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e a Statement
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Goal of localization thm relate repin
theory of U to thegeometry of GIB
XEg u sheaf of X p twisteddiffer l
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fer X pget usual Do for tent lattice
DO in Qais X pD
DYB is a sheaf of filteredalgebras
on G1B W grDT1B the T KIB

R T GIB GIB
Feet Beilinson Bernstein

TIDYB U Q H CAB D B so tf is o

adjointglobalsection localization
functors f CehDiy U ModiLecy

DIB q
Q Rf D Gh DIN ID CU mod Lbcx il

It



Theorem Beileinson Bernstein

i f is exact ca K a RG is t exact
1 is dominant 4 I of TL at root a

in Rf is equivalence
1 is regular KT du to A root d

iii f is equivalence
1 is regular dominant

Goal of this talk sketch aproofofmostof
this theorem that is way more complicated
than originalproof s but works in

greatergenerality ofquantizations of
conical symplectic resolutions
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1 2 duantizations of conical symplectic
resolutions

Definition A conical symplic resolution
is a smooth variety X w symplecticform
w En X s t

3 dealt w thw f te e
a Efx is fingen du Y Spec ECM

p X
y

p is projective birational
hence

resolution of singularities
10 contracts Y to apoint

Example X T KIB Y Np is Springer
resolution I acts byfiberwise dilations
More examples parabolic Sledowyvarieties

Nakajimaquiver varieties hypertonic var's
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ICHI is agraded Poisson algebra so it
makes sense to speak about its filtered
quantizations
Also can speak about filteredquantizations of Q Those are classifiedby
H2 X s X quantization Dy

Example X T CAB H lX E g
D microlocalization of Dtp

Hi TIDY is a quantization of Ny
Hill Dx o

Ty Gh Dx Hi mod Loc

Rfi D Koh DN ID OKmod LLoc
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Question for which I
is G exact

a is Rg equivalence
a is f equivalence
Approximate conjecture theres a finite
collection of hyperplanes in HYX E
s t Rf is equivalence
Ict U these hyperplanes
K is equivalence

Htample classes n U thesehyperplanes p
It is possible to describe hyperplanes in
all examples Techniques of thisproject
allow to prove the conjecture in a number

ofexamples incl for Nakajimaquiver
varieties offinite affine type A
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2 Ideas of theproof
2 1 Enlarge Un in classic case AT HB
or in thegeneral case to an algebra

UI w idempotent ee I s t
U I e the w e UJmod U mod
We have a left exact functor

Fj CohlDIB It mod s t

lil G se I
tiil RK D CANDY DIDYUTmod ft
We show that for 1 regular dominant
Ty is equivalence G is exact

It arises as quantization of endomorphism
algebra of a tiltinggenerator T en X

iii For lil need 5 to have a line bundle
summand For T GIB existence of T
fellows from BM RI



2 2 Use categories 0
At this point we know that
1 is regular dominant is exact

goLoc id.ee mop h isquotient
in

functor GhCDsB U mod
Need to show Ty is equivalence first

we do it on categories 0
x xt Tgeneric Of DardoCehDub

0 lU l U med w

G Q DEB Q CU l

To show this restriction is equivalence
it's enough to show the categories 0
have the same number of simples

Irr OfCD B I WI t I

Irr 0 Ux IWl t regular 1

8T easy



Forgeneral symplic resolution X can talk
about categories if there's Hamiltonian
torus TAX w I XT ka fer X T HB
xt w

Generic J E T categories 9101,904,1
If G is exact then q O CDN 0,04
and G is equivalence between cat Q

Irr Q Dx Irr 904,1
IX't1

We can analyze Il K is exact

essentially Irr 904,1 1 43
but this is much harder and more technical
than for 1 GIB
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2 3 From categories 0 to all modules
X

For T GIB to show Ty OHDcB HUH
Ty CohlDIB Uy mod

one uses Du flo's thm everyprimitive
ideal f annihilator of a simple module in
Ux is the annihilator of a simple in QQ
Daf lo s thm is not available ingen e
TA X w fin manyfixedpts but there
are sometimes other tools E

g for
finitelaffine type A Nakajima quiver vans
all slices are again of that type
one can use some kind of induction

Below we elaborate on 2.1 2 2
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3 huantizedendomorphism of tiltinggenerators
3 1 Tilting generators
X is conical symplectic resolution leg T GIB
Definition A tiltinggenerator on X is
a vector bundle T s t

