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Abstract
This paper presents a numerical compression strategy for the boundary integral equation of

acoustic scattering in two dimensions. These equations have oscillatory kernels that we represent
in a basis of wave atoms, and compress by thresholding the small coefficients to zero.
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Left: a kite-shaped scatterer. Middle: a depiction of the kernel of the double-layer potential
for this scatterer, sampled as a 1024x1024 matrix. Right: a zoomed-in view of the sparsity
pattern of the “nonstandard wave atom matrix”, representing this kernel accurately using only
60,000 matrix elements.

This phenomenon was perhaps first observed in 1993 by Bradie, Coifman, and Grossman,
in the context of local Fourier bases [5]. Their results have since then been extended in various
ways. The purpose of this paper is to bridge a theoretical gap and prove that a well-chosen fixed
expansion, the nonstandard wave atom form, provides a compression of the acoustic single and
double layer potentials with wave number k as O(k)-by-O(k) matrices with Cεδk

1+δ nonnegli-
gible entries, with δ > 0 arbitrarily small, and ε the deisred accuracy. The argument assumes
smooth, separated, and not necessarily convex scatterers in two dimensions. The essential fea-
tures of wave atoms that enable to write this result as a theorem is a sharp time-frequency
localization that wavelet packets do not obey, and a parabolic scaling (wavelength of the wave
packet) ∼ (essential diameter)2. Numerical experiments support the estimate and show that
this wave atom representation may be of interest for applications where the same scattering
problem needs to be solved for many boundary conditions, for example, the computation of
radar cross sections.
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1 Introduction

This paper is concerned with the sparse representation of the boundary integral operator of two-
dimensional scattering problems. Let D be a bounded soft scatterer in R2 with a smooth boundary
and uinc(x) be the incoming wave field. The scattered field u(x) satisfies the two-dimensional
exterior Dirichlet problem of the Helmholtz equation:

−∆u(x)− k2u(x) = 0 in Rd \ D̄,

u(x) = −uinc(x) for x ∈ ∂D,

lim
|x|→∞

|x|1/2
((

x

|x|
,∇u(x)

)
− iku(x)

)
= 0.

Typically, the higher the wave number k, the harder the computational problem. One attractive
method for dealing with this equation is to reformulate it using a boundary integral equation for
an unknown field φ(x) on ∂D:

1
2
φ(x) +

∫
∂D

(
∂G(x, y)
∂ny

− iηG(x, y)
)
φ(y)dy = −uinc(x), (1)

where ny stands for the exterior normal direction of ∂D at the point y, and η is a coupling constant
of order O(k). This is the combined field boundary integral equation [21]. The kernels G(x, y) and
∂G(x,y)
∂ny

are, respectively, the Green’s function of the Helmholtz equation and its normal derivative,
given by

G(x, y) =
i

4
H

(1)
0 (k‖x− y‖),

and
∂G

∂ny
(x, y) =

ik

4
H

(1)
1 (k‖x− y‖) x− y

‖x− y‖
· ny.

Once φ(x) is obtained from solving the integral equation, the scattered field u(x) at x ∈ R2\D̄ can
be evaluated as

u(x) =
∫
∂D

(
∂G(x, y)
∂ny

− iηG(x, y)
)
φ(y)dy.

An important property of (1) from the computational point of view is that its condition number
is often quite small and, as a result, one can advantageously solve (1) with an iterative algorithm
like GMRES. At each step of the iterative solver, we need to apply the integral operator to a given
function. Since the integral operator is dense, applying the operator directly is too expensive. In
this paper, we address this issue by efficiently representing the operator as a sparse matrix in a
system of wave atoms.

Local cosines or wavelet packets have already been proposed for this task with great practical
success, see Section 1.5 for some references, but we believe that the following two reasons make a
case for wave atom frames:

• The proposed construction is non-adaptive: wave atom frames of L2 are not designed for a
specific value of k, and no optimization algorithm is needed to find a provably good basis. To
achieve this result, the essential property of wave atoms is a parabolic scaling that we discuss
later.
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• The choice of numerical realization for wave atoms follows some of the experience garnered
throughout the 1990s in the study of local Fourier bases and wavelet packets. In particular,
wave atoms offer a clean multiscale structure in the sense that they avoid the “frequency
leakage” associated with wavelet packets defined from filterbanks. These aspects are discussed
in [11].

Of course, any non-adaptive all-purpose numerical compression method is likely to lag in per-
formance behind an adaptive strategy that would include at least the former in its scope; but this
is no excuse for discarding their study. Proper insight about architectures and scalings is important
for designing the solution around which, for instance, a library of bases should be deployed for a
best basis search.

The main result of this paper says that the wave atom frame is in some sense near-optimal for
representing the integral operator in (1) as a sparse matrix. Namely, full matrices would involve
O(k2) elements but we show that Cεk matrix elements suffice to represent G, and Cεδk1+δ) matrix
elements suffice to represent ∂G/∂ny to a given accuracy ε, for arbitrarily small δ > 0. In the sequel
we systematically write O(k1+1/∞) for the latter case. We believe that these bounds would not
hold for wavelet packets, for instance, even if the best decomposition tree is chosen. In particular,
wavelets would obviously not be suited for the job.

The potential implication of this result for scientific computing is discussed in section 1.4 below,
where it is explained that more ingredients are needed for obtaining fast algorithms.

1.1 Wave atoms

Frames of wave atoms were introduced in [11] on the basis that they provide sparse representations
of certain oscillatory patterns. As alluded to earlier, they are a special kind of oriented wavelet
packets that do not suffer from the frequency leaking associated to filterbanks, and which obey the
important parabolic scaling relation

wavelength of the wave packet ∼ (essential diameter)2.

The wavelength of the wave packet is not to be confused with the wavelength 2π/k of the
physical problem.

Let us rehearse the construction of wave atoms, and refer the reader to [11] for more details. In
one dimension, wave atoms are an orthonormal basis indexed by the triple of integers λ ≡ (j,m, n).
The construction is in the frequency domain; our convention for the Fourier transform is

f̂(ω) =
∫

Rn
e−ix·ωf(x) dx, f(x) =

1
(2π)n

∫
Rn
eix·ωf̂(ω) dω.

• First, j ≥ 0 is a scale parameter that should be thought of as indexing dilations of a factor 4 ;
in other words, one should consider a first partition of the positive frequency axis into intervals
of the form [c122j , c222j+2] (for some constants c1, c2 that will accommodate overlapping of
basis functions). Choosing j such that frequency ω is proportional to 22j is in contrast with
wavelet theory, where ω ∼ 2j over the positive frequency support of a wavelet.

• The parameter m with c12j ≤ m < c22j+2 then indexes the further partitioning of each
interval [c122j , c222j+2] into O(2j) subintervals of size O(2j). More precisely, wave atoms are
centered in frequency near ±ωλ where

ωλ ≈ π2jm, c12j ≤ m < c22j+2
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and are compactly supported in the union of two intervals of length 2π × 2j . The parabolic
scaling is now apparent; the size of the support in frequency (∼ 2j) is proportional to the
square root of the offset from the origin (∼ 22j).

• The parameter n ∈ Z indexes translations. A wave atom is centered in space near

xλ = 2−jn,

and has essential support as narrow as the uncertainty principle allows, i.e., of length O(2−j).

We define Ω to be the set of all admissible indices, i.e.,

Ω = {(j,m, n) : j ≥ 0, c12j ≤ m < c22j+2, n ∈ Z}.

Basis functions are then written

ϕλ(x) = 2j/2ϕ(j,m)(2
jx− n) ei2

jmx, λ ∈ Ω (2)

where ϕ(j,m) depends weakly on j and m, and needs to be chosen adequately to form an orthobasis.
The underlying delicate construction of the ϕ(j,m) is due to Lars Villemoes [26] and summarized in
[11].

In two dimensions, wave atoms are individually, but not collectively, formed as tensor products
of the one-dimensional basis functions. The construction is ”multiresolution” in the sense that
there is only one dilation parameter; the indexing 5-uple of integers is µ ≡ (j,m,n) where m =
(m1,m2) and n = (n1, n2). More precisely, at scale j, the valid values for m = (m1,m2) satisfy
0 ≤ m1,m2 < c22j+2 and c12j ≤ max(m1,m2).

Wave atoms come as an orthonormal basis in two dimensions, but can be made fully directional—
supported in a narrow cone in frequency with apex at the origin [2]—at the expense of increasing
the redundancy to 2 or 4. The definition of such variants makes use of a unitary recombination
involving Hilbert-transformed basis functions as in the definition of complex wavelet transforms,
and is fully explained in [11].

None of the results of this paper would depend on the choice of variant; and for convenience we
use the frame of wave atoms with redundancy four. With x = (x1, x2), the only property of wave
atoms that we will need is the characterization

ϕµ(x) = 2jϕ(j,m)(2
jx1 − n1, 2jx2 − n2)ei2

jm·x, (3)

where ϕ(j,m) is a C∞ non-oscillatory bump that depends on j and m, but in a non-essential manner,
i.e.,

|∂αxϕ(j,m)(x)| ≤ Cα,M (1 + ‖x‖)−M , ∀M > 0, (4)

with Cα,M independent of j and m. In addition, each ϕ(j,m) is simply the tensor product of two
corresponding bumps for the 1D transform.

Although they may not necessarily form an orthonormal basis, wave atoms still form a tight
frame in the sense that expanding a function is an isometry from L2(R2) to `2(µ),

‖f‖22 =
∑
µ

|〈f, ϕµ〉|2

which is equivalent to
f =

∑
µ

〈f, ϕµ〉ϕµ. (5)
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The same properties hold in one dimension.
The closest analogue to a “continuous wave atom transform” was introduced in the mathemati-

cal literature by Córdoba and Fefferman in [8]. Wave atoms can be compared to brushlets [23], but
Villemoes’s construction uses “local complex exponentials” instead of local cosines in frequency.

Discretized wave atoms are described in [11, 10]; they inherit the localization and tight-frame
properties of their continuous counterpart. In particular, their bandlimited character confers an
immediate control over the accuracy of computing inner products via quadrature. They come with
fast FFT-based O(N logN) algorithms for both the forward and adjoint transforms (see [11] for
details).

1.2 Operator expansions

As functions can be analyzed and synthesized using coefficients, operators can also be expanded
from matrix elements in a tight frame.

• The standard form of an operator A in the wave atom frame ϕλ is

A =
∑
λ∈Ω

∑
λ′∈Ω

ϕλAλ,λ′〈·, ϕλ′〉,

where Aλ,λ′ = 〈Aϕλ′ , ϕλ〉. For each fixed λ, we define S(λ) to be the set of all λ′ such that
the modulus of Aλ,λ′ is above a certain threshold. The sparse representation of A then takes
the form

A ≈
∑
λ

ϕλ
∑

λ′∈S(λ)

Aλ,λ′〈·, ϕλ′〉.

In practice, the sums in λ and λ′ are also truncated in scale to account for the finite number
of samples N of the functions to which A is applied. The above equation naturally gives rise
to an efficient method of applying the operator A to a given function f :

– Apply the forward wave atom transform to compute the coefficients fλ′ := 〈f, ϕλ′〉.
– For each λ, compute gλ :=

∑
λ′∈S(λ)Aλ,λ′fλ′ .

– Apply the adjoint wave atom transform to gλ to synthesize Af , i.e., Af ≈
∑

λ ϕλgλ.

• The nonstandard form of A in the two dimensional frame ϕµ is the set of coefficients Aµ =∫
R2 A(x1, x2)ϕµ(x1, x2) dx1dx2, such that the distributional kernel of A is expanded as

A(x1, x2) =
∑
µ

Aµϕµ(x1, x2)

For a fixed threshold value, we define S to be the set of all µ such thatAµ is above the threshold
in modulus. The sparse representation of A is now A(x1, x2) ≈

∑
µ∈S Aµϕµ(x1, x2). Applying

A to a given function f efficiently using this expansion is more involved than the case of the
standard form. For a fixed index µ = (j,m,n) with m = (m1,m2) and n = (n1, n2), we
define the two 1D wave atom indices:

λµ1 = (j,m1, n1) and λµ2 = (j,m2, n2). (6)

Since the two dimensional index m = (m1,m2) satisfies 0 ≤ m1,m2 < c22j+2 and c12j ≤
max(m1,m2), the set of all possible choices for λµ1 and λµ2 are

0 ≤ m1 < c22j+2, and 0 ≤ m2 < c22j+2. (7)
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Some of the indices in (7) are not admissible, i.e., they are not part of the set of indices for the
1D wave atom transform, since if µ = (j,m, n) corresponds to a 1D wave atom it would need
to satisfy c12j ≤ m < c22j+2. Non-admissible indices correspond to Gabor-type wave forms
that partition the frequency domain uniformly and, hence, violate the parabolic scaling. We
use Ωe to denote this extended index set

Ωe = {(j,m, n) : j ≥ 0, 0 ≤ m < c22j+2, n ∈ Z}.

Again, such extended indices are needed because the 2D wave atom transform is not simply
a tensor product of 1D transforms.The situation is the same for 2D MRA wavelets not being
tensor products of two 1D wavelet bases.

The frame formed by the bases functions ϕλ with λ ∈ Ωe is called the extended wave atom
frame. For a given function f , the computation of all the coefficients 〈f, ϕλ〉 with λ ∈ Ωe can
be done easily by extending the existing forward wave atom transform to include the extra
m indices (0 ≤ m < c12j) in Ωe. The adjoint transform can be extended similarly and the
resulting transform is called the adjoint extended wave atom transform. We note that these
new transforms are not orthonormal any more since parts of the input functions are analyzed
redundantly.

