
Scaling Law for Recovering the Sparsest Element in a Subspace

Laurent Demanet and Paul Hand

Massachusetts Institute of Technology, Department of Mathematics,
77 Massachusetts Avenue, Cambridge, MA 02139

October 2013, Revised May 2014

Abstract

We address the problem of recovering a sparse n-vector within a given subspace. This
problem is a subtask of some approaches to dictionary learning and sparse principal component
analysis. Hence, if we can prove scaling laws for recovery of sparse vectors, it will be easier
to derive and prove recovery results in these applications. In this paper, we present a scaling
law for recovering the sparse vector from a subspace that is spanned by the sparse vector and k
random vectors. We prove that the sparse vector will be the output to one of n linear programs
with high probability if its support size s satisfies s . n/

√
k log n. The scaling law still holds

when the desired vector is approximately sparse. To get a single estimate for the sparse vector
from the n linear programs, we must select which output is the sparsest. This selection process
can be based on any proxy for sparsity, and the specific proxy has the potential to improve or
worsen the scaling law. If sparsity is interpreted in an `1/`∞ sense, then the scaling law can not
be better than s . n/

√
k. Computer simulations show that selecting the sparsest output in the

`1/`2 or thresholded-`0 senses can lead to a larger parameter range for successful recovery than
that given by the `1/`∞ sense.

1 Introduction

We consider the task of finding the sparsest nonzero element in a subspace. That is, given a basis
for the subspace W ⊂ Rn, we seek the minimizer of the problem

min ‖z‖0 s.t. z ∈W, z 6= 0, (1)

where ‖z‖0 is the number of nonzeros in the coefficients of z. Because problem (1) is NP-hard over
an arbitrary subspace [4], we study a convex relaxation over particular subspace models for which
we can prove recovery results.

This problem is a special case of the more general task of finding many independent sparse
vectors in a subspace [8]. This general task has many applications, of which some will require a
full basis of sparse vectors and others will require only a few sparse vectors.

1.1 Applications

Finding sparse vectors in a subspace is an important subtask in several sparse structure recovery
problems. Two examples are dictionary learning and sparse principal component analysis (PCA).

1

• Dictionary Learning with a square, sparsely used dictionary [17]. Consider an m× n matrix
Y , where n > m and each column of Y can be written as a sparse linear combination of
m unknown and independent dictionary elements. That is to say, Y = AX, where A is
invertible, the columns of A are the dictionary elements, and the rows of X are sparse. The
goal is to find A and X from only the knowledge of Y . In order to find this decomposition,
we note that the row span of Y is the same as that of X. Hence, a process that finds a sparse
basis of a subspace could be used to find X from the row space of Y . The dictionary A can
then be directly computed. Such a process based on linear programming was used in [17] to
study this dictionary learning problem.

• Sparse PCA in the infinite data limit. Consider the following noisy data:

xi ∼ N(0, βPW + I), for i = 1...m, (2)

where β is a signal-to-noise ratio and PW is the projection matrix onto a subspace W . The
task of PCA is to identify the directions along which there is the most variability in the
data. For (2), these directions are the subspace W , which we interpret as the signal. In
applications involving gene expression data, these directions may consist of the combinations
of genes that distinguish different types of cancer cells [16], for example. In some applications,
it is desirable that the discovered signal involve few variables [21]. Hence, sparse signal vectors
are of particular interest. For example, this sparsity allows easier interpretation of the relevant
genes for the cancer discrimination task. It is thus useful to find the sparse signal directions
within W based on the measurements xi, which is a sparse PCA problem [23, 5, 15]. This
problem is most interesting for a small number of samples, but it is nontrivial even in the
infinite data limit. In this limit, PW is measured exactly, and sparse PCA reduces to finding
the sparsest element in the subspace W .

To prove rigorous recovery results for problems like these, it is important to have scaling laws
for when the sparsest element subtask succeeds.

1.2 Recovery by n linear programs

The difficulty of finding sparse elements in a subspace stems from the nonconvexity of both the `0
objective and the nonzero constraint in (1). As is standard in sparse recovery, we consider the `1
relaxation of the `0 sparsity objective. The nonzero constraint must now be replaced with some
proper normalization in order to prevent outcomes arbitrarily close to zero.

A natural normalization is to search for an element with unit Euclidean length. Unfortunately,
the resulting problem is nonconvex, and methods for solving it directly get stuck in local minima
[22]. This approach may be convexified; for more details, see Section 1.7 of the present paper.

A convex normalization is to search for an element where a particular coefficient is set to
unity. Such an approach should work best if we could normalize the largest coefficient to be
1. Unfortunately, we do not know which component corresponds to the largest coefficient of the
sparsest element. Hence, we attempt to recover the sparse element by separately normalizing each
of the n components. That is, we attempt to find the sparsest element in W by solving the collection
of n linear programs

min ‖z‖1 such that z ∈W, z(i) = 1, (3)

2

where 1 ≤ i ≤ n. This is the approach introduced by Spielman et al. in [17]. In order to get
a single estimate from the optimizers of these n linear programs, we need a selector that returns
the output that is the ‘sparsest.’ Here, the sparsity of a vector z may be interpreted in one many
precise senses, such as the strict-`0 sense, ‖z‖0; a thresholded-`0 sense, #{i | |z(i)| ≥ ε}; the `1/`∞
sense, s = ‖z‖1/‖z‖∞; or the `1/`2 sense, ‖z‖1/‖z‖2. In principle, this interpretation of sparsity
may alter the scaling law of the overall recovery process.

