Lyndon words and quantum loop groups

Andrei Neguț (joint work with Alexander Tsymbaliuk)

MIT

03/19/2021
Quantum groups

- Let \(\mathfrak{g} \) be a finite-dimensional simple Lie algebra over \(\mathbb{C} \), associated to a Cartan matrix \((a_{ij})_{i,j \in I} \), and root system \(\Delta^+ \sqcup \Delta^- \).
Quantum groups

- Let \mathfrak{g} be a finite-dimensional simple Lie algebra over \mathbb{C}, associated to a Cartan matrix $\left(a_{ij}\right)_{i,j \in I}$, and root system $\Delta^+ \sqcup \Delta^-$.

- The Drinfeld-Jimbo quantum group associated to \mathfrak{g} is given by:

$$U_q(\mathfrak{g}) = \mathbb{Q}(q) \langle e_i, f_i, \varphi_i \rangle_{i \in I}$$

modulo certain relations that we will not recall.
Quantum groups

- Let \mathfrak{g} be a finite-dimensional simple Lie algebra over \mathbb{C}, associated to a Cartan matrix $\left(a_{ij}\right)_{i,j \in I}$, and root system $\Delta^+ \sqcup \Delta^-$.

- The Drinfeld-Jimbo quantum group associated to \mathfrak{g} is given by:

$$U_q(\mathfrak{g}) = \mathbb{Q}(q) \langle e_i, f_i, \varphi_i \rangle_{i \in I}$$

modulo certain relations that we will not recall.

- The subalgebra $U_q(\mathfrak{n}^+) \subset U_q(\mathfrak{g})$ generated by the e_i's is:

$$U_q(\mathfrak{n}^+) = \mathbb{Q}(q) \langle e_i \rangle_{i \in I}$$

modulo the relation

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \binom{1-a_{ij}}{k} q_i e_i^k e_j e_i^{1-a_{ij}-k} = 0, \quad \forall i \neq j.$$
The q-shuffle algebra

- An important viewpoint on $U_q(n^+)$ is given by comparing it to the q-shuffle algebra defined by Green, Rosso, and Schauenburg:

$$
\mathcal{F} = \bigoplus_{k \in \mathbb{N}, i_1, \ldots, i_k \in \mathcal{I}} \mathbb{Q}(q) \cdot [i_1 \ldots i_k]
$$
The q-shuffle algebra

- An important viewpoint on $U_q(n^+)$ is given by comparing it to the q-shuffle algebra defined by Green, Rosso, and Schauenburg:

$$\mathcal{F} = \bigoplus_{k \in \mathbb{N}, i_1, \ldots, i_k \in I} \mathbb{Q}(q) \cdot [i_1 \ldots i_k]$$

- endowed with the following associative shuffle product:

$$[i_1 \ldots i_k] * [j_1 \ldots j_l] = \sum_{\{1, \ldots, k+l\} = A \cup B, |A| = k, |B| = l} q^{\lambda_{A,B}} \cdot [s_1 \ldots s_{k+l}]$$

where if $A = \{a_1 < \cdots < a_k\}$ and $B = \{b_1 < \cdots < b_l\}$, we write:

$$s_c = \begin{cases} i & \text{if } c = a \\ j & \text{if } c = b \end{cases}$$

and

$$\lambda_{A,B} = \sum_{A \ni a > b \in B} (\alpha_{s_a}, \alpha_{s_b})$$
The \(q \)-shuffle algebra

- An important viewpoint on \(U_q(n^+) \) is given by comparing it to the \(q \)-shuffle algebra defined by Green, Rosso, and Schauenburg:

\[
\mathcal{F} = \bigoplus_{k \in \mathbb{N}, i_1, \ldots, i_k \in I} \mathbb{Q}(q) \cdot [i_1 \ldots i_k]
\]

- endowed with the following associative shuffle product:

\[
[i_1 \ldots i_k] \ast [j_1 \ldots j_l] = \sum_{\{1, \ldots, k+l\} = A \sqcup B, |A|=k, |B|=l} q^{\lambda_{A,B}} \cdot [s_1 \ldots s_{k+l}]
\]

where if \(A = \{a_1 < \cdots < a_k\} \) and \(B = \{b_1 < \cdots < b_l\} \), we write:

\[
s_c = \begin{cases} i \bullet & \text{if } c = a \bullet \\ j \bullet & \text{if } c = b \bullet \end{cases}
\]

and

\[
\lambda_{A,B} = \sum_{A \ni a > b \in B} (\alpha_{s_a}, \alpha_{s_b})
\]