Using the notation in (6) and the tensor-product property of ϕµ, we have

A(x1, x2) ≈
∑
µ∈S

Aµϕλµ1 (x1)ϕλµ2 (x2). (8)

When A is applied to a given function f , we have

Af(x1) ≈
∑
µ∈S

Aµϕλµ1 (x1)
(∫

ϕλµ2 (x2)f(x2)dx2

)
=
∑
λ∈Ωe

ϕλ
∑

µ∈S s.t. λµ1 =λ

Aµ

(∫
ϕλµ2 (x2)f(x2)dx2

)
.

Using the extended transforms, we can derive from the above equation a fast algorithm for
applying A to f using the nonstandard form:

– Apply the forward extended wave atom transform to compute the coefficients fλ′ :=
〈f, ϕλ′〉 for all indices λ′ ∈ Ωe.

– For each λ ∈ Ωe, compute gλ :=
∑

µ∈S s.t. λµ1 =λAµfλµ2 .

– Apply the inverse extended wave atom transform to synthesize Af from gλ, i.e., Af ≈∑
λ∈Ωe ϕλgλ.

We would like to point out that nonstandard expansions only exist for two-dimensional frames
that have a tensor product representation for each basis function, since the decomposition
in (8) is essential for the derivation. For example, there is no known nonstandard form
representation for an operator in the tight frame of curvelets [6].

In what follows we focus exclusively on the nonstandard form, because of its relative simplicity
over the standard form. The isotropy of the envelope of ϕµ makes some of the stationary-phase
arguments in the sequel, simpler in our view. We can however not exclude at this point that the
standard form may enjoy comparable sparsity properties as the nonstandard form.
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1.3 Sparsity of the nonstandard wave atom matrix

In this section, we formulate the main result on sparsity of the nonstandard wave atom matrix of
the acoustic single and double-layer potentials, in two dimensions.

The scatterer is a union of closed, nonintersecting C∞ curves Ω =
⋃n
α=1 Ωα embedded in R2.

For each α, assume that x(t) : Iα 7→ Ωα is a C∞ periodic parametrization of Ωα, and take Iα = [0, 1]
for simplicity.

We assume the following mild geometric regularity condition on the scatterer: there exists D > 0
such that

‖x(s)− x(t)‖ ≥ D |e2πis − e2πit|, (9)

essentially meaning that the curve Ωα defining the scatterer cannot intersect itself. We write
d(s, t) ≡ |e2πis − e2πit| for the Euclidean distance on the unit circle.

When s ∈ Iα, t ∈ Iβ with 1 ≤ α, β ≤ n, let

G0(s, t) =
i

4
H

(1)
0 (k‖x(s)− x(t)‖) ‖ẋ(t)‖, (10)

and
G1(s, t) =

ik

4
H

(1)
1 (k‖x(s)− x(t)‖) x(s)− x(t)

‖x(s)− x(t)‖
· nx(t) ‖ẋ(t)‖. (11)

The nonstandard wave atom matrices of G0 and G1, restricted to a Cartesian product Iα × Iβ
of intervals, are

K0
µ = 〈G0, ϕµ〉, K1

µ = 〈G1, ϕµ〉.

Our main result below concerns the existence of ε-approximants K̃0
µ and K̃1

µ, corresponding to the
restriction of µ to sets Λ0 and Λ1, i.e., with a = 0, 1,

K̃a
µ =

{
Ka
µ if µ ∈ Λa;

0 otherwise,

and chosen by definition such that

‖Ka − K̃a‖`2(µ) ≤ ε, a = 0, 1. (12)

The `2 norm of a nonstandard wave atom matrix is equivalent to a Hilbert-Schmidt norm for the
corresponding operator, by the tight-frame property of wave atoms. This norm is of course stronger
than the operator L2-to-L2 norm; and much stronger than the `∞(µ) norm used in [5].

In what follows the notation A . B means A ≤ C B for some constant C that depends only
on the nonessential parameters. Similarly, the notation A . ε−1/∞ means A ≤ CM ε

−1/M for all
M > 0. The constants may change from line to line.

Theorem 1. Assume the scatterer is smooth and geometrically regular in the sense of (9). In
the notations just introduced, there exist sets Λ0 and Λ1 that define ε-approximants of K0

µ and K1
µ

respectively, and whose cardinality obeys

|Λ0| ≤ C0
M

[
k ε−1/M +

(
1
ε

)2+1/M
]
, (13)

|Λ1| ≤ C1
M

[
k1+1/M ε−1/M +

(
k

ε

)2/3+1/M
]
, (14)

for all M > 0, and where C0
M , C1

M depend only on M and the geometry of the scatterers.
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The terms proportional to k or k1+1/∞ are due to the oscillations when s 6= t, and the terms
ε−2−1/∞ and (k/ε)2/3+1/∞ are due to the kernels’ singularities on the diagonal s = t. While the
growth rate in k for the oscillations term is smaller for G0 than for G1, the growth rate for the
diagonal contribution is smaller for G1 than for G0 since

k2/3ε−2/3 = k1/3k1/3ε−2/3 ≤ max(k, k, ε−2) ≤ 3(k + ε−2).

Theorem 1 can also be formulated using relative errors instead of absolute errors. This viewpoint
is important for considering the composed kernel

G(0,1)(s, t) = G1(s, t)− iηG0(s, t), η � k.

Call K(0,1)
µ the nonstandard wave atom matrix of G(0,1). In the following result, we quantify the

number of terms needed to obtain the relative error estimate

‖Ka − K̃a‖`2(µ) ≤ ε‖Ka‖`2(µ), a = 0, 1, or (0, 1).

Corollary 2. Let η � k. In the assumptions and notations of Theorem 1, let ∆0, ∆1 and ∆(0,1)

be the sets of wave atom coefficients needed to represent the operators G0, G1, resp. G(0,1) up to
relative accuracy ε. Then

|∆0| ≤ C0
M

[
(kε−2)1+1/M

]
, (15)

|∆1| ≤ C1
M

[
k1+1/M ε−1/M + (kε−2)1/3+1/M

]
, (16)

|∆(0,1)| ≤ C
(0,1)
M

[
(kε−2)1+1/M

]
, (17)

for all M > 0, and where the constants depend only on M and on the geometry of the scatterers.

We do not know if factors such as k1/∞ and ε−1/∞ could be replaced by log factors.
The proofs of Theorem 1 and Corollary 2 occupy Section 2. The main ingredients are sparsity

estimates in `p, stationary phase considerations, vaguelette-type estimates adapted to wave atoms,
and `2 correspondence scale-by-scale with wavelets.

It is interesting to note that the parabolic scaling of wave atoms is a necessary ingredient to
obtain the right sparsity results. Any less oscillating basis functions (such as wavelets) would be
too numerous to cover the support of the oscillatory kernel. Any more oscillating wave packets
(such as Gabor) would require that too many frequencies are involved at any given location, to
recover the warped pattern to good accuracy. The parabolic saling is also an essential ingredient
in the dyadic-parabolic decomposition of Fourier integral operators, an other kind of oscillatory
integral[8].

1.4 Overview and criticism of the algorithm

Some numerical experiments that support the theory are presented in Section 3. The procedure
followed for these experiments can be summarized as follows.

1. Evaluate the kernel on a Cartesian grid of N2 points in (s, t) space, where N is proportional
to k, the wave number. Form the nonstandard representation of this kernel by taking the
2D wave atom transform of the sampled kernel – a O(N2 logN) operation. Choose a thresh-
old related to the eventual accuracy, and put to zero the wave atom coefficients below the
threshold in magnitude – a O(N2) operation. The thresholded nonstandard form is now
available.
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2. For applying the operator to a function, start by computing the extended 1D wave atom
transform of the function, in O(N logN) operations. Compute the extended wave atom rep-
resentation of the result of applying the operator, as discussed in section 1.3. The complexity
of this step ranges from O(N1+1/∞) to O(N2) depending on the data structure used for deal-
ing with the wae atom matrix. Finally, compute an inverse extended wave atom transform
in O(N logN) operations.

A word of caution on what has been achieved is in order.
First, this paper’s numerical experiments are only meant to highlight the sparsity structure of

the wave atom matrices. With a proper way to handle this sparsity at the level of the matrix’s band
structure, low-complexity O(N1+1/∞) algorithms could in principle be obtained for fast application
of the operator itself. However, this paper only deals with full N -by-N matrices numerically, hence
does not attempt to realize this speed-up in practice.

Second, even if wave atom matrices were properly stored as sparse banded matrices, there is
the question of how to form this matrix other than by applying the wave atom transform directly
to the kernel in O(N2) complexity. This question is not addressed here. It is less of a concern
if the precomputation can be amortized over several applications of the matrix, such as when the
scattering problem needs to be solved several times with different incoming waves uinc(x). One
important example is the computation of bistatic cross sections, where one needs to calculate the
far field patterns of scattered fields for all possible incoming plane waves. If the wave number k
changes, however, there is at present no way to re-use previous computation.

Third, the numerical experiments presented here are only for “scattering in flatland” (in refer-
ence to the satirical novel by Edwin Abbott [?]), i.e., in two spatial dimensions. A solution similar
in spirit, in the three dimensional case, would involve more involved wave packet constructions.
We also make no mathematical claim that sparsity would carry over for scatterers with corners,
although we believe that similar estimates would hold. Singular scatterers would give rise to an
interesting wavefront set for the kernel.

Finally, for inversion it is important to consider the condition number of the integral operator.
It affects the speed of convergence of the scattering series. The conditioning question is mostly
disjoint of that of realizing the operator numerically to some arbitrary precision. In our numerical
experiments, compression of the direct operator neither helps nor hurts inversion in any substantial
way.

1.5 Related work

There has been a lot of work on sparsifying the integral operator of (1), or some variants of it, in
appropriate bases. In [5], Bradie et al. showed that the operator becomes sparse in a local cosine
basis. They proved that the number of coefficients with absolute value greater than any fixed ε is
bounded by O(k log k) when the constant depends on ε. Notice that our result in Theorem 1 is
stronger as the `2 norm is used instead in (12). In [3], Averbuch et al. extended the work in [5] by
performing best basis search in the class of adaptive hierarchical local cosine bases.

Besides the local cosine transform, adaptive wavelet packets have been used to sparsify the inte-
gral operator as well. Deng and Ling [13] applied the best basis algorithm to the integral operator
to choose the right one dimensional wavelet packet basis. Golik [17] independently proposed to ap-
ply the best basis algorithm on the right hand side of the integral equation (1). Shortly afterwards,
Deng and Ling [14] gave similar results by using a predefined wavelet packet basis that refines the
frequency domain near k. All of these approaches work with the standard form expansion of the
integral operator. Recently in [18], Huybrechs and Vandewalle used the best basis algorithm for two
dimensional wavelet packets to construct a nonstandard sparse expansion of the integral operator.
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In all of these results, the numbers of nonnegligible coefficients in the expansions were reported to
scale like O(k4/3). However, our result shows that, by using the nonstandard form based on wave
atoms, the number of significant coefficients scales like O(k1+1/∞).

Most of the approaches on sparsifying (1) in well-chosen bases require the construction of the
full integral operator. Since this step itself takes O(k2) operations, it poses computational difficulty
for large k values. In [4], Beylkin et al. proposed a solution to the related problem of sparsifying the
boundary integral operator of the Laplace equation. They successfully avoided the construction of
the full integral operator by predicting the location of the large coefficients and applying a special
one-point quadrature rule to compute the coefficients. The corresponding solution for the integral
operator of the Helmholtz equation is still missing.

There has been a different class of methods, initiated by Rokhlin in [24, 25], that requires no
construction of the integral operator and takes O(k log k) operations in 2D to apply the integral
operator. A common feature of these methods [7, 15, 16, 24, 25] is that they partition the spatial
domain hierarchically with a tree structure and compute the interaction between the tree nodes
in a multiscale fashion: Whenever two nodes of the tree are well-separated, the interaction (of
the integral operator) between them is accelerated either by Fourier transform-type techniques
[7, 24, 25] or by directional low rank representations [15, 16].

A criticism of the methods in [7, 15, 16, 24, 25] is that the constant in front of the complexity
O(k log k) is often quite high. On the other hand, since the FFT-based wave atom transforms are
extremely efficient, applying the operator in the wave atom frame has a very small constant once
the nonstandard sparse representation is constructed. Therefore, for applications where one needs
to solve the same Helmholtz equation with many different right hand sides, the current approach
based on the wave atom basis can potentially offer a competitive alternative. As mentioned earlier,
one important example is the computation of the radar cross section.

2 Sparsity analysis

This section contains the proof of Theorem 1. The overarching strategy is to reduce the `2 approx-
imation problem to an estimate of `p sparsity through a basic result of approximation theory, the
direct “Jackson” estimate

‖Kµ − K̃µ‖2 ≤ C |Λ|
1
2
− 1
p ‖Kµ‖p,

where ‖Kµ‖pp =
∑

µ |Kµ|p. Here K̃µ refers to the approximation of Kµ where only the |Λ| largest
terms in magnitude are kept, and the others put to zero. The inequality is valid for all values of
0 < p < 2 for which ‖Kµ‖p is finite. For a proof, see [22], p. 390.

If the `2 error is to be made less than ε, it is enough to have Kµ in some `p space, 0 < p < 2,
and take the number of terms defining K̃µ to be

|Λ| ≥ Cp ε
2p
p−2 ‖Kµ‖

2p
2−p
p (18)

for some adequate Cp > 0. The sequence Kµ will be split into several fragments that will be studied
independently. For each of these fragments F in µ space, the inequality (18) will be complemented
by an estimate of the form ‖Kµ‖`p(F ) ≤ Cpk

q(p), for all p > p0. Three scenarios will occur in the
sequel:

• If
p0 = 0 and q(p) =

1
p
− 1

2
, (19)

then |F | . kε−1/∞, which is the first term in (13).
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• If
p0 = 1 and q(p) = 0, (20)

then |F | . ε−2−1/∞, which is the second term in (13).

