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3 Fourier based fast methods for Ordinary Differential Equations
One convenient set of eigenfunctions for the Laplacian operator ∆ = ∇ · ∇ in Rm are the plane waves12:

∆ ei2πξ·x︸ ︷︷ ︸ = − (2π|ξ|)2 ei2πξ·x

plane wave

Consider the spectral decomposition of a matrix L, which introduces the transformation matrix P satis-
fying the following relation:

LP = PΛ.

The diagonal matrix Λ contains the eigenvalues of the matrix L. One important property of diagonalizable
matrices is that any function g applied to the matrix L is equivalently applied to the eigenvalues λ under
spectral decomposition:

g(L) = Pg(λ)P−1.

In order to solve ODEs, we are often interested in the the inverse operation. The inverse of L can be
computed under spectral decomposition according to the following:

L−1 = Pdiag(λ−1)P−1.

Where the transformation matrix P is constructed using plane waves as the underlying eigenfunctions,
P−1 is the Fourier transform:

f̂(ξ) =

ˆ
e−i2πξ·x f(x) dx,

and P is the inverse Fourier transform3

f(x) =

ˆ
ei2πξ·x f̂(ξ) dξ.

Therefore, the inverse of the continuous Laplacian operator is the integral equation:

∆−1f(x) =

ˆ
ei2πξ·x

−1

4π2|ξ|2
f̂(ξ) dξ.

As illustrated above, diagonalization via fast spectral decomposition is the core philosophy behind Fourier
based fast methods. In practice, there are additional restrictions associated with the functions f and f̂ ,
associated with the solvability of the Poisson problem.

1Technically, plane waves are generalized eigenfunctions because they are of infinite energy
2Other eigenfunctions of ∆ also exist, e.g. Bessel functions, spherical harmonics. Each set of eigenfunctions provides a

spectral decomposition of ∆.
3Aside: if L = L∗ where ∗ denotes the Hermitian adjoint (transpose + complex conjugate), the matrix P is unitary:

P−1 = P ∗.

1



3.1 The Discretized Poisson Problem
Consider the simple ODE form (i.e. one-dimensional form) of Poisson’s equation:

− d2

dx2
u = f, x ∈ [0, 1].

The equation is usually complemented with one of three common boundary conditions:

1. Periodic boundary condition, where u(0) = u(1).

2. Dirichlet boundary condition, where u(0) = a and u(1) = b.

3. Neumann boundary condition, where u′(0) = a and u′(1) = b.

In the following section we will discretize the interval of x into N points, thereby defining the discretized xj :

xj = jh, h =
1

N

0 1
h h h

x0 x1 x2 xN−1 xN

Let us define uj ≈ u(xj) in order to approximate the solution, and the discretized Laplacian matrix
∆h → −d2/dx2, where:

(∆hu)j =
2uj − uj+1 − uj−1

h2
.

Note that the local truncation error (LTE)4 of this approximation is O(h2). The properties of the Laplacian
matrix are greatly affected by the associated boundary conditions!

1. Periodic boundary conditions. The periodic relation u0 = uN is substituted into ∆h, giving the
following N ×N discretized Laplacian matrix for the nodes j = 0 . . . N − 1:

∆per
h =

1

h2



2 −1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 −1 2


.

The superscript “per” emphasizes the fact that this discretized Laplacian matrix is specific only to the periodic
problem. ∆per

h is symmetric, real, Toeplitz, positive semi-definite, but most importantly it is Circulant. A
circulant matrix is where columns are cyclic shifts of one another. Circulant matrices are diagonalized by
the DFT.

2. Dirichlet boundary conditions. Each boundary condition u0 = a, uN = b is substituted, giving
the following (N − 1)× (N − 1) discretized Laplacian matrix for the nodes j = 1 . . . N − 1:

∆D
h =

1

h2



2 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 2


.

The matrix is no longer circulant, but it is now tridiagonal.
4For an explanation of LTE and its link to the global error, see Randall LeVeque’s book on the finite differences method.
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3. Neumann boundary conditions. The second-order accurate boundary conditions are u0 =
u−1, uN = uN+1, where u−1 and uN are ficticious points introduced by extend the grid the distance
of h in each direction. Substituting the second-order accurate central differences approximation:

d

dx
u0 ≈

u1 − u−1
2h

,
d

dx
uN ≈

uN+1 − uN−1
2h

,

into the discretized Laplacian eliminates the ghost points and yields the following (N + 1)× (N + 1) matrix
for the nodes j = 0 . . . N :

∆D
h =

1

h2


2 −2
−1 2 −1

. . . . . . . . .
−1 2 −1

−2 2


The matrix is no longer Toeplitz, no longer symmetric, and it no longer makes sense to talk about

positive-definiteness.