- This definition is designed so that there is an injective algebra homomorphism \(\Phi : U_q(n^+) \hookrightarrow \mathcal{F} \) given by \(e_i \mapsto [i] \), for all \(i \in I \).
Standard Lyndon words

- By work of Lusztig, there exists a PBW basis:

\[U_q(n^+) = \bigoplus_{\beta_1 \geq \cdots \geq \beta_n \in \Delta^+} \mathbb{Q}(q) \cdot e_{\beta_1} \cdots e_{\beta_n} \]

where \(e_\beta \in U_q(n^+) \) deform the root vectors of \(n^+ \), for all \(\beta \in \Delta^+ \).
Standard Lyndon words

- By work of Lusztig, there exists a PBW basis:

\[
U_q(n^+) = \bigoplus_{\beta_1 \geq \cdots \geq \beta_n \in \Delta^+} \mathbb{Q}(q) \cdot e_{\beta_1} \cdots e_{\beta_n}
\]

where \(e_\beta \in U_q(n^+) \) deform the root vectors of \(n^+ \), for all \(\beta \in \Delta^+ \).

- Above, \(\geq \) is any convex order on \(\Delta^+ \), but there is a particularly interesting choice. Lalonde-Ram showed that there is a bijection:

\[
\ell : \Delta^+ \sim \rightarrow \{ \text{standard Lyndon words} \}
\]

where a word \([i_1 \ldots i_k] \in I^k\) is called Lyndon if it is lex smaller than all its suffixes. Thus, lexicographic order induces an order on \(\Delta^+ \).
Standard Lyndon words

• By work of Lusztig, there exists a PBW basis:

\[U_q(n^+) = \bigoplus_{\beta_1 \geq \cdots \geq \beta_n \in \Delta^+} \mathbb{Q}(q) \cdot e_{\beta_1} \cdots e_{\beta_n} \]

where \(e_{\beta} \in U_q(n^+) \) deform the root vectors of \(n^+ \), for all \(\beta \in \Delta^+ \).

• Above, \(\geq \) is any convex order on \(\Delta^+ \), but there is a particularly interesting choice. Lalonde-Ram showed that there is a bijection:

\[\ell : \Delta^+ \xrightarrow{\sim} \{ \text{standard Lyndon words} \} \]

where a word \([i_1 \ldots i_k] \in I^k\) is called Lyndon if it is lex smaller than all its suffixes. Thus, lexicographic order induces an order on \(\Delta^+ \).

• Leclerc showed that \(\Phi(e_{\beta}) \) has the minimal largest word among all degree \(\beta \) elements of \(\text{Im } \Phi \), and this largest word is precisely \(\ell(\beta) \).
Example: words in type A_n

- Consider the Dynkin diagram:

```
  1  2  ...  n - 1  n
  O---O---...---O---O
```

- The positive roots are $\alpha_{ij} = \alpha_i + \cdots + \alpha_j$ for all $1 \leq i \leq j \leq n$.

- The bijection ℓ is given by: $\ell(\alpha_{ij}) = [i \ldots j]$ (somewhat predictably).

- Now suppose you wanted an affine version of all of this business: $U_q(g) \to U_q(\hat{g})$.

- The shuffle algebra still makes sense (using letters in $\hat{I} = I \sqcup \{0\}$ instead of in I) but the Lalonde-Ram bijection breaks down because of the imaginary roots. So does Leclerc's description of $\Phi(e^{\beta})$.

Andrei Neguț (joint work with Alexander Tsymbaliuk)

Lyndon words and quantum loop groups
Example: words in type A_n

- Consider the Dynkin diagram:

```
  1    2    ...    n - 1    n
```

- The positive roots are $\alpha_{ij} = \alpha_i + \cdots + \alpha_j$ for all $1 \leq i \leq j \leq n$.

Andrei Neguț (joint work with Alexander Tsymbaliuk)
Lyndon words and quantum loop groups
Example: words in type A_n

- Consider the Dynkin diagram:

```
   1         2         ...         n - 1         n
  ₁  ₂  ...  n⁻¹  n
```

- The positive roots are $\alpha_{ij} = \alpha_i + \cdots + \alpha_j$ for all $1 \leq i \leq j \leq n$.
- The bijection ℓ is given by:
 $$\ell(\alpha_{ij}) = [i \ldots j]$$
 (somewhat predictably).