• If
p0 =

1
2

and q(p) =
1
p
− 1 + δ, (21)

for arbitrarily small δ > 0, then |F | . (k/ε)2/3+1/∞, which is the second term in (14).

The problem is therefore reduced to identifying contributions in the sequence Kµ that obey
either of the three estimates above. In what follows we focus on the kernel K = G0. We mention
in Section 2.9 how the proof needs to be modified to treat the kernel G1.

2.1 Smoothness of Hankel functions

Bessel and Hankel functions have well-known asymptotic expansions near the origin and near
infinity. That these asymptotic behaviors also determine smoothness in a sharp way over the whole
half-line is perhaps less well-known, so we formulate these results as lemmas that we prove in the
Appendix.

Lemma 1. For every integers m ≥ 0 and n ≥ 0 there exists Cm,n > 0 such that for all k > 0,

|
(
d

dx

)m [
e−ikxH(1)

n (kx)
]
| ≤


Cmn (kx)−1/2 x−m if kx ≥ 1;
Cmn (kx)−n x−m if 0 < kx < 1 and m+ n > 0;
C (1 + | log kx|) if 0 < kx < 1 and m = n = 0.

(22)

The same results hold if 1 is replaced by any number c > 0 in kx < 1 vs. kx ≥ 1.

The point of equation (22) is that Cm,n is independent of k. Slightly more regularity can be
obtained near the origin when multiplying with the adequate power of x, as the following lemma
shows in the case of H(1)

1 .

Lemma 2. For every integer m ≥ 0 there exists Cm > 0 such that, for 0 < x ≤ 1,

|
(
d

dx

)m [
xH

(1)
1 (x)

]
| ≤


Cm if m = 0, 1;
C2 (1 + | log x|) if m = 2;
Cm x

2−m if m > 2.
(23)

Finally, we will need the following lower bound.

Lemma 3. For each n ≥ 0, there exist cn > 0 and Cn > 0 such that, when x > cn,

|H(1)
n (x)| ≥ Cnx−1/2.

2.2 Dyadic partitioning

Consider K as in Theorem 1, with s ∈ Iα and t ∈ Iβ. If α = β, K presents a singularity on its
diagonal, whereas if α 6= β it presents no such singularity. The case α = β is representative and is
treated in the sequel without loss of generality.

In this section we assume, as we have above, that Iα = [0, 1]. The first step of the proof is to
partition the periodized square Iα × Iα at each scale j, into dyadic squares denoted

Q = [2−jq1, 2−j(q1 + 1)]× [2−jq2, 2−j(q2 + 1)], q1, q2 ∈ Z+.
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We define wQ a window localized near Q through

wQ(s, t) = w(2js− q1, 2jt− q2),

where w is compactly supported on [−1, 2]2 and of class C∞. As a result wQ is compactly supported
inside

3Q ≡ [2−j(q1 − 1), 2−j(q1 + 2)]× [2−j(q2 − 1), 2−j(q2 + 2)].

We also write xQ = (2−jq1, 2−jq2) for the bottom-left corner of Q, not to be confused with x, which
is in physical space.

Denote by Qj the set of dyadic squares at scale j; we assume that w is chosen so that we have
the scale-by-scale partition of unity property∑

Q∈Qj

wQ = 1.

The kernel is now analyzed at each scale j as K =
∑

Q∈Qj KQ, where KQ = wQK. We take
the scale j of the dyadic partitioning to match the scale j in the wave atom expansion; namely if
µ = (j,m,n), then

Kµ = 〈K,ϕµ〉 =
∑
Q∈Qj

〈KQ, ϕµ〉.

When 0 < p ≤ 1, an estimate on the total `p norm can then be obtained from the p-triangle
inequality, as follows:∑

j

∑
m

∑
n

|Kj,m,n|p ≤
∑
j

∑
Q∈Qj

∑
m

∑
n

|〈KQ, ϕj,m,n〉|p. (24)

When p ≥ 1, then the regular triangle inequality will be invoked instead, for instance as in∑
j

∑
m

∑
n

|Kj,m,n|p
1/p

≤
∑
j

∑
Q∈Qj

(∑
m

∑
n

|〈KQ, ϕj,m,n〉|p
)1/p

. (25)

The rationale for introducing a partitioning into dyadic squares is the technical fact that wave
atoms are not built compactly supported in space. The windows wQ allow to cleanly separate
different regions of the parameter patch in which the kernel K oscillates with different local wave
vectors. Note also that the dyadic partitioning is a mathematical tool for the proof of Theorem 1,
and is not part of the construction of the wave atom transform.

The proof’s architecture is summarized in the table at the end of this section. Dyadic squares
are first classified according to their location with respect to the diagonal s = t, where K is singular.

1. Diagonal squares. Dyadic squares will be considered “diagonal squares” as soon as the dis-
tance from their center to the diagonal s = t is less than 1/k. We call the locus S =
{d(s, t) ≤ 1/k} the diagonal strip. Scale-by-scale, the condition on the square’s centers reads
d(2−jq1, 2−jq2) ≤ 3 max(2−j , 1

k ). (We need to use of the circle distance d since q1 and q2 are
defined modulo 2j .) There are O(2j max(1, 2j/k)) such diagonal squares at scale j. They
correspond to the case kx . 1 in Lemma 1.

2. Nondiagonal squares. When d(2−jq1, 2−jq2) > 3 max(2−j , 1/k), we say the square is non-
diagonal. in those squares, the kernel KQ is C∞ but oscillatory. There are O(22j) such
nondiagonal squares at scale j. They correspond to the case kx & 1 in Lemma 1.

12



Nondiagonal squares are further subdivided into near-field and far-field squares, depending on
their distance to the diagonal. The threshold is at d(s, t) ≤ C for some constant C, determined as
follows. Lemma 1 identifies the argument of the Hankel function as a phase. For the kernel K, this
phase is kφ(s, t) where φ(s, t) = ‖x(s)−x(t)‖. The constant C mentioned earlier is chosen such that
φ cannot be stationary in the near-field; however, there may be stationary points in the far field.
This distinction is important for the `p summation estimate in section 2.5. A counting argument
for the number of dyadic square where the phase φ is near-stationary is provided in section 2.3.

Diagonal squares need to be further partitioned, or need further classifying, depending on the
scale j. When the scale is large (j small), a diagonal dyadic square may not be contained inside
the diagonal strip S; the triangular portions that extend outside the strip are smoothly cut out and
give rise to the off-strip contribution. When the scale is small (j large), a square in the diagonal
strip may intersect the diagonal s = t, or may not. The former case gives rise to the singular
on-strip contribution, and the latter case is the regular on-strip contribution. More details on this
subdivision are given at the beginning of section 2.6. It is important to make a distinction between
these contributions as they give rise to very different decay estimates for the wave atom matrix
elements.

Nondiagonal squares Diagonal squares
Near field Far field Off-strip On-strip

Singular Regular

2.3 Geometry of stationary phase points

The phase φ(s, t) = ‖x(s)−x(t)‖ mentioned earlier generates typical oscillations as long as ∇φ has
large magnitude. On the other hand, we recognize ∇φ = 0 as being the “stationary point set” for
the kernel considered. In this section, we argue that the locus of near-critical (or near-stationary)
points of φ necessarily has small measure. The following lemma makes this heuristic precise in
terms of the scale defect j′.

Lemma 4. Let φ(s, t) = ‖x(s)− x(t)‖ for s, t in some Iα. For j′ ≥ 0, let

Kj(j′) = {(q1, q2) : ‖∇φ(2−jq1, 2−jq2)‖∞ ≤ 2−j
′}.

Then there exists C > 0 such that the cardinality of Kj(j′) obeys

|Kj(j′)| ≤ C 2j+(j−j′)+

where (x)+ = x if x ≥ 0, and zero otherwise.

Proof. Let r = (x(s)−x(t))/‖x(s)−x(t)‖; the gradient of the phase is ∇φ(s, t) = (ẋ(s)·r,−ẋ(t)·r).
The condition ‖∇φ(s, t)‖∞ ≤ 2−j

′
, i.e.

|ẋ(s) · r| ≤ 2−j
′

and |ẋ(t) · r| ≤ 2−j
′
,

is for large j′ an almost-perpendicularity condition between tangent vectors to the curve Ωα and
the chord joining x(s) and x(t).

Now fix s = 2−jq1, and let n(s) be either normal vector to Ωα at x(s). Let θ be the angle between
r and n(s), such that |ẋ(s) · r| = ‖ẋ(s)‖ | sin θ|. Since the parametrization is nondegenerate, the
first condition |ẋ(s) · r| ≤ 2−j

′
implies θ ≤ C 2−j

′
for some adequately large C > 0.
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Consider therefore a cone Γ with apex at x(s), axis n(s), and opening θ ≤ C 2−j
′
. The second

condition |ẋ(t) · r| ≤ 2−j
′

is satisfied only if the curve Ωα intersects a chord inside the cone at a
near-right angle, and as a consequence, every chord inside the cone at a near-right angle, differing
from π/2 by a O(2−j

′
). Because Ωα has finite length, bounded curvature, and obeys the geometric

regularity property (9), there can only be a finite number of such intersections. The total length
of Ωα ∩ Γ is therefore a O(2−j

′
).

Since the points x(2−jq2) are a distance C 2−j apart from each other, there are at most
O(max(1, 2j−j

′
)) points indexed by q2 that obey the two almost-orthogonality conditions, which

can be written as O(2(j−j′)+). Since q1 takes on O(2j) values, the total number of couples (q1, q2)
obeying the conditions is O(2j 2(j−j′)+).

We will also need the observation that near-stationary-phase points can only occur far away
from the diagonal.

Lemma 5. As before, let d(s, t) = |e2πis − e2πit|. There exist two constants C1, C2 > 0 such that,
if d(s, t) ≤ C1, then

‖∇φ(s, t)‖∞ ≥ C2.

Proof. As previously,
‖∇φ(s, t)‖∞ = min(|ẋ(s) · r|, |ẋ(t) · r|),

and we write |ẋ(s) · r| as ‖ẋ(s)‖ | cos(θs)|, where θs is the angle between the chord (x(s),x(t)) and
the tangent vector ẋ(s). This angle obeys |θs| . d(s, t)|, hence the cosine factor is greater than 1/2
as long as d(s, t) ≤ C1 for some adequate C1. The factor ‖ẋ(s)‖ is also bounded away from zero
by regularity of the parametrization. The same argument can be made for |ẋ(t) · r|.

2.4 Nondiagonal kernel fragments: decay of individual coefficients

The intuition for this section is that wave atom coefficients are small whenever their wavenumber
differs from the local wave number of the kernel. It is an integration by parts argument, and it is not
entirely trivial for two reasons: 1) the length scale of the decay in coefficient space must be chosen
carefully as a function of k (parameter β below), and 2) Bessel functions have a leading-order 1/

√
x

decay that must be preserved throughout the differentiations.
Within nondiagonal squares, d(s, t) & 1/k and kφ(s, t) & 1, so Lemma 1 asserts that K can be

written as
K(s, t) = eikφ(s,t)a(kφ(s, t), s, t),

where φ(s, t) = ‖x(s)− x(t)‖ and the dependence of a on k is mild in comparison to that of eikφ;

| d
n

dφn
a(kφ(s, t), s, t)| ≤ Cn

1√
kφ(s, t)

φ(s, t)−n.

The presence of additional arguments s and t is needed to account for factors such as the Jacobian
‖x′(t)‖; all the derivatives of these factors are O(1) by assumption. Therefore, the chain rule yields

| d
α1

dsα1

dα2

dtα2
a(kφ(s, t), s, t)| ≤ Cα

1√
kφ(s, t)

φ(s, t)−|α|, φ(s, t) . 1. (26)

Fix j > 0 and Q ∈ Qj . We seek a good bound on

〈KQ, ϕj,m,n〉 =
∫

3Q
wQ(s, t) a(kφ(s, t), s, t) eikφ(s,t)e−i2

jm·(s,t)
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× 2j ϕ(j,m)(2
js− n1, 2jt− n2) ds dt,

where ϕ(j,m) has been introduced in equation (3). Without loss of generality, we perform a trans-
lation to choose the coordinates s and t such that xQ = 0 and wQ(s, t) = w(2js, 2jt).

A first bound estimating the decay in n can be obtained by using 1) the almost-exponential
decay (4) for ϕ(j,m), 2) the estimate ‖wQ‖L1 . 2−2j that follows from |3Q| . 2−2j , and 3) an L∞

bound for the rest of the integrand, disregarding the oscillations. The result is

|〈KQ, ϕj,m,n〉| ≤ CM 2−j sup
(s,t)∈3Q

[
(kφ(s, t))−1/2

]
(1 + ‖n‖)−M , ∀M > 0.

The size of the first-order Taylor remainder of kφ(s, t) over 3Q is O(2j) times smaller that the value
of kφ(xQ) itself, so we may evaluate φ at xQ at the expense of a multiplicative constant in the
estimate. We get

|〈KQ, ϕj,m,n〉| ≤ CM 2−j (kφ(xQ))−1/2 (1 + ‖n‖)−M , ∀M > 0. (27)

Capturing the decay in m, however, requires integrations by parts. Heuristically, the objective
is to show that the wave atom coefficients decay almost exponentially in m, with a length scale of 1
in all directions (in units of m), independently of j—at least in the representative case j ' 1

2 log2 k.
To this end let us introduce the self-adjoint differential operator

L =
I − β∆(s,t) − iβk (∆φ(s, t))
1 + β‖k∇φ(s, t)− 2jm‖2

,

with
β =

1
max(2−2jk2, 22j)

.

