
Recovering the Sparsest Element in Subspace

Laurent Demanet and Paul Hand

Massachusetts Institute of Technology, Department of Mathematics,
77 Massachusetts Avenue, Cambridge, MA 02139

September 2013

Abstract

We address the problem of recovering a single sparse n-vector from a basis of a subspace
spanned by the vector and k random vectors. We show that the sparse vector will be the output
to at least one of n linear programs with high probability, provided that its support size s
satisfies s . n/

√
k logn. Except for the log factor, this scaling can not be improved under our

subspace model. The scaling law still holds when the desired vector is approximately sparse. We
also present results of computer simulations that empirically reveal when recovery is successful.

Acknowledgements. The authors acknowledge generous funding from the NSF, the Alfred P.
Sloan Foundation, TOTAL S.A., and the AFOSR. The authors would also like to thank Vladislav
Voroninski for helpful discussions.

1 Introduction

In this paper, we are interested in finding the sparsest nonzero element in a given subspace of Rn.
Such a task is interesting because it can be used to construct a basis of sparse vectors. Finding such
a basis is an important part of many problems in dictionary learning [5, 1], blind source separation
[3], and optimization theory [4]. Finding a sparse nonzero vector in a nullspace also has applications
in spectral estimation, such as with Prony’s method. [citation?].

Minimizing ‖ · ‖0 over nonzero elements in the subspace is NP-hard [4]. It is natural to attempt
to minimize ‖ · ‖1 instead. Spielman et al [1] provide an algorithm for finding sparse vectors in a
given subspace. They provide scaling laws for high probability recovery in the case that there is a
basis consisting entirely of sparse vectors.

In the present paper, we will study the procedure of Spielman et al [1] in a different context.
Instead of considering a subspace with a sparse basis, we will prove scaling laws for a subspace with
one sparse element together with random vectors. Additionally, we will show that the method is
robust when the special vector is close to being sparse.

Note that the task of finding the sparsest element in a subspace is different from the standard
problem of compressed sensing because the sparsest element in any subspace is zero. To get around
this trivial solution, we add an inhomogeneous linear constraint by setting one of the coefficients to
one. The resulting measurement matrix would have rows that are i.i.d. random vectors orthogonal
to a fixed sparse vector. It is not clear that such a matrix behaves like a restricted isometry, so we
find an alternative proof approach.

1

1.1 Exact Recovery

Consider the task of finding a sparse nonzero vector v in R
n given a subspace spanned by it and k

random vectors. Precisely, let W = span{v, ṽ(1), . . . , ṽ(k)} where each ṽ(j) is i.i.d. N (0, In). Such a
subspace could be specified by a basis of columns of the matrix [v, ṽ(1), . . . , ṽ(k)]B for some unknown
invertible matrix B. We can not simply read off v because a generic basis will not contain it in
isolation.

As in [1], we attempt to recover v by solving the collection of n linear programs

min ‖z‖1 such that z ∈ W, z(i) = 1 (1)

for each 1 ≤ i ≤ n. From the n outputs, we select the sparsest as our estimate of v. Note that we
can only hope to recover v up to a multiplicative factor that may be negative. Given an arbitrary
basis of W , the subspace constraint can be implemented by computing a basis of the orthogonal
complement W⊥ and enforcing orthogonality of z against those vectors.

If v is sparse enough and if the subspace W is of low enough dimension, we anticipate that a
multiple of v will be the solution to (1) for at least one value of i. We expect that recovery will be
most likely when i is the index of one of the largest components of v. In practice, no information
is known about which indices are large. Thus, we will only find v with high probability if we solve
all n programs given by (1). Precisely, we have the following theorem.

Theorem 1. Fix a nonzero v ∈ R
n, let i∗ ∈ argmaxi |v(i)|, and let k ≤ n/32. There exists a

universal constant c such that for sufficiently large n,

‖v‖0 ≤ c
n/

√
log n√
k

⇒ v

v(i∗)
is the unique solution to (1) for i = i∗, (2)

with probability at least 1−2e−n/64−γ1e
−γ2n/2−ke−⌊c

√
n/ logn⌋− k

n2 . Here, γ1 and γ2 are universal
constants.