Now suppose you wanted an affine version of all of this business:

$$U_q(g) \to U_q(\hat{g})$$

- The shuffle algebra still makes sense (using letters in $\hat{I} = I \sqcup 0$ instead of in I) but the Lalonde-Ram bijection breaks down because of the imaginary roots. So does Leclerc's description of $\Phi(e^{\beta})$.
Example: words in type A_n

- Consider the Dynkin diagram:

```
  1 -- 2 -- ... -- n-1 -- n
```

- The positive roots are $\alpha_{ij} = \alpha_i + \cdots + \alpha_j$ for all $1 \leq i \leq j \leq n$.
- The bijection ℓ is given by:

$$\ell(\alpha_{ij}) = [i \ldots j]$$

(somewhat predictably).
- Now suppose you wanted an affine version of all of this business:

$$U_q(\mathfrak{g}) \sim U_q(\hat{\mathfrak{g}})$$

Andrei Neguț (joint work with Alexander Tsymbaliuk) Lyndon words and quantum loop groups
Example: words in type A_n

- Consider the Dynkin diagram:

```
   1 -- 2 -- ... -- n-1 -- n
```

- The positive roots are $\alpha_{ij} = \alpha_i + \cdots + \alpha_j$ for all $1 \leq i \leq j \leq n$.

- The bijection ℓ is given by:

$$\ell(\alpha_{ij}) = [i \ldots j]$$

(somewhat predictably).

- Now suppose you wanted an affine version of all of this business:

$$U_q(g) \rightsquigarrow U_q(\hat{g})$$

- The shuffle algebra still makes sense (using letters in $\hat{I} = I \sqcup 0$ instead of in I) but the Lalonde-Ram bijection breaks down because of the imaginary roots. So does Leclerc’s description of $\Phi(e_\beta)$.

Andrei Neguț (joint work with Alexander Tsymbaliuk)
Lyndon words and quantum loop groups
So we need a new viewpoint on $U_q(\hat{g})$. Fortunately, we have an isomorphism (proposed by Drinfeld and proved by Beck, Damiani):

$$U_q(\hat{g}) \cong U_q(Lg)$$
So we need a new viewpoint on $U_q(\hat{\mathfrak{g}})$. Fortunately, we have an isomorphism (proposed by Drinfeld and proved by Beck, Damiani):

$$U_q(\hat{\mathfrak{g}}) \cong U_q(L\mathfrak{g})$$

where the quantum loop group $U_q(L\mathfrak{g})$ has generators:

$$\{e_i,d, f_i,d, \varphi_{i,d'} \mid i \in I, d \in \mathbb{Z}, d' \geq 0\}$$
Quantum loop/affine groups

- So we need a new viewpoint on $U_q(\hat{g})$. Fortunately, we have an isomorphism (proposed by Drinfeld and proved by Beck, Damiani):

\[
U_q(\hat{g}) \cong U_q(Lg)
\]

- where the quantum loop group $U_q(Lg)$ has generators:

\[
\{ e_i, d, f_i, d, \varphi_i^{\pm} \}_{i \in I, d \in \mathbb{Z}, d' \geq 0}
\]

- However, the subalgebra $U_q(Ln^+) \subset U_q(Lg)$ generated by $\{ e_i, d \}$ does not match the subalgebra $U_q(\hat{n}^+) \subset U_q(\hat{g})$ under the isomorphism in the box. The two subalgebras are “orthogonal”.

Andrei Neguț (joint work with Alexander Tsymbaliuk) Lyndon words and quantum loop groups
Quantum loop/affine groups

- So we need a new viewpoint on $U_q(\hat{g})$. Fortunately, we have an isomorphism (proposed by Drinfeld and proved by Beck, Damiani):

$$U_q(\hat{g}) \cong U_q(Lg)$$

- where the quantum loop group $U_q(Lg)$ has generators:

$$\{ e_i, d, f_i, d, \varphi_{i,d}, \varphi_{i,d}' \} \quad i \in I, d \in \mathbb{Z}, d' \geq 0$$

- However, the subalgebra $U_q(Ln^+) \subset U_q(Lg)$ generated by $\{ e_i, d \}$ does not match the subalgebra $U_q(\hat{n}^+) \subset U_q(\hat{g})$ under the isomorphism in the box. The two subalgebras are “orthogonal”.