1.3 Subspace Models

Because finding the sparsest element in an arbitrary space is NP-hard, we restrict our attention to
certain subspace models. Two such models are the Bernoulli-Gaussian model and a planted-random
model.

• Bernoulli-Gaussian model [17]. Consider a collection of vectors where each entry is nonzero
with a fixed probability. Suppose the values of these nonzero coefficients are given by inde-
pendent normal random variables. The Bernoulli-Gaussian subspace is given by the span of
these vectors. If the subspace dimension and the expected sparsity of each vector is small
enough, then the sparsest basis provides exactly these vectors, up to scaling. Spielman et
al. [17] provide a scaling law for successful recovery with the linear programs (3) under this
subspace model.

• Planted-random model. Consider a sparse vector and a collection of independent Gaussian
random vectors. The planted-random subspace is given by the span of all these vectors. If
the sparse vector is sparse enough, then it is the unique sparsest element with probability 1,
up to scaling. To the best of our knowledge, this model has not been studied in the literature.

In the present paper we will provide scaling laws for successful recovery under the planted-
random subspace model. Concisely, the problem is as follows:

Let : v ∈ Rn, ṽj ∼ N(0, In) for 1 ≤ j ≤ n
Given : {w1, . . . , wk+1} a basis for W = span{v, ṽ1, . . . , ṽk} (4)

Find : v

The vector v is the unique sparsest element in the space with probability 1, up to scaling, provided
that ‖v‖0 < n− k.

1.4 Exact Recovery by a Single Program

Solving (4) by the n linear programs (3) requires that at least one of those programs recovers
v. Roughly speaking, the program of form (3) that is most likely to succeed corresponds to an
i∗ ∈ argmaxi |v(i)|. This is because v/v(i) is feasible for (3) and has the smallest `1 norm when
i = i∗. The following theorem provides a scaling law under which v is exactly recovered by this
instance of (3).

Theorem 1. Let k ≤ n/32. There exists a universal constant c such that for sufficiently large n,

‖v‖0 ≤ c
n/
√

log n√
k

⇒ v

v(i∗)
is the unique solution to (3) for i = i∗, (5)

with probability at least 1−γ̃1e−γ̃2n/2−ke−bc
√
n/ lognc− k

n2 . Here, γ̃1 and γ̃2 are universal constants.

3

From the scaling law, we observe the following scaling limits on the permissible sparsity in terms
of the dimensionality of the search space:

k on the order of 1 =⇒ ‖v‖0 . n/
√

log n (6)

k on the order of n =⇒ ‖v‖0 .
√
n/
√

log n (7)

That is, a search space of constant size permits the discovery of a vector whose support size is
almost a constant fraction of n. Similarly, a search space of fixed and sufficiently small fraction of
the ambient dimension allows recovery of a vector whose support size is almost on the the order of
the square root of that dimension.

Roughly speaking, sparse recovery succeeds because the planted vector is smaller in `1 than any
item in the random part of the subspace. The full minimization problem then reduces to computing
the minimal value of (3) for a random subspace with no planted vector. In more precise terms,
recall that |v(i∗)| = ‖v‖∞ and v/v(i∗) is feasible for (3) with i = i∗. A necessary condition for
successful recovery is that the sparse vector is smaller in `1 than the minimum value attainable by
the span of the random vectors:

‖v‖1
‖v‖∞

≤ min ‖z‖1 such that z ∈ span{ṽ1, . . . , ṽk}, z(i∗) = 1, (8)

We will show in Section 2.1 that the right hand side of (8) scales like n/
√
k when k is at most some

constant fraction of n. As ‖v‖1/‖v‖∞ ≤ ‖v‖0 for all v, and the equality is attained for some v, we
conclude that high probability recovery of arbitrary v is possible only if ‖v‖0 . n/

√
k.

Because of this necessary condition (8), the scaling law between n, k, and ‖v‖0 in Theorem 1
can not be improved, except for the logarithmic factor. The scaling could conceivably be improved
in the related context where we only seek some i for which v/v(i) is the unique solution to (3).

1.5 Stable Recovery by a Single Program

The linear programs (3) can also recover an approximately sparse v. That is, if v is sufficiently
close to a vector that is sparse enough in an `0 sense, we expect to recover something close to v
by solving (3) with i = i∗ ∈ argmaxi |v(i)|. Let vs be the best s-sparse approximation of v. The
following theorem provides a scaling law under which v is approximately the output to the i = i∗

instance of the program (3).

Theorem 2. Let k ≤ n/32. There exists universal constants c, C such that for sufficiently large n,

for s = bcn/
√
logn√
k
c, and for i = i∗, any minimizer z# of (3) satisfies∥∥∥∥z# − v

v(i∗)

∥∥∥∥
2

≤ C
√
k log n√
n

‖v − vs‖1
‖v‖∞

(9)

with probability at least 1− γ̃1e−γ̃2n/2 − ke−bc
√
n/ lognc − k/n2.

The dependence on k and n in (9) is favorable provided that k . n/ log n. In the case that
k ∼ n, the error bound has a mildly unfavorable constant, growing like

√
log n. The

√
k/n behavior

of the error constant plays the roll of the 1/
√
s term that arises in the noisy compressed sensing

problem [3]. The estimate (9) is slightly worse, as
√
k/n ∼ k1/4/

√
s, ignoring logarithmic factors.

