\sigma)} t^{\dim_{\mathbb{C}}(C_{\sigma})}$$

- $C_{m/n}^r(1,1;1,\ldots,1) = C_{m/n}^r$.
- $C_{m/n}^r(1, t^2; 1, \dots, 1) = \mathcal{H}(X_{m/n}^r; t).$
- $C_{m/n}^r(q,q^{-1};q_1^{-1},\ldots,q_r^{-1})$ is the $\mathbb{C}^{\times} \times \operatorname{GL}_r$ -character of $\overline{L}_{m/n,r}$.

We define the higher rank m/n (q,t)-Catalan number as:

$$C_{m/n}^{r}(q, t; q_{1}, \dots, q_{r}) := \sum_{\mathbf{a} \models_{r} m} q_{1}^{a_{1}} \cdots q_{r}^{a_{r}} \sum_{\sigma \in \widehat{S}_{m}^{n} \cap (S_{\mathbf{a}} \setminus \widehat{S}_{m})} q^{\operatorname{coarea}(\sigma)} t^{\dim_{\mathbb{C}}(C_{\sigma})}$$

- $C_{m/n}^r(1,1;1,\ldots,1) = C_{m/n}^r$.
- $C_{m/n}^r(1, t^2; 1, \dots, 1) = \mathcal{H}(X_{m/n}^r; t).$
- $C_{m/n}^r(q, q^{-1}; q_1^{-1}, \dots, q_r^{-1})$ is the $\mathbb{C}^{\times} \times \operatorname{GL}_r$ -character of $\overline{L}_{m/n,r}$.
- $C^r_{m/n}(q,t;q_1,\ldots,q_r)=C^r_{m/n}(t,q;q_1,\ldots,q_r)$ Shoffle this (Mellit) (arlsson-Mellit)

We define the higher rank m/n (q,t)-Catalan number as:

$$C^r_{m/n}(q,t;q_1,\ldots,q_r) := \sum_{\mathbf{a} \vDash_r m} q_1^{a_1} \cdots q_r^{a_r} \sum_{\sigma \in \widehat{S}_m^n \cap (S_{\mathbf{a}} \setminus \widehat{S}_m)} q^{\operatorname{coarea}(\sigma)} t^{\dim_{\mathbb{C}}(C_\sigma)}$$

$$C^r_{m/n}(1,1;1,\ldots,1) = C^r_{m/n}.$$

- $C_{m/n}^r(1, t^2; 1, \dots, 1) = \mathcal{H}(X_{m/n}^r; t)$.
- $C_{m/n}^r(q,q^{-1};q_1^{-1},\ldots,q_r^{-1})$ is the $\mathbb{C}^{\times} \times \operatorname{GL}_r$ -character of $\overline{L}_{m/n,r}$.
- $C_{m/n}^r(q,t;q_1,\ldots,q_r) = C_{m/n}^r(t,q;q_1,\ldots,q_r).$
- $C_{m/n}^r(q,t;q_1,\ldots,q_r)$ is symmetric in q_1,\ldots,q_r .

$$C_{\frac{1}{n}}(q,t;q_{1},q_{2}) = q_{1}+...+q_{r}$$

 $C_{\frac{m}{n}}(q,t;q_{1},q_{2}) = h_{m}(q_{1},..,q_{r})$

We define the higher rank m/n (q, t)-Catalan number as:

$$C_{m/n}^{r}(q, t; q_{1}, \dots, q_{r}) := \sum_{\mathbf{a} \models_{r} m} q_{1}^{a_{1}} \cdots q_{r}^{a_{r}} \sum_{\sigma \in \widehat{S}_{m}^{n} \cap (S_{\mathbf{a}} \setminus \widehat{S}_{m})} q^{\operatorname{coarea}(\sigma)} t^{\dim_{\mathbb{C}}(C_{\sigma})}$$

- $C_{m/n}^r(1,1;1,\ldots,1) = C_{m/n}^r$.
- $C_{m/n}^r(1, t^2; 1, \dots, 1) = \mathcal{H}(X_{m/n}^r; t).$
- $C_{m/n}^r(q, q^{-1}; q_1^{-1}, \dots, q_r^{-1})$ is the $\mathbb{C}^{\times} \times \operatorname{GL}_r$ -character of $\overline{L}_{m/n,r}$.
- $C^r_{m/n}(q,t;q_1,\ldots,q_r)=C^r_{m/n}(t,q;q_1,\ldots,q_r)$. $C^r_{m/n}(q,t;q_1,\ldots,q_r) \text{ is symmetric in } q_1,\ldots,q_r.$
- Let r = kd and $q_1, \ldots, q_r \in q^{\mathbb{Z}}$ so that $q_1 + \cdots + q_r = [d]_q[k]_{q^{nd}}$. Then,

$$C_{m/n}^{r}(q^{2d}, q^{-2d}; q_1, \dots, q_r) = \frac{[d]}{[nd]} \begin{bmatrix} nr + m - 1 \\ m \end{bmatrix}$$