We see that L leaves the exponential exp i[k∇φ(s, t)− 2jm · (s, t)] unchanged, hence we introduce
M copies of L, and integrate by parts in s and t to pass the differentiations to the non-oscillatory
factors. The scaling parameter β has been chosen such that the repeated action of L on the rest of
the integrand introduces powers of 1/(1 + β‖k∇φ(s, t) − 2jm‖2), but otherwise only worsens the
bound by a constant independent of µ = (j,m,n). Indeed, β ≤ 2−2j , and

• the action of each derivative on wQ or ϕ(j,m) produces a factor 2j balanced by
√
β;

• the action of each derivative on a produces a factor 1/φ(s, t), which by equation (9) is compa-
rable to 1/d(s, t). Since we are in the presence of nondiagonal squares, 1/d(s, t) . min(2j , k) ≤
2j . Again, each derivative produces a factor 2j , which is balanced by

√
β. Note that the lead-

ing factor 1/
√
kφ in the bound (26) is harmless since it is carried through the differentiations.

It is then tedious but straightforward to combine these observations and conclude that, for all
M > 0,

|LM
[
w(2js, 2jt) a(kφ(s, t), s, t)ϕ(j,m)(2

js− n1, 2jt− n2)
]
| ≤

CM
1√

kφ(s, t)
1

(1 + β‖k∇φ(s, t)− 2jm‖2)M
.

Since L is a differential operator, the support of the integrand remains 3Q regardless of M ,
hence we still get a factor |3Q| ∼ 2−2j from the integral over s and t. With the L2 normalization
factor 2j coming from equation (3), the overall dependence on scale is 2−j . The resulting bound is

|〈KQ, ϕj,m,n〉| ≤ CM 2−j sup
(s,t)∈3Q

[
(kφ(s, t))−1/2(1 + β‖k∇φ(s, t)− 2jm‖2)−M

]
, ∀M > 0.

(28)
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The second factor inside the square brackets can be written as(
1 + ‖k2−j∇φ(s, t)−m

2−jβ−1/2
‖2
)−M

,

showing that in m-space, it is a fast-decaying bump centered at k2−j∇φ(s, t) and of characteristic
width 2−jβ−1/2. Over the set 3Q, we have the estimate |k2−j∇φ(s, t)− k2−j∇φ(xQ)| = O(k2−2j).
The quantity k2−2j is in all cases less than the length scale 2−jβ−1/2 (which is why we could not
simply have taken β = 2−2j), so we may replace ∇φ(s, t) by ∇φ(xQ) in the expression of the bump,
at the expense of a multiplicative constant depending only on M .

We have also seen earlier that (kφ(s, t))−1/2 can safely be replaced by (kφ(xQ))−1/2 in the region
d(s, t) & 1, at the expense of another multiplicative constant. With these observations, we can take
the geometric mean of (27) and (28) and obtain the central bound

|〈KQ, ϕj,m,n〉| ≤ CM 2−j (kφ(xQ))−1/2 (1 + β‖k∇φ(xQ)− 2jm‖2)−M (1 + ‖n‖)−M , (29)

for all M > 0.

2.5 Nondiagonal kernel fragments: `p summation

The expression just obtained can be used to show `p summability and verify proper growth as a
function of k. Only the case p ≤ 1 is interesting and treated in this section. We tackle the different
sums in the right-hand-side of (24) in the order as written, from right to left.

• The sum over n is readily seen to contribute a multiplicative constant independent of the
other parameters j,Q, and m.

• Consider the sum over m, and pull out the factor 2−jp(kφ(xQ))−p/2. (We will not worry
about this factor until we treat the sum over Q.) The range of values for m is an annulus
‖m‖∞ � 2j , so we can compare the sum over m to the integral∫

Cj

(1 + β‖k∇φ(xQ)− 2jx‖2)−Mpdx,

where Cj = {x ∈ R2 : C12j ≤ ‖x‖∞ ≤ C22j} for some C1, C2 > 0. In what follows, take M
sufficiently large so that, say, Mp ≥ 5. Two cases need to be considered, corresponding to
22j ≤ k (large scales), and 22j > k (small scales).

– If 22j ≤ k, then β = 22jk−2. It will be sufficient to consider only the upper bound for
‖x‖∞, whence we have the bound∫

‖x‖∞≤C2j

(
1 + ‖

2−jk∇φ(xQ)− x
2−2jk

‖2
)−Mp

dx.

With Lemma 4 in mind, we introduce the scale defect j′Q as the unique integer such that

1
2

2−j
′
Q < ‖∇φ(xQ)‖ ≤ 2−j

′
Q .

The integrand is a bump that essentially lies outside of the region of integration as soon
as k2−(j+j′Q) & 2j .
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More precisely, observe that

sup
x:‖x‖∞≤C2j

(
1 + ‖

2−jk∇φ(xQ)− x
2−2jk

‖2
)−Mp

≤ C
(

1 + 2j(2−j
′
Q − C ′k−122j)+

)−2Mp

hence the integral is bounded by a first expression,

C 22j
(

1 + 2j(2−j
′
Q − Ck−122j)+

)−2Mp
. (30)

A second bound can be obtained by letting x′ = x − 2−jk∇φ(xQ) and extending the
region of integration to the complement of a square in x′, of the form

‖x′‖∞ ≥ sjQ =
(

1
2
k2−(j+j′Q) − C2j

)
.

If sjQ ≤ k2−2j , we might as well put it to zero and obtain the bound C(k22−2j)2 for the
integral. If sjQ > k2−2j , the integrand can be made homogeneous in x and the integral
bounded by∫

r>sjQ

( r

k2−2j

)−2Mp
rdr . (sjQ)2

( sjQ
k2−2j

)−2Mp
≤ (k2−2j)2

( sjQ
k2−2j

)−2Mp+2

Now uniformly over sjQ, the resulting bound is

C (k2−2j)2
(

1 + 2j(2−j
′
Q − k−122j)+

)−2Mp+2
. (31)

The minimum of (30) and (31) is

C min
(
22j , k22−4j

) (
1 + 2j(2−j

′
Q − k−122j)+

)−2Mp+2
. (32)

– If k ≤ 22j , then β = 2−2j . This time we will only consider the lower bound for ‖x‖∞,
and write ∫

‖x‖∞≥C2j
(1 + ‖2−jk∇φ(xQ)− x‖2)−Mpdx.

Since ‖∇φ(xQ)‖ is a O(1) and 2−jk ≤ 2j , there exists a value j∗ ≤ 1
2 log2 k + C such

that for all j ≥ j∗, the center of the bump is inside the square ‖x‖∞ ≤ C2j (the
constant C changes from expression to expression.) When this occurs, we can let x′ =
x − 2−jk∇φ(xQ) as before and consider the integral outside of a smaller square and
bound ∫

‖x‖∞≥C2j
(1 + ‖x‖2)−Mpdx ≤ 2−2j(Mp−2), j ≥ j∗. (33)

For the few values of j such that 1
2 log2 k ≤ j ≤ j∗, we recover the previous estimate,

namely C (k2−2j)2, which is a O(1).

• Consider now the sum over Q, and recall that the bounds just obtained need to be multiplied
by 2−jp(kφ(xQ))−p/2. Pull out the factor 2−jp one more time. Again, we need to separately
consider 22j ≤ k (large scales) and 22j ≥ k (small scales). For small scales, the bound (33) is
uniform in Q, hence the sum over Q ∈ Qj simply contributes a factor 22j .
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For large scales, the strategy is to split the sum over Q into a near-field contribution, for
which d(s, t) ≤ C1 in the sense of Lemma 5, and a far-field contribution, for which stationary
phase points must be handled adequately. The terms in the far-field sum is then further
broken down into groups corresponding to a same value of the scale defect, which Lemma 4
helps identify. Schematically,

∑
Q∈Qj

=
∑

Q∈ near-field
+
∑
j′>0

 ∑
Q: scale defect=j′

 .
Consider the two regions separately.

– Near-field. In this region, φ(xQ) may be as small as 1/k, hence we estimate (kφ(xQ))−p/2 .
1. By Lemma 5, the scale defect j′Q is bounded by a constant, hence the bound (32)
becomes

C min
(
22j , k22−4j

) (
1 + 2j(1− k−122j)+

)−2Mp+2
. (34)

We claim that this quantity is always less than a constant independent of j and k.
Indeed, if j is so large that 22jk−1 ≥ 1/2, then k22−4j ≤ 4, and it suffices to use the
trivial minoration 1 + 2j(1− k−122j)+ ≥ 1. If on the other hand 22jk−1 < 1/2, then we
have 1 + 2j(1− k−122j)+ ≥ 1

22j , which implies that (34) is bounded by

C min
(
22j , k22−4j

)
2−2j(Mp−2) ≤ C 2−2j(−1+Mp−2) ≤ 1,

because we chose Mp ≥ 5. The sum over Q then contributes a factor proportional to
the number of nondiagonal squares, i.e., 22j .

– Far-field. The leading factor (kφ(xQ))−p/2 now contributes a factor k−p/2, since φ(xQ) ≥
C in the far field. For the sum over Q, we use equation (32) one more time and write

C min
(
22j , k22−4j

) ∑
Q∈ far-field

(
1 + 2j(2−j

′
Q − k−122j)+

)−Mp+2
.

For each Q, find the closest integer j′ ≤ j to j′Q. As long as j′ < j, Lemma 4 asserts

that the number of terms comparable to
(

1 + 2j(2−j
′ − k−122j)+

)−Mp+2
is a O(22j−j′).

The endpoint j′ = j receives the contribution of arbitrary large j′Q, meaning terms that
can be as large as a O(1); however by Lemma 4 there can only be O(2j) such terms.
After indexing terms by j′ in place of Q, we get the bound

C min
(
22j , k22−4j

) 2j +
∑

−C≤j′<j
22j−j′

(
1 + 2j(2−j

′ − k−122j)+

)−Mp+2

 .
It is easy to see that the summand peaks for j′ near j0 = min(j,−2j+log2 k); it decreases
geometrically for j ≤ j0 because of the factor in brackets, and decreases geometrically
for j ≥ j0 because of the factor 22j−j′ . The result is a bound

C min
(
22j , k22−4j

)
max(24jk−1, 2j) = C min(k, 23j).
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• What remains after gathering the various bounds is a constant CM,p times

∑
j≤ 1

2
log2 k+C

2−jp 22j (near-field)

+
∑

j≤ 1
2

log2 k+C

k−p/22−jp min(k, 23j) (far-field)

+
∑

j> 1
2

log2 k+C

22j2−jp2−2j(Mp−2). (small scales)

The near-field contribution sums up to Cp k1−p/2 as soon as p < 2. The far field contribution
is bounded by

Cp k
−p/2

 ∑
j≤ 1

3
log2 k

2j(3−p) + k
∑

j> 1
3

log2 k

2−jp


≤ Cp k−p/2 k1−p/3 ≤ Cp k1−p/2.

With the choice Mp ≥ 5, the contribution of “small scales” is negligible in contrast to the
first two terms. O(k1−p/2) is the desired growth rate in k, compatible with equation (19).
This concludes the part of the proof related to nondiagonal squares.

2.6 Diagonal kernel fragments: decay of individual coefficients

It is now assumed that the dyadic square Q overlaps with the diagonal strip S = {(s, t) : d(s, t) .
1/k}. Because of the singularity of the kernel at s = t, the integrations by parts cannot proceed as
before. Inside S, the smoothness of the kernel is governed by the case kx . 1 in Lemma 1.

Further complications arise, depending on the value of the scale j.

• At scales j ≤ log2 k + C, a square Q intersecting with S is not entirely contained in S; in
fact, a large portion of it lies in the nondiagonal portion d(s, t) & 1/k. We call this portion
(two triangles) the off-strip contribution. There are O(2j) such triangles.

• At scales j ≥ log2 k+C, some squares may be contained inside the strip S without intersecting
the diagonal s = t. These squares make up the regular on-strip contribution; there are
O(22jk−1) such squares.

• The remaining O(2j) squares or portions thereof, overlapping with the diagonal s = t, make
up the singular on-strip contribution.

In order to smoothly cut off the strip S from dyadic squares, introduce σ = s − t (defined
modulo 1 in [0, 1]) and τ = s + t. By symmetry of the problem, one can consider the triangle
{(s, t) ∈ Q : s ≥ t} and still call it Q, without loss of generality. We can therefore focus on σ > 0.
If we properly select the coset relative to the modulo operation, we can also take (σ, τ) to smoothly
parametrize the triangle Q. With these choices, the diagonal strip is S = {(σ, τ) : σ . 1/k}.
Consider now a smooth indicator ρ(kσ) where ρ is a C∞ positive function obeying

ρ(x) =
{

1 if 0 ≤ x ≤ 1;
0 if x ≥ 2.
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Multiplying the integrand in (41) by ρ(kσ) gives the on-strip contribution (regular and singular);
multiplying it by 1− ρ(kσ) gives the off-strip contribution. These cases are treated separately.

• Off-strip contribution. Over the off-strip region we have kσ & 1 hence kφ(s, t) & 1 by equation
(9), so that the case kx & 1 of Lemma 1 applies there. The analysis of the coefficient decay
in n is the same as in the previous section, so we omit it here.