- **Our goal:** to do for $U_q(Ln^+)$ what was done for $U_q(n^+)$: define a shuffle algebra model, and describe PBW bases via Lyndon words.
The loop q-shuffle algebra

- Instead of using $i \in I$ as letters, let us use the symbols $i^{(d)}$ as letters, for any $i \in I$ and $d \in \mathbb{Z}$. Consider the vector space:

$$\hat{\mathcal{F}} = \bigoplus_{k \in \mathbb{N}, i_1, \ldots, i_k \in I, d_1, \ldots, d_k \in \mathbb{Z}} \mathbb{Q}(q) \cdot \left[i_1^{(d_1)} \ldots i_k^{(d_k)} \right]$$

The coefficients have a reasonable, but rather lengthy definition.

Andrei Neguț, (joint work with Alexander Tsymbaliuk)

Lyndon words and quantum loop groups
The loop \(q \)-shuffle algebra

- Instead of using \(i \in l \) as letters, let us use the symbols \(i^{(d)} \) as letters, for any \(i \in l \) and \(d \in \mathbb{Z} \). Consider the vector space:

\[
\hat{\mathcal{F}} = \bigoplus_{k \in \mathbb{N}, i_1, \ldots, i_k \in l, d_1, \ldots, d_k \in \mathbb{Z}} \mathbb{Q}(q) \cdot \left[i_1^{(d_1)} \cdots i_k^{(d_k)} \right]
\]

- and make it into an algebra via the following shuffle product:

\[
\left[i_1^{(d_1)} \cdots i_k^{(d_k)} \right] \ast \left[j_1^{(e_1)} \cdots j_l^{(e_l)} \right] = \sum_{\text{coefficient}} \cdot \left[s_1^{(t_1+\pi_1)} \cdots s_{k+l}^{(t_{k+l}+\pi_{k+l})} \right]
\]

where if \(A = \{ a_1 < \ldots < a_k \} \) and \(B = \{ b_1 < \ldots < b_l \} \), we write:

\[
s_c = \begin{cases}
 i & \text{if } c = a \\
 j & \text{if } c = b
\end{cases}, \quad
t_c = \begin{cases}
 d & \text{if } c = a \\
 e & \text{if } c = b
\end{cases}
\]

The coefficients have a reasonable, but rather lengthy definition.
Standard Lyndon loop words

The results on this slide are joint work with Tsymbaliuk

- The algebra \hat{F} is designed so that there is a homomorphism:

$$\hat{\Phi} : U_q(Ln^+) \hookrightarrow \hat{F}, \quad e_{i,d} \mapsto [i^{(d)}], \quad \forall i \in I, d \in \mathbb{Z}$$
Standard Lyndon loop words

The results on this slide are joint work with Tsymbaliuk

• The algebra \hat{F} is designed so that there is a homomorphism:

$$\hat{\Phi} : U_q(Ln^+) \hookrightarrow \hat{F}, \quad e_i, d \mapsto [i^{(d)}], \quad \forall i \in I, d \in \mathbb{Z}$$

• Loop words $[i_1^{(d_1)} \ldots i_k^{(d_k)}]$ can be ordered lexicographically by:

$$i^{(d)} < j^{(e)} \quad \text{if} \quad (d > e) \text{ or } (d = e \text{ and } i < j)$$
The results on this slide are joint work with Tsymbaliuk

- The algebra \hat{F} is designed so that there is a homomorphism:

$$\hat{\Phi} : U_q(L\mathfrak{n}^+) \hookrightarrow \hat{F}, \quad e_i, d \mapsto [i^{(d)}], \quad \forall i \in I, d \in \mathbb{Z}$$

- Loop words $[i_1^{(d_1)} \ldots i_k^{(d_k)}]$ can be ordered lexicographically by:

$$i^{(d)} < j^{(e)} \quad \text{if} \quad \begin{cases} d > e \quad \text{or} \quad d = e \text{ and } i < j \end{cases}$$

- This yields a notion of Lyndon loop words, and we have a bijection:

$$\ell : \Delta^+ \times \mathbb{Z} \sim \rightarrow \left\{ \text{standard Lyndon loop words} \right\}$$
Standard Lyndon loop words

