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Abstract

This paper presents a numerical method for “time upscaling” wave equations, i.e.,
performing time steps not limited by the Courant-Friedrichs-Lewy (CFL) condition.
The proposed method leverages recent work on fast algorithms for pseudodifferential
and Fourier integral operators (FIO). This algorithmic approach is not asymptotic: it is
shown how to construct an exact FIO propagator by 1) solving Hamilton-Jacobi equa-
tions for the phases, and 2) sampling rows and columns of low-rank matrices at random
for the amplitudes. The setting of interest is that of scalar waves in two-dimensional
smooth periodic media (of class C* over the torus), where the bandlimit N of the
waves goes to infinity. In this setting, it is demonstrated that the algorithmic complex-
ity for solving the wave equation to fixed time 7' ~ 1 can be as low as O(N?log N)
with controlled accuracy. Numerical experiments show that the time complexity can
be lower than that of a spectral method in certain situations of physical interest.
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1 Introduction

This paper is concerned with the rapid solution of the two dimensional wave equation with
variable coefficient:

Opu(z,t) — V- ((z)Vu(z,t)) =0 t>0,2¢€[0,1)2
u(z,0) = ug(x) x € 1[0,1)? (1.1)
Oyu(z,0) = ui(x) z €[0,1)?

where the boundary conditions are taken to be periodic. We assume that c¢(z) is positive
and smooth — essentially bandlimited.

The initial condition (ug(x),u1(x)) is typically discretized on a uniform N x N grid. For
a fixed final time 7' ~ 1, we seek an algorithm for computing the time-7" solution u(z,T)
in almost linear time.



Standard methods for solving this system uses finite difference or spectral differentiation
in the spatial domain and forward marching in the time domain. Suppose that the initial
conditions (ug(z),ui(x)) are discretized with an N x N Cartesian grid. The CFL condition
restricts the time step to be of order O(1/N). Hence, in order to computing the solution
u(z,T) at a time T'= O(1), on the order of N applications of the small-time propagator
are needed, for a total complexity of O(N?3) — or more if an accuracy estimate is desired.

In this paper, we propose to lower complexity by representing the propagator as a
Fourier integral operator. This approach permits time upscaling, namely, that much larger
O(1) time steps are now allowed. As a result, evaluating the solution u(x,T) using an
upscaled time step 7 takes only T/7 = O(1) steps. Moreover, each evaluation of the
Fourier integral operator representation can be performed efficiently in a time complexity
as low as O(N?log N). Therefore, this new approach requires only O(N?log N) steps to
compute the solution u(x,T).

Preparing the Fourier integral operator representation of the solution, however, may
have complexity greater than O(N?log N). Our proposed solution to this problem has
complexity O(N3).

1.1 General strategy

Our approach is based on the Fourier integral operator representation of the solution of
(1.1). Since L := —V - (¢*(2)V) is a positive semidefinite operator, we define P := L'/? to
be the positive semidefinite square root of L. Using this operator notation, we can rewrite
(1.1) as

Owu 4+ P?u = 0.

Factorizing this operator equation gives
(0y +iP)(0y — iP)u = 0.
Therefore, the general solution of (1.1) is given by
u(w,t) = (¢ f) (@) + (e fo) (@),
where fi are two arbitrary functions. Matching with the initial conditions gives
i = o & (iP) ). (1.2)

The theory of Fourier integral operators states that for a given ¢(z) > 0, assumed to be of
class C™, there exists a time ¢* that depends only on c(x) such that for any ¢ < t*, e?F! f,
and "t f_ have the following Fourier integral operator (FIO) representation:

(X P ) (@) = Y P4ty (2., 1) f1 (). (1.3)

£ez?

Here the Fourier transforms of fi(z) are defined by
FO=[ e
[0,1)2

&, (z,&,t) are called the phase functions and they are smooth in z and £ # 0 with homo-
geneous degree one in &. ay(x,&,t) are called the amplitude functions, and for any given



t, at(x,&,t) have a separated approximation in z vs. § with a small number of terms.
Equation (1.3) is exact; its justification is given in Section 3.

It is important to notice that the medium ¢(z) needs not only to be of class C*°, but of
small “numerical” bandwidth for the FIO representation to be numerically advantageous.
In particular, the smoother ¢(x) the larger the cut-off time ¢* before caustics develop in the
evolution of initially plane waves.

The natural spatial discretization for smooth functions on the torus involves sampling
functions on the N x N Cartesian grid

ny n
X = {(ﬁl,ﬁz) :ni,ne € Z,0 <np,ne < N}.
For the discretization in time, a large time step 7 < t* is chosen. For x € X, the solution
at time 7 is approximated as

u(e,7) = 3T 0, (2,6,7) () + 3 T8 Da (2,6, 1) (6).

£e £en

Here ﬁ(f) = 7 Ypex € 27%E fi(z) are now discrete Fourier transforms of { f4 (z),z € X}
and both sums are taken over

Q= {(51752) 251752 € Za _/8]\7/2 < §17§2 < /8N/2}7

where 0 < # < 1. In the case of constant coefficient ¢(z), we can choose = 1. However,
for variable coefficient c¢(x), 3 is chosen to be adequately bounded away from 1 to avoid an
unwanted aliasing effect.

For ¢t = n7 an integer multiple of 7, the solution at ¢t = (n — 1)7 is taken as an initial
condition and the procedure is repeated to obtain an approximation of u(x,n7). In order
to carry out this procedure algorithmically, we need to address the following questions:

e How to construct the square root operator P and its inverse P~!, and how to apply
them efficiently to functions? Discrete symbol calculus (DSC) is a natural answer
to this question [13]. With the help of DSC, constructing P and P~! takes only a
number of steps that is polylogarithmic in N. Applying P to any vector defined on
X can also be performed efficiently in only O(N?log N) steps.

e How to compute the phase functions @ (x,&,7)7 It is well known that they satisfy
the Hamilton-Jacobi equations:

{atq)i(x,g,t) T o(2)|Vo®y (z,6,8) = 0 1.4

&y (2,6,0)=x-¢&.

Since c(x) is a C* function whose (numerical) bandwidth is small compared to N,
we can solve @y (x,&,7) up to a very high accuracy on a much smaller grid with
spectral differentiation in space and an accurate time stepping scheme in time (such
as Runge-Kutta).

e How to compute the amplitude functions ay(x,&,7)?7 When viewed as a matrix,
(a4 (x,&,7))zex ccq is numerically low-rank. The construction of a low-rank sepa-
rated approximation of a4 (x,&, ) is the main contribution of the current paper. The
method adopted here is based on the randomized sampling algorithm for construct-
ing factorizations for low-rank matrices. This procedure only requires sampling a



constant number of rows and columns of the matrix randomly. In our setting, sam-
pling the rows and columns of a(z, &, 7) reduces to solving (1.1) with special initial
conditions that correspond to plane waves and Dirac deltas. We solve these special
initial value problems with the standard spectral differentiation and time stepping
algorithm. As a result, the construction of a4 (x,&, 7) is treated as a precomputation
that takes about O(N?3) steps.

e Finally, how to evaluate the Fourier integral operator (1.3) for given fi(z,§,7),
ar(xz,&,7) and ®y(x,&,7)?7 Along with E. Candes, the authors have already de-
veloped two efficient algorithms for this problem, one with a small constant and
complexity O(N?®log N) [7] and the other with a slightly larger constant and the
optimal complexity O(N?log N) [8]. Here, we simply resort to these algorithms.

1.2 Applications

The main application for fast wave computation in variable media might be seismic imaging,
where wave speed in the subsurface (among other parameters, possibly) is inferred from
recorded wave echos [32]. The modern, more accurate imaging algorithms all involve wave
propagation on a very large computational scale. Slow execution and large memory imprints
limit the size of problems that seismologists can currently consider, and even for small
problems, limit the number of iterations that can be done in an inversion loop. Time-
stepping, (or depth-stepping, or looping over all frequencies,) is the main culprit.