As far as analysis of the decay in m, we are back in the setting of the analysis of Section
2.4, except for the factor 1− ρ(kσ) that prevents the same scheme of integrations by parts in
σ. Each derivative of ρ(kσ) would produce an unacceptably large factor k. The smoothness
in τ is however unaffected, which permits to carry over the analysis of Section 2.4 with
integrations by parts in τ only. The direction of increasing τ in the m plane is eτ = (1, 1), to
which corresponds the decomposition 2 m · (s, t) = (m1 +m2)τ + (m1−m2)σ. Since ∇φ(0) ≡
limσ→0+ ∇φ points in the direction of σ, we have eτ · ∇φ(0) = 0. Repeated integrations by
parts should now be carried out, in the fashion of section 2.4, but with a different differential
operator than L:

L0 =
I − β ∂2

∂τ2 − iβk (∂
2φ
∂τ2 )

1 + β22j
(
m1+m2

2

)2 ,

where β is the same as previously. Notice that the amplitude is uniformly bounded, since
kx & 1 in the off-strip region. The result is a bound that involves m1 + m2 only. With the
contribution of the decay in n, the off-strip coefficient estimate is

|〈KQ, (1− ρ(kσ))ϕj,m,n〉| ≤ CM 2−j (1 + β22j(m1 +m2)2)−M (1 + ‖n‖)−M , (35)

for all M > 0, and only for scales obeying 22j . k.

• On-strip contribution: amplitude estimate. We now take kσ . 1. The case kx . 1 of Lemma
1 allows to write

K(s, t) = eikφ(s,t)a(kφ(s, t), s, t),

where now the amplitude’s smoothness is

|d
na

dφn
(kφ, s, t)| ≤ Cn φ−n, φ . 1. (36)

The partial derivatives of a with respect to the arguments s and t are O(1) and well within
the above bound as long as φ(s, t) . 1. To compute the total derivatives with respect to s
and t, however, it is necessary to contrast smoothness along and across the oscillations, by
means of the coordinates σ and τ . The value of φ(s, t) is comparable to the circle distance
d(σ, 0), namely

Dd(σ, 0) ≤ φ
(
σ + τ

2
,
τ − σ

2

)
≤ D̃d(σ, 0),

for some fixed D and D̃. The first inequality is exactly equation (9), the last inequality follows
from a Taylor expansion. Since we only consider σ > 0, we write this property as φ � σ. A
careful analysis of Taylor remainders shows that the same estimate estimate is true for the τ
derivatives,

|d
nφ

dτn

(
σ + τ

2
,
τ − σ

2

)
| ≤ Cn σ, σ 6= 0, (37)
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while the σ derivatives do not yield any gain:

|d
nφ

dσn

(
σ + τ

2
,
τ − σ

2

)
| ≤ Cn, σ 6= 0. (38)

The action of the successive τ derivatives on a through its φ dependence can be understood
from the higher-order analogue of the chain rule, known as the combinatorial Faà di Bruno
formula: (

d

dτ

)n
a

(
kφ

(
σ + τ

2
,
τ − σ

2

)
, s0, t0

)
=
∑
π∈Π

(
d|π|a

dφ|π|

)
·
∏
B∈π

k
d|B|φ

dτ |B|
.

In this formula, Π is the set of all partitions π of {1, . . . , n}; |π| denotes the number of blocks
in the partition π; these blocks are indexed as B ∈ π; and |B| denotes the size of the block B.
Since there are |π| factors in the product over B, equation (37) reveals that the derivatives
of φ yield a factor Cn σ|π|. On the other hand, by equation (36), each φ-differentiation of a
introduces an inverse power of σ. The order of the derivative is |π|, for a contribution of σ−|π|

that exactly cancels the σ|π| coming from the derivatives of φ.

This analysis only concerns the dependence of a on τ via φ. It is easy to apply the multi-
variable chain rule to see that the depedence of a on τ via its second and third arguments (s
and t) does not change the conclusion that any number n of τ derivatives, n ≥ 1, keep the
amplitude bounded, with bound independent of j and k (but not n, of course):

|d
na

dτn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)
| ≤ Cn, n ≥ 1, σ 6= 0. (39)

There are no factors to gain in the σ derivatives of the phase, hence the same analysis yields

|d
na

dσn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)
| ≤ Cn φ−n, φ . 1, n ≥ 1, σ 6= 0. (40)

We are now equipped to study the coefficient

〈KQ, ϕj,m,n〉 =
∫

3Q
w(2js, 2jt)eikφ(s,t)a(kφ(s, t), s, t) e−i2

jm·(s,t)

× 2j ϕ(j,m)(2
js− n1, 2jt− n2) ds dt. (41)

• Regular on-strip contribution

For regular on-strip squares, i.e., those squares at very small scales j ≥ log2 k + C that
intersect with the strip S but not with the diagonal s = t, the decay in m and n is obtained
by a simple argument of integration by parts. In contrast to the operators L and L0 used
earlier, we should now introduce copies of

L1 =
I − 2−2j∆(σ,τ)

1 + ‖m‖2
,

and integrate by parts in (41). Each derivative in σ acting on the amplitude a(kφ, s, t)
produces a factor φ−1 � σ−1. Since Q does not intersect with the diagonal, σ & 2−j hence
σ−1 . 2j . This factor is balanced by the choice of scaling in the expression of L2. A fortiori,
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the derivatives in τ are governed by a stronger estimate and are therefore under control.
The derivative in τ or σ acting on ϕ(j,m,n) do not compromise its super-algebraic decay,
hence we gather the same decay in n as previously. One complication is however the possible
logarithmic growth near σ = 0 of the amplitude a when it is not differentiated. Consider the
intermediate bound

|〈KQ, ρ(kσ)ϕj,m,n〉| ≤ CM 2j
(
1 + ‖m‖2

)−M (1 + ‖n‖)−M
∫

3Q
|a(kφ(s, t), s, t)| dsdt,

for all M > 0. If the amplitude were bounded, then the integral would produce a factor 2−2j

like in the nondiagonal case. Instead, we claim that the integral factor is bounded by 2−jk−1.
In order to see this, consider the bound

|a(kφ, s, t)| ≤ C (1 + | log(kφ(s, t))|),

from Lemma 1. Since log is increasing and φ � σ, there exist C1, C2 > 0 such that

log(C1kσ) ≤ log(kφ(s, t)) ≤ log(C2kσ),

hence
| log(kφ(s, t))| ≤ C + | log(kσ)|, for some C > 0.

This bound does not depend on τ , and since (s, t) ∈ 3Q, τ ranges over a set of length O(2−j).
We therefore obtain the bound∫

3Q
|a(kφ(s, t), s, t)| dsdt ≤ C 2−j ×

∫ 1
Ck

0
(C + | log(kσ)|) dσ ≤ C 2−jk−1.

The final estimate for the regular on-strip contribution is

|〈KQ, ρ(kσ)ϕj,m,n〉| ≤ CM k−1
(
1 + ‖m‖2

)−M (1 + ‖n‖)−M , (regular on-strip) (42)

• Singular on-strip contribution

Let us now consider a dyadic square Q that intersects with the diagonal s = t. In the
language of microlocal analysis, s = t is the singular support of the kernel, and we expect
the corresponding wavefront set {(s, s, ξ, xi)} to play a role in the analysis. Accordingly, we
show in this section that large wave atom coefficients cluster around the wavefront set. In
particular, we cannot expect that the decay length scale of the wave atom coefficients be
independent of j in all directions in m: because Q overlaps with, or is close to the diagonal,
the decay in the direction m1 −m2 (perpendicular to the diagonal) is much slower than the
decay in the direction m1 +m2 (parallel to the diagonal). However, the number of diagonal
squares is small enough to restore the overall balance at the level of the `p summability
criterion.

To quantify the decay in the m1 +m2 direction, introduce the self-adjoint operator

L2 =
I − 2−2j ∂2

∂τ2

1 +
(
m1+m2

2

)2 .
It leaves the exponential e−i2

j(m1s+m2t) invariant. After integrating by parts, the action of
I − 2−2j ∂2

∂τ2 leaves the bound on the rest of the integrand unchanged, because
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(i) w(2js, 2jt) and ϕ(j,m)(2js− n1, 2jt− n2) produce a factor 2j when differentiated;

(ii) differentiating ϕ(j,m)(2js− n1, 2jt− n2) does not compromise its decay in n; and

(iii) a(kφ, s, t) has a logarithmic singularity, and otherwise becomes uniformly bounded when
differentiated in τ , as we have seen. (The presence of the scaling 2−2j in L1 is not even
needed here.)

The integral
∫

3Q |a(kφ(s, t), s, t)| dsdt for the amplitude can be bounded by C 2−j max(2−j , k−1)
as we argued for the regular on-strip squares (here 3Q is not necessarily contained in S.) The
result is a bound

|〈KQ, ρ(kσ)ϕj,m,n〉| ≤ CM max(2−j , k−1)
(
1 + (m1 +m2)2

)−M (1+‖n‖)−M , (singular on-strip)
(43)

for all M > 0.

Finally, the decay in m1−m2 for those (singular, on-strip) squares that intersect the diagonal
cannot proceed as previously. An analysis of coefficients taken individually would be far
from sharp, e.g., would not even reproduce `2 summability. The proper reasoning involves a
collective bound on the `2 norm of all the wave atom coefficients at a given scale j > 0, which
correspond to squares Q that intersect with the diagonal. This reasoning is explained in the
next section, and gives the bound∑

m,n

|〈KQ, ρ(kσ)ϕj,m,n〉|2 ≤ C j22−3j , Q ∈ Qj and Q intersects the diagonal. (44)

The study of `p summability from all these estimates is then treated in Section 2.8.

2.7 Diagonal kernel fragments: collective decay properties

The strategy for obtaining (44) is to compare wave atom coefficients to wavelet coefficients, scale
by scale. Estimating individual wavelet coefficients is a much tighter way to capture the sparsity
of a log singularity than directly through wave atoms. (Wavelets however are not well-adapted for
the overwhelming majority of dyadic squares that correspond to C∞ oscillations.)

Consider two-dimensional compactly supported Daubechies wavelets with one dilation index j,
built on the principle of multiresolution analysis [22]. They are denoted as

ψεj′,n(s, t) = 2j
′
ψε(2j

′
s− n1, 2j

′
t− n2),

where ε = 1, 2, 3 indexes the type of the wavelet (HH, HL or LL). The easiest way to define Meyer
wavelets in a square it to periodize them at the edges.

Fix j ≤ 0, consider a function f(s, t) defined in [0, 1]2, and consider its wave atom coefficients at
a scale j. By Plancherel for wave atoms, there exists an annulus Aj = {(ξ1, ξ2) : C122j ≤ ‖ξ‖∞ ≤
C222j} such that ∑

m,n

|〈f, ϕj,m,n〉|2 ≤
∫
Aj

|f̂(ξ)|2 dξ.

By Plancherel for wavelets and the properties of Daubechies wavelets [22], there exists j0 such that
this L2 energy is for the most part accounted for by the wavelet coefficients at scales 2j− j0 ≤ j′ ≤
2j + j0, i.e.,

1
2

∫
Aj

|f̂(ξ)|2 dξ ≤
∑

j′∈[2j−j0,2j+j0]

∑
ε,n

|〈f, ψεj′,n〉|2. (45)
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The last two equations show that, collectively in an `2 sense, wave atom coefficients at scale j can
be controlled by wavelet coefficients at scales neighboring 2j.

The relevant range of scales for this analysis is j ≥ 1
2 log2 k. The on-strip region has length

O(2−j) and width O(min(k−1, 2−j)). Since each wavelet is supported in a square of size ∼ 2−2j-by-
2−2j , the number of wavelets that intersect the strip isO(2j×22j min(k−1, 2−j)) = O(min(23jk−1, 2j)).
Among those, only O(2j) correspond to wavelets intersecting with the diagonal s = t. The bound
on wavelet coefficient depends on their location with respect to the diagonal:

• Non-diagonal wavelets. The wavelet’s wave number is ∼ 2j
′ ∼ 22j and soon becomes much

larger than the local wave number ∼ k of the oscillations of the kernel, hence a fast decay in
j′ →∞. More precisely, fix Q ∈ Qj ; the coefficient of interest is

〈KQρ(kσ), ψεj′,n〉 =
∫

supp ψε
j′,n

a(kφ(s, t), s, t)eikφ(s,t)w(2js, 2jt)2j
′
ψε(2j

′
s−n1, 2j

′
t−n2) dsdt.

Because the wavelet has at least one vanishing moment, one may write it either as

ψε(2j
′
s− n1, 2j

′
t− n2) = 2−j

′ dψ̃ε

ds
(2j
′
s− n1, 2j

′
t− n2), ε = HL or HH,

or as

ψε(2j
′
s− n1, 2j

′
t− n2) = 2−j

′ dψ̃ε

dt
(2j
′
s− n1, 2j

′
t− n2), ε = LH,

where ψ̃ε has the same support as ψε. After integrating by parts in s or t, we can

– use the bounds (39) and (40) on the amplitude;

– use the bound ∇(s,t)e
ikφ = O(k);

– use ∇(s,t)w(2js, 2jt) = O(2j);

– use |supp ψεj′,n| . 2−2j′

to conclude that the coefficient obeys

|〈KQρ(kσ), ψεj′,n〉| ≤ CM 2−j
′
2−j

′
(

max(k, 2j) + φ−1
)
,

where φ−1 is a notation for the supremum of φ−1 over the support of the wavelet. If we
index by the integer q ≥ 1 the distance between the center of the support of the wavelet
to the diagonal, as

√
2q2−j

′
, then φ−1 � q−12j

′
. The bound above becomes CM 2−j

′
(q−1 +

2−j
′
max(k, 2j)).