3.2 Diagonalization of the Periodic Problem
As described before, the one-dimensional plane wave uj : j = 0 . . . N − 1,

uj = ei2πjk/N = wjk, w = ei2π/N ,

is an eigenvector of the discretized Laplacian ∆per
h . It is easy to demonstrate this by applying the discretized

Laplacian to uj : (
h2∆per

h u
)
j

= 2wjk − w(j−1)k − w(j+1)k

= wjk(2− w−k − wk)

= wjk(2− 2 cos
2πk

N
),

since wjk = uj re-emerges in the solution. The associated eigenvalue λk for uj is:

λk = h−2(2− 2 cos
2πk

N
).

As long as k is discrete, w0 = wNk = 1. The largest eigenvalue is:

λN/2 =
4

h2
,

and further eigenvalues repeat according to λN−k = λk. This means the dimension of eigenspace is 2.
Expanding out the eigenvector system, we obtain the IFT and DFT matrices:

Fjk =
1√
N
wjk, F−1jk =

1√
N
wjk.

Because of this we can write:
∆per
h = FΛF−1

where
Λ = diag(h−2(2− 2 cos

2πk

N
)).

Substituting this relation into the original Poisson’s equation yields:
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F ∗∆h,peru = F ∗f

ΛF ∗u = F ∗f

λkûk = f̂k.

Therefore, solving the periodic Poisson equation for uj can be performed by obtaining ûk = λ−1k f̂k and
inverting ûk with the inverse Fourier transform. However, consider the case when k = 0:

λ0û0 = f̂0.

The eigenvalue λ0 is zero, and the system has no solutions if f̂0 is anything other zero. This is the
compatibility condition for the periodic Poisson problem. If f̂0 = 0, then û0 can be anything, but we set it
to zero in order to obtain the least squares solution. This operation is then equivalent to the pseudo-inverse
operation †, which is to invert everything in the range space of ∆h,per and to set everything in the null space5
to the least square solution of zero.

The fast Fourier algorithm for the periodic Poisson problem is the following:

1. Take the FFT,

2. Divide by λk for all non-zero eigenvalues, set to zero otherwise. Gives ûk.

3. Take the IFFT gives back uk.

3.3 Diagonalization of the Dirichlet Problem
Under the Dirichlet boundary conditions u(0) = a, u(1) = b, the discretized Laplacian ∆D

h is the following:

∆D
h u = f, ∆D

h =
1

h2


2 −1
−1

. . .
−1

−1 2


The eigenvectors are sines of the plane waves (and not the cosines)6. The jth component of the k-th

eigenvector is

vk(j) =

√
2

N
sin(

πjk

N
),

and the associated eigenvalues are:

λk =
1

h2
(2− 2 cos

πk

N
)

where k = 1 . . . N − 1. Because k goes from 1 . . . k, we have no singular eigenvalue. Instead of going through
the cos twice, it only goes through it once. Eigenvalues are all positive, so ∆D

h is positive definite.
Spectral decomposition

∆D
h = SΛS∗

where S is the inverse discrete sine transform and S∗is the discrete sine transform:

Sjk =

√
2

N
sin(

πjk

N
)

S is its own transpose, its own inverse. This particular DST is known as DST-I. Fast unitary DST-I in
O(N logN) steps:

1. Do an odd extension, include the zeros on either side.

2. Apply length 2N FFT to the result.

3. Restrict ûk to k = 1, . . . , N − 1, and divide by −i.
5[1, 1, · · · , 1] spans the null space of ∆h,per
6The sines are a complete set, so they will represent all functions excluding boundary values, even the cosine function.
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3.4 Diagonalization of the Neumann Problem
Here, the sum of columns is zero, and [1, . . . , 1]T spans the null space. The eigenvectors are all cosines:

vk(j) = ck cos(
πjk

N
),

and the eigenvalues are:

λk =
1

h2
(2− 2 cos

πk

N
).

Therefore we can write:

∆h,N = CΛC−1

where C is the inverse DCT (type I) and C−1 is the transpose. Note that C−1 6= C∗.
Fast algorithm for type-I DCT:

• Do an even extension from 0 . . . N to 0 . . . 2N − 1.