We believe that the k and n dependence of the error bound could be improved.

4

1.6 Selecting the Sparsest Output

Successful recovery of v by solving the n linear programs (3) requires both that v is the output
to (3) for some i, and that v is selected as the ‘sparsest’ output among all n linear programs. We
now comment on effects of selecting the sparsest output under several different interpretations of
sparsity: `1/`∞, `1/`2, and thresholded-`0. Computer simulations in Section 3 show that the precise
sense in which sparsity is interpreted can substantially affect recovery performance, especially when
the planted-random subspace has small dimension. The worst empirical performance is exhibited
by `1/`∞, and the best is by thresholded-`0, though this method has the drawback of requiring a
threshold parameter.

1.7 Discussion

We now compare several approaches for solving the sparsest element problem (4). The main
difference among these approaches is the way they relax sparsity into something tractable for
optimization problems. We then compare the sparsest element problem to compressed sensing.

As the `1/`∞ ratio is a proxy for sparsity, it is natural to try to find the sparsest nonzero element
in the subspace W by solving

min
‖z‖1
‖z‖∞

such that z ∈W, z 6= 0. (10)

While this problem is not convex, it is the same as solving the n programs (3) and selecting the
smallest output in an `1 or an `1/`∞ sense. Geometrically, this approach corresponds to replacing
an `∞ constraint ball by separate hyperplanes along each of its faces.

We note that the scaling for successful recovery with (10) can be no better than than s . n/
√
k.

To see this, observe that the right hand side of (8) provides an upper bound on the minimal value of
‖z‖1/‖z‖∞ for z ∈ span{ṽ1, . . . , ṽk}. Hence, outside the scaling s . n/

√
k, there would be random

vectors that are sparser than v in the `1/`∞ sense. We do not recommend simply solving (10) as
an approach for finding the sparsest vector in a subspace because computer simulations reveal that
recovery can be improved merely by changing the sparsity selector to `1/`2 or thresholded-`0.

As the `1/`2 norm ratio is also a proxy for sparsity, it is also natural to try to solve the sparsest
element problem by optimizing

min
‖z‖1
‖z‖2

such that z ∈W, z 6= 0. (11)

This problem is also nonconvex, though it can be convexified by a lifting procedure similar to [2].
After such a procedure, it becomes an n × n semidefinite program. While the procedure squares
the dimensionality, it may give rise to provable recovery guarantees under a scaling law. We are
unaware of any such results in the literature. In a sense, the present paper can be viewed as a
simplification of this n × n matrix recovery problem into n linear programs on vectors, provided
that we are willing to change the precise proxy for sparsity that we are optimizing.

A more elementary approach to solving the sparsest element problem (4) is to simply choose the
largest diagonal elements of the projector matrix onto W . If the sparse element v is sparse enough,
then this process will recover its support with high probability. While this method may have a
similar scaling as that in Theorem 1, we anticipate that it is less robust because it capitalizes

5

directly on specific properties of the distribution of planted-random subspaces. As an analogy,
consider the problem of identifying a planted clique in a random graph. A thresholding based
algorithm [11] performs at the best known tractable scaling, up to logarithmic factors; however,
its performance is much worse with semirandom models [6], where an adversary is able to modify
the planted random graph within some constraints. For the sparsest element problem, we leave a
detailed study of the thresholding approach to future research.

We now compare the sparsest element problem to compressed sensing. The linear programs
(3) could be viewed as separate compressed sensing problems. From this perspective, the sensing
matrix of each would have many rows that are orthogonal to the planted sparse vector, hence
complicating an analysis based on restricted isometries. Because of this difficulty, we do not use a
compressed sensing perspective for the proofs of the recovery theorems.

The sparsest element problem results in different qualitative scalings than those of compressed
sensing. For example, if sparsity is minimized in the `1/`∞ sense, the scaling law can not be better
than s . n/

√
k. This scaling depends strongly on k. From a compressed sensing perspective, one

might guess that the recoverable sparsity is on the order of the number of measurements. Because
the problems (3) can be written with n− k + 1 equality constraints, this guess would provide the
scaling s . n, which is impossible when minimizing sparsity in an `1/`∞ sense.

1.8 Notation

Let W be the planted-random subspace spanned by v and ṽ1, . . . , ṽk, as given in (4). Let the
matrix V = [v, ṽ1, ṽ2, . . . , ṽk] have these vectors as columns. Let Ṽ = [ṽ1, ṽ2, . . . , ṽk], which gives
V = [v, Ṽ]. Let v(i) be the ith component of the vector v. Let Vi∗,: be the i∗-th row of V . Write
Vi∗,: = [1, ãt], where ã ∈ Rk. For a set S, write ṼS and ṼSc as the restrictions of Ṽ to the rows given
by S and Sc, respectively. Write x�y when there exists positive c and C, which are independent
of n and k, such that cy ≤ x ≤ Cy.