The sum in the right-hand-side of (45) is then estimated as follows. As we saw earlier the
length of the strip S ∩ Q is O(2−j), and its width is min(1/k, 2−j). Since the translation
step of wavelets is 2−j

′ ∼ 2−2j , the translation index n takes on 2j×22j min(1/k, 2−j) values.
Hence∑
j′∈[2j−j0,2j+j0]

∑
ε,n

|〈KQρ(kσ), ψεj′,n〉|2 ≤ C
∑
n

|2−2j(q−1 + 2−2jk)|2

≤ C2j
∑
q≥1

(2−4jq−2) + 23j min
(

1
k
, 2−j

)
× 2−4j(2−2j max(k, 2j))2

≤ C2−3j . (because j ≥ 1
2

log2 k + C )
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• Diagonal wavelets. For wavelets intersecting the diagonal, it will not be necessary to quantify
cancellations. By Lemma 1,

|〈KQρ(kσ), ψεj′,n〉| ≤ C
∫

supp ψε
j′,n

(1 + | log(kσ)|) 2j
′ |ψε(2j′s− n1, 2j

′
t− n2)| dsdt. (46)

Without loss of generality we can consider kσ < 1/2 and write

| log2(kσ)| = − log2(kσ) = − log2(2j
′
σ)− log2 k + j′ ≤ − log2(2j

′
σ) + j′.

Since log is integrable near the origin, and |supp ψεj′,n| . 2−2j′ , the contribution due to
− log2(2j

′
σ) is a O(2−j

′
). The contribution of the lone j′, on the other hand, is a O(j′2−j

′
).

There are O(2j) diagonal wavelets, each with coefficients O(j′2−j
′
) = O(j2−2j), hence the

sum of their squares in the range 2j − j0 ≤ j′ ≤ 2j + j0 is O(2j × (j2−2j)2) = O(j22−3j).

As j → ∞, the contribution of diagonal wavelets manifestly dominates that of nondiagonal
wavelets, and we have shown that the resulting estimate is (44).

2.8 Diagonal kernel fragments: `p summation

Let us conclude by calculating the growth of
∑

j

∑
Q∈Qj

∑
m,n |〈KQ, ϕj,m,n〉|p in the parameter k,

for those dyadic squares that intersect the strip kσ . 1. We start by letting p ≤ 1.
Consider each contribution separately.

• Off-strip contribution. Recall that j ≤ 1
2 log2 k + C in this case. The reasoning entirely

parallels that of the previous section and we encourage the reader to focus on the discrepancies.
First, the sum over n yields a harmless constant factor. Second, use (35) and drag the factor
2−jp out of the sums over m and Q; the former sum is then comparable to the integral

I =
∫
Cj

(1 + |β1/22j(x1 + x2)|2)−Mpdx1dx2,

with Cj an annulus of inner and outer radii proportional to 2j . Over this domain, the
integrand concentrates near the union of two “ridges” of length ∼ 2j and width ∼ β−1/22−j ,
oriented along the anti-diagonal x1 = −x2. Note that β = 22jk−2. The integral I is therefore
bounded by a constant times 2j × (β−1/22−j) = 2−jk. Third, the sum over Q ∈ Qj that
intersect with the strip yields a factor 2j , proportional to the number of diagonal dyadic
squares at scale j. The remaining sum is bounded by

Cp
∑

j≤ 1
2

log2 k+C

2j(2−jk)2−jp ≤ Cp k1−p/2.

This is the desired growth rate in k.

• Regular on-strip contribution. Here, j ≥ 1
2 log2 k + C, therefore ‖m‖∞ ≥ C 2j ≥ C

√
k. The

factor (1+‖m‖∞)−M in equation (42) therefore yields a negative power k−M/2 for all M > 0,
i.e., what we denoted earlier as k−∞. This is negligible in comparison with k1−p/2.

• Singular on-strip contribution. As previously, two scale regimes should be considered. When
j ≤ 1

2 log2 k, we can use the bound (43). The sum over n is harmless; the sum over m
produces a factor 2j since there are significant O(2j) values of m on the ridge |m1 +m2| ≤ C
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at scale j; the sum over Q produces another factor 2j since there are O(2j) diagonal dyadic
squares a scale j. The resulting sum over j is then bounded by

Cp
∑

j≤ 1
2

log2 k

22j2−jp ≤ Cp k1−p/2,

which is again the desired growth rate.

If now j ≥ 1
2 log2 k, we need to invoke the collective decay estimate (44. Fix j and Q ∈ Qj

a singular dyadic square. By equation (43), values of m1 + m2 significantly different from
zero will give rise to negligible coefficients that sum up to a o(k). More precisely, let δ >
0 be arbitrarily small. Then the wave atom coefficients in the region |m1 + m2| ≥ C2δj

decay sufficiently fast (take M � 1/δ) that their total contribution is a O(k−∞) in `p. The
significant coefficients at scale j are, again, on a ridge of length O(2j) and width O(2δj), for
a combined total of N = O(2j(1+δ)) significant coefficients.

We can now relate the `2 norm estimate (44) to an `p estimate, 0 < p < 2, by means of the
Hölder inequality(∑

m,n

|〈KQρ(kσ), ϕj,m,n〉|p
)1/p

≤

(∑
m,n

|〈KQρ(kσ), ϕj,m,n〉|2
)1/2

× N
1
p
− 1

2 , (47)

whereN = O(2j(1+δ)). After simplification, the right-hand side is bounded by Cδ,p j2j(−2+1/p+δ′)

where δ′ is another arbitrarily small number, namely δ′ = δ(1
p −

1
2). This quantity still needs

to be summed over Q—there are O(2j) such squares—and then over j; but the summation
method will depend how p compares to 1, and accordingly, which of equations (24) or (25)
should be used.

If p ≤ 1, then (24) should be used, and we obtain

‖Kµ‖p`p(F ) ≤ Cδ,p
∑

j≥ 1
2

log2 k

2j
(
j 2j(−2+ 1

p
+δ′)
)p

= Cδ,p
∑

j≥ 1
2

log2 k

jp 2j(2−2p+δ′p),

which always diverges. However if p ≥ 1, then (25) implies

‖Kµ‖`p(F ) ≤ Cδ,p
∑

j≥ 1
2

log2 k

2j
(
j 2j(−2+ 1

p
+δ′)
)
.

For any 1 < p < 2, the above series is convergent if for instance we choose δ′ = 1
2

(
1− 1

p

)
,

and the result is a O(1), independent of k. This part of the singular on-strip contribution
falls into the second category identified at the beginning of the proof, namely equation (20).
This concludes the proof in the case when K is the single-layer potential G0.

2.9 Analysis of the double-layer potential

The proof of the sparsity result for the double-layer kernel G1 defined in equation (11) is a simple
modification of that for the single-layer kernel G0.

• Nondiagonal part. The smoothness bound for Hankel functions in Lemma 1 exhibits the same
rate for all n ≥ 0 in the case when x & 1/k. The other factors, functions of s and t which
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accompany the Hankel factor in formula (11), have no bearing on the sparsity analysis since
they are smooth and do not depend on k but for the leading factor ik/4. As a consequence,
G1 can still be written as a product

G1(s, t) = a(kφ(s, t), s, t) eikφ(s,t), (nondiagonal part, |s− t| & 1/k),

where the amplitude obeys the same estimate as previously, but for a factor k:

| d
n

dφn
a(kφ(s, t), s, t)| ≤ Cn k

1√
kφ(s, t)

φ(s, t)−n.

With a number of nonstandard wave atom coefficients |Λ| = O(kε−1/∞), one could form an
approximation of the nondiagonal part of G0 with error ε. In the case of G1, the same number
of terms results in an error that we can only bound by kε. Thus, to make the error less than
a specified ε̃, the number of terms needs to be O(k1+1/∞ε̃−1/∞). This justifies the form of
the first term in (14).

• Diagonal part. For x . 1/k the smoothness estimate in Lemma 1 is worse for H(1)
1 than for

H
(1)
0 , but as is well-known, the dot product

x(s)− x(t)
‖x(s)− x(t)‖

· nx(t) ‖ẋ(t)‖

is small near the diagonal and more than compensates for the growth of H(1)
1 there. The

precise version of this heuristic is a decomposition

G1(s, t) = a(kφ(s, t), s, t) eikφ(s,t), (diagonal strip, |s− t| . 1/k),

where we claim that the amplitude obeys the same estimates as those for G0 in variables
σ = s− t, τ = s+ t, namely

|d
na

dτn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)
| ≤ Cn, (48)

|d
na

dσn

(
kφ

(
σ + τ

2
,
τ − σ

2

)
,
σ + τ

2
,
τ − σ

2

)
| ≤ Cn φ−n, φ . 1, (49)

for σ . 1/k, and this time for every n ≥ 0 including zero. (Total derivatives in σ are defined
by keeping τ fixed, and vice-versa.)

Let us prove (48). As previously, put r = x(s)−x(t)
‖x(s)−x(t)‖ . Observe that nx(t)‖ẋ(t)‖ = (ẋ(t))⊥ · r.

Derivatives of (ẋ(t))⊥ · r in σ and τ are treated by the following lemma, proved in the
Appendix.

Lemma 6. For all n ≥ 0,

| d
n

dτn

[
(ẋ(t))⊥ · r

]
| ≤ Cn σ, (50)

| d
n

dσn

[
(ẋ(t))⊥ · r

]
| ≤ Cn σ1−n. (51)
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The chain rule and Faà di Bruno formula can then be invoked as previously, with the combined
knowledge of (50), (51), the growth of H(1)

1 from Lemma 1, i.e.,

| d
m

dφm

[
H

(1)
1 (kφ(s, t))e−ikφ(s,t)

]
| ≤ Cm

1
kσ

σ−m,

as well as equations (37) and (38) on the growth of the derivatives of φ. It is straightforward
to see that (48) is satisfied; for instance, the factor σ from (ẋ(t))⊥ · r and the leading k in
the expression of G1 cancel out the 1/(kσ) in the formula for the derivatives of H(1)

1 . The
rest of the argument involving the Faà di Bruno formula is the same as previously. Equation
(49) follows from the same reasoning, and the observation that no σ factor is gained upon
differentiating φ in σ.

Since (48) and (49) are at least as good as what they were in the case of G0, the rest of
the argument can proceed as previously with the same results; the “off-strip” and “regular
on-strip” contributions, for instance, are unchanged from the G0 scenario. The “singular
on-strip” contribution however, corresponding to dyadic squares that intersect the diagonal,
ought to be revisited since G1 has a much milder singularity than G0 near the diagonal.

The estimate of fast decay in |m1 + m2| and ‖n‖, namely (43), is a fortiori still valid. It
appears, however, that the collective bound (44) at scale j can be improved to∑

m,n

|〈Kχdiag
j ρ(kσ), ϕj,m,n〉|2 ≤ C 2−6jk2, (52)

where χdiag
j (s, t) refers to the

∑
QwQ(s, t) over the squares Q ∈ Qj at scale j for which the

support of wQ intersects the diagonal. The presence of an aggregation of windows χdiag
j (s, t)

is important here, as the study of coefficients corresponding to individual windows wQ would

not give a sharp bound. Whether χdiag
j (s, t) or ρ(kσ) effectively determines the cutoff

depends on the relative values of j and log2 k.

Again, via a Plancherel argument, the scale-by-scale bound (52) can be proved by passing to
a system of Daubechies wavelets. We have

〈Kχdiag
j ρ(kσ), ψεj′,n〉 =

∫
supp ψε

j′,n

χ
diag
j (s, t)ρ(kσ)

ik

4
H

(1)
1 (kφ(s, t)) (ẋ(t))⊥ · r (53)

×2j
′
ψε(2j

′
s− n1, 2j

′
t− n2) dsdt,

where the scale of the wavelet relates to that of the window w as 2j − j0 ≤ j′ ≤ 2j + j0.

As previously we will use the vanishing moments of the wavelet to bring out a few 2−j
′
factors.

This time we will need up to three vanishing moments, i.e., we write the wavelet as

ψε(2j
′
s− n1, 2j

′
t− n2) =

(
2−j

′ d

ds

)M
ψ̃ε(2j

′
s− n1, 2j

′
t− n2), ε = HL or HH,

or as

ψε(2j
′
s− n1, 2j

′
t− n2) =

(
2−j

′ d

dt

)M
ψ̃ε(2j

′
s− n1, 2j

′
t− n2), ε = LH,
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where M ≤ 3, and ψ̃ε has the same support as ψε. Before we let these derivatives act on the
rest of the integrand, multiply and divide by φ(s, t) = ‖x(t)− x(s)‖ to get

kH
(1)
1 (kφ(s, t)) (ẋ(t))⊥ · r =

[
kφ(s, t)H(1)

1 (kφ(s, t))
]

(ẋ(t))⊥ · x(t)− x(s)
‖x(t)− x(s)‖2

.

We will then need the following lemma, which refines the results of equations (37), (38), and
Lemma 6. It is proved in the Appendix.

Lemma 7. Let φ(s, t) = ‖x(s) − x(t)‖. For every integer m ≤ 0 there exists Cm > 0 such
that, as long as s 6= t,

|
(
d

ds

)m
φ(s, t)| ≤ Cm, (54)

|
(
d

ds

)m [
(ẋ(t))⊥ · x(t)− x(s)

‖x(t)− x(s)‖2

]
| ≤ Cm, (55)

The same inequalities hold with d/dt derivatives in place of d/ds derivatives.

Let us first consider the wavelets whose support intersects the diagonal. There, the support
of the wavelet is sufficiently small that χdiag

j (s, t) = ρ(kσ) = 1. One may integrate by parts
only once in (53), because

∇(s,t)φ(s, t) = (ẋ(s) · r,−ẋ(t) · r)

is discontinuous, since the unit chord r = (x(s) − x(t))/‖x(s) − x(t)‖ changes sign across
the diagonal and ẋ(t) 6= 0 there. The action of either d/ds or d/dt on the integrand after
integration by parts gives:

– a O(1) contribution for d
dx(xH(1)

1 (x)), by Lemma 2;

– by the chain rule, a O(k) contribution for d
ds(kφ) and d

dt(kφ), because of Lemma 7;

– a O(1) contribution for derivatives of (ẋ(t))⊥ · r/φ, by Lemma 7.