From the scaling law, we observe the following scaling limits on the permissible sparsity in terms
of the dimensionality of the search space:

k ∼ 1 =⇒ ‖v‖0 . n/
√

log n (3)

k ∼ n =⇒ ‖v‖0 .
√
n/

√

log n (4)

That is, a search space of constant size permits the discovery of a vector whose support size is
almost a constant fraction of n. Similarly, a search space of fixed and sufficiently small fraction of
the ambient dimension allows recovery of a vector whose support size is almost on the the order of
the square root of that dimension.

Except for the logarithmic factor, the scaling law between n, k, and ‖v‖0 in Theorem 1 can not
be improved. To see this, note that if i∗ ∈ argmaxi |v(i)|, then v/v(i∗) is feasible for (1) with i = i∗.
A necessary condition for successful recovery is that the sparse vector gives a lower value of ‖ · ‖1
than the minimum value attainable by the span of the random vectors:

‖v‖1
‖v‖∞

≤ min ‖z‖1 such that z ∈ span{ṽ(1), . . . , ṽ(k)}, z(i∗) = 1, (5)

We will show in Section 2.1 that the right hand side of (5) is on the order of n/
√
k when k is at

most some constant fraction of n. As ‖v‖1/‖v‖∞ ≤ ‖v‖0 for all v, and the equality is attained for
some v, we conclude that high probability recovery of arbitrary v is possible only if ‖v‖0 . n/

√
k.

2

1.2 Stable Recovery

We now consider the corresponding task of recovering an approximately sparse v. As before, we
solve the n linear programs (1) for each 1 ≤ i ≤ n. Of the n results, we will select the one that
is the closest to being sparse. Such a selection method could involve choosing the output with the
smallest value of ‖ · ‖0 after thresholding small entries. Alternatively, it could select the output
with the smallest values of ‖ · ‖1/‖ · ‖2 or ‖ · ‖1/‖ · ‖∞. We expect the solution to (1) to be a sparse
approximation of v when i is the index of one of the largest components of v. Let vs be the best
s-sparse approximation of v. This recovery method is robust in the sense of the following theorem.

Theorem 2. Fix a nonzero v ∈ R
n, let i∗ ∈ argmaxi |v(i)|, and let k ≤ n/32. There exists universal

constants c, C such that for sufficiently large n, for s = ⌊cn/
√
logn√
k

⌋, and for i = i∗, any minimizer

z# of (1) satisfies
∥

∥

∥

∥

z# − v

v(i∗)

∥

∥

∥

∥

2

≤ C

√
k log n√

n

‖v − vs‖1
‖v‖∞

(6)

with probability at least 1− 2e−n/64 − 2e−n/32 − γ1e
−γ2n/2 − ke−⌊c

√
n/ logn⌋ − k/n2.

This theorem has a favorable constant in the error bound provided that k . n/ log n. In the
case that k ∼ n, the error bound has a mildly unfavorable constant, growing like

√
log n. The

√

n/k
behavior of the error constant plays the roll of the 1/

√
s term that arises in the noisy compressed

sensing problem [16]. The estimate (6) is slightly worse, as
√

k/n ∼ k1/4/
√
s, ignoring logarithmic

factors. We believe that this behavior of the error bound could be improved.

1.3 Organization of the paper

In Section 2, we prove both theorems. In section 2.1, we derive the scaling law and proves its
optimality in the context of Theorem 1. In Section 3, we present numerical simulations.

2 Proofs

To prove the theorems, we note that (1), (2), (6), and the value of i∗ ∈ argmaxi |v(i)| are all invariant
to any rescaling of v. Without loss of generality, it suffices to take ‖v‖∞ = 1 and v(i∗) = 1.

We begin with some notation. Let V = [v, Ṽ], where Ṽ = [ṽ(1), ṽ(2), . . . , ṽ(k)]. Let Vi∗,: be the

i∗-th row of V . Write Vi∗,: = [1, ãt], where ã ∈ R
k. For a set S, write ṼS and ṼSc as the restrictions

of Ṽ to the rows given by S and Sc, respectively. Let 1S be the vector that is 1 on S and 0 on Sc.
Our aim is to prove that v is or is near the solution to (1) when i = i∗. We begin by noting

that W = range(V). Hence, changing variables by z = V x, (1) is equivalent to

min ‖V x‖1 such that Vi∗,:x = 1 (7)

We will show that x = e1 is the solution to (7) in the exact case and is near the solution in the
noisy case. Write x = [x(1), x̃] in order to separately study the behavior of x on and away from the
first coefficient. Our overall proof approach is to show that if n is larger than the given scaling, a
nonzero x̃ gives rise to a large contribution to the ℓ1 norm of V x from coefficients off the support
of v.