2 Proofs

To prove the theorems, we note that (3), (5), (9), and the value of i∗ are all invariant to any
rescaling of v. Without loss of generality, it suffices to take ‖v‖∞ = 1 and v(i∗) = 1. Our aim is to
prove that v is or is near the solution to (3) when i = i∗. We begin by noting that W = range(V).
Hence, changing variables by z = V x, (3) is equivalent to

min ‖V x‖1 such that V x(i∗) = 1 (12)

when i = i∗. Note that V x(i∗) refers to the i∗ component of Vx. We will show that x = e1 is the
solution to (12) in the exact case and is near the solution in the noisy case. Write x = [x(1), x̃]
in order to separately study the behavior of x on and away from the first coefficient. Our overall
proof approach is to show that if n is larger than the given scaling, a nonzero x̃ gives rise to a large
contribution to the `1 norm of V x from coefficients off the support of v.

2.1 Scaling Without a Sparse Vector

In this section, we derive the scaling law for the minimal `1 norm attainable in a random subspace
when one of the components is set to unity. This law is the key part of the justification that the

6

scaling in the theorems can not be improved except for the logarithmic factor. As per Section
1.7, it also provides the proof of the best possible scaling when minimizing sparsity in an `1/`∞
sense. We also present the derivation for pedagogical purposes, as it contains the key ideas and
probabilistic tools we will use when proving the theorems. The rest of this section will prove the
following lemma.

Lemma 3. Let Ṽ be an n × k matrix with i.i.d. N(0, 1) entries, where k ≤ n/16. With high
probability,

n√
k
�min ‖Ṽ x̃‖1 such that Ṽ x̃(i∗) = 1. (13)

The failure probability is exponentially small in n and k.

Proof. Because range(Ṽ) is a k-dimensional random subspace, we can appeal to the uniform equiv-
alence of the `1 and `2 norms, as given by the following lemma.

Lemma 4. Fix η < 1. For every y in a randomly chosen (with respect to the natural Grassmannian
measure) ηn-dimensional subspace of Rn,

cη
√
n‖y‖2 ≤ ‖y‖1 ≤

√
n‖y‖2

with probability 1− γ1e−γ2n for universal constants γ1, γ2.

This result is well known [7, 10]. Related results with different types of random subspaces can be
found at [14, 1, 12, 9]. Thus, with high probability,

‖Ṽ x̃‖1�
√
n‖Ṽ x̃‖2 for all x̃. (14)

We now appeal to nonasymptotic estimates of the singular values of Ṽ . Corollary 5.35 in [20]
gives that for a matrix A ∈ Rn×k with k ≤ n/16 and i.i.d. N(0, 1) entries,

P
(√n

2
≤ σmin(A) ≤ σmax(A) ≤ 3

√
n

2

)
≥ 1− 2e−n/32. (15)

Thus, with high probability,

‖Ṽ x̃‖2�
√
n‖x̃‖2. (16)

Combining (14) and (16), we get ‖Ṽ x̃‖1�n‖x̃‖2 with high probability. Hence, the minimum values
of the following two programs are within fixed constant multiples of each other:

min ‖Ṽ x̃‖1 such that Ṽi∗,:x̃ = 1 � minn‖x̃‖2 such that Ṽi∗,:x̃ = 1. (17)

By the Cauchy-Schwarz inequality and concentration estimates of the length of a Gaussian vector,
any feasible point in the programs (17) satisfies

‖x̃‖2 ≥
1

‖Ṽi∗,:‖2
� 1√

k
, (18)

with failure probability that decays exponentially in k. Considering the x̃ for which the inequality
in (18) is achieved, we get that the minimal value to the right hand program in (17) scales like
n/
√
k, proving the lemma.

7

2.2 Proof of Theorem 1

The proof of Theorem 1 hinges on the following lemma. Let S be a superset of the support of v.
Relative to the candidate x = e1, any nonzero x̃ gives components on Sc that can only increase
‖V x‖1. Nonzero x̃ can give components on S that decrease ‖V x‖1. If the `1 norm of Ṽ x̃ on Sc is
large enough and the `1 norm of Ṽ x̃ on S is small enough, then the minimizer to (12) must be e1.

Lemma 5. Let V = [v, Ṽ] with ‖v‖∞ = 1, Vi∗,: = [1, ãt], supp(v) ⊆ S, and |S| = s. Suppose that
‖ṼS x̃‖1 ≤ 2s‖x̃‖1 and ‖ṼSc x̃‖1 ≥ (2‖ã‖∞ + 2)s‖x̃‖1 for all x̃. Then, e1 is the unique solution to
(12).

Proof. For any x, observe that

‖V x‖1 = ‖v x(1) + ṼS x̃‖1 + ‖ṼSc x̃‖1 (19)

≥ ‖v‖1|x(1)| − 2s‖x̃‖1 + ‖ṼSc x̃‖1 (20)

≥ ‖v‖1|x(1)|+ 2‖ã‖∞s‖x̃‖1 (21)

where the first inequality is from the upper bound on ‖ṼS x̃‖1 and the second inequality is from the
lower bound on ‖ṼSc x̃‖1. Note that x = e1 is feasible and has value ‖V e1‖1 = ‖v‖1. Hence, at a
minimizer x̃#,

‖v‖1|x#(1)|+ 2‖ã‖∞s‖x̃#‖1 ≤ ‖v‖1. (22)

Using the constraint x#(1) + ãtx̃# = 1, a minimizer must satisfy

‖v‖1(1− ‖ã‖∞‖x̃#‖1) + 2‖ã‖∞s‖x̃#‖1 ≤ ‖v‖1. (23)

Noting that ‖v‖1 ≤ s, a minimizer must satisfy

2‖ã‖∞s‖x̃#‖1 ≤ ‖ã‖∞s‖x̃#‖1. (24)

Hence, x̃# = 0. The constraint provides x#(1) = 1, which proves that e1 is the unique solution to
(12).

