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Preface

In its current form the class 18.336, Computational methods for partial dif-
ferential equations, covers finite differences, spectral methods, and finite vol-
umes.

Great books are:

• For finite differences, [2].

• For spectral methods, [3].

• For finite volumes, [1].

(List main classes of methods, their pros and cons).

(List main classes of equations, and the main difficulties encountered in
solving them.)
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Chapter 1

Finite differences,
time-independent problems

1.1 Schemes on regular grids

Assume a Cartesian grid xj = jh, with h the grid spacing (also denoted ∆x).
If a smooth function u(x) is only known through its samples uj = u(xj),
the simplest approximations to the first derivative u′(xj) are the following
difference formulas:

• Forward difference

D+uj =
uj+1 − uj

h
.

• Backward difference

D−uj =
uj − uj−1

h
.

• Centered difference

Dcuj =
uj+1 − uj−1

2h
.

Each of these approximations consists in replacing the slope of the tangent to
the graph of u(x) a x, by the slope of some secant supported by neighboring
points. Finite refers to the fact that the stencil (the set of points where the
function evaluation is used) is usually rather compact, at most a few points.

The accuracy of a difference formula depends on how the error scales as
a function of h. For instance, if the function u is smooth enough, it holds
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that
|D+uj − u′(xj)| ≤ C h,

for some number C independent of h (a “constant”). The same inequality
holds for the backward difference, possibly with a different constant. As for
the centered difference we have

|Dcuj − u′(xj)| ≤ C h2,

which is much better when the grid is fine, i.e. as h → 0. It was also clear
intuitively that the centered difference would be better, by symmetry.

When the rate of convergence of the error as a function of the grid spacing
h scales like hp, we say that the method has order of accuracy p, or is of order
p. Hence D± is only first-order accurate, while Dc is a second-order method.
We also write that the error is O(hp) (big-O hp), or in a formula as

D+uj − u′(xj) = O(h).

The study of truncation errors is done via Taylor series, and requires that
the function u(x) possesses sufficiently many derivatives (one is not enough).
For instance, to study the order of accuracy of Dc, write (without loss of
generality xj = 0)

u(h) = u(0) + hu′(0) +
h2

2
u′′(0) +

h3

6
u′′′(0) + . . .

u(−h) = u(0)− hu′(0) +
h2

2
u′′(0)− h3

6
u′′′(0) + . . .

subtract the two equations and get

u(h)− u(−h)

2h
= u′(0) +

h2

6
u′′′(0) + . . .

To leading order, the error is h2

6
u′′′(0) = O(h2). The proportionality constant

involves the third derivative of h, so it is important that the function is
sufficiently many times differentiable (here 3 times). You shouldn’t worry
about the three dots hiding the higher-order terms: you can terminate the
Taylor series above via the remainder h3

6
u′′′(ξ) for some ξ ∈ [0, h], so what
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matters is that the function has a third derivative over the whole subinterval
between two grid points.

Watch out: order of accuracy usually loses its meaning when the function
to be differentiated is not smooth. In practice, the error indeed does not scale
as promised by Taylor expansions when the function lacks smoothness. So
pushing the order to be large is not the solution to every problem.

For reference, if you need a third-order formula for the first derivative,
here it is:

D+−−uj =
2uj+1 + 3uj − 6uj−1 + uj−2

6h
.

Approximations to the second derivative can be obtained by second dif-
ferences, notably the three-point rule

Dc,2uj =
uj+1 − 2uj + uj−1

h2
.

It is easy to check that this centered second difference has order of accuracy
two. It turns out that Dc,2 = D+D− = D−D+, but this is not the same thing
as D2

c (why?).

Difference formulas can be determined by the method of undetermined
coefficients: to determine D+−− above you would write

D+−−uj =
auj+1 + buj + cuj−1 + duj−2

h
,

then plug in the Taylor expansions, make sure the first derivative comes out
with coefficient 1, and equate as many coefficients of other low powers of h
to zero. as possible. This will give rise to a small linear system that needs
to be solved. This method is neither fun nor efficient to compute difference
formulas!

Another interesting method – which has far-reaching applications to spec-
tral methods – is to build an interpolant and to differentiate the latter. But
for compact finite differences schemes it is easiest to look up existing schemes.
Most of the useful ones are tabulated.

