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(Gieseker varieties

&l

U
Fix positive integers n,r > 0. Define

o R:=gl,(C)® Hom(C",C")

o R:=sl,(C)® Hom(C",C").

The group G := GL,(C) acts naturally both on R and R, and the
action lifts to the cotangent bundles T* R, T*R. This action is

Hamiltonian, with the same formula for the moment map
H(th C@r)/ G) J;\TGCZ,
o

u(A.B.i ) = [A.B] ~ i € ot = gl
9)@” @281 Ho»o(,@p/@o/
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(Gieseker varieties

Definition

We define the Gieseker variety M(n,r) (resp. M(n,r)) to be the
Hamiltonian reduction (at level 0) of G acting on T*R (resp. T*R).

) 772)
ML@/@ :/k@//g/:g?% ?gﬁ b J/
— Afbie

— Poyasny &
Comed. €7G M o) % CCTE @)} o lTiony

- U\)‘MM(O/):Q@S Oh@%(/)/r):i)ﬂ(\“l/
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(Gieseker varieties

Definition
We define the Gieseker variety M(n,r) (resp. M(n,r)) to be the

Hamiltonian reduction (at level 0) of G acting on T*R (resp. T*R).

Note that

M(n,r) = M(n,r) x C2

Example
o M(n,1) = (C?")/S,, M(n,1) = (h © b*)/S,, where b is the
reflection representation of .S5,,.

) M(l, r) = Omin, the closure of the minimal nilpotent orbit in sl,..

y

Q{L':.@/ ronk X & Ab

N :
7 x < 5hr
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(Gieseker varieties

Note that we have an action of the 1-dimensional torus C* on T* R and
T*R by dilations. This action commutes with that of G, and descends
to M(n,r), M(n,r). These varieties are conical, singular, of dimension
2nr and 2nr — 2, respectively. Moreover, they carry a Poisson bracket
of degree —2. We can construct symplectic resolutions /\/le(n, r),

Me(n, r) using GIT Hamiltonian reduction.

6'— QLh'ﬁ dlk <

\ 8

Mgm/): /MCO) /Q 4

s ot = Yo (9F¥ 0 a resoblo &
/ M,
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(Gieseker varieties

Note that we have an action of the 1-dimensional torus C* on T* R and
T*R by dilations. This action commutes with that of G, and descends
to M(n,r), M(n,r). These varieties are conical, singular, of dimension
2nr and 2nr — 2, respectively. Moreover, they carry a Poisson bracket
of degree —2. We can construct symplectic resolutions /\/le(n, r),

Me(n, r) using GIT Hamiltonian reduction.

Example
.
o M(n,1) = Hilb™(C2). — K1Y
o M'(1,r) = TP

¥
Omn
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(Gieseker varieties

N G s Q/UT 2)
We have an actionBof the group C* x GL, on T*R (resp. T*R):

(t,9)-(A, B,i,j) = (tA,t'B,ig™, gj)
Note that this descends to an action of C* x PGL, on M(n,r) (resp.

n,r)). /L
M( 7 )) H(M/ﬁ'cn/oq

‘A/’EQ @%4 86 Gl
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Quantized Gieseker varieties

We will be interested in quantizations of M(n,r), M(n,r) which can
be produced using quantum Hamiltonian reduction, as follows.

Fix a parameter c € C. For each element £ € gl _, let £ denote the
vector field given by the infinitesimal action on R. Note that we can
see £r as a differential operator, Eg € D(R). Then,

D(R) y
D(R){&r — ctx(§) | € € gl,,}
and similarly, define A.(n,r) with R instead of R. Note that

Ac(n,r) =

Ac(n,r) = Ae(n,r) ® D(C).