3

2.1 Derivation of Scaling Law

In this section, we derive the scaling law in the exact case of Theorem 1. We also prove its optimality
up to the log factor. Recalling that |v(i∗)| = ‖v‖∞, a necessary condition for recovery is that the
normalized v is smaller in ℓ1 than any linear combination of the random vectors:

‖v‖1
‖v‖∞

≤ min ‖Ṽ x̃‖1 such that Ṽi∗,:x̃ = 1 (8)

Because range(Ṽ) is a k-dimensional random subspace, we can appeal to the uniform equivalence
of the ℓ1 and ℓ2 norms, as given by the following lemma.

Lemma 3. Fix η < 1. For every y in a randomly chosen (with respect to the natural Grassmannian
measure) ηn-dimensional subspace of Rn,

cη
√
n‖y‖2 ≤ ‖y‖1 ≤

√
n‖y‖2

with probability 1− γ1e
−γ2n for universal constants γ1, γ2.

This result is well known [10, 11]. Related results with different types of random subspaces can be
found at [8, 7, 9, 6]. Thus, with high probability,

‖Ṽ x̃‖1 ≈
√
n‖Ṽ x̃‖2 for all x̃ (9)

We now appeal to nonasymptotic estimates of the singular values of Ṽ . Corollary 5.35 in [12]
gives that for a matrix A ∈ R

n×k with k ≤ n/16 and i.i.d. N (0, 1) entries,

P

(

√
n

2
≤ σmin(A) ≤ σmax(A) ≤

3
√
n

2

)

≥ 1− 2e−n/32. (10)

Thus, with high probability,

‖Ṽ x̃‖2 ≈
√
n‖x̃‖2 (11)

Combining (9) and (11), we get ‖Ṽ x̃‖1 ≈ n‖x̃‖2 with high probability. Hence, the minimum values
of the following two programs are within fixed constant multiples of each other:

min ‖Ṽ x̃‖1 such that Ṽi∗,:x̃ = 1 ≈ minn‖x̃‖2 such that Ṽi∗,:x̃ = 1 (12)

By the Cauchy-Schwarz inequality and concentration estimates of the length of a Gaussian vector,
any feasible point in the programs (12) satisfies

‖x̃‖2 ≥
1

‖Ṽi∗,:‖2
≈ 1√

k
, (13)

with failure probability that decays exponentially in k. We have thus shown that

n√
k
≈ min ‖Ṽ x̃‖1 such that Ṽi∗,:x̃ = 1 (14)

with high probability. Hence, linear combinations of columns of Ṽ can reach ℓ1 values as low as
n/

√
k under the provided normalization. For (1) to succeed at finding v with high probability, it

is necessary that ‖v‖1/‖v‖∞ stay below the n/
√
k level. To get successful recovery of any s-sparse

v with high probability, this necessary condition becomes s . n/
√
k.

4

2.2 Proof of Theorem 1

The proof of Theorem 1 hinges on the following lemma. Let S be a superset of the support of v.
Relative to the candidate x = e1, any nonzero x̃ gives components on Sc that can only increase
‖V x‖1. Nonzero x̃ can give components on S that decrease ‖V x‖1. If the ℓ1 norm of Ṽ x̃ on Sc is
large enough and the ℓ1 norm of Ṽ x̃ on S is small enough, then the minimizer must be e1.

Lemma 4. Let V = [v, Ṽ] with ‖v‖∞ = 1, Vi∗,: = [1, ãt], supp(v) ⊆ S, and card(S) = s. Suppose
that ‖ṼS x̃‖1 ≤ 2s‖x̃‖1 and ‖ṼSc x̃‖1 ≥ (2‖ã‖∞ + 2)s‖x̃‖1 for all x̃. Then, e1 is the unique solution
to (7).

