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Abstract—This note studies the problem of nonsymmetric
rank-one matrix completion. We show that in every instance
where the problem has a unique solution, one can recover
the original matrix through the second round of the sum-of-
squares/Lasserre hierarchy with minimization of the trace of the
moments matrix. Our proof system is based on iteratively building
a sum of N − 1 linearly independent squares, where N is the
number of monomials of degree at most two, corresponding to
the canonical basis (zα − zα0 )

2. Those squares are constructed
from the ideal I generated by the constraints and the monomials
provided by the minimization of the trace.

I. NON SYMMETRIC MATRIX COMPLETION

This paper introduces a deterministic recovery result for
non symmetric rank-1 matrix completion by using the Lasserre
hierarchy of semidefinite programming relaxations. To our
knowledge, the closest result in the current literature is [1]
where the authors use the same hierarchy and certify recovery
in the case of tensor decomposition. Our paper also shares its
deterministic nature with [2] where the authors derive recovery
from the spectral properties of a graph Laplacian. Finally, this
paper can also be related to [3] in which the authors study
noisy tensor completion and use the sixth round of the Lasserre
hierarchy to derive probabilistic recovery guarantees.

We will use M(r;m× n) to denote the set of matrices of
rank r. This set is an algebraic determinantal variety that can be
completely characterized through the vanishing of the (r+ 1)-
minors. This determinantal variety has dimension (m+n−r)r.

The general nonsymmetric rank-1 matrix completion prob-
lem consists in recovering an unknown matrix X ∈M(1;m×
n) such that X = xyT , given a fixed subset of its entries [4],

find X

subject to rank(X) = 1

Xij = Aij (i, j) ∈ Ω.

(1)

As a slight abuse, we also speak of constraints Xij = Aij as
belonging to Ω. In relation to problem (1), we introduce the
mapping RΩ : Rm×n → R|Ω| that corresponds to extracting
the observed entries of the matrix. We let R1

Ω denote the
restriction of RΩ to matrices of rank-1, i.e R1

Ω : M(1;m ×
n) → R|Ω|. Invertibility of this restriction R1

Ω is a natural
question. In other words, when can one uniquely recover the
matrix X from the knowledge of RΩ(X) and the fact that X
has rank 1 ?

In particular, this paper considers the completion problem
onM∗(1,m×n), whereM∗(1,m×n) denotes the restriction

of M(1;m × n) to matrices for which none of the entries
are zero. The reason for this is that if a rank-1 matrix has a
zero element, then the corresponding row or column will be
zero, and it is easy to see that the completion problem will
generically lack injectivity.

Respectively denote by V1, V2 the row and column indices
of X . We consider the bipartite graph G(V1,V2, E) associated
to problem (1), where the set of edges in the graph is defined
by (i, j) ∈ E iff (i, j) ∈ Ω. The conditions for the recovery
of the matrix X from the set Ω are related to the properties
of this bipartite graph. In particular, we have the following
proposition (see [5]).

Proposition 1 (Rank-1 completion): The mask RΩ is in-
jective on M∗(1;m× n) if and only if G is connected.

Without loss of generality, we will now restrict to matrices
given by the product xyT , with xi, yj 6= 0 for all i, j and
where the first element of x has been normalized to unity to
enforce unique recovery. Let us then define X as

X =


y1 . . . yn
y1x1 . . . ynx1

...
. . .

...
y1xm−1 . . . ynxm−1

 = xyT (2)

The vertices of the bipartite graph G corresponding to X will
thus be labeled by the corresponding row and column indices,
and the edges by the elements of X lying in Ω. When we
deal with the rank-1 case, an implication of proposition 1 is
that for all xn, ym, the bipartite graph corresponding to the
mask Ω always contains at least one connected path starting
with an edge corresponding to an element of the first row and
for which the series of existing edges corresponds to running
through X according to chains of constraints such as

yi1 → yi1xi2 → xi2yi3 → . . . yiL+1
xn (xn) (3)

yi′1 → yi′1xi′2 → xi′2yi′3 → . . . xi′
L′+1

ym (ym) (4)

In other words, each one of the entries of x and y can always
be related to an element of the first row through chains similar
to (3) or (4).

Following proposition 1, given Ω, and letting x0y
T
0 denote

the optimal solution X0 to problem (1), the rank-1 matrix
completion problem can be stated in polynomial form as

find x, y

subject to y` = (y0)` (1, `) ∈ Ω

xmyn = ((x0)m(y0)n) (m+ 1, n) ∈ Ω.

(5)



and can be solved by iteratively propagating the value of
the elements of the first row up to any of the elements of x or
y through paths like (3) or (4). This “propagation” algorithm
is clearly not suited for handling noisy data.

II. SEMIDEFINITE PROGRAMMING RELAXATIONS

For clarity, we now use z to represent the whole vector of
unknowns, z = (x, y).