The assumption of a two-dimensional smooth periodic medium for the numerical exper-
iments presented in this paper should be put in perspective.

e Nothing prevents the application of the algorithms to three spatial dimensions. This
is in contrast with some of our previous work on wave atoms [12], where the separation
technique was intrinsically two-dimensional.

e Absorbing layers such as the perfectly matched layer (PML) are compatible with pe-
riodic boundary conditions: it suffices to let the absorption coefficient be maximal
at the edges where the periodic stitching is done. If in addition this coefficient is
smooth, it should not affect the smoothness and separability properties of the am-
plitude in the FIO representation. If a seismologist is willing to surround all sides
of his or her domain with PML, then periodic boundary conditions are not an issue.
If some water-air or rock-air interface demands a Neumann boundary condition, it
is not inconceivable that a FIO approach may work, but new ideas such as Fourier
continuation [4] would be needed.

e Smooth background media are not physical in the Earth, but they are the simplified
model that arises from inversion processes such a traveltime tomography. It is a
great “discovery” of seismologists that the high-frequency singularities that produce
scattering are well treated by linearization and need not be part of the model velocity,
in which waves are simulated. In fact, they should not be part of the model velocity: it
is well documented that the output least-squares objective of full-waveform inversion
becomes quite nonconvex in the presence of oscillatory or singular model velocities
[31].

Other applications may include certain ultrasound techniques in medical imaging, where
the goal is to image contrasts in the shear stiffness of different organs. Transient elastogra-
phy may be one such technique [19]. Current methodologies mostly deal with traveltimes



rather than waveforms, but if the progress in seismology is any indication, a full modeling
of the background shear wave speed may one day prove useful.

1.3 Previous work

The first attempt to solve the one-dimensional wave equation accurately using large time
steps is probably the work of Engquist, Osher and Zhong [16]. They constructed the wavelet
representation of the solution operator, a sparse matrix that can then be applied to the
initial condition in the wavelet domain. Although no estimate of complexity and accuracy
was given, their algorithm runs in near linear-time complexity.

Their work was generalized to two spatial dimensions by Candeés and the authors, with
complexity and accuracy estimates. In [5, 6] it was shown that curvelets provide a suitably
sparse representation of the wave propagator. In [12], the agenda of fast wave computation
was operationalized with wave atoms, another transform that achieved a greater flexibil-
ity at obtaining a sparse representation. Genuine time upscaling and advantageous time
complexity were obtained in [12], but at the expense of a complex code that only handled
certain special smooth media well.

Other approaches have been proposed for realizing time upscaling of wave equations.
This includes the work of Beylkin and Sandberg, where an economical representation of
the propagator is obtained via low-rank separation in the prolate spheroidal wavefunction
domain [3]. Stolk proposed to couple the geometrical optics asymptotic formulas with
wavelets in one spatial dimension [30].

Concerning fast computation of general pseudodifferential and Fourier integral operators
(FIO), Candes and the authors have reported on different ideas in [13, 7, 8]. Many of the
algorithmic tools used in those papers are present in different forms or different contexts; let
us for instance mention work on angular decompositions of the symbol of pseudodifferential
operators [1], work on the butterfly algorithm and its applications in [21, 23, 38, 37, 35],
work on fast “beamforming” methods for filtered backprojection for Radon and generalized
Radon transforms (a problem similar to wave propagation) in [36, 22, 2], work on the
plane-wave time-domain fast multipole method summarized in Chapters 18 and 19 of [9],
and work on “phase-screen” methods in geophysics [11].

Note that the idea of using FIO for solving the wave equation is a pillar of microlocal
analysis. It dates back to at least Lax in 1957 [20], and ultimately to geometrical optics and
the WKB expansion schemes in 1930s quantum mechanics. The modern, careful study of
propagation of singularities with FIO is due to Hormander and Duistermaat [18, 14]. Im-
portant analytical estimates on FIO and wave equations are due to Cordoba and Fefferman
[10], Stein et al. [25, 29], and more recently Smith [27].

1.4 Contents

The rest of this paper is organized as follows. In Section 2, we briefly review the numerical
tools that are used in these papers. They include discrete symbol calculus, randomized
sampling method for low-rank factorizations, and fast algorithms for applying Fourier in-
tegral operators. Section 3 includes the proofs that justify our approach theoretically. In
Section 4, we describe our algorithm in detail. Several numerical experiments are provided
in Section 5.



2 Background

2.1 Discrete symbol calculus

This section is a summary of [13]. We use the discrete symbol calculus (DSC) framework
to represent the operators P = L'/2 and P~ = L=/2. In short, discrete symbol calculus
is concerned with efficiently representing, manipulating, and applying pseudodifferential
operators

(Af)(x) = Y €™ a(z,6) f(©).

¢ez?

Here we assume that the symbol a(z,£) belongs to the standard symbol class S¢, i.e.,
0¢0%a(x,€) < Cap (O, (&) = (L + [e)V2.

The degree of a(z,¢) is defined to be the minimum d such that a(z,&) € S% In what
follows, we use Ag to denote the grid {(n1,n2) : n1,n2 € Z, —K < nj,ne < K}.

Representations Let a(z,£) be a symbol of class S%, where d, is the degree of a(z, €).
Expanding a(z, ) in the x variable using Fourier basis ey (z) := *™*® gives

a(z,€) =Y ex(@)ax(é),
A

where a) (&) are the Fourier coefficients (in the x variable) of a(x,§). If a(x, ) is essentially
bandlimited in A € A for a constant B in the x variable, one only needs to keep the terms
associated with these A values in the sum. The x-Fourier coefficients a)(£) can be computed
from the samples of a(z,&) on a 2B x 2B Cartesian grid in x variable for each &.

The representation of the symbol in the £ variable is slighted more complicated. The
x-Fourier coefficients ay (&) inherits the same smoothness property in the & variable from
a(x,§), i.e., the normalized term a) (&) (§>_d" gains smoothness as £ goes to infinity. Due
to this consideration, it is natural to approximate ay(€) (€)% with basis functions 9u(§)
that exhibit the same behavior:

ax(©) (€)% &> arugu(©).

Two choices of g, (§) give good theoretical and numerical results:

e Rational Chebyshev interpolation. This approach starts by studying a,(€) (€)% in

polar coordinates £ = (r,6). We first map the half line » € [0,00) to the interval
s € [-1,1) with rational functions

r+ L 1+s
s(r) = r— L’ r(s) :Ll—s’

where L is a fixed constant. Within the (s,6) coordinate, ay(¢) (€)™% becomes

—d,
ax(s,0) <L%—f‘;> . We interpolate it with basis functions that are tensor products

of Fourier bases in 6 and Chebyshev functions in s. This corresponds to choosing

gu(g) = 9(m,n) (57 9) = elmeTn(S)



where T,,(s) are Chebyshev functions. Due to its smoothness property, only a small

—d,
number of basis functions are required to interpolate a(s,0) <L%> accurately.

The interpolation coefficients ay, can be computed from sampling a, (s, 0) <L%>i ‘

on the tensor product grid with equal spacing in 6 and a one-dimensional Chebyshev
grid in s € [—1,1]. It has been shown that, for a fixed accuracy ¢, the number of grid
points required is of order 1 (see Figure 1(a)).

e Hierarchical spline interpolation. This approach starts by partitioning the £ domain
into a hierarchy of squares. The size of a square grows linearly with respect to its
distance from the origin. Within each box, we embed a local Cartesian grid and the
function ay(€) (€)% restricted to this box is approximated using a cubic spline. The
basis functions g,(&) are then the union of the spline basis functions over all boxes.
It is clear from the spline construction that the computation of ay, only requires
the values of ay(£) (€)% at the local Cartesian grid within each box. It has been
shown that, for a fixed ¢, one needs O(log N) hierarchical spline basis functions to
approximate ay (&) on the domain ¢ € [-N/2, N/2]? (see Figure 1(b)).

- + +
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Figure 1: (a) Sampling points for the rational Chebyshev interpolation. (b) Sampling points
for the hierarchical spline interpolation, where each box is equipped with a local Cartesian
grid.