The size of the support is 2−2j′ , the wavelet comes with an L2 normalization 2j
′
, one factor 2−j

′

comes out of the vanishing moment, and |j′− 2j| ≤const.; hence diagonal wavelet coefficients
obey the bound

|〈Kχdiag
j ρ(kσ), ψεj′,n〉| ≤ 2−4jk. (diagonal wavelets)

There are O(2j
′
) = O(22j) such diagonal wavelets overall, hence the sum of squares of these

coefficients is bounded by 2−6jk2, in accordance with equation (52).

Let us now treat the wavelets that do not intersect the diagonal s = t, and show that the
same bound is valid. One will now need to integrate by parts three times in s or t to get
three 2−j

′
factors out, and gather the action of the derivatives on the rest of the integrand as

follows.

– The factors ρ(kσ)χdiag
j (s, t) are essentially multiplied by max(2j , k) for each derivative.

– By Lemma 2, the combination xH(1)
1 (x) becomes 1/x when differentiated three times in

x. This is 1/kφ when x = kφ.
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– Derivatives of φ in s and t remain O(1) by Lemma 7, hence each derivative of kφ yields
a factor k.

– By Lemma 7, al derivatives of (ẋ(t))⊥ · x(t)−x(s)
‖x(t)−x(s)‖2 remain bounded uniformly in s and

t.

The product rule yields many terms but the overall sum is controlled by the behavior of the
“extreme” terms identified above, hence a factor max(23j , k3)+k3/kφ under the integral sign.
Since the wavelet has support well away from the diagonal, we can proceed as previously and
bound φ−1(s, t) by q−12j

′
where q is an integer indexing the distance between the diagonal

and the center of the wavelet. Again, the support of the wavelet has area O(2−2j′) and j′ is
comparable to 2j, hence we get a bound

|〈Kχdiag
j ρ(kσ), ψεj′,n〉| ≤ 2−8j

[
max(23j , k3) + k2q−122j

]
. (nondiagonal wavelets)

As seen previously, the number of wavelet coefficients is a O(min(22j/k, 2j)) across the diago-
nal (indexed by q), times O(22j) along the diagonal, for a total of O(min(24j/k, 23j)). Hence
we have ∑

j′∈[2j−j0,2j+j0]

∑
ε,n

|〈KQρ(kσ), ψεj′,n〉|2

.

[
min

(
24j

k
, 23j

)
× 2−16j max(26j , k6)

]
+

[
22j
∑
q

2−16jk4q−224j

]
.
[
2−12jk5 + 2−7j

]
+
[
2−10jk4

]
. 2−6jk2 since j ≥ 1

2
log2 k + C.

This is the desired decay rate, compatible with equation (52).

We are now left with the task of verifying that (52) implies the correct decay of the `p norm,
as in equation (21). Let p < 1. Start by using Hölder’s inequality (47) with N = O(2j(2+δ))—
there are O(2j(1 + δ)) wave atoms per square Q, and O(2j) squares along the diagonal. We
get ∑

m,n

|〈Kχdiag
j ρ(kσ), ϕj,m,n〉|p ≤ C

[
(2−3jk)2j(2+δ)(1/p−1/2)

]p
= C kp2(2−4p+δ′p)j ,

where δ′ = δ(1
p−

1
2). Finally, the p-triangle inequality asks to sum this bound over j ≥ 1

2 log2 k.
The sum is convergent provided p > 1/2 and δ′ is taken sufficiently small. The result is

‖Kµ‖p`p(F ) ≤ Cp k
pk

1
2

(2−4p+δ′p) = Cp k
1−p+δ′′ , ∀δ′′ > 0

After taking the 1/p-th power, we fall exactly into scenario 3 for the `p summation, i.e.,
equation (21). The proof is complete.

2.10 Proof of Corollary 2

Passing to relative error estimates requires scaling ε by 1/
√
k and

√
k respectively. Recall

k ≥ 1.
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– If we invoke Theorem 1 for G0, with an absolute error ε/
√
k in place of ε, then the number

of terms |Λ0| becomes O((kε−2)1+1/∞). Hence if we can show that 1/
√
k ≤ C‖K0‖2,

then (15) follows.

– If we invoke Theorem 1 for G1, with an absolute error ε
√
k in place of ε, then the

number of terms |Λ1| becomes O(k1+1/∞ε−1/∞ + (kε−2)1/3+1/∞). Hence if we can show
that

√
k ≤ C‖K1‖2, then (16) follows.

– The combination of the above two error bounds would show (17), provided we can show
that

√
k ≥ C‖K1 − iηK0‖2 when η � k.

Therefore, it suffices to establish the lower bounds on ‖K0‖2, ‖K1‖2, and ‖K(0,1)‖2. By the
tight frame property of wave atoms, the claim for K0 is exactly

∫
[0,1]2 |G0(s, t)|2dsdt ≥ C/k.

Set φ(s, t) = ‖x(s)−x(t)‖. As kφ(s, t) > c0, Lemma 3 implies that |G0(s, t)| ≤ C(kφ)−1/2. If
k is sufficiently large, we can restrict the integration domain to the nonempty set kφ(s, t) > c0,
and directly conclude. If k is not large enough for this step, the integral is still a uniformly
continuous and positive function of k, hence uniformly bounded away from zero.

The claim for K1 is
∫

[0,1]2 |G1(s, t)|2dsdt ≥ k. The non-Hankel factors in the expression of
G1 play a minor role in evaluating this lower bound; we can consider them bounded away
from zero on a large set S1 to which the integral is restricted. Lemma 3 then implies that
for kφ(s, t) > c1 and (s, t) ∈ S1, we have |G1(s, t)| ≥ k(kφ)−1/2. By the same reasoning as
previously, this leads to the lower bound.

The claim for K(0,1) is
∫

[0,1]2 |G1(s, t)−iηG0(s, t)|2dsdt ≥ k, with η � k. The reasoning is here
a little more complicated since G1 and kG0 are on the same order of magnitude. The presence
of −i, however, prevents major cancellations—and is in fact chosen for that very reason. The
asymptotic decay of G1−iηG0 for large φ(s, t) can be studied from the integral formulation of
the Hankel function used throughout the Appendix for proving the three Lemmas in section
2.1. Without entering into details, we remark that the integral factor in (56) is for z large
very near real-valued, with positive real part. The exponential factor e−inπ/2 shows that H1

is then almost aligned with −iH0. The particular combination G1− iηG0 with η > 0 respects
this quadrature property of Hankel functions, and produces no cancellation at all in the limit
z →∞. So for kφ large enough, the claim follows; and if kφ is not large enough, we fall back
on an argument of uniform continuity as previously.

3 Numerical experiments

In this section, we provide several numerical examples to support the sparsity results of the previous
section. The three geometric objects used in this section are displayed in Figure 1. For each object,
the boundary curve is represented using a small number of Fourier coefficients. The last two
examples have non-convex shapes that typically result in multiple scattering effects. We report the
numerical results for the single layer kernel G0(s, t) in Section 3.1 and the results for the double
layer kernel G1(s, t) in Section 3.2. We omit the results of the combined kernel G1(s, t)− iηG0(s, t)
as they are almost the same as the single layer case.

3.1 Single layer potential

We first study the single layer potential

k ·G0(s, t) = k · i
4
H

(1)
0 (k‖x(s)− x(t)‖) ‖ẋ(t)‖.
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Figure 1: The geometric objects used in the test examples. (a): an ellipse. (b): a kite-shaped
object. (c): a star-shaped object.

Notice that we use k · G0(s, t) instead of G0(s, t), because the coupling constant η in the integral
equation (1) is of order k. Therefore, k ·G0(s, t) is more informative when we report the value at
which coefficients are thresholded, and the number of nonnegligible coefficients.

For each fixed k, we construct the discrete version of the operator k ·G0(s, t) by sampling the
boundary curve with N = 8k quadrature points; this corresponds to about 8 points per wavelength
(2π/k) in these examples. Next, we scale the values at these quadrature points with the high-order
corrected trapezoidal quadrature rule from [19] in order to integrate the logarithmic singularity
accurately. This quadrature rule has the appealing feature of changing the weights only locally
close to the singularity. We then apply the two dimensional wave atom transform to compute the
coefficients K0

µ := 〈kG0, ϕµ〉. For a fixed accuracy ε, we obtain the sparsest approximant K̃0
µ that

satisfies
‖K0 − K̃0‖`2(µ) ≤ ε‖K0‖`2(µ)

by choosing the largest possible threshold value δ and setting the coefficients less than δ in modulus
to zero. Equation (15) predicts that, as a function of k, the number of wave atom coefficients
defining K̃0 should grow like k1+1/∞.

For each example in Figure 1, we perform the test for different combinations of (k, ε) with
k = 32, 64, . . . , 1024 and ε = 10−1, 10−1.5, and 10−2. The numerical results for the three examples
are summarized in Tables 1, 2, and 3, respectively. In each table,

• The top left plot is the real part of the single layer potential in the case of k = 128. This plot
displays coherent oscillatory patterns for which the wave atom frame is well suited.

• The top right plot is the sparsity pattern of the operator under the wave atom basis for k = 128
and ε = 10−2. Each black pixel stands for a nonnegligible coefficient. The coefficients are
organized in a way similar to the usual ordering of 2D wave atom coefficients: each block
contains the wave atom coefficients of a fixed frequency index (j,m), and the blocks are
ordered such that the lowest frequency is located at the top left corner while the highest
frequency at the bottom right corner. Within a block, the wave atom coefficients of frequency
index (j,m) are ordered according to their spatial locations. The multiscale nature of the
wave atom frame can be clearly seen from this plot.

• The table at the bottom gives, for different combinations of k and ε, the number of non-
negligible coefficients per row |∆0|/N , the threshold value δ (coefficients below this value in
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ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 11 / 3.26e-2 / 9.53e-2 18 / 9.09e-3 / 2.88e-2 27 / 2.60e-3 / 7.93e-3
k = 64 9 / 3.37e-2 / 1.07e-1 16 / 9.20e-3 / 3.39e-2 28 / 2.39e-3 / 1.01e-2
k = 128 10 / 3.33e-2 / 9.80e-2 20 / 8.46e-3 / 3.29e-2 32 / 2.45e-3 / 1.04e-2
k = 256 9 / 3.63e-2 / 9.79e-2 18 / 9.33e-3 / 2.99e-2 30 / 2.46e-3 / 9.66e-3
k = 512 11 / 3.61e-2 / 9.79e-2 20 / 9.39e-3 / 3.07e-2 33 / 2.55e-3 / 9.86e-3
k = 1024 9 / 4.00e-2 / 9.78e-2 17 / 1.01e-2 / 3.12e-2 29 / 2.72e-3 / 9.81e-3

Table 1: Single layer potential for the ellipse. Top left: the real part of the operator for k = 128.
Top right: the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2.
Each black pixel stands for a nonnegligible coefficient. Bottom: For different combinations of k
and ε, the maximum number of nonnegligible entries per row |∆0|/N , the threshold value δ, and
the estimated L2 operator norm εL2 (from left to right).

modulus are put to zero) and the L2-to-L2 norm operator error εL2 estimated using random
test functions.

In these tables, the number of significant coefficients per row ∆0/N grows very slowly as k
doubles and reaches a constant level for large values of k. This match well with the theoretical
analysis in Section 2. The threshold value δ remains roughly at a constant level as k grows, which
is quite different from the results obtained using wavelet packet bases [13, 14, 17, 18] where the
threshold value in general decreases as k grows. The estimated L2-to-L2 operator error εL2 is very
close to the prescribed accuracy ε in all cases. This indicates that, in order to get an approximation
within accuracy ε in operator norm, one can simply truncate the nonstandard form of the operator
in the wave atom frame with the same accuracy.

3.2 Double layer potential

We now consider the double layer potential

G1(s, t) =
ik

4
H

(1)
1 (k‖x(s)− x(t)‖) x(s)− x(t)

‖x(s)− x(t)‖
· nx(t) ‖ẋ(t)‖.