The results on this slide are joint work with Tsymbaliuk

- The algebra \hat{F} is designed so that there is a homomorphism:
 $$\hat{\Phi} : U_q(Ln^+) \hookrightarrow \hat{F}, \quad e_{i,d} \mapsto [i^{(d)}], \quad \forall i \in I, d \in \mathbb{Z}$$

- Loop words $[i_1^{(d_1)} \ldots i_k^{(d_k)}]$ can be ordered lexicographically by:
 $$i^{(d)} < j^{(e)} \quad \text{if} \quad (d > e) \text{ or } (d = e \text{ and } i < j)$$

- This yields a notion of Lyndon loop words, and we have a bijection:
 $$\ell : \Delta^+ \times \mathbb{Z} \sim \rightarrow \{\text{standard Lyndon loop words}\}$$

- Moreover, $\text{Im} \hat{\Phi}$ consists of linear combinations of loop words, the largest words of which are concatenations of $\{\ell(\beta, d)\}_{\beta \in \Delta^+, d \in \mathbb{Z}}$.

Andrei Neguț (joint work with Alexander Tsymbaliuk)
On the bijection ℓ

- The bijection ℓ satisfies the property:

$$\ell(\beta, d) = \left[i_1^{(d_1)} \ldots i_k^{(d_k)}\right] \Rightarrow \ell(\beta, d + \text{ht } \beta) = \left[i_1^{(d_1+1)} \ldots i_k^{(d_k+1)}\right]$$

so to prescribe ℓ, it suffices to give $\ell(\beta, d)$ for $d \in \{1, \ldots, \text{ht } \beta\}$.
On the bijection ℓ

- The bijection ℓ satisfies the property:

$$\ell(\beta, d) = \left[i_1^{(d_1)} \ldots i_k^{(d_k)} \right] \Rightarrow \ell(\beta, d + \text{ht} \beta) = \left[i_1^{(d_1+1)} \ldots i_k^{(d_k+1)} \right]$$

so to prescribe ℓ, it suffices to give $\ell(\beta, d)$ for $d \in \{1, \ldots, \text{ht} \beta\}$.

- Moreover, $\ell(\beta, d)$ only has letters $i^{(*)}$ with $* \in \left\{ \left\lfloor \frac{d}{\text{ht} \beta} \right\rfloor, \left\lceil \frac{d}{\text{ht} \beta} \right\rceil \right\}$.

Andrei Neguț (joint work with Alexander Tsymbaliuk)
Lyndon words and quantum loop groups
On the bijection ℓ

- The bijection ℓ satisfies the property:

$$\ell(\beta, d) = \left[i_1^{(d_1)} \ldots i_k^{(d_k)} \right] \implies \ell(\beta, d + \text{ht} \beta) = \left[i_1^{(d_1+1)} \ldots i_k^{(d_k+1)} \right]$$

so to prescribe ℓ, it suffices to give $\ell(\beta, d)$ for $d \in \{1, \ldots, \text{ht} \beta\}$.

- Moreover, $\ell(\beta, d)$ only has letters $i^{(*)}$ with $* \in \left\{ \left\lfloor \frac{d}{\text{ht} \beta} \right\rfloor, \left\lceil \frac{d}{\text{ht} \beta} \right\rceil \right\}$.

- For example, in type A_n we have for all $d \in \{1, \ldots, j - i + 1\}$:

$$\ell(\alpha_{ij}, d) = \left[(j - d + 1)^{(1)}(j - d)^{(0)} \ldots i^{(0)}(j - d + 2)^{(1)} \ldots j^{(1)} \right]$$
On the bijection ℓ

- The bijection ℓ satisfies the property:

$$\ell(\beta, d) = \left[i_1^{(d_1)} \ldots i_k^{(d_k)} \right] \Rightarrow \ell(\beta, d + \text{ht} \ \beta) = \left[i_1^{(d_1+1)} \ldots i_k^{(d_k+1)} \right]$$

so to prescribe ℓ, it suffices to give $\ell(\beta, d)$ for $d \in \{1, \ldots, \text{ht} \ \beta\}$.