To summarize, in both approaches, we can approximate a(z,&) at x € X and & €

with
a(z,§) ~ Y ex) <Zaxugu(§) <§>da>
n

AEARB

and the computation of the coefficients ay, can be reduced to sampling ay(§) (§>_d"

equivalently a(§)) at at most O(log N) locations in £ for each A € Ap.

(or

Operations We can carry out the standard operations of the pseudodifferential operators
in the DSC framework. From the above discussion, we know that approximating an operator
with symbol a(z,§) reduces to sampling a)(£) at a few locations in £ for each A € Ap.
Therefore, we focus on this task in the following discussion.
The symbol ¢(x, ) of the sum of two operators with symbols a(z, ) and b(z, £), respec-
tively, is given by
(2,€) = alw,€) + b(z, ).



To approximate c¢(z,§), we set d. = max(dg,dp) and

ex(§) = ax(§) + ba(§).

The symbol c¢(z,&) of the product of two operators with symbols a(z,§) and b(zx,§),
respectively, is equal to

(e, = ae, sb(,) == 3 [ 2 DD, by, )y
n

In order to approximate c(z,§), we let d. = d, + dp and

al@) = D a4+ 0b(9).

rAEAB:K+HI=)\

Once we know how to multiply two operators, computing the inverse of an operator A
can be done via a simple Schulz iteration.
1. Pick a so that ||aA| < 1.
2: Set Xo=1.
3: For k=0,1,... until convergence, set Xy11 = 2X; — Xp(aA)X.
4: The inverse is set to be aXy.
The square root and inverse square root of an operator A are computed using the
following Schulz-Higham iteration [17].
1. Pick a so that ||aA| < 1.
2: Set Yy = aA and Zy = 1.
3: For k=0,1,... until convergence, set

1 1
4: o 1/2Y}, is the square root and al/2Zj, is the inverse square root.

In these two algorithms, ||aA| < 1 makes sense since all operators become bounded after
discretization. For all operators A discussed in this paper, a is of order O(1/N°() and
both algorithms converge in O(log N) iterations.

Applying the operator Once the DSC representation of an operator with symbol a(z, &)
is ready, applying it to an arbitrary function f(x) consists of the following steps:

doa(@ ™ fz) = Y Y eal@)an(©)eTEf(E)

£eq £EQ NEAR
= > al@ [ e (a©f©)
AEAB £eq

As the formula in the parentheses is a Fourier transform and the cardinality of Ap is a
constant, this computation can be performed in O(N?log N) steps.



2.2 Randomized algorithm for low-rank factorization

The e-rank of an m x n matrix M, denoted by r.(M) or just r. if M is fixed, is the number
of singular values of M that are greater than or equal to e. We say M to be numerically
low-rank if r. is much smaller than n even for € very small. As we pointed out earlier, the
symbols a4 (z, &, 7) viewed as a matrix indexed by = € X and £ € Q) is numerically low-rank
when 7 < t*. The algorithm described below aims to construct a separated approximation

of form
M~ CDR

with accuracy O(e), where the number of columns in C' and the number of rows in R are
roughly r.. Here, we adopt the standard notation for submatrix: given a row index set
I and a column index set J, M(I,J) is the submatrix with entries from rows in I and
columns in J.

1. Sample randomly a set of Br. rows and denote the index set by S = (s;). Here [ is
the oversampling factor. Perform pivoted QR decomposition to the matrix M (S, :)
and obtain

M(S, P) = QR,

where P = (p;) is the resulting permutation vector of the columns and R = (r;;) is
upper triangular. Let k be the largest index such that ri, > €. Define the index set

Se to be {p1,...,pr}

2. Sample randomly a set of fr. columns and denote the index set by S = (s;). Perform
pivoted LQ decomposition on the rows of M(:,S):

M(P,S) = LQ,

where P is the resulting permutation vector of the rows and L = (¢;;) is lower trian-
gular. Let k be the largest index such that i > €. Define the index set S, to be

{p1,-- - ok}

3. Perform pivoted QR decomposition on the columns of M(:,S.) and pivoted LQ de-
composition the rows of M (S,,:) respectively:

M(:ysc)'Pc:QcR07 P’I"M(S’r‘7:) = L.Qr,

where P, and P, are the resulting permutation matrices that reorder the columns of
M(:, S.) and the rows of M (S,,:), respectively.

4. We seek for a factorization of form M = Q.- D-(@Q,. In order to do that efficiently, we
restrict ourselves to the rows in S, and columns in S, and solve the following problem:

min [|M (S, S¢) = Qe(Sr,:) - D - Qels, Se) [ -

A simple linear square solution gives D = (Q.(Sy,:)) T M(Sy, Sc)(Qr(:,Se))t, where
()T stands for the pseudoinverse. Therefore, the resulting factorization is

M ~ Qc . ((QC(ST, :))+ . M(Sr, Sc) : (Q'r(:a Sc))+) ' Qr-



Clearly this process provides us with a separated approximation M ~ C DR with

C=Qc, D=(Qc(Sr,))" M(Sr,5e) - (Qr(:,8))", R=Qr.

In practice, setting oversampling factor 8 to 5 is sufficient for an accurate approximation.
Notice that the most computationally intensive steps of this algorithm are pivoted QR
decompositions on matrices of size m x O(r.) and pivoted LQ decompositions on matrices
of size O(re) x n. When ¢ is fixed and r. can be treated as a constant, the cost of this
algorithm is only linear in max(m,n).

For matrices (a+(x,&,7))zex,cco of this paper, one may replace the random samplings
in the first two steps with deterministic sampling in X and €2 because of the smoothness of
ay(x,&,7) both in x and in £&. However, we prefer the randomly sampling approach since
it works for more general scenarios where the rows and columns of the matrices are not
smooth and the deterministic alternatives might require careful adaptive sampling such as
the divide-and-conquer strategy.

2.3 Fast algorithms for applying FIOs

Given a function f(z) defined on a Cartesian grid X = {(&, 5#) : n1,n2 € Z,0 < ny,ng <
N}, the discrete Fourier transform f (€) is defined by

76 = 3 30 e (a)

zeX

for £ € Q ={(&1,&): &1, € Z, —% < €1, < %} The discrete Fourier integral operator
with phase function ®(x,¢) and amplitude a(x,§) is defined by

u(z) = (Af) (@) =) a(z, )™ f(€)

£eQ

for z € X. We assume that ®(z,) is smooth in z and in  away from the origin, and
a(z, &) has a low-rank separated approximation. Along with E. Candes, we have developed
two efficient algorithms for computing u(z) in [7] and later in [8].

Approach 1: Angular partitioning of the frequency domain This approach [7] is
based on a parabolic angular partitioning of the frequency domain. Let arg(&) be the angle
between ¢ and the horizontal vector (1,0). Assuming that VN is an integer, we partition
the frequency domain into a family of angular wedges {W;} defined by

Wy ={&: (20 —1)7/VN < arg(é) < (20 + 1)n/VN}

for 0 < £ < /N (see Figure 2).

For each wedge Wy, we define x,(£) to be the indicator function of W, and ég to be the
(unit) center direction of Wy. For a fixed ¢, the phase function can be written as the sum
of two parts:

D(2,8) = Veb(x,&) - £+ o(, ),

where the term ®/(x,&) is called the residual phase of Wy. Using this decomposition, we

can write X
a(x’§)€2m¢>(x,§) _ (62w1V5¢’(1‘,€£)‘f) . (a(x,g)e%rz@g(x,g)) )

10



Figure 2: The frequency domain [—N/2, N/2)? is partitioned into v/ N equiangular wedges
{We}.

When € € Wy, it turns out that ®y(z,¢) is of order O(1) and thus e?™®¢(*:£) is non-
oscillatory. Since a(z, &) is also assumed to have a separated approximation, one can show
that the term a(x, 5)627”(1’4(3”75) also has a separated approximation:

ol D 5 3 anle)u). (2.1)

This approximation further implies that

(Af)(x) =~ ZZ P a(z, €)xe(€)F(€)
= ZZ 2rVeR(:60) € o, €) PP o (6) f (€)
= ZZG%N@ =) £Z:Oéet )Bet (€ (f)f(f)

= 2| Xeatn | et 20 (Bu(€xe©) (&)
V4 t

In the last formula, the sum over ¢ is in fact a Fourier transform of (3 (€)xe(€)f(€)) at
locations Vg@(x,ég) for x € X. This can be computed easily using the non-uniform fast
Fourier transform [15] in O(N?log N) steps. The sum over t involves only a constant
number of terms since the rank of the separated approximation is constant. Finally, since
there are only N'/2 wedges Wy, the overall complexity of the algorithm is O(N2®log N).