éllctft/] %G)} o %Hﬁ weo &5 K@mﬂéy} %ﬂjmjv@ . DR
r&cﬁﬂ/) i_; @EMCN/J) @gﬂgac%d\ yeYan %) Q@;Léfow

J
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Quantized Gieseker varieties

The action of C* x PGL, on M(n,r) is Hamiltonian, and gives a
quantum comoment map Y : C @ sl, — A.(n,r).

- - Gz bus
Example 1 w 7

o (Gan-Ginzburg, Losev) When r = 1, A.(n,1) (resp. A.(n,1)) is
the spherical rational Cherednik algebra of type gl (resp. sl,).

© When n =1, A.(1,7) = D.(P" 1) and A.(1,7) = D.(P"~! x C).

? Ao (dr) = IO
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Finite-dimensional representations

Theorem (Losev)

The algebra A.(n,r) admits a finite-dimensional representation if and
only if c = = with ged(m;n) =1 and ¢ € (—r,0). In this case, Ac(n,r)
admats a unique irreducible finite-dimensional representation that we
call L,, /n,r- Lhis representation doesn’t admit self-extensions.

We remark that we have an isomorphism A.(n,r) =< A_._.(n,7). So
we will focus on the case ¢ > 0.

Cl dim@ Lmjp 7

| _7M r7
0 @%@&5& Lo,
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Finite-dimensional representations

Theorem (Losev)

The algebra A.(n,r) admits a finite-dimensional representation if and
only if c = = with ged(m;n) =1 and ¢ € (—r,0). In this case, Ac(n,r)
admats a unique irreducible finite-dimensional representation that we
call L,, /nr- LThis representation doesn’t admit self-extensions.

We remark that we have an isomorphism A.(n,r) =< A_._.(n,7). So
we will focus on the case ¢ > 0.

Example Chordml £ DAWA
@ When r = 1, this is a theorem of Berest-Eting&of—Ginzburg.

© When n = 1, the theorem says that D.(P""!) admits a
finite-dimensional representation if and only if we have an algebra

of differential operators on a line bundle, D(O(m)). In this case,
L =L@~ 0(m)) = Sym™(C™).

v
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Finite-dimensional representations

To describe the representation L,, /n,r» We need finite-dimensional
representations of the full rational Cherednik algebra.

Definition (Etingof-Ginzburg)

The rational Cherednik algebra of type sl,, H.(n), is the quotient of
the semidirect product algebra C{xy,...,Zn,Y1,...,Yn) X Sy by the
relations

@ Ty + -+ Ty =Y1+ - +yYn =0.
° |z, ;] = i, y;] = 0.
o [zi,y;] = 5 —csiy (i # )
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Finite-dimensional representations

To describe the representation L,, /n,r» We need finite-dimensional
representations of the full rational Cherednik algebra.

Definition (Etingof-Ginzburg)

The rational Cherednik algebra of type sl,, H.(n), is the quotient of
the semidirect product algebra C{xy,...,Zn,Y1,...,Yn) X Sy by the
relations

@ Ty + -+ Ty =Y1+ - +yYn =0.
° |z, ;] = i, y;] = 0.
o [zi,y;] = 5 —csiy (i # )

Theorem (Berest-Etingof-Ginzburg)

The algebra H.(n) admits a finite-dimensional representation if and
only if ¢ = 2 with ged(m;n) = 1. In this case, Hc(n) has a unique 1"
finite-dimensional representation that we call F.,, . This

representation doesn’t admit self-extensions.

y
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Finite-dimensional representations

Since A, /n(n,1) is the spherical Cherednik algebra, we have

_ S,
Lm/n,l — Fm/n

This is, however, not the best way to think about L,, /n,1-
C.OVQO\(:LU@' Eoffcjrucz ‘E—l-hgrp

S

D

— S
Fo = Fa
2 Mm
" )
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Finite-dimensional representations

Since A, /n(n,1) is the spherical Cherednik algebra, we have

_ S,
Lm/n,l — Fm/n

This is, however, not the best way to think about L,, /n,1-

Theorem (Etingof-Krylov-Losev-S.)