- Moreover, $\ell(\beta, d)$ only has letters $i^{(*)}$ with $* \in \left\{ \left\lfloor \frac{d}{\text{ht} \ \beta} \right\rfloor, \left\lceil \frac{d}{\text{ht} \ \beta} \right\rceil \right\}$.

- For example, in type A_n we have for all $d \in \{1, \ldots, j - i + 1\}$:

$$\ell(\alpha_{ij}, d) = \left[(j - d + 1)^{(1)}(j - d)^{(0)} \ldots i^{(0)}(j - d + 2)^{(1)} \ldots j^{(1)} \right]$$

- **Theorem (N-T):** The order on $\Delta^+ \times \mathbb{Z}$ induced by the bijection ℓ and lexicographic order on words is convex. This allows us to define root vectors $e_{(\beta, d)} \in U_q(Ln^+)$ for all $\beta \in \Delta^+$ and $d \in \mathbb{Z}$, using the Beck-Damiani affine version of Lusztig’s root vectors $e_\beta \in U_q(n^+)$.

Andrei Neguț (joint work with Alexander Tsymbaliuk) | Lyndon words and quantum loop groups
Our definition of the loop shuffle algebra $\widehat{\mathcal{F}}$ allows us to connect it with another shuffle algebra incarnation of $U_q(L\mathfrak{n}^\perp)$, this one due to Enriquez (inspired by the elliptic algebras of Feigin-Odesskii):

$$\mathcal{A}^+ \subset \bigoplus_{(k_i)_{i \in I} \in \mathbb{N}^I} \mathbb{Q}(q)(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots)$$

symmetric in $z_{i1}, \ldots, z_{ik_i}, \forall i \in I$
Our definition of the loop shuffle algebra \hat{F} allows us to connect it with another shuffle algebra incarnation of $U_q(Ln^+)$, this one due to Enriquez (inspired by the elliptic algebras of Feigin-Odesskii):

$$\mathcal{A}^+ \subset \bigoplus_{(k_i)_{i \in I} \in \mathbb{N}^I} \mathbb{Q}(q)(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots)^{\text{symmetric in } z_{i1}, \ldots, z_{ik_i}, \forall i \in I}$$

consisting of rational functions of the form:

$$R(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots) = \frac{r(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots)}{\prod_{\text{unordered}} \prod_{1 \leq a' \leq k_i} (z_{ia} - z_{i'a'})}$$

for r a Laurent polynomial, symmetric in $z_{i1}, \ldots, z_{ik_i}, \forall i$, such that:

$$r(\ldots, z_{ia}, \ldots)\big|_{(z_{i1}, z_{i2}, \ldots, z_{i, 1-a_{ij}}) \mapsto (w, wq_{i}^{-2}, \ldots, wq_{i}^{2a_{ij}}), z_{j1} \mapsto wq_{i}^{a_{ij}}} = 0$$

for all $i \neq j$. The above vanishing of r is called a \textit{wheel condition}.

Andrei Neguț (joint work with Alexander Tsymalibuk)
Let $\zeta_{ij}(x) = \frac{x^{-q^{-(\alpha_i, \alpha_j)}}}{x-1}$. The multiplication on \mathcal{A}^+ is given by:

$$F(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots) \ast G(\ldots, z_{i1}, \ldots, z_{il_i}, \ldots) = \text{symmetrization of}$$

$$F(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots) G(\ldots, z_{i,k_i+1}, \ldots, z_{i,k_i+l_i}, \ldots) \prod_{a \leq k_i, b > k_j} \zeta_{ij} \left(\frac{Z_{ia}}{Z_{jb}} \right)$$
Let $\zeta_{ij}(x) = \frac{x - q^{-(\alpha_i, \alpha_j)}}{x - 1}$. The multiplication on A^+ is given by:

$$F(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots) \ast G(\ldots, z_{i1}, \ldots, z_{il_i}, \ldots) = \text{symmetrization of}$$

$$F(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots) G(\ldots, z_{i,k_i+1}, \ldots, z_{i,k_i+l_i}, \ldots) \prod_{a \leq k_i, b > k_j} \zeta_{ij} \left(\frac{Z_{ia}}{Z_{jb}} \right)$$