To prove Theorem 1 by applying Lemma 5, we need to study the minimum value of ‖ṼSc x̃‖1/‖x̃‖1
for matrices ṼSc with i.i.d. N(0, 1) entries. Precisely, we will show the following lemma.

Lemma 6. Let A be a n×k matrix with i.i.d. N(0, 1) entries, with k ≤ n/16. There is a universal
constant c̃, such that with high probability, ‖Ax‖1/‖x‖1 ≥ c̃n/

√
k for all x 6= 0. This probability is

at least 1− 2e−n/32 − γ1e−γ2n.

Proof of Lemma 6. We are to study the problem

min ‖Ax‖1 such that ‖x‖1 = 1, (25)

which is equivalent to

min ‖Ax‖1 such that ‖x‖1 ≥ 1. (26)

8

The minimum value of (26) can be bounded from below by that of

min ‖Ax‖1 such that ‖x‖2 ≥ 1/
√
k, (27)

because the feasible set of (26) is included in the feasible set of (27). We now write both the
objective and constraint in terms of Ax. To that end, we apply the lower bound in (15) to get

P(‖x‖2 ≤ 2
‖Ax‖2√

n
for all x) ≥ 1− 2e−n/32. (28)

The feasible set of (27) is contained by the set {x | ‖Ax‖2 ≥ 1
2

√
n
k } with high probability. Hence,

a lower bound to (27) is with high probability given by

min ‖Ax‖1 such that ‖Ax‖2 ≥
1

2

√
n

k
. (29)

In order to find a lower bound on (29), we apply Lemma 4 to the range of A, which is a k-dimensional
random subspace of Rn with k ≤ n/16. Taking η = 1/16, we see that with high probability, the
minimal value of (29) is bounded from below by

cη
2

n√
k
. The minimal value of (29), and hence

of (25), is bounded from below by c̃n/
√
k for some universal constant c̃ with probability at least

1− 2e−n/32 − γ1e−γ2n.

To prove the theorem by applying Lemma 5, we also need to study the maximum value of
‖ṼS x̃‖1/‖x̃‖1 for matrices ṼS with i.i.d. N(0, 1) entries.

Lemma 7. Let A be a s×k matrix with i.i.d. N(0, 1) entries. Then supx6=0 ‖Ax‖1/‖x‖1 ≤ 2s with
probability at least 1− ke−s.

Proof. Note that elementary matrix theory gives that the `1 → `1 operator norm of A is

max
x 6=0

‖Ax‖1
‖x‖1

= max
1≤i≤k

‖Aei‖1. (30)

As Aei is an s× 1 vector of i.i.d. standard normals, we have

P(‖Aei‖1 > t) ≤ 2se−t
2/2s. (31)

Hence,

P(max
i
‖Aei‖1 > t) ≤ k2se−t

2/2s. (32)

Taking t = 2s, we conclude

P(max
i
‖Aei‖1 > 2s) ≤ k2se−2s ≤ ke−s. (33)

We can now combine Lemmas 5, 6, and 7 to prove Theorem 1.

9

Proof of Theorem 1. Let c̃ be the universal constant given by Lemma 6 and let c = c̃/5. We will

show that for ‖v‖0 ≤ cn/
√
logn√
k

, the minimizer to (3) is v with at least the stated probability.

Let S be any superset of supp(v) with cardinality s =
⌊
cn/
√
logn√
k

⌋
. As per Lemma 5, e1

is the solution to (12), and hence v is the unique solution to (3), if the following events occur
simultaneously:

‖ṼS x̃‖1 ≤ 2s‖x̃‖1 for all x̃ (34)

‖ã‖∞ ≤ 2
√

log n (35)

‖ṼSc x̃‖1 ≥ 5
√

log ns‖x̃‖1 for all x̃ (36)

Applying Lemma 7 to the s×k matrix ṼS , we get that (34) holds with probability at least 1−ke−s ≥
1−ke−bc

√
n/ lognc. Classical results on the maximum of a gaussian vector establishes that (35) holds

with probability at least 1 − k/n2. Because s ≤ n/2 and k ≤ n/32, we have that ṼSc has height
at least n/2 and width at most n/32. Hence, Lemma 6 gives that ‖ṼSc x̃‖1/‖x̃‖1 ≥ c̃n/

√
k for

all x̃ 6= 0 with probability at least 1 − 2e−n/64 − γ1e−γ2n/2. Because s ≤ c̃
5
n/
√
logn√
k

, we conclude

(36), allowing us to apply Lemma 5. Hence, successful recovery occurs with probability at least

1 − 2e−n/64 − γ1e−γ2n/2 − ke−bc
√
n/ lognc − k/n2 ≥ 1 − γ̃1e−γ̃2n − ke−bc

√
n/ lognc − k/n2, for some

γ̃1, γ̃2.

2.3 Proof of Theorem 2

We will prove the following lemma, of which Theorem 2 is a special case.

