
The FFT in three-and-a-half facts

Alex Townsend

April 28, 2015

The fast Fourier transform (FFT) is the world’s best algorithm to compute
the following sums called the discrete Fourier transform (DFT):

fk =

N−1∑
n=0

cne
−2πink/N , 0 ≤ n ≤ N − 1.

Instead of O(N2) operations, the FFT does it in O(N logN) operations. Just
think about that saving: when N = 106 then we have reduced one trillion
operations to about six million. But why do we need FFTs? Well, they are the
discrete version of the Fourier transform. Fourier transforms are great, but most
of the time one can not get neat analytic formulas and algebraic manipulations
fail. We have to go numerical. The FFT always works, it’s numerical, it’s
practical, it’s fast, it’s a top-ten algorithm.

The FFT algorithm is based on three-and-a-half facts. (For the rest of the
document we take N = 2l, a power of 2.)

Fact 1 is an observation. It makes the DFT easy to remember and under-
standable.

Fact 1: The DFT is polynomial evaluation at the roots of unity
(in reverse order).

fk = p(zk) =

N−1∑
n=0

cnz
n
k , zk = e−2πik/N , 0 ≤ k ≤ N − 1

Fact 2 hints at the underlying divide-and-conquer approach that the FFT
employs. It is a fact about polynomials.

Fact 2: An even degree polynomial can be decomposed in two
parts.

p(z) = peven(z2) + zpodd(z
2)

In the above fact we have

p(z) =

N−1∑
n=0

cnz
n =

N/2−1∑
n=0

c2nz
2k

︸ ︷︷ ︸
peven(z2)

+z

N/2−1∑
n=0

c2n+1z
2k

︸ ︷︷ ︸
podd(z2)

.

1



The FFT must also exploit properties of the roots-of-unity. Fact 3 is about
roots-of-unity.

Fact 3: Roots-of-unity squared are roots-of-unity.

z2k =
(
e2πik/N

)2
= e2πik/(N/2)

We now have every in place (up to half a fact) to write:

p(z0)
...

p(zN/2−1)
p(zN/2)

...
p(zN−1)


=


I I

I −I





peven(z20)
...

peven(z2N/2−1)

z0podd(z
2
0)

...
zN/2−1podd(z

2
N/2−1)


(1)

Please convince yourself that evaluating peven(z2k) and podd(z
2
k) for 0 ≤ k ≤

N/2− 1 is just the DFT again with N replaced by N/2. How do you compute
peven(z2k) and podd(z

2
k)? Use the three facts again, and then again, and then

again. You will need to use it log2(N) times.
Oh. You may need just half a fact more to be comfortable with (1).

Fact 3.5: Roots-of-unity contain their reflections (when N is
even).

zk = −zN/2+k, 0 ≤ k ≤ N/2− 1

Fact 3.5 tells us that peven(z2N/2+k) = peven(z2k) and zN/2+kpodd(z
2
N/2+k) =

−zkpodd(z2k).

2