This is designed so that there is an algebra homomorphism:

$$\Upsilon: U_q(Ln^+) \longrightarrow A^+, \quad e_i, d \mapsto z_{i1}^d, \quad \forall i \in I, d \in \mathbb{Z}$$
Let $\zeta_{ij}(x) = \frac{x^{-q^{-1}(\alpha_i, \alpha_j)}}{x-1}$. The multiplication on A^+ is given by:

$$F(\ldots, z_{i1}, \ldots, z_{ik}, \ldots) \ast G(\ldots, z_{i1}, \ldots, z_{il}, \ldots) = \text{symmetrization of}$$

$$F(\ldots, z_{i1}, \ldots, z_{ik}, \ldots) G(\ldots, z_{i,k+1}, \ldots, z_{i,k+l}, \ldots) \prod_{a \leq k, b > k_j}^{i,j \in I} \zeta_{ij} \left(\frac{Z_{ia}}{Z_{jb}} \right)$$

This is designed so that there is an algebra homomorphism:

$$\Upsilon : U_q(Ln^+) \longrightarrow A^+, \quad e_{i,d} \mapsto z_{i1}^d, \quad \forall i \in I, \ d \in \mathbb{Z}$$

I showed that the map Υ is an isomorphism in affine type A, although those methods do not readily generalize to other types.
Application: the Feigin-Odesskii shuffle algebra 2

- Let $\zeta_{ij}(x) = \frac{x - q^{-(\alpha_i, \alpha_j)}}{x - 1}$. The multiplication on \mathcal{A}^+ is given by:

$$F(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots) \ast G(\ldots, z_{i1}, \ldots, z_{il_i}, \ldots) = \text{symmetrization of}$$

$$F(\ldots, z_{i1}, \ldots, z_{ik_i}, \ldots) G(\ldots, z_{i, k_i+1}, \ldots, z_{i, k_i+l_i}, \ldots) \prod_{a \leq k_i, b > k_j} \zeta_{ij} \left(\frac{Z_{ia}}{Z_{jb}} \right)$$

- This is designed so that there is an algebra homomorphism:

$$\Upsilon : U_q(Ln^+) \longrightarrow \mathcal{A}^+, \quad e_i, d \mapsto z_{i1}^d, \quad \forall i \in I, d \in \mathbb{Z}$$

- I showed that the map Υ is an isomorphism in affine type A, although those methods do not readily generalize to other types.

- Varagnolo-Vasserott recently proved a result that implies the map Υ is injective in all finite types. So what about surjectivity?
• **Theorem (N-T)** The map Υ is surjective, hence an isomorphism.
• **Theorem (N-T)** The map Υ is surjective, hence an isomorphism.

• As a technical step, we relate the shuffle algebras \hat{F} and A^+. To this end, we show that there exists an algebra homomorphism:

$$\iota : A^+ \hookrightarrow \hat{F}$$

sending a rational function $R \in A^+$ to:

$$\sum_{i_1, \ldots, i_k \in I} \left[\prod_{i=1}^{k} i^{(d_i)} \right] \int_{|z_1| \ll \cdots \ll |z_k|} \frac{R(z_1, \ldots, z_k)z_1^{-d_1} \cdots z_k^{-d_k}}{\prod_{1 \leq a < b \leq k} \zeta_{i_ai_b}(z_a/z_b)} \prod_{a=1}^{k} \frac{dz_a}{2\pi iz_a}$$
Theorem (N-T) The map Υ is surjective, hence an isomorphism.

As a technical step, we relate the shuffle algebras \hat{F} and A^+. To this end, we show that there exists an algebra homomorphism:

$$\iota : A^+ \to \hat{F}$$

sending a rational function $R \in A^+$ to:

$$\sum_{i_1, \ldots, i_k \in \Gamma} \binom{d_1}{i_1} \cdots \binom{d_k}{i_k} \int_{|z_1| \ll \cdots \ll |z_k|} \frac{R(z_1, \ldots, z_k)z_1^{-d_1} \cdots z_k^{-d_k}}{\prod_{1 \leq a < b \leq k} \zeta_{i_ia_ib}(z_a/z_b)} \prod_{a=1}^{k} \frac{dz_a}{2\pi i z_a}$$

Moreover, the following compositions are equal:

$$U_q(Ln^+) \xrightarrow{\Upsilon} A^+ \xrightarrow{\iota} \hat{F}$$

which connects the two shuffle algebra realizations of $U_q(Ln^+)$.

Andrei Neguț (joint work with Alexander Tsymbaliuk)
Lyndon words and quantum loop groups