We have an isomorphism of C* x GL,-modules:

s e

T ~ (17 (3 T m\om,
Lm/n,r — (Fn/m & (C )® )S

Q S\M O\d@ &Vo\ U
L) e a0 (0
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Finite-dimensional representations

Since A, /n(n,1) is the spherical Cherednik algebra, we have

_ S,
Lm/n,l — Fm/n

This is, however, not the best way to think about L,, /n,1-

Theorem (Etingof-Krylov-Losev-S.)

We have an isomorphism of C* x GL,-modules:

Lm/n,r = (Fn/m & (CT*)@)m)Sm

Remark

When r = 1, the isomorphism Fin/n = FﬁTm is due to
Calaque-Enriquez-Etingof. Further ramifications are due to

Gorsky-Oblomkov-Rasmussen-Shende, Etingof-Gorsky-Losev and more.
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Finite-dimensional representations

The representation F,, /m has been intensively studied in recent years
and character formulas are known for it. In particular, we can compute
the C* x GL,-character of L, , ,:

— 1 l1—n n—1 *
chex xGLr(Lm/n,'P) = W Z sx(g 2 ..., 2 )[Wr(A)7).
9 Mm £ ")
r(\)<min(n;r) ‘ C%,V Mool
G S
E\/ﬂ q - 9 dy Jion
Y1 A

1 7
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Finite-dimensional representations

The representation F,, /m has been intensively studied in recent years
and character formulas are known for it. In particular, we can compute
the C* x GL,-character of L, , ,:

- 1 1-n n—1 .
Ch(CX X GL;y (Lm/n,’r) — W Z S)\(q 2 ,...,4 2 )[WT()\) ]
q A-m

8 r(A)<min(n;r) | ~
C£ — Y OLNVA\&O(/ t“} %O{(,W]/- )
§ 3

Definition

Let m and n be coprime positive integers and r > 0. We call

. .= L fnr+m-—1 | T
i = dlm(Lm/n7T):g( - )zadlmSym (C"")

the rank r rational m /n-Catalan number.
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Finite-dimensional representations

3&) min)= 4.
When r = 1:

1 /nm+m—1 1 n—+m
C]‘ _= — o o 1
m/n n( m ) n+m( m ) Cn/m

counts the number of Dyck paths in an m X n-rectangle.

=

A
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Finite-dimensional representations

When r = 1:

Il /n+m-—1 1 n-+m
ol == — — Ot
m/n n( m ) n+m( m ) n/m

counts the number of Dyck paths in an m X n-rectangle.

Theorem (Etingof-Krylov-Losev-S.)

The number C7 In counts the number of rank r semistandard parking
functions on an m X n-rectangle, that s, a Dyck path together with a
function from its vertical steps to {1,...,r} that is weakly increasing
on consecutive vertical steps.

N
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Example: C’§ /2
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Goal

Use geometry to:

@ Explain why the m, n-switch in the formula

Lm/n,r — (Fn/m ® (CT)@)m)Sm

is a natural thing to expect.

@ Produce a g, t-deformation C7 /n(q, t).
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The relation with geometry is clearer for the algebra A.(n,r) (as
opposed to A.(n,r)). Recall that we have a decomposition

Ac.(n,r) = Ac(n,r) @ D(C)

so the representation

Lm/n,r = zm/n,’r ® (C['CU]

is a representation of A.(n,r). We will realize this and other
representations geometrically.
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We also have the gl _-version of the rational Cherednik algebra H.(n),
satisfying

H.(n) = Ho(n) ® D(C)  Srnoionh
and the representation £, , = Jo. /n ®It is still true that

Lm/n,r — (Fn/m & (Cr)@)m)Sm.
)
MJQMA% Mn, - Cone by Erx
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Coulomb branches