Proof. For any x, observe that

‖V x‖1 = ‖vx(1) + ṼS x̃‖1 + ‖ṼSc x̃‖1 (15)

≥ ‖v‖1|x(1)| − 2s‖x̃‖1 + ‖ṼSc x̃‖1 (16)

≥ ‖v‖1|x(1)|+ 2‖ã‖∞s‖x̃‖1 (17)

where the first inequality is from the upper bound on ‖ṼS x̃‖1 and the second inequality is from the
lower bound on ‖ṼSc x̃‖1. Note that x = e1 is feasible and has value ‖V e1‖1 = ‖v‖1. Hence, at a
minimizer x̃#,

‖v‖1|x#(1)| + 2‖ã‖∞s‖x̃#‖1 ≤ ‖v‖1. (18)

Using the constraint x#(1) + ãtx̃# = 1, a minimizer must satisfy

‖v‖1(1− ‖ã‖∞‖x̃#‖1) + 2‖ã‖∞s‖x̃#‖1 ≤ ‖v‖1. (19)

Noting that ‖v‖1 ≤ s, a minimizer must satisfy

2‖ã‖∞s‖x̃#‖1 ≤ ‖ã‖∞s‖x̃#‖1. (20)

Hence, x̃# = 0. The constraint provides x#(1) = 1, which proves that e1 is the unique solution to
(7).

To prove Theorem 1 by applying Lemma 4, we need to study the minimum value of ‖ṼSc x̃‖1/‖x̃‖1
for matrices ṼSc with i.i.d. N (0, 1) entries. Precisely, we will show the following lemma.

Lemma 5. Let A be a n×k matrix with i.i.d. N (0, 1) entries, with k ≤ n/16. There is a universal
constant c̃, such that with high probability, ‖Ax‖1/‖x‖1 ≥ c̃n/

√
k for all x 6= 0. This probability is

at least 1− 2e−n/32 − γ1e
−γ2n.

Proof of Lemma 5. We are to study the problem

min ‖Ax‖1 such that ‖x‖1 = 1, (21)

which is equivalent to

min ‖Ax‖1 such that ‖x‖1 ≥ 1. (22)

5

The minimum value of (22) can be bounded from below by that of

min ‖Ax‖1 such that ‖x‖2 ≥ 1/
√
k (23)

because the feasible set of (22) is included in the feasible set of (23). We now write both the
objective and constraint in terms of Ax. To that end, we apply the lower bound in (10) to get

P(‖x‖2 ≤ 2
‖Ax‖2√

n
for all x) ≥ 1− 2e−n/32 (24)

The feasible set of (23) is contained by the set {x | ‖Ax‖2 ≥ 1
2

√

n
k } with high probability. Hence,

a lower bound to (23) is with high probability given by

min ‖Ax‖1 such that ‖Ax‖2 ≥ 1

2

√

n

k
(25)

In order to find a lower bound on (25), we apply Lemma 3 to the range of A, which is a k-dimensional
random subspace of Rn with k ≤ n/16. Taking η = 1/16, we see that with high probability, the
minimal value of (25) is bounded from below by

cη
2

n√
k
. The minimal value of (25), and hence

of (21), is bounded from below by c̃n/
√
k for some universal constant c̃ with probability at least

1− 2e−n/32 − γ1e
−γ2n.

To prove the theorem by applying Lemma 4, we also need to study the maximum value of
‖ṼS x̃‖1/‖x̃‖1 for matrices ṼS with i.i.d. N (0, 1) entries.

Lemma 6. Let A be a s×k matrix with i.i.d. N (0, 1) entries. Then supx 6=0 ‖Ax‖1/‖x‖1 ≤ 2s with
probability at least 1− ke−s.

Proof. Note that elementary matrix theory gives that the ℓ1 → ℓ1 operator norm of A is

max
x 6=0

‖Ax‖1
‖x‖1

= max
1≤i≤k

‖Aei‖1 (26)

As Aei is an s× 1 vector of i.i.d. standard normals, we have

P(‖Aei‖1 > t) ≤ 2se−t2/2s (27)

Hence,

P(max
i

‖Aei‖1 > t) ≤ k2se−t2/2s (28)

Taking t = 2s, we conclude

P(max
i

‖Aei‖1 > 2s) ≤ k2se−2s ≤ ke−s (29)

We can now combine Lemmas 4, 5, and 6 to prove Theorem 1.

6

Proof of Theorem 1. Let c̃ be the universal constant given by Lemma 5 and let c = c̃/5. We will

show that for ‖v‖0 ≤ cn/
√
logn√
k

, the minimizer to (1) is v with at least the stated probability.

