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Abstract—We present a pursuit-like algorithm that we
call the “superset method” for recovery of sparse vectors
from consecutive Fourier measurements in the super-
resolution regime. The algorithm has a subspace iden-
tification step that hinges on the translation invariance
of the Fourier transform, followed by a removal step
to estimate the solution’s support. The superset method
is always successful in the noiseless regime (unlike `1
minimization) and generalizes to higher dimensions (unlike
the matrix pencil method). Relative robustness to noise is
demonstrated numerically.
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I. INTRODUCTION

We consider the problem of recovering a sparse vector
x0 ∈ Rn, or an approximation thereof, from m ≤ n
contiguous Fourier measurements

y = Ax0 + e, (1)

where A is the partial, short and wide Fourier matrix
Ajk = e2πijk/n, 0 ≤ j < m, −n/2 ≤ k < n/2, n even,
and, say, e ∼ N(0, σ2Im).

When recovery is successful in this scenario of
contiguous measurements, we may speak of super-
resolution: the spacing between neighboring nonzero
components in x0 can be much smaller than the Rayleigh
limit n/m suggested by Shannon-Nyquist theory. But in
contrast to the compressed sensing scenario, where the
m values of j are drawn at random from {0, . . . , n−1},
super-resolution can be arbitrarily ill-posed. Open ques-
tions concern not only recovery bounds, but the very
algorithms needed to define good estimators.

Various techniques have been proposed in the liter-
ature to tackle super-resolution, such as MUSIC [11],
Prony’s method / finite rate of innovation [8] [1] [12],

the matrix pencil method [9], `1 minimization [7] [5] [3]
[2], and greedy pursuits [6].

Prony and matrix pencil methods are based on eigen-
value computations: they work well with exact mea-
surements, but their performance is poorly understood
in the presence of noise, and they are not obviously
set up in higher dimensions. As for `1 minimization,
there is good evidence that k-sparse nonnegative signals
can be recovered from only 2k + 1 noiseless Fourier
coefficients by imposing the positivity constraint with
or without `1 minimization, see [4] [7] and [5]. The
work of [3] extends this result to the continuous setting
by using total variation minimization. Recently, Candès
and Fernandez-Granda showed that the solution to an
`1-minimization problem with a ‖A∗(y −Ax)‖1 misfit
will be close to the true signal, assuming that locations of
any two consecutive nonzero coefficients are separated
by at least four times the super-resolution factor n/m
[2]. Such optimization ideas have the advantage of being
easily generalizable to higher dimensions. On the flip
side, `1 minimization super-resolution is known to fail
on sparse signals with nearby components that alternate
signs.

In this paper, we discuss a simple algorithm for
solving (1) based on

• subspace identification as in the matrix pencil
method, but without the subsequent eigenvalue
computation; and

• a removal procedure for tightening the active set,
remindful of a step in certain greedy pursuits.

This algorithm can outperform the well-known matrix
pencil method, as we show in the numerical section, and
it is generalizable to higher dimensions. It is a one-pass
procedure that does not suffer from slow convergence
in situations of high coherence. We also show that
the algorithm provides perfect recovery for the (not
combinatorially hard in the Fourier case) noiseless `0



problem

min
x
|suppx| s.t. Ax = y. (2)

II. NOISELESS SUBSPACE IDENTIFICATION

For completeness we start by recalling the classical
uniqueness result for (2).

Lemma 1. Let x0 ∈ Rn with support T such that m ≥
2|T |, and let y = Ax0. Then the unique minimizer of (2)
is x0.

We make use of the following notations. Denote
suppx0 by T , and write AT for the restriction of A to
its columns in T . Let T c for the complement of T . Let
ak for the k-th column of A. The superscript L is used
to denote a restriction of a matrix to its first L rows, as
in ALT .

The “superset method” hinges on a special property
that the partial Fourier matrix A does not share with
arbitrary dictionaries: each column ak is translation-
invariant in the sense that any restriction of ak to s ≤ m
consecutive elements gives rise to the same sequence,
up to an overall scalar. In other words, exponentials are
eigenfunctions of the translation operator. This structure
is important. There is an opportunity cost in ignoring
it and treating (1) as a generic compressed sensing
problem.

A way to leverage translation invariance is to recog-
nize that it gives access to the subspace spanned by the
atoms ak for k ∈ T , such that y =

∑
k∈T (x0)kak.

Algorithmically, one picks a number 1 < L < m and
juxtaposes translated copies of (restrictions of) y into the
Hankel matrix Y = Hankel(y), defined as

Y =


y0 y1 · · · ym−L−1

y1 y2 · · · ym−L
...