Lemma 8. Let k ≤ n/32. There exists universal constants c, C such that for sufficiently large n,

for all s ≤ cn/
√
logn√
k

, and for i = i∗, any minimizer z# of (3) satisfies

∥∥∥∥z# − v

v(i∗)

∥∥∥∥
2

≤ C
√
n

s

‖v − vs‖1
‖v‖∞

(37)

with probability at least 1− γ̃1e−γ̃2n − ke−s − k/n2.

At first glance, this lemma appears to have poor error bounds for large n and poor probabilistic
guarantees for small s. On further inspection, the bounds can be improved by simply considering
a larger s, possibly even larger than the size of the support of v. Larger values of s simultaneously
increase the denominator and decrease the s-term approximation error in the numerator of (37).

Taking the largest permissible value s = bcn/
√
logn√
k
c, we arrive at Theorem 2.

Lemma 8 hinges on the following analog of Lemma 5.

Lemma 9. Fix 1 ≤ s < n and α > 0. Let V = [v, Ṽ] with ‖v‖∞ = 1, Vi∗,: = [1, ãt], δ = ‖v − vs‖1,
supp(v) ⊆ S, and |S| = s. If ‖ṼS x̃‖1 ≤ 2s‖x̃‖1 and ‖ṼSc x̃‖1 ≥ (2‖ã‖∞+2+α)s‖x̃‖1 for all x̃ ∈ Rk,
then any x# minimizing (12) satisfies

|x#1 − 1| ≤ 2δ

s
, and ‖x̃#‖1 ≤

2δ

s(‖ã‖∞ + α)
. (38)

10

Proof. For any x, observe that

‖V x‖1 = ‖v · x(1) + ṼS x̃‖1 + ‖ṼSc x̃‖1 (39)

≥ ‖v‖1|x(1)| − 2s‖x̃‖1 + ‖ṼSc x̃‖1 (40)

≥ ‖v‖1|x(1)|+ (2‖ã‖∞ + α)s‖x̃‖1 (41)

≥ (‖vs‖1 − δ)|x(1)|+ (2‖ã‖∞ + α)s‖x̃‖1 (42)

where the first inequality is from the upper bound on ‖ṼS x̃‖1 and the second inequality is from the
lower bound on ‖ṼSc x̃‖1. Note that x = e1 is feasible and has value ‖V e1‖1 = ‖v‖1 ≤ ‖vs‖1 + δ.
Hence, at a minimizer x̃#,

(‖vs‖1 − δ)|x#(1)|+ (2‖ã‖∞ + α)s‖x̃#‖1 ≤ ‖vs‖1 + δ. (43)

Using the constraint x#(1) + ãx̃# = 1, a minimizer must satisfy

(‖vs‖1 − δ)(1− ‖ã‖∞‖x̃#‖1) + (2‖ã‖∞ + α)s‖x̃#‖1 ≤ ‖vs‖1 + δ. (44)

Noting that ‖vs‖1 ≤ s, a minimizer must satisfy

‖x̃#‖1 ≤
2δ

(‖ã‖∞ + α)s
. (45)

Applying the constraint again, we get

|x#(1)− 1| ≤ 2δ

s
. (46)

We now complete the proof of Theorem 2 by proving Lemma 8.

Proof of Lemma 8. Let c̃ be the universal constant given by Lemma 6 and let c = c̃/6. We will

show that for any s ≤ cn/
√
logn√
k

, the minimizer to (3) is near v with at least the stated probability.

Let S be any superset of supp(vs) with cardinality s. Applying Lemma 9 with α =
√

log n, we
observe that a minimizer x# to (12) satisfies |x#(1) − 1| ≤ 2δ/s and ‖x̃#‖1 ≤ 2δ/(s

√
log n) if the

following events occur simultaneously:

‖ṼS x̃‖1 ≤ 2s‖x̃‖1 for all x̃ (47)

‖ã‖∞ ≤ 2
√

log n (48)

‖ṼSc x̃‖1 ≥ 6
√

log ns‖x̃‖1 for all x̃ (49)

Applying Lemma 7 to the s×k matrix ṼS , we get that (47) holds with probability at least 1−ke−s.
Classical results on the maximum of a gaussian vector establishes that (48) holds with probability
at least 1 − k/n2. Because s ≤ n/2 and k ≤ n/32, we have that ṼSc has height at least n/2
and width at most n/32. Hence, Lemma 6 gives that ‖ṼSc x̃‖1/‖x̃‖1 ≥ c̃n/

√
k for all x̃ 6= 0 with

probability at least 1−2e−n/64−γ1e−γ2n/2. If s ≤ c̃
6
n/
√
logn√
k

, we conclude (49), allowing us to apply

Lemma 5.

11

It remains to show that V x# is near v. Observe that

‖V x# − v‖2 = ‖V x# − V e1‖2 (50)

≤ ‖v‖2|x#(1)− 1|+ ‖Ṽ x̃#‖2 (51)

≤ ‖v‖2|x#(1)− 1|+ σmax(Ṽ)‖x̃#‖2 (52)

≤
√
n|x#(1)− 1|+ 3

2

√
n‖x̃#‖1 (53)

≤
√
n

2δ

s
+

3

2

√
n

2δ

s
√

log n
(54)

≤ C
√
n

s
δ (55)

The the third inequality uses the fact that ‖v‖∞ = 1 and σmax(Ṽ) ≤ 3
2

√
n, which occurs with

probability at least 1−2e−n/32 due to the upper bound in (15). Hence, approximate recovery occurs
with probability at least 1−2e−n/64−2e−n/32−γ1e−γ2n/2−ke−s−k/n2≥ 1− γ̃1e−γ̃2n − ke−s − k/n2,
for some γ̃1, γ̃2.