If you need to come up with a new formula yourself, the calculus of finite
difference operators is an elegant way to do it. We start from the observation



8CHAPTER 1. FINITE DIFFERENCES, TIME-INDEPENDENT PROBLEMS

that a Taylor formula is in general reminiscent of the Taylor series of the
exponential, even when the function is not the exponential. Put d/dx = D
for simplicity of notations:

u(h) = u(0) + hu′(0) +
h2

2
u′′(0) +

h3

6
u′′′(0) + . . .

=

[
I + hD +

1

2
(hD)2 +

1

3!
(hD)3 + . . .

]
u(0)

=: exp(hD)u(0).

In the last we took the freedom of taking the exponential of an operator, like
you would take the exponential of a matrix; the definition of the exponential
of an operator is precisely the Taylor series itself. When we write Au(x) for
an operator A, we mean to apply A to u, and only then evaluate the answer
at x.

BEGIN PARENTHESIS. This notion of operator exponential also comes
up when solving time-dependent problems. If there is an operator A such
that ut = Au (where the subscript t denotes time differentiation), then the
solution is u = exp(tA)u0, where u0 is the initial condition. You may have
seen this being done for ODE, where A is a matrix. In the context of PDE,
the operator A (the generator) usually contains the boundary conditions. In
the special case of A = D = ∂

∂x
, we say that the derivative is the generator

of translations,

ut(x, t) =
∂

∂x
u(x, t), u(x, 0) = u0(x)

⇔

u(x, t) = exp(t
∂

∂x
)u0(x) = u0(x+ t).

Incidentally, we have just solved a one-way wave equation on the real line.
END PARENTHESIS.

So u(h) = exp(hD)u(0), and the forward difference D+ (say) itself pro-
vides a similar formula. D+ can be defined to act on the whole function u
(and not simply on its samples) as

D+u(x) =
u(x+ h)− u(x)

h
.
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As a consequence,
u(h) = (1 + hD+)u(0),

so we conclude
exp(hD) = 1 + hD+.

A leap of faith leads us to write1

hD = log(1 + hD+).

We can now return to a Taylor series, which is actually the definition of the
logarithm of an operator. Since h is small, and putting convergence questions
aside, it is sensible to write

hD = log(1 + hD+) = hD+ −
(hD+)2

2
+

(hD+)3

3
− (hD+)4

4
+ . . .

By truncating the right-hand side at different places, we get different approx-
imations of hD. The resulting order of accuracy is precisely the order of the
highest power of h kept in the partial Taylor series. The forward difference
formula is recovered to first order. To second order,

u′(0) ' D+u(0)− h

2
D2

+u(0)

=
u(h)− u(0)

h
− h

2

D+u(h)−D+u(0)

h

=
u(h)− u(0)

h
+

1

2

(
u(2h)− u(h)

h
− u(h)− u(0)

h

)
=
−1

2
u(2h) + 2u(h)− 3

2
u(0)

h
.

This is a second-order one-sided formula for the first derivative. It is partic-
ularly useful at the left boundary of an interval (or a rectangle in 2D, etc.),
when the sample u(−h) is not available, but where a first-order formula isn’t
accurate enough. Low order at the boundaries almost always offsets the
advantage of being high order inside!

The calculus of operators can be pushed further. For instance, define the
half-width centered difference

δu(x) = u(x+
h

2
)− u(x− h

2
).

1This would be justified by inverting the Taylor series, which is sometimes done in
advanced calculus classes. Look up the Lagrange-Brmann formula if you’re interested.
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This operation is not permitted when only the samples at x+nh are available
for n integer, but certain combinations of it are useful, like

δ2u = h2Dc,2u.

This δ can also be used in place of D+ in the exp - log argument above. We
have

δu = exp(hD/2)u− exp(−hD/2)u = 2 sinh(hD/2)u,

so, by inversion,
hD

2
= sinh−1

(
δ

2

)
.

The Taylor series of the “area hyperbolic sine” can be used to give

hD

2
= δ − δ3

24
+

3δ5

640
− 5δ7

7168
+ . . .

This is not a useful formula per se, since the odd powers of δ don’t fall on
the grid. However, squaring the expression gives

(hD)2 = δ2 − δ4

12
+
δ6

90
− δ8

560
+ . . .

which is a suitable expansion of the second derivative. The first term recovers
h2Dc,2, and by truncating elsewhere we can obtain higher-order formulas.

Generalizations of the centered difference formula for the first-derivative
make a good homework question.