Let GG be a reductive group acting on a vector space V. We will denote:
o O :=Cl[¢]].
o K :=C((¢)).
° Go = Glle], Gk = G((e)).
o Vo =0V =V[d], Vk =KoV =V((e)).

o [ C G consisting of elements g € Go so that gl.—g € B for a fixed
Borel B C G.

o i C gl[e]] the Lie algebra of I, consisting of elements X € gl[e]] so
that X‘ezo e b.
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Coulomb branches

Associated to these data, Braverman-Finkelberg-Nakajima construct a
Poisson algebra A(G, V) and its quantization Ax(G, V). We will not
need the precise definition, but we will use the fact that it is supposed
to model equivariant homology of the “Steinberg variety”
He
A(G,V) = H® (v xvye Xv)

here, Xy := (G X Vo)/Go is a bundle over the affine Grassmannian.
The quantization Ax(G, V') appears when considering equivariant
homology for the loop rotation action.

Ly = QQJK’(\/@]/QCQ/

9.v)_

T

Q(K/G@: (o \l
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Coulomb branches

Associated to these data, Braverman-Finkelberg-Nakajima construct a
Poisson algebra A(G, V) and its quantization Ax(G, V). We will not
need the precise definition, but we will use the fact that it is supposed
to model equivariant homology of the “Steinberg variety”

A(G,V) = HS® (Xy xy. Xy)

here, Xy := (G X Vo)/Go is a bundle over the affine Grassmannian.
The quantization Ax(G, V') appears when considering equivariant
homology for the loop rotation action. Webster extended BFN’s
construction to the parahoric setting, by considering now spaces of the
form Xy p := (Gx x N)/P, where P is a parahoric subgroup and

N C Vp is a “nice "subspace stable under P. The resulting algebra
A(G, N, P) may no longer be commutative.

Ao e, T) = Mahy,, LAG)
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Coulomb branches

All the algebras we have seen are, in fact, examples of quantized
Coulomb branches.

@ The spherical rational Cherednik algebra A.(n,1) appears taking
G = GL, and V = gl, & C", the adjoint plus fundamental
representation. (Kodera-Nakajima, Webster)

[
J

QY
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Coulomb branches

All the algebras we have seen are, in fact, examples of quantized
Coulomb branches.

@ The spherical rational Cherednik algebra A.(n,1) appears taking
G = GL, and V = gl, & C", the adjoint plus fundamental
representation. (Kodera-Nakajima, Webster)

e The full rational Cherednik algebra H.(n) appears taking again
G = GL, and V = gl, & C", but using Webster’s construction
with P =1 and N =1 C"[[¢]] C V|[€]].
(Braveman-Etingof-Finkelberg, Webster)
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Coulomb branches

All the algebras we have seen are, in fact, examples of quantized
Coulomb branches.

@ The spherical rational Cherednik algebra A.(n,1) appears taking
G = GL, and V = gl, & C", the adjoint plus fundamental
representation. (Kodera-Nakajima, Webster)

e The full rational Cherednik algebra H.(n) appears taking again
G = GL, and V = gl, & C", but using Webster’s construction
with P =1 and N =1 C"[[¢]] C V|[€]].
(Braveman-Etingof-Finkelberg, Webster)

o For the quantized Gieseker variety A.(n,r), we take G = GL*"
and V = gl[" @ C", with action given by
(907 R 797“—1) : (X07 R 7X’I“—17 U) — (nglg()_lag . 790X7“—1g7a—_117 gOv)

(Nakajima-Takayama-+Losev) a

.z ‘/
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BFN Springer theory &

Hilburn-Kamnitzer-Weekes developed a Springer theory for Coulomb
branches (extended to the parahoric setting by Garner-Kivinen).
Consider an element v € V. The generalized affine Springer fiber is

Sprpn(v) :3 {lg] € G /P | gv € N}.