3 Simulations

We now present computer simulations that demonstrate when solving the n linear programs (3)
can recover the approximately sparse vector v ∈ Rn from a planted random subspace (4). In order
to obtain a single output from the n programs, we select the output that is the ‘sparsest’ in one of
several possible senses. In this section, we study the effect of these different senses. We also study
the best possible recovery performance of these senses by simulating the behavior of purely random
subspaces with no planted sparse vector.

The parameters for the linear programs (3) are as follows. Let n = 100, 1 ≤ s ≤ n, and
S = {1, . . . , s}. Let 1S be the vector that is 1 on S and 0 on Sc. We attempt to recover the
approximately s-sparse vector v = 1S + δu, where δ = 0.01 and u has i.i.d. Gaussian entries
and is normalized such that ‖u‖1 = 1. Let i∗ = argmaxi |v(i)|. We solve (3) for 1 ≤ i ≤ n using
YALMIP [13] with the SDPT3 solver [18, 19]. Among these n outputs, we let z# be the one that
(a) corresponds to i = i∗; (b) is smallest in the sense of `1/`∞; (c) is smallest in the sense of `1/`2;
or (d) is sparsest in the sense of thresholded-`0 at the level ε = 0.01. We will refer to (a) as the
oracle selector because it corresponds to an oracle that tells us the index of the largest component
of v. We call a recovery successful if

∥∥z# − v/v(i∗)
∥∥
2
≤ 0.01. Figure 1 shows the probability

of successful recovery, as computed over 50 independent trials, for many values of k and the
approximate sparsity s. Near and below the phase transitions, simulations were performed for all
even values of k and s. In the large regions to the top-right of the phase transitions, simulations
were performed only for values of k and s that are multiples of 5. In this region, the probably of
recovery was always zero.

We also ran computer simulations in the noiseless case δ = 0. The outputs of these simulations
are not shown because they look the same as Figure 1 for the parameters as above.

To get an indication for when (3) can successfully recover an approximately sparse vector from
a planted random subspace, we also study the behavior of the corresponding problems without a

12

planted vector. Specifically, we compute

min ‖z‖1 such that z ∈ span{ṽ1, . . . , ṽk}, z(i) = 1, (56)

for i.i.d. ṽj ∼ N(0, In) and for all 1 ≤ i ≤ n. The curve in Figure 1a shows the dependence on k of
the minimal value of (56) for a single fixed i, as found by the median over 50 independent trials.
The curve in Figure 1b shows the solution to (56) that is smallest in the `1/`∞ sense, also found
by the median of 50 trials. We note that the least `1/`∞ solution to (56) is also a solution of the
problem

min
‖z‖1
‖z‖∞

such that z ∈ span{ṽ1, . . . , ṽk}, z 6= 0. (57)

These curves represent upper bounds for the sparsity of a recoverable signal: for sparsities of v
above this curve, there will be linear combinations of random vectors that are considered sparser
than v in the provided sense. Hence, recovering v would be impossible. These curves are also upper
bounds in the noiseless case of δ = 0. Figures 1c and 1d do not have corresponding lines because
we do not have a tractable method for directly optimizing sparsity in the `1/`2 or thresholded-`0
senses.

Our primary observation is that the selection process for the sparsest output among the n
programs (3) can greatly effect recovery performance, especially for planted-random subspaces
with low dimensionality. Figures 1a and 1b show that v can be recovered by the i = i∗ program
yet discarded as not sparse enough in the `1/`∞ sense. In the parameter regime we simulated, the
`1/`∞ selector exhibits the worst overall recovery performance. The thresholded-`0 selector gives
the best performance, though it has the drawback of having a threshold parameter.

Our second observation is that recovery can succeed even when the i = i∗ instance of (3) fails.
That is, solving all n programs of form (3) can outperform the result of a single program, even
when an oracle tells us the index of the largest coefficient. For example, compare the phase
transitions for small k of Figure 1a to Figures 1c and 1d. This effect is more likely when k is small
and v has many large components. To see why, note that successful recovery is expected when
‖Ṽi,:‖∞ is small. If k is small, ‖Ṽi,:‖∞ is more likely to be small. If there are many indices i where
v(i) is large, it is likely that ‖Ṽi,:‖∞ will be small enough for successful recovery with some other
value of i.

Our third observation is that purely random subspaces provide good estimates for the best
recoverable sparsity with a planted random subspace, under the oracle and `1/`∞ selectors. This
agreement is revealed by the similarity of the phase transition and dashed lines in Figures 1a and 1b.
In the plots, the region of successful recovery on average can not exceed the dashed lines because
recovery requires that the planted sparse vector be smaller in the appropriate sense than any vector
in the purely random part of the subspace. Because the dashed lines are also upper bounds in the
noiseless case of δ = 0, the performance of the recovery process can not be significantly better than
that shown in Figures 1a and 1b.

Potentially, the recovery region could be improved significantly beyond that indicated by Figure
1. For example, one could consider more than n linear programs, each with a normalization against
a different random direction in Rn. Such an approach immediately gives rise to a natural tradeoff:
recovery performance may be improved at the expense of more linear programs that need to be
solved. We leave this relationship for future study.