H Ext CT T o f i a
tin A End 5 hasfinite homological

dimension

corollary Rf Tox D KohlxD Ahmed

Rem Can assume T is Q equivariant
A isgraded

lit can uniquely deform 9 to a right
D module Ty

En Tx filtereddeformation of A

q
51507 CehDx mod



3 2 Property
We will need a certain condition on T
G T has direct summand ofme 1

By twisting T w line bundle can assume

this summand is idempotent e s t
e e Ax

Geek
In particular if E is equivalence f isexact
Here are examples when G holds for some
choices of J
1 X T G B BezrukarnikovMirkovic Ramynin

2 X is a symplectic resolution ofsymplectic
quotient singularity VII Bezrukavniker
Kaledin For I can choose a Procesi

bundle A End T ICED f I is

qy symplectic
reflection algebra



3 X is a smooth version of the Coulomb
branch of a gauge theory Webster These
include finite1affine type A Nakajima
quiver varieties

Remark These tiltinggenerators areconstructedstarting from quantizations in
characteristic p

3 3 Localization for
Rf Jex Dt Gh x DYEmod
12515,0 I KohDN 0451g mod

fits equivalence IT IT are MoritaequivalentF is equivalence
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Theoremt.LIL 21 Assume forsimplicity AT KIB
Let 1 be regular dominant Then is

an equivalence I can begeneralized as long as
8 holds plus some technicalities
Ideas ofproof
1 Identify a locus where G isguaranteed
to be equivalence

a deep enough inside the dominant
chamber general reasons

161 let be a hyperplane intersecting
the dominant chamber andparallel to its wall
deep enough in their intersection from
reducing to the case of T pi
This works as statedfor integral 1

but can begeneralized by dropping non
essential walls



Example rk 2 integral 1

eateries
n Yu i i

ooo

idont knowyet if hyperplane from161
F is equivalence

2 To handle themissingpoints ingreen
use translation bimodules

UI EMI UI Gimod X cA hut lattice
construction approximate the actual is
more technical
In d c Picklequantization Dg to

D D bimodule

Ii ask.sk Dx.x0oFx
1ST fordominant x



Role translation bimodulesplay
Vig D turned But mod
Suppose Ty is an equivalence TFAE

Ta is equivalence

Iq is Morita equiv bimodule

for weights X I have homomorphism

Kix him I x It xixa
Under various conditions on XX X this is
an isomorphism Playing with these
conditions theprevious two bullets
leads to aproof of the theorem

D
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I
4 Categories 0
4.1 Cartan subquotients
X conical symplectic resolution TAX
Hamiltonian torus action w finitely
many fixedpoints
p HYX.cl parameter space for

quantizations universal quantizations

Dq of X Stpof NH Nfl algebras with
Stp ClDp D Dp Ex Ap acp 9

Pick generic t E T gradings

Stp Hip Dp Dip HE Di

Definition Cartan subquotients
G ftp.istpi.GCDpl GM
TH GCDN



Properties Dp G Dg are sheaves on

XT finite set In fact
G Dp lap

M
G Lg If't

have natural homomorphism

G I GCD I inducedby Hp HDpl
Cd C Hp acp Ex

Example X T WB f b Op Dealt
where 2 Glu GIB

Stp El'd I g
w U G t.GG g wClgIT

lGlBT sWo wrscw g g gwgX XWHY

The homomorphism

Stp G Dp ICES I
W
is ftwEw

Fol



I
42 Categories 0

Definition Category QQ consists of fin
generatedG modules whereHE acts

locally nilpotently
Lemma For a finger d module M TFAE
1 ME CAN

2 Madmits a weakly equivariantstrive
is supported on contracting loans for

J in Y
Definition Category Of Dx is the full
subcategory in Ceh Dy consisting of all
objects that admit a 7101 equivariant
structure are supported on contracting
locus for 8 in X
Example fer t dominant Oj Dhs

Joy
U equivariant D modules3



Note that G Loc restrict to
QCD I 20 Cq

Lemma description ofsimples
Irr Dy Is XT f Irr GCDH
Irr 0,047 Irr GCK

can beshown to have him soo

43 Q regularparameters localization
Definition duantizationparameter X is

Q regular if GCM G DH
Zariski open locus in HYX E f

Example for A T HB Q regular regular

Observation If f is exact Glock id
G 6hCD I AimedQQCD 91St
are Serre quotient functors



So if f is exact X is 0 regular then

fi QiDp OH Serrequotient
functor between categories w same finite
number of simples
Example X T GIB X is regular 0 regular
dominant so f is exact 6g Theorem 1

Then Fi Q ID'sB 014,1

The case ofgeneral X is handledusing

Theorem 2 II L2MLet heHYX E best f is
exact Then in a neighborhoodof X Cin say
usual topology the complement to locus
of Q regularparameters haspure codim 1
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