Under certain conditions on ¥, there is an action of the Coulomb
branch algebra Ay (G, N, P) on

Hr (Sprpn(v))

where Ly, := Stabg ., cx (v).

rot
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BFN Springer theory

Now consider the element

(

(Vio)i= [0 1 =0 00| O] gt fid) & C"(le]

|

o~ O

_ O O
-
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BFN Springer theory

Now consider the element

(O 0O --- 0 em\ (1\
1 0 -~ 0 O 0
(Voo)s= | O 1 00 10 € gl [[e]] & C[[d]
0o -1 0) o)
Choosing a basis, we can identify Y=g

C*[[el] = Clle]][L, -y ]

Note that the action of the matrix Y amounts to multiplication by ¥ in
this basis, and the vector v is identified with 1.
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Hilbert schemes on singular curves

Let us specialize now to the rational Cherednik algebra case, so
G =GL, and V = gl, ¢ C".

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)

Assume ged(m;n) = 1 and let C = {y™ = 2™} C C?. Then:

Q@ Spra,.v, (Y,v) = Hilb(C,0).= EW@@)
>0
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Hilbert schemes on singular curves

Let us specialize now to the rational Cherednik algebra case, so
G =GL, and V = gl, ¢ C".

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)
Assume ged(m;n) = 1 and let C = {y™ = 2™} C C?. Then:
@ Sprg,.v,(Y,v) =Hilb(C,0).
@ Spriigcnyg = PHilb(C,0), where PHilb(C,0) is the moduli space
of flags of ideals X ~&

Iy D Ipy1 2 - 2 Iy = xly,

where I; € Hilb(C,0) and dim(;/1;11) = 1.

_ T 2. 2 T xde st Tee HBCO)
SWT/\I@U/V) 3 X
— H)’,D)QC/@ %(?Qm
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Hilbert schemes on singular curves

Let us specialize now to the rational Cherednik algebra case, so
G =GL, and V = gl, ¢ C".

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)
Assume ged(m;n) = 1 and let C = {y™ = 2™} C C?. Then:
@ Sprg,.v,(Y,v) =Hilb(C,0).
@ Spriigcnyg = PHilb(C,0), where PHilb(C,0) is the moduli space
of flags of tdeals

Iy D Ipy1 2 - 2 Iy = xly,

where I; € Hilb(C,0) and dim(;/1;11) = 1.

Remark

More generally, Garner and Kivinen show that if C is any planar curve
and 0 € C, then Hilb(C,0) can be realized as a generalized affine
Springer fiber for the same quiver gauge theory.
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Hilbert schemes on singular curves
G_Q(/WJ)LMW\,

Crodgi o ey Gl v copalic
g Tedy oy P
We still take C' = {2™ = y"} with ged(m;n) =1 .

Theorem (Garner-Kivinen, Gorsky-S.-Vazirani)

We have an action of Ay, /m(n,1) on HC” (Hilb(C,0)) and of Hp,n(n)
on HE" (PHilb(C, 0)). Moreover,

o HE" (Hilb(C,0)) = Ly /n1-
o HE" (PHIilb(C,0)) = E,/p-
(Y -
CO’))#'UCT %}m@jﬁg O/Pg(j)fﬂ/ @) 'H = CP lL )MC/O))
%(il»a)?jfbg . 52/)(]@2 Im,, 1 B IS %lz,g yI&ﬂ
QZ"OJ—\%\ M\D\/Q/M" & 'S,}yhgﬂ:b)@ ch—l’m
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What about L,,/,(n,r)?

We now consider the following element in V'[[¢]| where, recall, V is the
space of representations of the cyclic quiver with dimension vector
(n,...,n) and framing (1,0,...,0).