13

s
1
3

s14

s15s16

x28x29x30x31x32x33x34x35x36

v28

v29

v30

v31

v32

v33

v34

v35

v36

s
1
7

s18

s19s20

x19x20x21x22x23x24x25x26x27

v19

v20

v21

v22

v23

v24

v25

v26

v27

s
2
1

s22

s23

s24

x10x11x12x13x14x15x16x17x18

v10

v11

v12

v13

v14

v15

v16

v17

v18

s
2
5

s26 s27

s28

x01x02x03x04x05x06x07x08x09

v01

v02

v03

v04

v05

v06

v07

v08

v09

Figure 1: Empirical probability of recovery versus approximate sparsity and subspace dimension-
ality k. For a given s, the vector to be recovered is a noisy version of 1S , where |S| = s. For
all values of k and s, we solve n programs of form (3), one for each 1 ≤ i ≤ n. Panel (a) shows
the output corresponding to i = i∗. Panels (b), (c), and (d) show the output of the n programs
that was smallest in the `1/`∞, `1/`2, and thresholded-`0 senses, respectively. The diagram shows
the probability of recovery, as measured by 50 independent trials. White represents recovery with
probability zero. Black represents recovery with probability 1. The dashed lines in panels (a) and
(b) represent upper bounds for the maximal recoverable sparsity based on the behavior of random
subspaces with no planted vector.

Funding

This work was supported by the National Science Foundation to P.H. and L.D.; the Alfred P. Sloan
Foundation to L.D.; TOTAL S.A. to L.D.; the Air Force Office of Scientific Research to L.D.; and
the Office of Naval Research to L.D.

Acknowledgements

The authors would like to thank Jonathan Kelner and Vladislav Voroninski for helpful discussions.

14

References

[1] S. Artstein-Avidan and V.D. Milman. Logarithmic reduction of the level of randomness in
some probabilistic geometric constructions. Journal of Functional Analysis, 235(1):297 – 329,
2006.

[2] E. Candès, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion.
SIAM Journal on Imaging Sciences, 6(1):199–225, 2013.

[3] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recovery from
incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics,
59(8):1207–1223, 2006.

[4] Thomas F Coleman and Alex Pothen. The null space problem i. complexity. SIAM J. Algebraic
Discrete Methods, 7(4):527–537, October 1986.

[5] A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for sparse
pca using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

[6] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in a semi-
random graph. Random Structures and Algorithms, 16(2):195–208, 2000.

[7] T. Figiel, J. Lindenstrauss, and V.D. Milman. The dimension of almost spherical sections of
convex bodies. Acta Mathematica, 139(1):53–94, 1977.

[8] Lee-Ad Gottlieb and Tyler Neylon. Matrix sparsification and the sparse null space problem. In
Maria Serna, Ronen Shaltiel, Klaus Jansen, and Jos Rolim, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, volume 6302 of Lecture
Notes in Computer Science, pages 205–218. Springer Berlin Heidelberg, 2010.

[9] Venkatesan Guruswami, JamesR. Lee, and Alexander Razborov. Almost euclidean subspaces
of `n1 via expander codes. Combinatorica, 30(1):47–68, 2010.

[10] B. Kashin. The widths of certain finite-dimensional sets and classes of smooth functions. Izv.
Akad. Nauk SSSR Ser. Mat., 41(2):334–351, 1977.

[11] Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied Math-
ematics, 57(23):193 – 212, 1995. Combinatorial optimization 1992.

[12] J. Lee. Kernels of random sign matrices. TCS math blog, 2008.
tcsmath.wordpress.com/2008/05/08/kernels-of-random-sign-matrices/.

[13] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

[14] Shachar Lovett and Sasha Sodin. Almost euclidean sections of the n-dimensional cross-polytope
using o(n) random bits. Electronic Colloquium on Computational Complexity (ECCC),
14(012), 2007.

[15] R. Luss and M. Teboulle. Conditional gradient algorithmsfor rank-one matrix approximations
with a sparsity constraint. SIAM Review, 55(1):65–98, 2013.

15

[16] Ronny Luss and Alexandre dAspremont. Clustering and feature selection using sparse principal
component analysis. Optimization and Engineering, 11(1):145–157, 2010.

[17] D. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries. In J. Ma-
chine Learning Research - Proceedings, volume 23, pages 37.1–37.18. 25th Annual Conference
on Learning Theory, 2012.

[18] K. C. Toh, M.J. Todd, and R. H. Tutuncu. Sdpt3 - a matlab software package for semidefinite
programming. Optimization Methods and Software, 11:545–581, 1998.

[19] R.H. Tutuncu, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-linear programs using
sdpt3. Mathematical Programming Ser. B, 95:189–217, 2003.

[20] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y.C.
Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, pages 210–268.
Cambridge Univ Press, 2012.

[21] Youwei Zhang, Alexandre d’Aspremont, and Laurent El Ghaoui. Sparse pca: convex relax-
ations, algorithms and applications. arXiv preprint 1011.3781, 2010.

[22] M. Zibulevsky and B. A. Pearlmutter. Blind source separation by sparse decomposition. Neural
Computation, 13, 2001.

[23] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal
of Computational and Graphical Statistics, 15, 2004.

16