Approach 2: Butterfly strategy This approach [8] starts with parameterization { =

(&1,&2) with polar coordinates p = (p1,p2): (£1,&2) = ‘[Nplezmp2 Using this transforma-
tion, we introduce a new phase function ¥(x,p) in the polar coordinates:

1 \/5 2mipa )pl

U(z,p):= N@(w,f) = 7@(:6,6

Denote by P C [0,1]? the set of all possible points p generated by ¢ € Q. The Fourier
integral operator then takes the following equivalent form

u(z) =Y alz,&(p)™ NP f(E(p)).

peEP

11



The main observation is that the kernel e2™V¥(z:p) ig approximately low-rank when

restricted to appropriate spatial and frequency regions. More precisely, suppose that A and
B are two squares in x and p, respectively, with widths w*? and w? and centers ¢ and 5.
We assume that w4w? < 1/N and define

RAB(:v,p) =U(x,p) — \II(CA,p) — \I/(x,cB) -+ \I/(CA,CB).

Using the smoothness of ¥(z,p) in both = and p, one can show that R45(z,p) = O(1/N)
forx € Aand p € B. As aresult, e2mRAP (@.p) i5 ot oscillatory and has a low-rank separated
approximation in z and p. Similarly, using the identity

A By __ A .B AB
eQﬂz\I/(a:,p) eQm\I/(c 7;1))627”,\1/(90,0 )6 2m¥ (et )eQﬂzR (z,p)

)

2m¥ (z,p)

we see that the kernel e also enjoys a similar low-rank separated approximation in x

vs. p. The actual separated approximation is implemented based on the idea of oscillatory
Chebyshev interpolations. For a fixed ¢, we define {z{'} and {p?} to be the Chebyshev
grids adapted to A and B, respectively. We also denote the standard Lagrange interpolants
of these grids by {L{(z)} and {LP(p)}, respectively. It is proved in [8] that the size of the
Chebyshev grids grows at most polylogarithmically in O(1/¢). Consider an admissible pair
of squares (A, B) with w4w? < 1/N. When w? < 1/v/N, we have

| 2N E(p) _ Z 2N (z,pf) S;“B(p)! <e,
t

where p) relate to the standar ebyshev 1nterpolant p) on the grid py via

here S/B 1 h dard Chebyshev i lant L7 he grid pP vi
SII/AB (p) — 6*2W1N‘I’(CA7PtB)LtB (p)e2mN\Il(cA,p)'

Similarly, when w? < 1/v/N, we have
‘62771N‘l/(:c,€) - Z TtAB (x)eZTer\I/(xf,p)‘ <e,

t

where TP (z) relate to the standard Chebyshev interpolant L{(p) via

TtAB(JJ) _ e?ﬂzN‘I/(x7cB)Lz4(x)e—27r7,N‘l/(x247cB).
Let us define u?(z) = > peB 2N (p) £(£(p)) to be the partial sum with p restricted

to B. The separated approximations imply that there exists a compact representation for
{uP(z),z € A}: when w? < 1/V/N,

uP(z) = Y EmNY@IRIGAE it 61PN SAB(p) f(€(p)) (2.2)
t

pEB

and when w4 < 1/\/]V7

uP(2) = Y TAP(2)0) P it 61 & Y 2mNYEED) fig(p)). (2.3)
t pEB

It is not difficult to see that (5{43 serve as equivalent sources in the first case and approxi-
mates u?(z{!) in the second one.

Combining these observations with the structure of the Butterfly algorithm [21, 23], we
have the following algorithm for applying the Fourier integral operators. Essentially, this

computes {6F} for all admissible pairs (A, B) efficiently in a recursive fashion.
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1. Construct quadtrees Tx and 7p for X and P respectively. Both of them has [0, 1)
as the root box at level 0 and have leaf boxes of width 1/N. Let L denote the total
number of levels.

2. Let A be the root of Tx. For each leaf box B of 7p, construct

617 =3 51" (n)f(E(p))-

peEB

3. For level £ =1,2,...,L/2, construct (5{43 for all pairs (A, B) where A at level ¢ and
B is at level L —{. Denote by A, the parent of A and by {B.} the set of the children

of B: A 5
A c
= S s
4. For each pair (A4, B) with where A at level L/2 and B is at level L/2, compute
617 = 3 alaf pf ) D g,
t/

(This is the only place where the amplitude enters. Note that we had assumed a = 1
in [8].)

5. For level £ = L/2+1,..., L, construct §{'Z for all pairs (A, B) where A at level £ and

B is at level L — 4.
S W

6. Let B be the root of 7p. For each leaf box A and each x € A, set
Z TAB ()68,

For each level ¢, there are N2 pairs of admissible boxes (A4, B) with wAw? = 1/N. Since
we perform O(1) steps for constructing each set of coefficients {§/'P}, the number of steps
used for each level £ is O(N?). Since there are at most O(log N) levels, this algorithm takes
at most O(N?log N) steps.

3 Theory

In this section we present the justification of the FIO formula (1.3). Such oscillatory
integrals are very well-known and go back at least to Lax [20]. However, they are usually
introduced as parametrices, i.e., asymptotic high-frequency approximations to the solution
operator. The same is true for the polarizers =P that form the one-way components
f+(x) in equation (1.2). In Section 3.1, we study the operator P~! and show that it is
exactly pseudodifferential. In Section 3.2 we make the transition to an exact oscillatory
integral representation of the propagators et in free space. In Section 3.3, we extend
both characterizations to the case of the torus, where Fourier series replace the Fourier
transform, and where differentiations in the wave number domain become finite differences.
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Top down Bottom up

Figure 3: Schematic illustration of the butterfly algorithm in 2D with 4 levels (L = 3). The
levels are paired as indicated so that the product of the sidelengths remains constant. The
algorithm starts at the root of 7x and at the bottom of 7p. It then traverses 7x top down
and 7p bottom up, and terminates when the last level (the bottom of 7x) is reached. The
figure also represents the four children of any box B.

The wave equation uy; = V - ¢?(z)Vu can be written as the system

0 (u u
g () —r <) , (3.1)
where L is the matrix of operators

L= (v-cg(m)v é)

By letting P be the positive semidefinite square root of L = —V - ¢?(x)V, we obtain the
formal spectral factorization

L= ((ilg)2 é) -3 (153 _513) (ZIJ)D —(@')P> G —(Zé? >_11>'

As a result, the propagator obeys

=3 e (5 L) (0 )

This equation is another expression of the decoupling into one-way components as in Section
1: the matrix of operators on the right forms the “polarized” components, the middle matrix
evolves them, and the left matrix recomposes them.

3.1 The polarizers are pseudodifferential operators

In this section we define P and P~!, and show that both belong to a class of operators
with pseudodifferential symbols of so-called classical type. Throughout this paper, the
pseudodifferential representation of almost any linear operator P is

Pu(x) = / e Ep(z, £)(€) dE

where p(z,£) is called the symbol. This formula always makes sense for x € R? and in the
scope of the Schwartz theorem — p(x, ) always exists as a distributional kernel. When = €

14



[0,1)? however, the dual Fourier variable ¢ is continuous and does not result from Fourier
series transformation. Instead, it is the usual Fourier transform used in patches, after taking
a partition of unity ¢; on the torus. The operator P is then itself partitioned as ¢;P¢;:
the pieces are studied independently by means of pseudodifferential symbols, and later
recombined by summation over i and j. We will thus feel free to let x € [0,1)? in this section
and ignore this partitioning in the notations. See [33, 18, 28] for complete background on
the definition of pseudodifferential operators on manifolds. Note in passing that nothing in
what follows depends on the fact that we only consider two spatial dimensions.
Symbols generally have a lot of structure.