Bz h2 2T 2V,

5 & 1
\ 6 ] N
y_\Q \\) v N\ 0
3 Y Id @V‘

Its affine Springer fiber Sprg, v, ((Y,1d,...,Id,v)) is a subset of the
product of affine Grassmannians (GLy,, x / GLy 0)".
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Theorem (Gorsky-S.-Vazirani)

Assume gcd(m;n) =1 and let C = {y"” = a™}. Then
Spra,ve (Y, 1d, ... 1d,v) is the moduli space of flags

Jg =i QJr:yJQ
where J, € Hilb(C,0) for every k.

José Simental (MPIM) Gieseker, Springer, Catalan
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Theorem (Gorsky-S.-Vazirani) H o PUS(Co)

Assume gcd(m;n) =1 and let C = {y"” = a™}. Then
Spra,ve (Y, 1d, ... 1d,v) is the moduli space of flags

a, Qr

Jg =i QJr:yjl
where J, € Hilb(C,0) for every k.

Let us call CPHilbY(C,0) this moduli space. We have
L. = B (CPHIIVY (C, 0)) = (HS* (PHIILY(C, 0)) @ (C7)2™)Sn

which is a geometric manifestation of the m, n-switch.

TP (ay, . a)Fm G0, Z20;=m

U ?Hﬂ}?(a , Or) <CO) C?H/ﬂ;\‘)’v((/d)

- Gr ) a

H,& C/‘D H‘u(a\, .--,O\r)CC/OJ) G %”‘W@fjﬂt Jpom, D) Z\‘%/\_l/“,
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Theorem (Gorsky-S.-Vazirani)

Assume gcd(m;n) =1 and let C = {y"” = a™}. Then
Spra,ve (Y, 1d, ... 1d,v) is the moduli space of flags

JOQ"'QJr:yjl

where J, € Hilb(C,0) for every k.

Let us call CPHilbY(C,0) this moduli space. We have
HE (CPHIilbY(C,0)) = (HS™ (PHilbY(C,0)) @ (C)®m)Sm
which is a geometric manifestation of the m, n-switch.

Remark

Using results of Garner-Kivinen, one can show that given any curve C,
a sitmilar moduli space is a generalized affine Springer fiber for the
cyclic quiver. Algebraically, this should be manifested by the

correspondence between minimally supported representations of
A n(n,r) and Hy, ), (m) given in joint work with Etingof, Krylov and

Losev.
26 / 37
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Back to the finite case

For the representation L,, /n,r» Oblomkov-Yun realize the

representation F', /m geometrically as the associated graded (with
respect to the perverse filtration) of the cohomology of a certain affine
Springer fiber. We can interpret these Springer fibers as a certain
moduli space of C[[z™, 2"|]-invariant subsets of C((z)). Consider:

m/n = {LO 2 Ly = ZmLO}

where
o [;is a Cl[[z™, 2"]]-submodule of C((z)).
o dim(Lo/(C[[z]] N Lo)) — dim(C[[z]]/(C[[z]] N Lo)) = 0.
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Clo don-dom « . 4)

a =
q = (w)
The space X In is obviously disconnected. For each composition
a:= (ay,...,a,) F. m, we may consider the space

>0

2.0 = m gz/n C :n/n
given by the conditions that dim(L;_1/L;) = a;. It is then clear that

Each X* In is an affine Springer fiber on a partial affine flag variety.

Each of these admits an affine paving (Lusztig-Smelt,
Goresky-Kottwitz-MacPherson...) that can be described using the
combinatorics of the affine symmetric group S;,.
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We think of §m as the space of m-periodic bijections o : Z — Z,
subject to the condition that Y ", (c(i) —i) = 0.

Definition

We say that an element o € S,, is n-stable if o(z +n) > o(z) for every
x € Z. Let us denote by S the space of n-stable elements of S,,.

vy

Ifa=(1,1,...,1), a theorem of Gorsky-Mazin-Vazirani (after
Lusztig-Smelt and Hikita) tells us that X2 In admits an affine paving

with cells indexed by §Z§'l We now do a parabolic version of this
construction.