Let S be any superset of supp(v) with cardinality s =
⌊

cn/
√
logn√
k

⌋

. As per Lemma 4, e1 is the

solution to (7), and hence v is the unique solution to (1), if the following events occur simultaneously:

‖ṼS x̃‖1 ≤ 2s‖x̃‖1 for all x̃ (30)

‖ã‖∞ ≤ 2
√

log n (31)

‖ṼSc x̃‖1 ≥ 5
√

log ns‖x̃‖1 for all x̃ (32)

Applying Lemma 6 to the s×k matrix ṼS , we get that (30) holds with probability at least 1−ke−s =

1−ke−⌊c
√

n/ logn⌋. Classical results on the maximum of a gaussian vector establishes that (31) holds
with probability at least 1 − k/n2. Because s ≤ n/2 and k ≤ n/32, we have that ṼSc has height
at least n/2 and width at most n/32. Hence, Lemma 5 gives that ‖ṼSc x̃‖1/‖x̃‖1 ≥ c̃n/

√
k for

all x̃ 6= 0 with probability at least 1 − 2e−n/64 − γ1e
−γ2n/2. Because s ≤ c̃

5
n/

√
logn√
k

, we conclude

(32), allowing us to apply Lemma 4. Hence, successful recovery occurs with probability at least

1− 2e−n/64 − γ1e
−γ2n/2 − ke−⌊c

√
n/ logn⌋ − k/n2.

2.3 Proof of Theorem 2

We will prove the following lemma, of which Theorem 2 is a special case.

Lemma 7. Fix a nonzero v ∈ R
n, let i∗ ∈ argmaxi |v(i)|, and let k ≤ n/32. There exists universal

constants c, C such that for sufficiently large n, for all s ≤ cn/
√
logn√
k

, and for i = i∗, any minimizer

z# of (1) satisfies

∥

∥

∥

∥

z# − v

v(i∗)

∥

∥

∥

∥

2

≤ C

√
n

s

‖v − vs‖1
‖v‖∞

(33)

with probability at least 1− 2e−n/64 − 2e−n/32 − γ1e
−γ2n/2 − ke−s − k/n2.

At first glance, this lemma appears to have poor error bounds for large n and poor probabilistic
guarantees for small s. On further inspection, the bounds can be improved by simply considering
a larger s, possibly even larger than the size of the support of v. Larger values of s simultaneously
increase the denominator and decrease the s-term approximation error in the numerator of (33).

Taking the largest permissible value s = ⌊cn/
√
logn√
k

⌋, we arrive at Theorem 2.

Lemma 7 hinges on the following analog of Lemma 4.

Lemma 8. Fix 1 ≤ s < n and α > 0. Let V = [v, Ṽ] with ‖v‖∞ = 1, Vi∗,: = [1, ãt], δ = ‖v − vs‖1,
supp(v) ⊆ S, and card(S) = s. If ‖ṼS x̃‖1 ≤ 2s‖x̃‖1 and ‖ṼSc x̃‖1 ≥ (2‖ã‖∞ + 2 + α)s‖x̃‖1 for all
x̃ ∈ R

k, then any x# minimizing (7) satisfies

|x#1 − 1| ≤ 2δ

s
, and ‖x̃#‖1 ≤

2δ

s(‖ã‖∞ + α)
. (34)

7

Proof. For any x, observe that

‖V x‖1 = ‖v · x(1) + ṼSx̃‖1 + ‖ṼSc x̃‖1 (35)

≥ ‖v‖1|x(1)| − 2s‖x̃‖1 + ‖ṼSc x̃‖1 (36)

≥ ‖v‖1|x(1)|+ (2‖ã‖∞ + α)s‖x̃‖1 (37)

≥ (‖vs‖1 − δ)|x(1)| + (2‖ã‖∞ + α)s‖x̃‖1 (38)

where the first inequality is from the upper bound on ‖ṼS x̃‖1 and the second inequality is from the
lower bound on ‖ṼSc x̃‖1. Note that x = e1 is feasible and has value ‖V e1‖1 = ‖v‖1 ≤ ‖vs‖1 + δ.
Hence, at a minimizer x̃#,

(‖vs‖1 − δ)|x#(1)|+ (2‖ã‖∞ + α)s‖x̃#‖1 ≤ ‖vs‖1 + δ. (39)

Using the constraint x#(1) + ãx̃# = 1, a minimizer must satisfy

(‖vs‖1 − δ)(1 − ‖ã‖∞‖x̃#‖1) + (2‖ã‖∞ + α)s‖x̃#‖1 ≤ ‖vs‖1 + δ. (40)

Noting that ‖vs‖1 ≤ s, a minimizer must satisfy

‖x̃#‖1 ≤
2δ

(‖ã‖∞ + α)s
. (41)

Applying the constraint again, we get

|x#(1) − 1| ≤ 2δ

s
. (42)

We now complete the proof of Theorem 2 by proving Lemma 7.