Definition 3.1. (Smoothing) A linear operator R acting inside the space of tempered distri-
butions in [0,1)? is called smoothing when it has a bounded pseudodifferential symbol r(z, &)
such that, for all integer M > 0 (arbitrarily large), and for all r > 0 (arbitrarily small),

10890r (2, 6)] < Coarr (L + [E)M2, ¢ >

Such a symbol r(x,§) decays faster than any negative power of |£| as |{| — oo; its
corresponding operator can be shown to map tempered distributions to C°° functions.

Definition 3.2. (Classical symbol, [33, 18]) A symbol p(z, &) is called classical of order m,
denoted p € \I/Tc”, when

p<$75) ~ me_j(m',f),

j=0
where py(x,§) is positive-homogeneous of order n in &, i.e.,
pn(xa )‘5) = Anpn(xjé), A > 0.

In addition, p,(z,£) is required to be C*° in x and in the angular & variables, with uniform
smoothness constants. The notation ~ means that there exists a C* cutoff function x(x,§)
such that x = 0 in a neighborhood of £ = 0, and x = 1 outside of a larger neighborhood of
£ =0, and there exist numbers €; > 0 (possibly tending to zero as j — 00) such that

r(,€) = p(a,&) = Y x(@, ;&) pm—j(x,€)

j=0
18 the symbol of a smoothing operator in the sense of the previous definition.

A classical symbol needs not be C* at the origin in £. It is well-known that the classical
condition above implies the smoothness condition

0207 p(w, €)] < Capr(L+[€2)™27112, e > (3.2)

Functions of operators, when they make sense, can be defined by means of the spectral
theorem. All the operators of interest in this paper have discrete spectral.

Definition 3.3. Let L have the spectral decomposition
L=>) \Ej,
J

The Rellich embedding theorem ensures that any invertible operators on a compact manifold like the
torus have discrete spectra.
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where the E; are projection operators onto the eigenspaces with eigenvalues \j. Then, for
any function f whose domain includes the spectrum of L,

f(L) = Zf(Aj)Ej,

(with strong L*-operator convergence on functions g such that > FPONNE; 913 < 00.)

For instance, the operator of interest in this paper, L = —V - ¢?(2)V on the torus, is
positive semi-definite. It has a nullspace associated with the constant eigenfunction, and
an otherwise discrete set of positive eigenvalues.

The square-root and the inverse square-root of a positive-definite operator are well-
defined operations. The following classical result is due to Seeley [26], and its proof can
also be found in [28], p.110. For background, see also [33], Vol.3, pages leading up to p.43.

Theorem 3.4. Consider a positive-definite operator T € \IIQCZ. Then TY? and T—1/2, as
defined by the spectral theorem, have classical symbol of orders 1 and —1 respectively.

The operator L = —V-c?(z)V is not positive definite because it has a nullspace. Instead,
the theorem should be applied to T' = Py + L, where Pg is the orthogonal projector onto

constants,
Pog(o) = [ gla)da,
[0,1)2

This modification of L only changes the symbol at the origin, hence does not change the
classical character of the symbol. Once T2 and T—1/2 are obtained,

o LY/2 =TY2 _ Py also has a symbol in the class \llél;

o [71/2=7"1/2 45 long as the function g to which it is applied has a zero mean, i.e.,
Ppg = 0 . This is why care has been taken to assume that 41(0) = Pou; = 0. The
initial condition wu; is the only function to which P~! is applied. So when restricted

to functions of mean zero, L~'/2 makes sense and has a symbol in \I'gll.

As a conclusion, P and P! are pseudodifferential operators with classical symbols,
with the proviso that P! is only applied to mean zero functions. The remaining question
of characterizing the symbols of P and P~! in the native Fourier series variables on the
torus will be addressed in Section 3.3.

3.2 The propagators are of Fourier integral type

In this section we show that e**? | the solution operators to the pseudodifferential equations
uy = 1 Pu, are Fourier integral operators.

The following classical result hinges on the property that p(x, &), the symbol of P, is in
the class Wl . It was perhaps first formulated by Lax [20]. More modern formulations with
precise estimates on the remainder such as the one below require some microlocal analysis
that can be found at least in [18, 28, 33].

Theorem 3.5. (FIO parametriz) Assume P has a symbol in the class \Illc . There exists
T > 0 such that for oll 0 < t < T, there exist scalar phase functions ®4, and scalar
amplitude functions a+ such that

(5P f) (2) = / e 0q, (@, 60) f(€) dE + (R(D)S) (). (3.3)

n
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Moreover, as long as t € [0,T), 1+ obey the Hamilton-Jacobi equations

a%(z,é; t) = As(z, Vo Pui(z, &5 1)), Oy (2,60) = -,

and a+ obey the smoothness estimate
080 as (2,6)| < Cragr (L+ €112, gl 2 (3-4)
For each 0 <t < T, R(t) is a smoothing operator in the sense of Definition 3.1.

This result is local in time: T cannot be taken larger than the time at which caustics
appear from planar wavefronts. This geometrical situation occurs when, in time 7T, two
different points initially on the same straight line are mapped to a single point by the
Hamiltonian flow generated by either A.. The smoother the medium c?(z) the larger 7.

Mathematicians usually specify the amplitudes a1 in the above result as asymptotic
expansions for |{| — oo, or equivalence classes of highest-order symbols. Such characteriza-
tions may be sufficient as proof techniques, but they are inadequate as numerical expansion
schemes.

The operators R(t) are smoothing, but they are not small and cannot be ignored nu-
merically. The discussion in this section deals with amplitudes that are not necessarily C'*°
near the origin; it is this precise point which allows to absorb the remainder R(t) in the
amplitude of the oscillatory integral.

Corollary 3.6. In Theorem 3.5, R(t) can be taken to be zero.

Proof. Let R(t) be the original smoothing remainder obtained from Theorem 3.5,

(R(1)) f(z) = / ¢ (e, € ) (€) de,

with
0200r (2, & 1)| < Carr (1 + 1€%)~M72, & >r, VM >0.

This gives rise to the composite expression

n

(eiitpf) (z) = / e—z‘fbi(zi;t)bi(x,ﬁ; t)f(ﬁ) dg,

with A
bi(w,&5t) = as(, &) + r(x, &) 250,

It suffices to show that the second term in the right-hand side is a smoothing amplitude.
This term is to be differentiated in  and in £. In the Leibniz formula, every term will
have either 7(z,£;t) or one of its derivatives as a factor. A contribution (1 + [£]2)~™/2 for
all M > 0 results in the bound — in short, (1 + |£|2)~>°. The other factors are derivatives
of the exponential: they can only grow polynomially in £&. This growth will not undo the
super-algebraic decay of (1 + [£]2)~M/2, only the value of the overall constant C;.
O
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3.3 Analysis on the torus

The analysis in the previous sections, and in particular equations (3.2), (3.3), and (3.4),
assumed that continuous Fourier transforms were taken in coordinate charts for the torus.
In this section it is shown how these various results extend to the more natural setting of
discrete ¢ € Z? coming from taking Fourier series. It is also the approach followed in the
algorithms.

Without loss of generality the coordinate charts can be taken to be isometric maps
resulting from the canonical embedding [0,1)2 C R2: in this scenario the symbol z is
overloaded as a coordinate in both [0,1)? and R2. Periodization is one way to relate the
solution of the wave equation on [0,1)?, with periodic boundary conditions, to that of the
wave equation on R2.

The periodic extension of a wavefield from [0, 1)? to R? is

u(z,t) = u(zmod[0,1)%,1), r € R%
The medium parameter is similarly periodized as
A(x) = A(zmod|[0,1)?).
A window function p(x),z € R?, is then chosen such that its Fourier transform p obeys
o pcC(R?);
e p(0)=1;
e supp p C By(1/2), the ball centered at the origin with radius 1/2.

Owing to the property that p(n) = do,, n € Z2, it follows that the integer translates of p
form a partition of unity:
Z plr —n) =1.

nez?