José Simental (MPIM) Gieseker, Springer, Catalan March 12, 2021 29 / 37



For a £, m, let Sa = Sa; X Say X -+ X Sa. C Sm C S be the
correspoding parabolic subgroup. We denote by (Sa\gm) C S, the set
of minimal length right coset representatives. More precisely, (Sa\Sy,)
consists of elements o € §m satisfying:

o o (1) < - <o (ay).

o o (a1 +1) < - <o Hay + as).

° :

o o a1+ +a1+1)<--- <o (m)
cu (8N S)= S

4= (m) S_S\é\w\ = afhe Grcsseng o ?wﬂé#m/
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Lemma,
The space X*> In has an affine paving with cells in bijection with

S M (Sa\Sm).

The dimension of the cell C, associated with ¢ € S N (Sa\S,y,) is
given by

dim(C,) = #{(i,5) € {1,.... m} x{1,....n—1} | o(i + Jj) < o(i)}

Geometrically, we have a projection XS%’D — X In This projection
maps cells to cells, but it may decrease the dimension of a cell. If a cell

v

in Xﬁ%’l) is indexed by o € 8™ N (Sa\Sm), its dimension is preserved.

0 (84\S,,) = SSFFSF hee Q ,
4 v Ol N appon Qr ey
Q_CZ\P;;Z/O/) O %"W f
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We define the higher rank m/n (q,t)-Catalan number as:

7

(@Gt a1 Gr) = Z gt gl Z geoarea(o) dime (Co)
aF,m aeé’\%ﬂ(Sa\gm)
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We define the higher rank m/n (q,t)-Catalan number as:

(@Gt a1 Gr) = Z gt gl Z geoarea(o) dime (Co)
aF,m Jéé\%ﬂ(Sa\S’\m)

o Cr (1,1;1,..., 1) =C"

m/n°
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We define the higher rank m/n (q,t)-Catalan number as:

m/n(CL Lar, ..., Q'r : Z C] Z qcoarea(a)tdimC(CJ)
arm Jéé\%ﬂ(Sa\gm)
° Ofn/n(l,ﬂ; 1,...,1) = H( ;%/n;t).
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We define the higher rank m/n (q,t)-Catalan number as:

m/n(q, t d1, ..., q'r : Z C] Z qcoarea(a)tdim(c(ca)
aF,m ae§;,m(sa\§m)

o Cl n (1,t%1,...,1) = (X i t)-
o CT /n(q, g ql_l, ...,q7 1) is the C* x GL,-character of Em/n,r.
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We define the higher rank m/n (q,t)-Catalan number as:

;z/n(%t; q1s---5Gr) Z ;" Z geoarealo)ydime(Co)
asrm ae§;gm(sa\§m)

o (T m/n (1,1;1,...,1) = ;l/n,

° /n(l t2:1,...,1) = H(X’;%/n; t).

° m/n(q gt ql_l, e qr_l) is the C* x GL,-character of fm/n,r.

o Cr (atiars. ) =Cl (LG ar,. . qr) = Shoffle Thi (Vellst,

C&ybsm- Hﬂﬂj
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We define the higher rank m/n (q,t)-Catalan number as:

., q'r) — Z qibl . qgr Z qcoarea(a)tdim@(Cg)
as,rm Jéé\%ﬂ(sa\gm)

A1) = HX ).
-1 ql_l, ...,q7 1) is the C* x GL,-character of fm/n,r.