...
...

...
yL−1 yL · · · ym

 .

The range of Y is the subspace we seek.

Lemma 2. If L ≥ |T |, then the rank of Y is |T |, and

RanY = RanALT .

The lemma suggests a simple recovery procedure in
the noiseless case: loop over all the candidate atoms ak
for −n/2 ≤ k < n/2 and select those for which the
angle

∠(aLk ,RanY ) = 0. (3)

Once the set T is identified, the solution is obtained by
solving the determined system

ATxT = y, xT c = 0. (4)

This procedure (unsurprisingly) provides a solution to
the noise-free `0 sparse recovery problem (2).

Theorem 3. Let x0 ∈ Rn with support T such that
m > 2|T |, and let y = Ax0. Consider x defined by
(3) and (4), where the Hankel matrix Y is built with
|T |+ 1 ≤ L ≤ m− |T | − 1. Then x = x0.

The proofs of lemma 2 and theorem 3 hinge on the
fact that A has full spark.

The idea of subspace identification is at the heart of
a different method, the matrix pencil, which seeks the
rank-reducing numbers z of the pencil

Y − zY ,

where Y is Y with its first row removed, and Y is Y with
its last row removed. These numbers z are computed as
the generalized eigenvalues of the couple (Y ∗Y , Y ∗Y ).
z can also be found via solving the eigenvalues of the
matrix Y †Y . When |T | ≤ L ≤ m − |T |, the collection
of these generalized eigenvalues includes e2πijk/n for
k ∈ T , as well as m − L − |T | zeros. There exist
variants that consider a Toeplitz matrix instead of a
Hankel matrix, with slightly better numerical stability
properties. When L = |T |, the matrix pencil method
reduces to Prony’s method, a numerically inferior choice
that should be avoided in practice if possible.

III. NOISY SUBSPACE IDENTIFICATION

The problem becomes more difficult when the ob-
servations are contaminated by noise. In this situation
RanALT 6= RanY , though in low-noise situations we
may still be able to recover T from the indices of the
smallest angles ∠(aLk ,RanY ).

Proposition 4. Let y = y0+e with e ∼ N(0, σ2Im), and
form the corresponding L× (m−L) matrices Y and Y0

as previously. Denote the singular values of Y0 by sn,0.
Let r = rank(Y0). Then there exists positive c1, C1 and
c, such that with probability at least 1− c1m−C1 ,

| sin∠(aLk ,RanY0)− sin∠(aLk ,RanY )| ≤ c ε1, (5)

where

ε2
1 = σ

√
rm logm

s1,0 − s2,0
. (6)

In order to write bounds involving the singular values
si of Y instead of those of Y0, one may use Weyl’s
inequality |si − si,0| ≤ ‖Hankel(e)‖, which can in turn
be controlled as O(σ

√
m logm) with high probability.

The subspace identification step now gathers all the
values of k compatible with the (null) hypothesis that



∠(aLk ,RanY0) = 0, i.e., those which for some adequate
c > 0 obey

sin∠(aLk ,RanY ) ≤ c ε1.

The resulting set Ω of indices is only expected to be a
superset of the true support T , with high probability.

A second step is now needed to prune Ω in order
to extract T . For this purpose, a loop over k is set up
where we test the membership of y in RanAΩ\k, the
range of AΩ with the k-th column removed. We are now
considering a new set of angles where the roles of y and
A are reversed: in a noiseless situation, k ∈ T if and
only if

∠(y,RanAΩ\k) 6= 0.

When noise is present, we first filter out the noise off
Ω by projecting y onto the range of AΩ, then estimate
k ∈ T only when the angle is above a certain threshold.
It is easier to work directly with projections Π:

‖ΠΩy −ΠΩ\ky‖ = sin∠(ΠΩy,RanAΩ\k) ‖ΠΩy‖.

The effect of noise on the left-hand side is as follows.

Proposition 5. Let y = y0 + e with e ∼ N(0, σ2Im).
Let ΠΩy be the projection of y onto RanAΩ, and let
∆Π = ΠΩ − ΠΩ\k. Then there exists c > 0 such that,
with high probability,

| ‖∆Πy‖ − ‖∆Πy0‖ | ≤ c ε2,

with ε2 = σ.

Algorithm 1 for the superset method implements the
removal step in an iterative fashion, one atom at a time.