• Perform length 2N FFT

• Restrict ûk to k = 0 . . . N and divide by 2.

You can find a paper detailing everything on DST and DCT by Strang, SIAM reviews, 41-1,
pp125-147 (1999)

3.5 Two-dimensional Poisson Equation on a Square
Now consider the two-dimensional, partial differential equations problem of the Poisson equation on a square:

−∆u = f, x ∈ Ω = [0, 1]2

u = g, x ∈ ∂Ω

Notation: N is the total number of grid points, n is the number of intervals along each
direction. For the 2D Dirichlet problem, N = (n− 1)2.

The discretized Laplacian is the following:

(−∆h,Du)j1,j2 =
1

h2
[4uj1,j2 − uj1+1,j2 − uj1−1,j2 − uj1,j2+1 − uj1,j2−1]

This is a second-order accurate approximation, meaning that the operator has a second order local
trunction error. The variables must be placed in a vector with some rational order. If raster scan ordering
is used, then the following structure will be seen in the matrix:

−∆h,D =
1

h2



T −I
−I T −I

−I T
. . .

. . . . . . −I
−I T

 ∈ R(n−1)2×(n−1)2

where I is the identity matrix and T is the following matrix:

T =



4 −1
−1 4 −1

−1 4
. . .

. . . . . . −1
−1 4

 ∈ R(n−1)×(n−1)
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Notice that if we define K to be the 1D discretized Laplacian:

K =



2 −1
−1 2 −1

−1 2
. . .

. . . . . . −1
−1 2

 ∈ R(n−1)×(n−1)

Then we can write the 2D discretized Laplacian is:

−∆h,D = K ⊗ I + I ⊗K

where ⊗ is the Kronecker product, defined as the following:

v ⊗ w =


v1w
v2w
v3w
...

vn−1w


Lemma: (A⊗B)(v ⊗ w) = (Av)⊗ (Bw). Remembering that the eigenvectors of the K are such that:

Kvk = λkvk

we can write:

(K ⊗ I + I ⊗K)(vk1 ⊗ vk2) = (K ⊗ I)(vk1 ⊗ vk2) + (I ⊗K)(vk1 ⊗ vk2)

= λk1vk1 ⊗ vk2 + λk2vk1 ⊗ vk2
= (λk1 + λk2)(vk1 ⊗ vk2)

Thus as shown, the eigenvalues of the 2D Laplacian is simply the sum of the eigenvalues of the 1D
case. Since K is positive definite, the 2D −∆h,D must be stable. This also shows that the 2D Laplacian is
diagonalized by the 2D DST S−1 and 2D IDST S :

−∆h,D = SΛS−1

−∆−1h,D = SΛ−1S−1

For a fast algorithm:

1. Expand f into < f, vk1⊗ vk2 >. Do a 1D DST of each row, and then a 1D DST of each column. Each
dimensional DST is O(n× n log n), meaning that the overall algorithm is O(n2 log n) = O(N logN).

2. Multiply by diag( 1
λk1+λk2

). One eigenvalue per point, this is also O(n2) = O(N)

3. Inverse DST is just the DST.

4 Spectral methods
So far we have taken the derivatives by using the eigenvalues associated with the discretized Laplacian
operator. However, we can do much better, since we can take derivatives of the eigenfunctions directly:

vk(x) = sin(πkx)

− ∂2

∂x2
vk(x) = π2k2 sin(πkx)
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The continuous eigenvalues are therefore:

λk,con = π2k2

Compare with the discretized operator:

λk,disc =
1

h2
(2− 2 cos(

πk

n
))

These functions do not look alike until they are plotted. Using Taylor expansions, we find that the agreement
between the two functions is second order.

k

λk,con

λk,disc

k = n/2

These results show that where a fast method expands a problem system to sines and cosines, then spectral
accuracy can be obtained for free. We would get convergence at faster than polynomial rates, which is very
fast indeed.

Aside: Use of the FFT for Convolutions
Given two discrete signals fj and gj where j = 0 . . . n− 1, the cyclic convolution is the following:

(f ∗ g)j =

n−1∑
j′=0

fj−j′gj′

when we write out the expansion:

f ∗ g =


f0 fn−1 · · · f1

f1 f0
...

...
. . .

...
fn−1 · · · · · · f0

 g
The convolution matrix is circulant and can be diagonalized by the FFT.
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