/\/\/\/‘\

o O e tiqn, .. ar) =CL (L g qn, . qr).
o C’fn/ q,t;q1,-..,qr) is symmetric in q, ..., g

Cetgbrgiagl= g "%
O (gh G- 90 = g, 9
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We define the higher rank m/n (q,t)-Catalan number as:

astiana) = 3 S el
as,rm ae§pnm(5a\§m)

° C7, (,1,1,... 1) =Cr

O LS 1) = HOXT ).

o O n(q ,q1 ,...,q 1) is the C* x GL,-character of fm/n,r.
=)

o Oy mlatiq,...qr) =C (Lasq1,- -5 ) [l u

o C’T (a,t;q1,-..,qr) is symmetric in qq,. .., g. 39(

° Let r=kdand q,...,q € ¢¥sothat ¢+ +¢q = d]qlk]gna.
Then,

,',,

m/n(q 7q_2d;Q17-°°7Q7“) —

|d] [nr+m—1]
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Example: 33/2’2

We have L3 /99 = I/V(*2 )y T (q+q 1) {'})), where W) is a representation
of 9[2

3,0 0,3 1,2 2.1
o X2, =Xy UXTPUXPUX T = PLUPLLI(PTUPYL(PLUPY).

X (1,2) X (2,1)

X(3’O) . X(O’g) ) 2 ) 1[0 .
R A Al ] N i
q+t q+t qt+qgt+t qg+qt+1

30 C55(0,t:q1,.42) = (¢ + @3)(q +1) + (a2 + 0165)(q + gt + ).
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Example: 33/2’2

We have L3 /99 = W(*2 )y T (q+q 1) (E), where W) is a representation
of 9[2

3,0 0,3 1,2 2,1
o X2, =Xy UXTPUXPUX T = PLUPLLI(PTUPYL(PLUPY).

x (1,2) x (2,1)
X (3,0) 1 x (0,3)

2 % 1 % 1
1 2 1 1 2 2
1 2 2 2

q+t q+t qt+qgt+t qg+qt+1

s0 C3)5(¢, ta1,02) = (@7 + @) (g +1) + (a2 + q143) (g + gt +1).

— -1 -1
o C3(a,q7 5 ay a4y ) =
( -2 —1 -1 -2

41 "9y T 41 4y )‘I"(Q+q_1)(ql_3‘|‘Q2_3+Q1_2q2_1+q1_1q2_2)°
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Example: 33/2’2

We have L3/ 9 = I/V(*2 )y (g +q 1) E’é), where W) is a representation
Of 9[2
o X2, =Xy UXTPUXPUX T = PLUPLLI(PTUPYL(PLUPY).

X (1,2) x (21

1 % 1
1 2 2
2 2

qt+t q+t qg+qt+t qg+qt+1t

s0 O3 (0, t;a1,42) = (@ + @3)(a +1) + (afa2 + @163) (q + gt +1).
@ Ford=1k =2,
G50 a7 a ) = +2¢" + @ +2+ ¢+ 20 + 7%
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Example: 33/2’2

We have L3/ 9 = I/V(*2 )y (g +q 1) E’é), where W) is a representation
Of 9[2
o X2, =Xy UXTPUXPUX T = PLUPLLI(PTUPYL(PLUPY).

X (1,2) x (21

1 % 1
1 2 2
2 2

qt+t q+t qg+qt+t qg+qt+1t

s0 O3 (0, t;a1,42) = (@ + @3)(a +1) + (afa2 + @163) (q + gt +1).
@ Ford=2k =1,
C3p(da 007 ) =d" +@+ P +2¢+2¢ " +q P +q P+ g
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Future directions

e Relate C;l/n(q, t5q1,
MO (n, 7).

,qr) to Negut’s EHA action on K-theory of

= = = = £ YA
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Future directions

e Relate C’;I/n(q, t;q1,...,qr) to Negut’s EHA action on K-theory of

MO (n, 7).
o K-theoretic analogue of w = (Frm ® (CT)@”””)@.
},é~JrM0/dﬁo m/\ p
C@U&dﬂb L, {jf
oo
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Future directions

e Relate C’;%/n(q, t;q1,...,qr) to Negut’s EHA action on K-theory of
MO (n, 7).
o K-theoretic analogue of Ly, , = (F},/m ® (Cr)@m)sm.,

e Higher rank Catalan numbers in other types.
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Thank you!
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