Let us now consider the wavefield w(z,t) solution of
wy — V- (x)Vw = 0, r € R%
with initial conditions
w(z,0) = p(x)uo(z),  wi(x,0) = p(x)ui(z).

By linearity,
u(z,t) = Z w(z —n,t), (3.5)
nez?

with pointwise convergence.
The important property that f[o 1)2 ui(x)dx = 0 is preserved at the level of w in the
sense that

FI(E) =0, €€ Bo(1/2).

We now address the two related questions of how to express pseudodifferential and
Fourier integral operators in the native Fourier variable ¢ € Z? on the torus. If g(z) is
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a [0,1)%-periodic function, it makes sense to apply a pseudodifferential operator T to the
fast-decaying function h,(z) = p(z — n)g(x) of x € R2, yielding

Thafe) = [ ™o hn(€)ds. xR

where o(z,€) is the amplitude of T, and “hat” is the Fourier transform. The action of T
on g itself can then be defined as

T —en? 2
zy@y_£%§:e (Thy) (z),  z€0,1)2
nez?
The problem is to find an amplitude a(z,£), ¢ € Z2, such that
Ty(a) =) ™ 4r(2,€)g(€) d,
£ez?

where the hat now denotes the Fourier series,
i) = [ Ty, gezn
[0,1)2

Elementary manipulations show that 7(z,£) are nothing but the samples of o(x,§):
T(2,6) = o(z,8), xe€[0,1)?, ez’

The smoothness properties of o are therefore transferred at the discrete level: discrete
symbols are samples of their very smooth counterparts. This is chiefly true of the polarizer
T = (iP)~!, as far as our application is concerned.

Similarly, we seek to write the propagators as Fourier series operators:

(eiitPfi) (Jf) _ Z €i<1>i(:fc,§§t)bi(q;,§; t)&i(f)

£ez?

The phase functions ®4 are the same as previously, and the polarized components are

ﬁmﬁ:%hd@iUPr%ﬂ@L z€0,1)

where we have just made sense of P~'. An analysis very similar to the pseudodifferen-
tial case shows that the amplitudes by (x,&;t) are also samples of the amplitudes for the
propagator in R2:

bi(z,&65t) = ax(z, &), 2 €[0,1)%, ez

It was the subject of research by Turunen et al. over the past few years to formulate
a smoothness criterion native to the torus for symbols such as 7(z,§) and by (z,&;t). In
[34, 24] the authors propose to replace partial derivatives by finite differences in . The
forward difference operator A? with multi-index « is defined as

NN
Ag = A Ag,

(Ag, /)(&) = f(E+0;) = f(O), =12
with obvious modifications in several spatial dimensions. Here §; = (1,0) and d2 = (0,1)
are Kronecker deltas. Is it explained how to formulate a notion of calculus (via boundedness

in certain Sobolev scales) based on these finite differences. In the scope of this discussion
it will suffice to observe that the following simple result holds.
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Proposition 3.7. Let p(z,£) be a function of x € [0,1)? and ¢ € R2. If there exists m > 0,
and for all v > 0 and multi-indices o, 3 there exists Cog, > 0 such that

|0807p(x, &) < Capp(1+[E2)™212 e >, (3.6)
and such that &Cﬁp(m,ﬁ) is bounded on any compact set, then it also holds that
|AZDTp(,€)| < Clg, (L+ [¢2)y™2710V2 e >, 22,
for a possibly different constant C'(’wr.

Proof. Fix o and 3. Let f(§) = o8 p(z, &) for simplicity of notation. Then

_ ali f
Al fe) = 5;)d
5Jf(f) /[0,1]fj 8{? (€ + |s]6;) ds,

with [s| = szle s; and ds = dsy ...dsy,. As a result,

olel

75_’_
85{18522( n)

: (3.7)

AL O = IAGAZF(©)] < max ‘

with |a] = fi1 + f2. Two regimes must be contrasted:

e Near the origin, consider ¢ such that |{| < |a| + 1. Let Dg be the maximum of

p(x,€) over the larger ball |¢| < 2|a| + 1. We may simply take all the terms in
absolute value in the finite difference expansion and obtain

ALf©) <2Ds, ] < o] + 1.

e Consider || > |a| 4+ 1. Then |£ + 7| > 1 when |n| < |a|, and we may invoke equation
(3.6) with » = 1. (W.lo.g. C,p, decreases as a function of increasing r.) The
right-hand side in (3.7) is bounded by

Copr max (14 € +n|?) 712,
[n]<l|e]

Peetre’s inequality allows to conclude that

(14 J¢ + ) 1oV < 2121 )el/2(1 4 |gf2)lel/2
< 2HV(1 4 [af)oI2(1 4 g2y,

which is what we sought to establish.

4 Numerical Algorithm

In Section 1, we list the four questions to be addressed and briefly outline the solutions. In
this section, we describe the solutions in detail.
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4.1 Computation of P and P!

To construct P = L'/2 and P~!, we use discrete symbol calculus. There is one small
problem: L = —V-(c?(x)V) is only a positive semidefinite operator with one zero eigenvalue.
Hence, the square root algorithm in Section 2.1 cannot be applied directly. However, since
L is of divergence form, we know that the corresponding eigenfunction is the constant
function. Therefore, we can fix this problem easily, and in the same manner as we did in
the theory earlier, by removing the average from the initial condition ug(z) and addressing
it separately. For all initial value function ug(x) with zero mean, we can redefine L to be

Lu= -V - ((z)Vu) + /u(x)dm

Now this L is a positive definite operator, and we can use the algorithm in Section 2.1 to
compute P = LY/2 and P~ = L71/2.

4.2 Computation of ¢, (z,&,7)

n

(V)

):ni,ne € Z,0<np,ne < N}
b ®4(x,&,t) are functions of

|

The next task is to compute ¢4 (z,§,t) for z € X = {(F,
B

and £ € Q = {(&,&) + &.& € Z,—BY < 6,6 <
homogeneous degree 1 in £ and satisfy

0Py (z,6,t) Fc(z)|VyPi(z,6,t) =0
q>i(x7£a0) =T f

We can simply the computation using two simple observations:

v

(4.1)

e Since <I:i(:r, &, t) is homogeneous of degree 1 in &, we only need to solve the problem
& (x,&,t) for £ on unit circle.

e Even though ®4(x,&,t) is not periodic in z, its difference with the initial condition
Oy (x,&,t) —x- € is periodic and is amenable to high accuracy spectral differentiation.

Therefore, we solve the following problem for U (z,&,t) := Dy (x,&,t) — 2 - € instead: for
each ¢ € 1,
{at\I/i(:c,g,t)q:c(x)]VI\I/i(:c,&t)%-{ =0 (42)

\I/:t(.%',é, 0) =0.

Notice that the solution of this equation only depends on the coefficient ¢(z). When ¢(x) is
a bandlimited function, ¥4 (x, é, t) is a smooth function in x when ¢ is significantly smaller
than the time t* when the caustics appear. This allows us to solve \I/i(x,é ,t) on a grid
much coarser than the N x N grid (where the function f(z) is defined) and still obtain a
high accuracy. Moreover, it is easy to check that Wy (x, é ,t) is also smooth in é .

As a result, we discretize S with equispaced grid ék, 1 <k < M. For each ék, we solve
Uy (z, é’k, t) on a M, x M, Cartesian grid in the = variable. The z derivative V¥4 (z, ék, t)
is approximated using spectral differentiation, which can be easily done using the Fast
Fourier Transform (FFT) since the function \Ili(a:,ék,t) is periodic in z. We use a high
order Runge-Kutta method for timestepping. Notice that since the solution grid is of size
M, x M,, the time step can be taken to be of order 1/M,.

Once the ‘lii(az,ék, t) is obtained for each &, on the M, x M, spatial grid, evaluating
W (z,&,t) for any x and ¢ is a simple Fourier interpolation problem. When M is small,
evaluating the Fourier series direction is sufficiently efficient. When M, gets sufficiently
larger, we can use tools such as nonuniform FFT [15].