$$\bullet \ X_{3/2}^2 = X_{3/2}^{(3,0)} \sqcup X_{3/2}^{(0,3)} \sqcup X_{3/2}^{(1,2)} \sqcup X_{3/2}^{(2,1)} = \mathbb{P}^1 \sqcup \mathbb{P}^1 \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1) \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1).$$

$$X^{(3,0)}$$
 $X^{(0,3)}$ $X^{($

$$q+t$$
 $q+t$ $q+qt+t$

so
$$C_{3/2}^2(q, t; q_1, q_2) = (q_1^3 + q_2^3)(q + t) + (q_1^2q_2 + q_1q_2^2)(q + q_1 + t).$$

$$\bullet \ X_{3/2}^2 = X_{3/2}^{(3,0)} \sqcup X_{3/2}^{(0,3)} \sqcup X_{3/2}^{(1,2)} \sqcup X_{3/2}^{(2,1)} = \mathbb{P}^1 \sqcup \mathbb{P}^1 \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1) \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1).$$

$$X^{(3,0)}$$
 $X^{(0,3)}$ $X^{($

$$q+t$$
 $q+t$ $q+qt+t$

so
$$C_{3/2}^2(q, t; q_1, q_2) = (q_1^3 + q_2^3)(q + t) + (q_1^2q_2 + q_1q_2^2)(q + q_1 + t).$$

$$C_{3/2}^2(q,q^{-1};q_1^{-1},q_2^{-1}) = \\ (q_1^{-2}q_2^{-1} + q_1^{-1}q_2^{-2}) + (q+q^{-1})(q_1^{-3} + q_2^{-3} + q_1^{-2}q_2^{-1} + q_1^{-1}q_2^{-2}).$$

$$\bullet \ X_{3/2}^2 = X_{3/2}^{(3,0)} \sqcup X_{3/2}^{(0,3)} \sqcup X_{3/2}^{(1,2)} \sqcup X_{3/2}^{(2,1)} = \mathbb{P}^1 \sqcup \mathbb{P}^1 \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1) \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1).$$

$$X^{(3,0)}$$
 $X^{(0,3)}$ $X^{(0,3)}$ $X^{(1,2)}$ $X^{(2,1)}$ $X^{($

$$q+t$$
 $q+t$ $q+qt+t$

so
$$C_{3/2}^2(q, t; q_1, q_2) = (q_1^3 + q_2^3)(q + t) + (q_1^2q_2 + q_1q_2^2)(q + q_2t + t).$$

• For
$$d = 1, k = 2,$$

 $C_{3/2}^2(q^2, q^{-2}; q^2, q^{-2}) = q^8 + 2q^4 + q^2 + 2 + q^{-2} + 2q^{-4} + q^{-8}.$

$$\bullet \ X_{3/2}^2 = X_{3/2}^{(3,0)} \sqcup X_{3/2}^{(0,3)} \sqcup X_{3/2}^{(1,2)} \sqcup X_{3/2}^{(2,1)} = \mathbb{P}^1 \sqcup \mathbb{P}^1 \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1) \sqcup (\mathbb{P}^1 \cup \mathbb{P}^1).$$

$$X^{(3,0)}$$
 $X^{(0,3)}$ $X^{(0,3)}$ $X^{(1,2)}$ $X^{(2,1)}$ $X^{($

$$q+t$$
 $q+t$ $q+qt+t$

so
$$C_{3/2}^2(q, t; q_1, q_2) = (q_1^3 + q_2^3)(q + t) + (q_1^2q_2 + q_1q_2^2)(q + q_1 + t).$$

• For
$$d = 2, k = 1$$
, $C_{3/2}^2(q^4, q^{-4}; q, q^{-1}) = q^7 + q^5 + q^3 + 2q + 2q^{-1} + q^{-3} + q^{-5} + q^{-7}$.

Future directions

• Relate $C^r_{m/n}(q,t;q_1,\ldots,q_r)$ to Neguț's EHA action on K-theory of $\mathcal{M}^{\theta}(n,r).$

Future directions

- Relate $C^r_{m/n}(q,t;q_1,\ldots,q_r)$ to Neguț's EHA action on K-theory of $\mathcal{M}^{\theta}(n,r)$.
- K-theoretic analogue of $L_{m/n,r} = (F_{n/m} \otimes (\mathbb{C}^r)^{\otimes m})^{S_m}$.

 Coulomb

Future directions

- Relate $C^r_{m/n}(q,t;q_1,\ldots,q_r)$ to Neguț's EHA action on K-theory of $\mathcal{M}^{\theta}(n,r)$.
- K-theoretic analogue of $L_{m/n,r} = (F_{n/m} \otimes (\mathbb{C}^r)^{\otimes m})^{S_m}$.
- Higher rank Catalan numbers in other types.

Thank you!