Proof of Lemma 7. Let c̃ be the universal constant given by Lemma 5 and let c = c̃/6. We will

show that for any s ≤ cn/
√
logn√
k

, the minimizer to (1) is near v with at least the stated probability.

Let S be any superset of supp(vs) with cardinality s. Applying Lemma 8 with α =
√
log n, we

observe that a minimizer x# to (7) satisfies |x#(1) − 1| ≤ 2δ/s and ‖x̃#‖1 ≤ 2δ/(s
√
log n) if the

following events occur simultaneously:

‖ṼS x̃‖1 ≤ 2s‖x̃‖1 for all x̃ (43)

‖ã‖∞ ≤ 2
√

log n (44)

‖ṼSc x̃‖1 ≥ 6
√

log ns‖x̃‖1 for all x̃ (45)

Applying Lemma 6 to the s×k matrix ṼS , we get that (43) holds with probability at least 1−ke−s.
Classical results on the maximum of a gaussian vector establishes that (44) holds with probability
at least 1 − k/n2. Because s ≤ n/2 and k ≤ n/32, we have that ṼSc has height at least n/2
and width at most n/32. Hence, Lemma 5 gives that ‖ṼSc x̃‖1/‖x̃‖1 ≥ c̃n/

√
k for all x̃ 6= 0 with

probability at least 1−2e−n/64−γ1e
−γ2n/2. If s ≤ c̃

6
n/

√
logn√
k

, we conclude (45), allowing us to apply

Lemma 4.

8

It remains to show that V x# is near v. Observe that

‖V x# − v‖2 = ‖V x# − V e1‖2 (46)

≤ ‖v‖2|x#(1)− 1|+ ‖Ṽ x̃#‖2 (47)

≤ ‖v‖2|x#(1)− 1|+ σmax(Ṽ)‖x̃#‖2 (48)

≤ √
n|x#(1)− 1|+ 3

2

√
n‖x̃#‖1 (49)

≤ √
n
2δ

s
+

3

2

√
n

2δ

s
√
log n

(50)

≤ C

√
n

s
δ (51)

The the third inequality uses the fact that ‖v‖∞ = 1 and σmax(Ṽ) ≤ 3
2

√
n, which occurs with

probability at least 1 − 2e−n/32 due to the upper bound in (10). Hence, approximate recovery
occurs with probability at least 1− 2e−n/64 − 2e−n/32 − γ1e

−γ2n/2 − ke−s − k/n2.

3 Simulations

In this section, we present computer simulations that demonstrate when solving n linear programs
of the form (1) can find an approximately sparse vector v ∈ R

n from a subspace spanned by it and
k random vectors.

Let n = 100, S = {1, . . . , s}, and v = 1S + ǫu, where ǫ = 0.01 and u is i.i.d. Gaussian and
normalized such that ‖u‖1 = 1. As before, let i∗ = argmaxi |v(i)|. We solve (1) for 1 ≤ i ≤ n
using YALMIP [13] with the SDPT3 solver [14, 15]. Among these n outputs, we let z# be either
the one corresponding to i = i∗ or the one that has the smallest value of ‖ · ‖1/‖ · ‖2. We call a
recovery successful if

∥

∥z# − v/v(i∗)
∥

∥

2
≤ ǫ. Figure 1 shows the probability of successful recovery, as

computed over 10 independent trials, for many values of k and the approximate sparsity s. Near
and below the visible curve, simulations were performed for all even values of k and s. In the large
region to the top-right of the curve, simulations were performed only for values of k and s that are
multiples of 5. In this region, the probably of recovery was always zero.

We observe that the recoverable sparsity decays rapidly in k for small values of k. For large k,
outside the scope of the theorems of this paper, the maximal recoverable sparsity decays slowly.