21



4.3 Computation of ay(z,§,7)

For 7 < t*, the matrices (a+(x,&,7))zexccq are numerically low-rank. The algorithm
described in Section 2.2 is used to construct their low-rank separated approximation. The
main issue here is how to sample the rows and columns of (a4 (x,&,t))zex cca-

Before we start, we first introduce some matrix notation that will simplify the presen-
tation. Given two matrices A = (az¢)zex,ccq and B = (bye)zex cco of the same size, A® B
denotes their pointwise product, i.e., the matrix with entries (a,¢b,¢). We define the Fourier

transform matrix F' by
1
F= (e—szmf) .
N2 £ezeX

Accordingly the inverse Fourier transform matrix is given by

Ffl _ (627rz:c~§)m€X’£€Q.

Recall that the main components of the solution formula are

(=) (@) = > aula, & m)e?m =47 f(g) (43)

£en

for z € X. If we define the matrices
Ay = (as(2,6,7))pe, By = (2mx@ET)

we can then rewrite (4.3) as
e — (A © Ey) - F.

As we now show, extracting rows and columns of A4 regiuces to applying e P to some
spectral functions. For any &, we define vector e = (e2m=8) .. Clearly eg corresponds to a
plane wave with wave number EN . We use 0z to denote the vector with one at index & and
zero everywhere else. Similarly, 55 is the vector with one at index é and zero everywhere

else.

When we apply e**F7 to e

& we get
+iP1t _ _ __ L .
e e = (Ai ® Ei)Feg = (Ai ® Ei)ég‘

However, the last term is exactly equal to the &-th column of (Ax ® E1). Now, we can

casily evaluate the &-th column of E., which is exactly equal to (e2m®+@L1) - Dividing
them term by term gives the g—th column of Ay = (a+(x,&,7))ge. Now the only question
that remains is how to compute e**" Teg. It is easy to see that this is in fact the solution of
the following problem at t = 7:

Opu(x,t) — V- (2(x)Vu(z,t)) =0 t>0,2€[0,1)?
u(z,0) = eg(w) r€[0,1)2 (4.4)
Oru(z,0) = (+iPeg)(x) x €10,1)%

which is solved with spectral differentiation in « and Runge-Kutta time stepping in ¢. Since

for each & the solution takes O(N?) steps, sampling each column of Ay = (a4 (2,8, 7))z
costs at most O(N?) steps.
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In order to sample the Z-th row of A4, we use the fact
S1eT T = 5%(AL © Ey).

:tiPT)* — e:FiP’r7 we get

Transposing the left side and using the fact (e
(F~eFP76;)" = 65(Ax © Ey)

Therefore, in order to sample the Z-th row of A, we compute eTF76z, apply (F~1)* = N2F
to it, transpose the result, and finally divide entry-wise the Z-th row of F.. Similar to the
column sampling case, e ~*F'7§; is the solution of the following problem at time t = 7:

Opu(x,t) — V- (3(x)Vu(z,t)) =0 t>0,2€[0,1)2
u(z,0) = 6z(z) r € [0,1)? (4.5)
Oyu(z,0) = (FiPdz)(x) x € [0,1)?

Again, by using spectral differentiation in  and time stepping in ¢, we can sample each
row of Ay = (a4 (2,&,7))se in O(N3) steps.

Since the algorithm in Section 2.2 for constructing the separated approximation of
Ay requires sampling only a constant number of rows and columns (where the constant
depends on the e-rank of Ay), the total cost of computing these separated approximations
is still O(N?). We would to emphasize that the construction of these approximations is a
precomputation step and is performed only once for a fixed ¢(z). Once these approximations
are ready, one can reuse them in the solutions for arbitrary initial conditions.

4.4 Computation of u(z,7)

So far, we have discussed the details of constructing the Fourier integral representation

(577 fu)(@) = D A N0 (2,6, 7) i (6).
3

For bandlimited c(x), the computing of P and P~! takes O(log N) steps. Computing
P4 (x,&,7) requires only O(1) steps. Factorizing (ax(z,&, 7))z ¢ uses at most O(N3) steps
in total. Therefore, the total preprocessing time is of order O(N?).

Now let us briefly summarize the computing of u(x, 7) given ug(x) and uq(z).

1. Compute fi = %(uo + (iP)"'u1). The application of P! uses the algorithm in
Section 2.1.

2. Compute ‘ .
(eizPTfi)(l,) _ Z as (l‘, 67 7_)627T’L<I>i(:v,£,‘r)fi(§)

£eq

for x € X using the Fourier integral operator algorithms described in Section 2.3. This
takes O(N%log N) or, depending on the algorithmic variant chosen, O(N??log N)
steps.

3. Finally, set u(x,7) = (X7 f1)(z) + (e £ f_)(x) for x € X.
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5 Numerical Results

In this section, we present several numerical examples to illustrate the algorithm described
in Section 4. We implement the algorithms in Matlab and all numerical results are obtained
on a workstation with a 3.0GHz CPU. We set an overall error threshold of order 10~ for all
components of the algorithm. The time 7 for which the FIO representation is constructed
is taken to be 1/8, which is less than ¢* in all examples.

Example 1. The coefficient ¢(x) is given by a two-dimensional sine wave (see Figure 4).
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Figure 4: Example 1. Coefficient ¢(z).

As we mentioned in Section 4, the precomputation step includes four steps: (1) the
construction of P and P! using discrete symbol calculus, (2) the computation of the phase
functions Wy (x,&,t), (3) the computation of the amplitudes a4 (x,&,t), and (4) finally the
precomputation of the Fourier integral operators with symbol a4 (z, &, t)equ’i("”’g’t).

The representation of the symbols of P = LY/% and P~ = L~/2 uses 9x9 Fourier modes
ex(z) in the z domain (i.e., B = 5). In the £ domain, the symbols are representation with the
hierarchical spline approximation, with a total number of 667 samples for N < 1024. The
construction of P and P~! through the Schulz-Higham iteration converges in 35 iterations
and costs 1.37e+02 seconds in total.

The phase functions \I/i(x,f, 7) are computed with a uniform 32 x 32 Cartesian grid
in the z domain and a uniform 128 grid in the angular component of £. We solve the
Hamilton-Jacobi equation in time using the standard 4th-order Runge-Kutta method, with
a time step equal to 1/512. The resulting phase function \I/i(x,é, 7) has an accuracy of
order 1078, which is sufficiently accurate for the overall computation. The evaluation of
\I/i(:c,é ,7) at locations off-grid is done with the standard Fourier interpolation, so that
the high order accuracy is preserved. The computation of W (x, £, 7) takes only 1.65e+01
seconds.

Most of the precomputation time is spent on the the construction of the amplitudes
ax(z,€,7) and the precomputation of the FIOs with symbol a4 (z, £, 7)™ ®=(®47)  These
two components depend on the problem size N. In the following experiments, N = 128,
256, 512, and 1024. For the precomputation of the FIOs, we use the version based on an-
gular decomposition (Approach 1 of Section 2.3). Even though this version has a relatively
high asymptotic complexity, its relatively smaller prefactor constant makes it more efficient
for the problem sizes addressed here (i.e., N = 128 ---,1024). The results of the pre-
computation are summarized in Table 1. Tayp is the time for constructing the separated
factorizations of (a+(x,&,7))s¢ in seconds, ramp is the e-rank of resulting factorization
with € = 1074, Tyio is the precomputation time of the FIOs in seconds, Wgro is the total
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number of wedges in the angular partitioning of the frequency domain, and 7o is the
(average) separation rank in (2.1).

N Tanmp T AMP Tr10 Wrio  7FIO0
128 | 5.29e+02 19 1.32e+402 16 9
256 | 3.34e+03 18 3.27e+02 24 8
512 | 2.55e+04 17 1.31e+03 32 7
1024 | 1.38e+05 17 5.58e+03 46 7

Table 1: Example 1. Results of the precomputation of the amplitudes ay(x,§, 7) and the
FIOs. Tawmp is the time for constructing the factorizations of (a+(x,&, 7))z e in seconds,
ramp is the e-rank of resulting factorization with ¢ = 107, Tgio is the precomputation
time of the FIOs in seconds, Wrio is the total number of wedges in the angular partitioning
of the frequency domain, and rp1o is the (average) separation rank in (2.1).