IV. EXPERIMENTAL RESULTS

In the first simulation, we fix n = 1000 and m = 120
and construct an n-dimensional signal x0 whose nonzero
components are well separated by at least 4n/m, a
distance equivalent to four times the super-resolution
factor n/m. The spike magnitudes are independently set
to ±1/

√
29 with probability 1/2. The noise vector e

is drawn from N(0, σ2Im) with σ = 10−3. We fix the
thresholds ε1 via (6) with c = 1 and ε2 = 10σ. Through-
out our simulations, we set L = bm/3c. As can be
seen from Fig. 1, top row, the recovered signal from the
superset method is reasonable, with ‖x̂− x0‖2 = 0.075,
while the reconstruction via `1-minimization tends to
exhibit incorrect clusters around the true spikes.

Our next simulation considers a more challenging
signal model with a strongly coherent matrix A. For
example, with n = 1000 and m = 120, the coher-
ence of the matrix A with normalized columns ai is
µ = maxi 6=j | 〈ai, aj〉 | = 0.9765. The signal in this

Algorithm 1 Superset selection and pruning
input: Partial Fourier matrix A ∈ Cm×n, y = Ax0 +
e, parameter L, thresholds ε1 and ε2.
initialization: Y = Hankel(y) ∈ CL×(m−L)

support identification
decompose: Q̃R̃ = Y Ẽ, Q̃ ∈ CL×r
project: ak ← A{k} ( for all k)

γk ←
∥∥∥ak − Q̃Q̃∗ak∥∥∥ / ‖ak‖

Ω = {k : γk ≤ ε1}
while true do

decompose: QR = AΩE, Q ∈ Cm×|Ω|
remove: ∀k ∈ Ω: Q(k)R(k) = AΩ\kE(k)

δk ← ‖(Q(k)Q
∗
(k) −QQ

∗)y‖2
k0 ← argmink δk
if δk0 < ε2, Ω← Ω\k0

else break
end while
output: x̂ = argminx ‖y −AΩx‖
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Fig. 1. Original (blue) and recovered (red) signals. Left
column: the superset method. Right column: `1-minimization.
Top row: a signal with well-separated spikes. Bottom row:
spike spacing below the Rayleigh length.

simulation is shown in Fig. 1, bottom row. It consists of
five spike clusters: each of the first two clusters consists
of a single spike, and each of the last four clusters
contains two neighboring spikes. The signs of these
neighboring spikes either agree or differ. We set m,σ and
ε2 as in the previous simulation, and we let the constant
c in the equation (6) of ε1 equal to 5. Recovery via the
superset method is accurate, while `1 minimization fails
at least with clusters of opposite-sign spikes.

In the next simulation, we consider a signal of
size n = 1000 which contains two nearby spikes
at locations [100, 101] and has magnitudes 1/

√
2 and



−1/
√

2. We empirically investigate the algorithm’s abil-
ity to recover the signal from varying measurements
m = {10, 20, ..., 220} and noise levels log10σ =
{−3.5,−3.4, ...,−2}. For each pair (m,σ), we report
the frequency of success over 100 random realizations
of e. The greyscale goes from white (100 successes) to
black (100 failures). A trial is declared successful if the
recovered x̂ satisfies ‖x̂− x0‖2 / ‖x0‖2 < 10−3. The
horizontal axis indicates the noise level σ in log scale,
and the vertical axis indicates log10(1 − µ) where µ is
the coherence as earlier.

We note that the coherence is inversely proportional to
the amount of measurements m and proportional to the
super-resolution factor n/m: increasing m (decreasing
the super-resolution factor) will reduce the coherence µ.
On the vertical axis, smaller values imply higher coher-
ence, or equivalently smaller amount of measurements.
As shown in Fig. 2, for reasonably small noise, the
algorithm is able to recover the signal exactly even the
coherence is nearly 1.

For reference, we also compare the superset method
with the matrix pencil method as set up in [10]. The
noise is filtered out by preparing low-rank approxima-
tions of Y and Y where only the singular values above
cσ
√
L logL are kept, for some heuristically optimized

constant c. Two more signals are considered: (1) a 3-
spase signal consisting of three neighboring spikes, each
of magnitude 1/

√
3 with alternating signs, and (2) a 4-

sparse signal with neighboring spikes of alternating signs
and equal magnitude 1/2. Fig. 2 is a good illustration of
the contrasting numerical behaviors of the two methods:
the matrix pencil is often the better method in the special
case of a signal with 2 spikes, but loses ground to the
superset method in various cases of progressively less
sparse signals. Understanding the performance of the
matrix pencil would require formulating a lower bound
on the (typically extremely small) S-th eigenvalues of
Y0 where S is the sparsity of y0.

V. CONCLUSION

Empirical evidence is presented for the potential of
the superset method as a viable computational method
for super-resolution. Further theoretical justifications will
be presented elsewhere.
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