1.2 A one-dimensional boundary value prob-

lem

Consider the heat equation, which links a temperature profile u(x, t) to a
heat source/sink f(x, t). In the interval [0, 1]t is written

ut(x, t) = (κ(x)ux)x + f(x, t), x ∈ [0, 1],

where κ(x) is the local heat conductivity, and adequate boundary conditions
such as u(0) = α, u(1) = β need to be enforced. In what follows we’ll assume
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κ(x) = 1. Further assuming that f does not depend on time, the temperature
will reach an equilibrium (in the “steady state”) to a profile u(x) solution of

−u′′(x) = f(x), u(0) = α, u(1) = β.

This is the simplest boundary-value problem, and also the simplest ellip-
tic equation. Of course it has an explicit solution, but the properties of
its discretization must be understood before anything else involving finite
differences.

On a Cartesian grid xj = jh with x0 = 0, xn+1 = 1 and h = 1/(n + 1),
we have n interior unknowns uj with 1 ≤ j ≤ n. Using the three-point rule,
we get

−Uj+1 + 2Uj − Uj−1

h2
= f(xj), U0 = α, Un+1 = β.

The numbers U1, . . . , Un are therefore the solution u of the linear system
KU = F , where F is the vector of samples f(xj), and K is the all-important
matrix (when n = 4)

K =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 .

However large n may be, the linear system is best solved by Gaussian elimi-
nation. It provides a factorization of K as LM with L lower triangular and
M upper triangular. The complexity of this factorization is an optimal O(n)
, because the factors L and M are both bidiagonal. Gaussian elimination
preserves the sparsity pattern of K in the one-dimensional case. Once L
and M are available, the systems Lx = F and MU = x are solved by for-
ward substitution and back substitution respectively. We will return to the
higher-dimensional case in the sequel.

How good of an approximation to the true solution u is provided by the
solution uj to this system? We are interested in finding a bound on the
difference ej = Uj − u(xj) which will depend on the choice of grid spacing
h. Call E = U − u the vector of errors Ej. In what follows we will need the
2-norm of a vector such as E:

‖E‖ =

[
h

n∑
j=1

|Ej|2
]1/2

.
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The place of h is important in this definition: it ensures that ‖E‖ has the
same order of magnitude as its entries, when they are comparable. Fur-
thermore, sequences of values indexed by j only have a life as discretized
versions of continuous quantities. With the convention above we recognize a
quadrature formula for the continuous L2 norm.

The maximum (or uniform, `∞) norm is also useful:

‖E‖∞ = max
j
|Ej|.

Two aspects will play a role in quantifying ‖E‖:

• Consistency, or what is the order of the numerical scheme; and

• Stability, or how do consistency errors at the level of the equation trans-
fer to actual errors at the level of its solution.

We will see that, together, consistency and stability guarantee convergence.
This will be a recurring theme in the study of time-dependent problems as
well.

1.3 Convergence theory

1.3.1 Consistency

In short, consistency is the idea that the FD scheme works with some order
of accuracy for every term in a PDE, including at the boundaries.

The convergence question is to quantify the extent to which the numerical
solution Uj does not provide the right values for the exact equation. Estab-
lishing consistency is a first step in that direction. It answers the simpler
question of quantifying the extent to which the samples u(xj) do not provide
the right values for the numerical scheme.

Consistency is usually easy to establish if we have smoothness assump-
tions on the solution. For the example in the previous section, if we know
u ∈ C4, then

−u(xj+1) + 2u(xj)− u(xj−1)

h2
− f(xj) = −u′′(xj) +O(h2)− f(xj) = O(h2),
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where the coefficient of h2 involves u(4). Consistency is the property that the
O(h2) remainder above, called local truncation error, tends to zero as the
mesh is refined (h→ 0). The same property should be true of the one-sided
schemes at the boundary.

More generally, we deal with linear systems AhUh = F h, where the su-
perscript h is used to remind that the vectors and matrices have sizes that
depend on the grid spacing h. We then have the following definition.

Definition 1. Suppose a finite difference scheme for some boundary-value
problem gives a sequence of linear system AhUh = F h. Denote by τh the local
truncation error,

τh = Ahuh − F h.

The scheme is said to be consistent if ‖τh‖ → 0 as h→ 0.

1.3.2 Stability

A small local truncation error τh does not necessarily imply a small (actual)
error E. The relationship between the two quantities is obtained as follows.

AhUh = F h,

Ahuh = F h + τh.

Subtract to obtain
AhE = −τh.

Hence to obtain E from τh, it suffices to solve the same discretized BVP as
was originally given. This gives

E = −(Ah)−1τh.

In order to guarantee that E and τh be of the same order of magnitude, it
suffices to control the corresponding (induced) matrix norm of (Ah)−1. The
`2 matrix norm of a matrix M is defined as

‖M‖ = max
x 6=0

‖Mx‖
‖x‖

.