For each N, we apply the resulting FIO representation to compute the wave solution
u(z,7) at 7 = 1/8 for the following three initial conditions.

1. Harmonic wave

uo(x) = 62m(a1N:Jc1+oz2Nx2)7 uy(x) = —2m a% + O%]Ve%rz(ozlNa:l—i-ongmg)7

with (a1, a2) = (5/32,3/32). As N grows, the initial condition becomes more and
more oscillatory.

2. Plane wave
uo(x) = exp(—(N/4)*(x1 — 1/2)?), ui(x) =0.

This initial condition is concentrated along the line z; = 1/2, and it becomes more
and more singular as N grows.

3. Gaussian bump
up(z) = exp(—(N/4)* ((x1 — 1/2)* + (21 — 1/2)?)), wui(z) = 0.
This Gaussian bump is localized near (z1,z2) = (1/2,1/2).

Table 2 summarizes the running time and relative L? error of computing u(z,7) using the
constructed FIO representations for these initial conditions and for different values of N.
Here the relative error is estimated by comparing our result with the solution computed by
an accurate time-stepping scheme with spectral differentiation in space and the 4th-order
Runge-Kutta method in time (with sufficiently small time step). The error of this time-
stepping scheme is of order 10~7 for ¢ € [0, 7], so that we can effectively treat its result as
the exact solution.

From Table 2, we observe that the error is consistently of order 10~#, which shows that
our algorithm has the desired accuracy. Each time N doubles, the number of unknowns
grows by a factor of four. For the first two initial conditions, the running time of the
evaluation algorithm seems to scale linearly with respect to the unknowns. The reason
behind this is that the first two initial conditions are both well-localized in the frequency
domain and therefore, for the angular decomposition based FIO algorithm, one only needs
to visit a small number of wedges. On the other hand, the last initial condition has a support

25



covering the whole frequency domain, and hence the FIO algorithm visits all wedges. One
clearly sees that in this case the running time of our evaluation algorithm grows by a factor
of 5 to 6 when the number of unknowns quadruples, which is consistent with the theoretical
O(N??log N) estimate.

Init. cond. 1 Init. cond. 2 Init. cond. 3

N Time Error Time Error Time Error
128 | 7.90e-01 9.24e-05 | 4.65e-01  9.86e-05 | 3.57e+00 9.13e-05
256 | 1.77e+00 1.56e-04 | 1.76e+00 1.72e-04 | 2.07e+01 1.30e-04
512 | 6.85e+00 1.10e-04 | 6.67e4+00 2.04e-04 | 1.03e+02 1.25e-04
1024 | 2.73e+01 1.82e-04 | 2.70e4+01 2.28e-04 | 6.21e+02 1.65e-04

Table 2: Example 1. Running time and relative L? error of computing u(z,7) for different
initial conditions and different values of V.

We plot in Figure 5 the running time of the FIO evaluation algorithm in comparison
with the full time-stepping algorithm with spectral differentiation in space, for the three
initial conditions. It is clear that the algorithm based on the FIO representation is much
more efficient than the time-stepping algorithm for the first two initial conditions again due
to the frequency localization of the initial data. For the last initial condition, even though
the FIO based algorithm has a relatively higher absolute running time, the curve suggests
that asymptotically it is eventually more efficient than the full time-stepping algorithm.
(Note that finite differences are at least as costly as a spectral method at the desired level
of accuracy.)

Time(sec)
=
OH

107 ¢ ——Time-stepping|i
—e—Init. cond. 1
—=—Init. cond. 2

” ——Init. cond. 3

10

10" 10° 10° 10

Figure 5: Comparison of the running time of our evaluation algorithm with the running
time of the time-stepping algorithm.

Figure 6 shows the solutions for three initial conditions at time 7, 27, 37, and 47 with
7 =1/8 for N = 512. It is clear from these plots that, although we take a time step much
larger than the CFL limit, the numerical dispersion effect is not an issue due to the spectral
nature of our approach.
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Figure 6: Example 1. The solution u(z,t) at t = 1/8, 1/4, 3/8, and 1/2 (from top to

bottom) for three different initial conditions with N = 512.
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Example 2. We consider a wave guide problem with coefficient ¢(z) given in Figure 7.
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Figure 7: Example 2. Coefficient c(z).

The results for constructing P and Wy (x, é, t) are omitted since they are similar to the
first example. We first report the results of the construction of amplitudes a4 (z,&,7) and
the precomputation of FIOs ai(x,f,T)eQ’”‘I’i(””’E’ﬂ for N = 128, 256, 512, and 1024 in
Table 3. Since the coefficient ¢(x) only depends on x5, the amplitude approximations and
the FIO representations are simpler compared to the first example. The separation ranks
ramp and rpro are significantly smaller.

N Tanmp T AMP Tr10 Wrio 710
128 | 4.22e+02 7 1.17e+02 16 7
256 | 2.72e+03 7 3.07e+02 24 6
512 | 2.16e+04 7 1.28e+03 32 6
1024 | 1.12e+05 7 5.42e+03 46 5

Table 3: Example 2. Results of the precomputation of the amplitudes a4 (z,&,7) and the
FIOs.

For each value of N, we apply the constructed FIOs to three initial conditions considered
in the first example. The results for different initial conditions are summarized in Table 4.
As a direct result of the smaller separation rank rgro, the running times are much lower
compared to the ones in the first example. However, the scaling behavior is very similar.

Init. cond. 1 Init. cond. 2 Init. cond. 3

N Time Error Time Error Time Error
128 | 4.45e-01 3.70e-05 | 3.53e-01  2.32e-05 | 2.82e4+00 4.33e-05
256 | 1.51e+00 4.64e-05 | 1.39e4+00 4.03e-05 | 1.73e+01 3.45e-05
512 | 5.87e+00 4.21e-05 | 5.51e+00 7.26e-05 | 8.89e+01 5.52e-05
1024 | 2.37e+01 5.37e-05 | 2.31e4+01 7.71e-05 | 5.21e4+02 6.45e-05

Table 4: Example 2. Running time and relative L? error of u(z,7) for different initial
conditions and different values of V.

Figure 8 shows the solutions for the three initial conditions at time 7, 27, 37, and 471
with 7 =1/8 for N = 512.
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Figure 8: Example 2. The solution u(z,t) at t = 1/8, 1/4, 3/8, and 1/2 (from top to

bottom) for three different initial conditions with N

512.
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Example 3. Finally, we consider a randomly generated c(z) given in Figure 9.

The results of the precomputation of the amplitudes and the FIOs for different values

of N are reported in Table 5.

Table 5: Example 3. Results of the precomputation of the amplitudes ay(x,£, 7) and the

FIOs.

For each value of N, the FIOs is again applied to three initial conditions and these
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Figure 9: Example 3. Coefficient c(z).

N Tanmp T AMP Tr10 Wrio  7FI0
128 | 5.69e+02 20 1.31e+02 16 10
256 | 3.52e+03 19 3.41e+02 24 8
512 | 2.54e+04 18 1.33e+03 32 8
1024 | 1.42e+05 16 5.66e+03 46 7

results are summarized in Table 6.

Init. cond. 1 Init. cond. 2 Init. cond. 3
N Time Error Time Error Time Error
128 | 7.43e-01 1.68e-04 | 4.89e-01 1.38e-04 | 3.65e+00 1.23e-04
256 | 1.85e+00 1.44e-04 | 1.79e4+00 1.72e-04 | 2.13e+01 1.37e-04
512 | 7.08e+00 2.88e-04 | 6.93e+00 2.01e-04 | 1.07e4+02 1.73e-04
1024 | 2.87e4+01 2.39e-04 | 2.83e+01 2.49e-04 | 6.27e+02 1.74e-04

Table 6: Example 3. Running time and relative L? error of u(x,7) for different initial
conditions and different values of N.

Figure 10 shows the solutions for three initial conditions at time 7, 27, 37, and 47 with

T=1/8 for N = 512.
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