Unsurprisingly, when we select the best of all n programs (1), we can outperform the result
from a single program, even if an oracle tells us the index of the largest coefficient, i∗. This effect
is more pronounced for small values of k. To see why, note that successful recovery is expected
when ‖Ṽi,:‖∞ is small. If k is small a large deviation of ‖Ṽi,:‖∞ is fairly likely. If there are many i
where v is large, it is likely that (1) will recover v for one of these i. If k is large, a large deviation
of ‖Ṽi,:‖∞ is extremely unlikely.

When selecting a signal among the solutions to (1) for each 1 ≤ i ≤ n, we see that we do
not recover a signal with support size much greater than 50 out of 100, even if that signal is the
minimizer for i = i∗. In this case, the selector ‖ · ‖1/‖ · ‖2 may preferentially select random vectors
because v is neither exactly or approximately sparse.

9

A
p
p
ro
x
im

at
e
S
p
ar
si
ty

(s
)

Subspace Dimensionality (k)

Probability of Recovery (Best of 1 ≤ i ≤ n)

Subspace Dimensionality (k)

Probability of Recovery (i = i∗)

10 20 30 40 50 60 70 80 9010 20 30 40 50 60 70 80 90

90

80

70

60

50

40

30

20

10

90

80

70

60

50

40

30

20

10

Figure 1: Empirical probability of recovery versus approximate sparsity and subspace dimension-
ality k. In the left panel, the n programs (1) were solved, and the output with smallest value of
‖ · ‖1/‖ · ‖2 was selected. In the right panel, the one corresponding to i∗ = maxi |v(i)| was selected.
Each set of parameters was simulated with 10 independent trials. White represents a recovery with
probability zero. Black represents recovery with probability 1.

References

[1] D. Spielman, H. Wang, J. Wright. Exact Recovery of Sparsely-Used Dictionaries. J. Machine
Learning Research - Proceedings Track 23 37.1-37.18, 2012

[2] L-A. Gottlieb, T. Neylon. Matrix sparsification and the sparse null space problem. APPROX
and RANDOM, 6302:205-218, 2010.

[3] M. Zibulevsky and B. Pearlmutter. Blind source separation by sparse decomposition. Neural
Computation, 13(4), 2001.

[4] T.F. Coleman, A. Pothen. The null space problem I. Complexity. SIAM J. Algebraic and
Discrete Methods, 7(4):527-537, 1986.

[5] F. Bach, J. Mairal, J. Ponce. Convex Sparse Matrix Factorizations arXiv preprint 0812.1869,
2008.

[6] V. Guruswami, J. Lee, A. Razborov. Almost Euclidean subspaces of ln1 via expander codes.
Combinatorica 30(1): 47-68, 2010.

[7] S. Artstein-Avidan, V. Milman. Logarithmic reduction of the level of randomness in some
probabilistic geometric constructions. J. Functional Analysis 235, 297-329, 2006.

[8] S. Lovett, S. Sodin. Almost Euclidean sections of the N-dimensional cross-polytope using O(N)
random bits. Electronic Colloquium on Computational Complexity, Report 7-12. 2007.

10

[9] J. Lee. Kernels of Random Sign Matrices. Tcs math blog post. Available:
tcsmath.wordpress.com/2008/05/08/kernels-of-random-sign-matrices/. 2008.

[10] T. Figiel, J. Lindenstrauss, V. Milman. The dimension of almost spherical sections of convex
bodies. Acta Math., 139(1-2):53-94, 1977.

[11] B. Kashin. The widths of certain finite-dimensional sets and classes of smooth functions. Izv.
Akad. Nauk SSSR Ser. Mat., 41(2):334-351, 478, 1977.

[12] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. C. Eldar
and G. Kutyniok, editors, Compressed Sensing: Theory and Applications. Cambridge Univer-
sity Press, 2010.

[13] J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. Proceedings of
the CACSD Conference, Taipei, Taiwan, 2004.

[14] K.C. Toh, M.J. Todd, R.H. Tutuncu. SDPT3 — a Matlab software package for semidefinite
programming, Optimization Methods and Software, 11, 545-581, 1999

[15] R.H Tutuncu, K.C. Toh, M.J. Todd. Solving semidefinite-quadratic-linear programs using
SDPT3, Mathematical Programming Ser. B, 95, 189-217, 2003.

[16] E. J. Candès, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math., 59 1207-1223, 2005.

11