For each fixed k, the discrete version of G1(s, t) is constructed by sampling at N = 8k points
and using trapezoidal quadrature rule. The coefficients K1

µ := 〈G1, ϕµ〉 are calculated using the
two dimensional wave atom transform and the approximant K̃1

µ is constructed in the same way as
the single layer potential case.
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ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 14 / 2.92e-2 / 9.50e-2 25 / 8.35e-3 / 3.07e-2 37 / 2.69e-3 / 8.79e-3
k = 64 15 / 2.70e-2 / 9.77e-2 30 / 7.66e-3 / 3.45e-2 46 / 2.41e-3 / 9.98e-3
k = 128 17 / 2.68e-2 / 1.04e-1 34 / 7.49e-3 / 3.35e-2 53 / 2.26e-3 / 1.04e-2
k = 256 17 / 2.70e-2 / 1.06e-1 35 / 7.27e-3 / 3.36e-2 58 / 2.07e-3 / 1.05e-2
k = 512 17 / 2.85e-2 / 1.11e-1 35 / 7.58e-3 / 3.43e-2 58 / 2.09e-3 / 1.07e-2
k = 1024 17 / 2.89e-2 / 1.03e-1 35 / 7.75e-3 / 3.33e-2 60 / 2.07e-3 / 1.07e-2

Table 2: Single layer potential for the kite-shaped object. Top left: the real part of the operator
for k = 128. Top right: the sparsity pattern of the operator under the wave atom basis for k = 128
and ε = 10−2. Bottom: For different combinations of k and ε, |∆0|/N , δ, and εL2 .
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ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 14 / 2.76e-2 / 1.00e-1 23 / 8.74e-3 / 3.14e-2 32 / 2.50e-3 / 9.72e-3
k = 64 14 / 2.55e-2 / 8.97e-2 25 / 7.68e-3 / 2.83e-2 38 / 2.39e-3 / 8.28e-3
k = 128 18 / 2.39e-2 / 8.36e-2 33 / 7.01e-3 / 2.64e-2 49 / 2.19e-3 / 8.06e-3
k = 256 18 / 2.32e-2 / 9.48e-2 35 / 6.66e-3 / 2.90e-2 56 / 1.98e-3 / 9.33e-3
k = 512 19 / 2.34e-2 / 9.30e-2 40 / 6.19e-3 / 2.94e-2 66 / 1.84e-3 / 9.30e-3
k = 1024 18 / 2.42e-2 / 9.50e-2 38 / 6.41e-3 / 3.01e-2 66 / 1.77e-3 / 9.41e-3

Table 3: Single layer potential for the star-shaped object. Top left: the real part of the operator
for k = 128. Top right: the sparsity pattern of the operator under the wave atom basis for k = 128
and ε = 10−2. Bottom: For different combinations of k and ε, |∆0|/N , δ, and εL2 .
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The results of the double layer potentials for the three examples are summarized in Tables 4, 5,
and 6, respectively. These results are qualitatively similar to the ones of the singular layer potential.
However, the coefficients of the double layer potential exhibit better sparsity pattern for the simple
reason that the double layer potential operator has a singularity much weaker than logarithmic
along the diagonal (where s = t) for objects with smooth boundary. Therefore, for a fixed accuracy
ε, the number of wave atoms required along the diagonal for the double layer potential is smaller
than the number for the singular layer potential. This is clearly shown in the sparsity pattern plots
in Tables 4, 5, and 6.
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ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 10 / 1.39e-2 / 1.29e-1 16 / 4.61e-3 / 3.65e-2 21 / 1.57e-3 / 1.19e-2
k = 64 9 / 1.40e-2 / 1.00e-1 15 / 4.41e-3 / 3.23e-2 21 / 1.34e-3 / 1.01e-2
k = 128 11 / 1.21e-2 / 9.50e-2 20 / 3.74e-3 / 3.00e-2 28 / 1.12e-3 / 9.94e-3
k = 256 10 / 1.28e-2 / 9.80e-2 18 / 3.70e-3 / 3.28e-2 28 / 1.07e-3 / 1.02e-2
k = 512 13 / 1.16e-2 / 1.00e-1 22 / 3.42e-3 / 3.24e-2 33 / 9.77e-4 / 1.00e-2
k = 1024 11 / 1.21e-2 / 9.98e-2 20 / 3.52e-3 / 3.29e-2 30 / 9.83e-4 / 1.01e-2

Table 4: Double layer potential for the ellipse. Top left: the real part of the operator for k = 128.
Top right: the sparsity pattern of the operator under the wave atom basis for k = 128 and ε = 10−2.
Bottom: For different combinations of k and ε, |∆1|/N , δ, and εL2 .

A Additional proofs

Proof of Lemma 1.
Following Watson’s treatise [27], the Hankel function can be expressed by complex contour

integration as

H(1)
n (z) =

(
2
πz

)1/2 exp i(z − nπ
2 −

π
4 )

Γ(n− 1
2)

∫ ∞eiβ
0

e−uun−1/2

(
1 +

iu

2z

)n−1/2

du, (56)

where −π/2 < β < π/2. For us, z is real and positive, and we take β = 0 for simplicity.
Let us first treat the case m = 0 (no differentiations) and n > 0. We can use the simple bound

|1 +
iu

2z
|n−

1
2 ≤ Cn

(
1 + |u

z
|n−

1
2

)
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ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 12 / 1.64e-2 / 9.16e-2 19 / 5.16e-3 / 2.82e-2 27 / 1.64e-3 / 8.71e-3
k = 64 13 / 1.40e-2 / 1.02e-1 23 / 4.37e-3 / 3.18e-2 34 / 1.31e-3 / 1.10e-2
k = 128 16 / 1.27e-2 / 9.11e-2 29 / 3.82e-3 / 2.80e-2 43 / 1.18e-3 / 9.27e-3
k = 256 16 / 1.22e-2 / 9.56e-2 31 / 3.46e-3 / 3.23e-2 49 / 1.02e-3 / 1.01e-2
k = 512 18 / 1.20e-2 / 9.98e-2 33 / 3.42e-3 / 3.09e-2 52 / 9.71e-4 / 9.81e-3
k = 1024 18 / 1.17e-2 / 9.57e-2 35 / 3.26e-3 / 3.02e-2 55 / 9.07e-4 / 1.03e-2

Table 5: Double layer potential for the kite-shaped object. Top left: the real part of the operator
for k = 128. Top right: the sparsity pattern of the operator under the wave atom basis for k = 128
and ε = 10−2. Bottom: For different combinations of k and ε, |∆1|/N , δ, and εL2 .
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ε = 10−1 ε = 10−1.5 ε = 10−2

k = 32 13 / 1.43e-2 / 1.20e-1 20 / 5.15e-3 / 3.31e-2 25 / 1.62e-3 / 1.15e-2
k = 64 14 / 1.25e-2 / 9.20e-2 23 / 4.23e-3 / 2.80e-2 31 / 1.43e-3 / 9.03e-3
k = 128 19 / 1.08e-2 / 1.08e-1 32 / 3.42e-3 / 3.27e-2 44 / 1.19e-3 / 1.10e-2
k = 256 20 / 1.00e-2 / 1.02e-1 36 / 3.08e-3 / 3.13e-2 52 / 9.77e-4 / 1.07e-2
k = 512 23 / 8.99e-3 / 1.01e-1 44 / 2.66e-3 / 3.24e-2 66 / 8.22e-4 / 1.01e-2
k = 1024 22 / 9.06e-3 / 1.04e-1 43 / 2.54e-3 / 3.21e-2 69 / 7.46e-4 / 9.46e-3

Table 6: Double layer potential for the star-shaped object. Top left: the real part of the operator
for k = 128. Top right: the sparsity pattern of the operator under the wave atom basis for k = 128
and ε = 10−2. Bottom: For different combinations of k and ε, |∆1|/N , δ, and εL2 .
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to see that the integral, in absolute value, is majorized by Cn (1 + z−n+1/2). Hence the Hankel
function itself is bounded by Cn (z−1/2 + z−n). This establishes the first two expressions in (22) in
the case m = 0.

The case m = n = 0 is treated a little differently because the integrand in (56) develops a 1/u
singularity near the origin as z → 0. We have

|1 +
iu

2z
|−

1
2 =

(
1 +

( u
2z

)2
)−1/4

≤ C min
(

1,
(u
z

)−1/2
)
, (57)

hence the integral in (56) is bounded in modulus by a constant times∫ z

0
e−uu−1/2 du+ z1/2

∫ ∞
z

e−uu−1 du ≤ C (z1/2 + z1/2| log z|).

With the z−1/2 factor from (56), the resulting bound is C (1 + | log z|) as desired (third equation).
When z > 1, we can improve this to C(1 + z1/2e−z) ≤ C, which gives the first equation when
m = n = 0.

For the casem > 0, it suffices to apply Leibniz’s rule inductively and observe that each derivative
produces a factor x−1 without changing the power of k. In particular,

• With α 6= 0,
d

dx

[
(kx)−α

]
= −α (kx)−α

1
x
,

hence the power of k is preserved and one negative power of x is created.

• Derivatives acting on isolated negative powers of x also produce a x−1 factor without affecting
the dependence on k.

• As for the x-dependence under the integral sign, with α 6= 0, we arrange the factors as

d

dx

((
1 +

iu

2kx

)−α)
= α

[
iu

2kx

(
1 +

iu

2kx

)−1
] (

1 +
iu

2kx

)−α 1
x
.

The factor in square brackets is bounded by 1 in modulus, hence the dependence on k is
unchanged. The factor 1/x is the only modification in the dependence on x. Subsequent
differentiations will only act on factors that we have already treated above: powers of kx,
powers of x, and powers of 1 + iu

2kx . This finishes the proof.

Proof of Lemma 2.
As previously, we use the integral formulation to get

xH
(1)
1 (x) = f(x)

∫ ∞
0

e−uu1/2
(
x+ i

u

2

)1/2
du,

where f(x) is the exponential factor, and already obeys |f (n)(x)| ≤ C for all n ≥ 0. We denote the
integral factor by I(x); its derivatives are

I(n)(x) = Cn

∫ ∞
0

e−uu1/2
(
x+ i

u

2

) 1
2
−n

du,
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where Cn is a numerical constant. In a manner analogous to the proof of Lemma 1, we can bound

|x+ i
u

2
|
1
2
−n =

(
x2 +

u2

4

) 1
4
−n

2

≤ Cn (max(x, u))
1
2
−n .

It follows that

|I(n)(x)| ≤ Cn
[∫ x

0
e−uu1/2x1/2−n du+

∫ ∞
x

e−uu1−n du

]
.

In the first term we can use e−u ≤ 1 and bound the integral by a constant times x2−n. The
integrand of the second term has a singularity near u = 0 that becomes more severe as n increases;
this term is bounded by O(1) if n = 0 or 1, by O(1 + | log(x)|) if n = 2, and by O(x2−n) if n > 2.

Proof of Lemma 3.
Consider equation (56) again, and take z real. For large values of z, the factor (1 + iu/2z)n−1/2

is close to 1; more precisely, it is easy to show that for each n ≥ 0, there exists cn > 0, dn > 0 for
which

|
(

1 +
iu

2z

)n−1/2

− 1| ≤ dn
u

z
, if u ≤ cnz.

We can insert this estimate in (56) and split the integral into two parts to obtain

|H(1)
n (z)|Γ(n− 1/2)

(πz
2

)1/2
− |

∫ cnz

0
e−uu−1/2du| ≥

− dn
∫ zcn

0
e−uu−1/2u

z
du− C

∫ ∞
zcn

e−uu−1/2du.

The constant C in the last term comes from equation (57). The first term in the right-hand side is a
O(z−1), and the second term is a O(e−z). At the expense of possibly choosing increasing the value
of cn, the second term in the left-hand side can manifestly be made to dominate the contribution
of the right hand side, proving the lemma.

Proof of Lemma 6.
We start by writing

(ẋ(t))⊥ · r = (ẋ(t))⊥ · x(t) + σẋ(t)− x(s)
‖x(t)− x(s)‖

.

By Taylor’s theorem, |x(t) + σẋ(t) − x(s)| ≤ Cσ2, hence |(ẋ(t))⊥ · r| ≤ Cσ. Derivatives are then
treated by induction; recall that d

dτ = d
ds + d

dt and d
dσ = d

ds −
d
dt ;

• any number of τ or σ derivatives acting on (ẋ(t))⊥ leave it a O(1);

• τ derivatives acting on x(t) + σẋ(t) − x(s) leave it a O(σ2) while each σ derivative removes
an order of σ;

• τ derivatives acting on ‖x(t)−x(s)‖−m leave it a O(σ−m) (m is generic) while each σ derivative
removes an order of σ.

This shows (50) and (51).

Proof of Lemma 7.
Some cancellations will need to be quantified in this proof, that were not a concern in the

justification of previous coarser estimates like Lemma 6.
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Without loss of generality, assume that x(t) = (0, 0), nx(t) = (0, 1), and that we have performed
a change of variables such that the curve is parametrized as the graph x(s) = (s, f(s)) of some
function f ∈ C∞ obeying |f(s)| ≤ Cs2. This latter change of variables would contribute a bounded
multiplicative factor that would not compromise the overall estimate.

By symmetry, if (54) is true for d/ds derivatives, then it will be true for d/dt derivatives as
well. Without loss of generality let s > 0. Then we have

φ(s, t) = ‖x(s)− x(t)‖ =
√
s2 + f2(s) = s

√
1 +

f2(s)
s2

.

Since |f(s)| ≤ Cs2 and C∞, the ratio f2(s)/s2 is also bounded for s . 1, and of class C∞. Being
a composition of C∞ functions, the whole factor

√
1 + f2/s2 is therefore also of class C∞, which

proves (54).
As for (55) with d/ds derivatives, we can write (ẋ(t))⊥ = (0, 1) and

(ẋ(t))⊥ · x(t)− x(s)
‖x(t)− x(s)‖2

=
−f(s)

s2 + f2(s)
= −

(
f(s)
s2

)
1

1 + f2(s)
s2

.

(The 1/‖ẋ(t)‖ does not pose a problem since it is C∞.) Again, since |f(s)| ≤ Cs2, both ratios
f(s)/s2 and f2(s)/s2 are themselves bounded and of class C∞. The factor 1

1+
f2(s)

s2

is the composition

of two C∞ functions, hence also of class C∞.
The symmetry argument is not entirely straightforward for justifying (55) with d/dt derivatives.

Symmetry s↔ t only allows to conclude that

|
(
d

dt

)m [
(ẋ(s))⊥ · x(t)− x(s)

‖x(t)− x(s)‖2

]
| ≤ Cm,

where (ẋ(s))⊥ appears in place of the desired (ẋ(t))⊥. Hence it suffices to show that the d/dt, or
equivalently the d/ds derivatives of[

(ẋ(t))⊥ − (ẋ(s))⊥
]
· x(t)− x(s)
‖x(t)− x(s)‖2

stay bounded. Using our frame in which the curve is a graph, we find

(ẋ(t))⊥ − (ẋ(s))⊥ = (0, 1)− (−f ′(s), 1) = (f ′(s), 0)

As a result, [
(ẋ(t))⊥ − (ẋ(s))⊥

]
· x(t)− x(s)
‖x(t)− x(s)‖2

=
−sf ′(s)
s2 + f2(s)

= −
(
f ′(s)
s

)
1

1 + f2(s)
s2

.

Since |f ′(s)| ≤ s, we are again in presence of a combination of C∞ functions that stays infinitely
differentiable.
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