This norm is used in the following definition.
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Definition 2. Suppose a finite difference scheme for some boundary-value
problem gives a sequence of linear system AhUh = F h. The scheme is said
to be stable if there exist h∗ > 0 and C > 0 such that, for all 0 < h < h∗,

‖(Ah)−1‖ ≤ C.

So we see that a scheme is convergent (‖E‖ → 0) if we can show that
it is both consistent and stable. (Note that the definition above is sufficient
but not necessary.) That convergence follows from consistency and stability
is a recurring theme in FD discretizations.

To control ‖(Ah)−1‖2, it is useful to have information about the eigenval-
ues of Ah. If M is a symmetric matrix, it holds that

‖M‖ = max
j
|λj(M)| = ρ(M),

which is called the spectral radius. The inverse M−1 is also symmetric, so

‖M−1‖ =
1

minj |λj(M)|
.

If M is not symmetric, the spectral radius is in general smaller than the
norm, but equality can be restored if we consider singular values:

‖M‖ = max
j
|σj(M)|,

where σj(M) =
√
λj(MTM). Analogously, for square invertible matrices we

also have

‖M−1‖ =
1

minj |σj(M)|
.

1.4 The spectrum of the discrete Laplacian

Let us discuss the (very important) spectrum of −d2/dx2 with Dirichlet
boundary conditions, in order to establish stability of the centered FD scheme
for our simple BVP.

The matrix of interest is K/h2, where K was defined earlier. It is a
symmetric matrix, so it suffices to find the eigenvalues. Let us get a good
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intuition of what the eigenvectors look like by returning to the continuous
eigen-problem

−v′′ = λv, v(0) = v(1) = 0.

The eigenfunctions are
vm(x) = sin(mπx),

for m ≥ 1, with eigenvalue
λm = π2m2.

It is perhaps a stroke of luck that the eigenvectors of the n-by-n matrix
K/h2 are precisely the discretized sines on the Cartesian grid xj = jm,

vm
j = sin(mπxj), 1 ≤ j,m ≤ n.

The application of two trigonometric formulas reveals that the eigenvalues
are given by

λm =
4

h2
sin2

(
mπh

2

)
, 1 ≤ m ≤ n. (1.1)

Two regimes must be contrasted.

• Low frequencies. For small m, and small h, a Taylor expansion of (1.1)
reveals

λm = π2m2 +O(h2), m ≥ 1, small.

This matches the continuous eigenvalues to second order. The match
is intuitively good because, for small m, the eigenfunctions sin(mπx)
are properly resolved on the grid, and the computation of the second
derivative by second difference is accurate.

• High frequencies. The match of eigenvalues worsens as m gets large.
The largest m is equal to n, for which

λn =
4

h2
+O(h2).

Regardless of h, the modes for which m is close to n correspond to
eigenfunctions that are not properly sampled, in the sense that only a
few grid points are used per wavelength (somewhere between 2 and 4,
say.) At two points per wavelength (ppw), a mode is called flip-flop.
For some applications such a coarse sampling could be OK – after all
the Shannon sampling theorem guarantees the possibility of spectral
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interpolation all the way down to 2 ppw – but numerical differentiation
via the second difference is definitely not accurate below about 4 ppw.
As a result the discrete eigenvalues are not faithfully representative of
the continuous case.

In short, the 3-point FD for −d2/dx2 with Dirichlet boundary conditions
is positive definite, with smallest eigenvalue ' π2, and largest eigenvalue
' 4/h2. The stability criterion defined in the previous section is obeyed in
this case, because the smallest eigenvalue does not tend to zero as h→ 0.

We will return to the important spectral properties of −d2/dx2 in the
scope of convergence speed for iterative solvers, as well as numerical disper-
sion relations for time-dependent wave equations.

1.5 Linear solvers

Let us now address the problem of solving the system AU = F numerically.

1.6 Preconditioning, multigrid
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Finite differences,
time-dependent problems

2.1 Stability analysis

2.2 Numerical dispersion

17



18CHAPTER 2. FINITE DIFFERENCES, TIME-DEPENDENT PROBLEMS



Chapter 3

Spectral methods

3.1 Periodic grids

Interpolation, differentiation Poisson summation formula

3.2 Chebyshev grids
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Chapter 4

Finite volumes

4.1 Conservation laws and shocks

4.2 Godunov, Riemann problems, limiters, TVD

methods, etc.
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