Let R[z] denote the corresponding ring of multivari-
ate polynomials. Let NKt denote the set of n-tuples α =
(α1, . . . , αK) ∈ NK such that |α| ≡

∑
i αi ≤ t. A general

form for problem (5) is given by

minimize p(z)

subject to h1(z) = 0, . . . , hL(z) = 0,
(6)

where h1, . . . , hL denote polynomials in the variables
x1, . . . xm−1 as well as y1, . . . , yn. We will use this general
form to introduce the Lasserre sum-of-squares hierarchy.

For a (positive Borel) measure µ on RK , and a multi-
index α = (α1, . . . , αK), one can define the corresponding
moment mα =

∫
zαµ(dz), where zα denotes the product

zα1
1 . . . zαK

K . The sequence of moments for the measure µ is
then the sequence (mα)α∈NK of moments corresponding to
the whole set of monomials zα. For any finite t ∈ N, one can
also introduce the truncated sequence of moments (mα)α∈Nn

t

defined only for |α| ≤ t.

Given the sequence of moments (mα)α∈NK ∈ R|NK |, the
corresponding moment matrix is defined as the matrix indexed
by the K-tuples α,β of NK and whose (α,β) entry is defined
as mα+β. This matrix can be truncated as well in the same
fashion as the truncated sequence of moments. The resulting
finite matrix Mt(m) is then defined for max(|α|, |β|) ≤ t
as (Mt)α,β = mα+β. As an example, consider the moments
matrix of order 2, M2(m):

M2 =



m(00) m(10) m(01) m(11) m(20) m(02)

m(10) m(20) m(11) . . . m(12)

m(01) m(11)

m(11)

...
. . .

...
m(20)

m(02) m(12) . . . m(22)

 .

A polynomial h ∈ R[z] can be represented as a sequence
h = (hα)α, where hα denotes the coefficient of h corre-
sponding to the monomial zα, so that h(z) =

∑
α hαz

α. We
can then define the shifted moments sequence hm through the
product hm = M(m)h ∈ RNK

, i.e., (hm)α =
∑
β hβmα+β.

Such sequences can also be truncated by limiting their index
to |α| ≤ t.

Given these notions, we can introduce the tth round of
the Lasserre sum-of-squares hierarchy of relaxations for the
general polynomial problem (6), as

p∗ = inf
m∈R|N

K
2t|

pTm s.t. m0 = 1, Mt(m) � 0,

Mt−dhj
(hjm) = 0

(j = 1, . . . , L),

(7)

where dhj
:= ddeg(hj)/2e. The Lasserre hierarchy thus

optimizes over the measures µ(dz) rather than over z, and
constraints the moments in order to recover the Dirac measure
δ(z − z0) leading to z0. The third constraint in Eq. (7) is the
general way of encoding all the constraints p(z)h`(z) = 0,
with p ∈ R[z], of order less than 2t, in the space of measures.
For more on the Lasserre hierarchy, see [6], [7], [8].

III. MAIN RESULT AND MATHEMATICAL ARGUMENT

Since a simple propagation argument can solve the noise-
less rank-1 completion problem, it seems reasonable to hope
for a robust algorithm with a similar complexity which could
also be extended to noisy measurements. The main result of
this paper, is that such an algorithm is given by the second
round of (7), i.e., t = 2, combined with a minimization of the
trace norm.

Theorem 1: Consider problem (1) in the context of propo-
sition 1, with X ∈M∗(1;m× n). Then this problem can be
solved exactly through the Lasserre hierarchy of order t = 2,
under minimization of the trace of M2(m).

To prove theorem 1, we will start with traditional ideas
from convex optimization theory. We start by writing prob-
lem (7) with a trace objective in the general form

minimize Tr(M)

subject to A(M) = b,

M � 0.

(8)

Let m0 be the vector of moments up to order 2 for
the 1-atomic measure corresponding to the point z0, i.e,
m0 = (zα0 )α where z0 = (x0,y0). Recall that z0 = (x0,y0)
defines the optimal solution X0 = x0y

T
0 of the matrix com-

pletion problem so that the knowledge of m0 gives X0. We
will denote the corresponding optimal second order moments
matrix as M0 = (M0)2 = m0m

T
0 .

To ensure unique recovery of the matrix M0 from a
problem like (8), traditional convex optimization proofs are
based on satisfying the first order optimality conditions1 by ex-
hibiting a dual vector λ̃ such that −A∗λ̃−I ∈ ∂ıK(M0) where
ıK denotes the indicator function of the positive semidefinite
(psd) cone (see for example [4]). We start by providing the
general conditions for the existence of such a certificate in the
case of problem (7). We then show how one can construct such
a certificate satisfying those conditions for the particular case
of problem (5).

Let us reformulate the relaxation (7) of (6) in a more
explicit fashion. We first introduce the appropriate matrices
Bγ that encode the monomial zγ as µTzBγµz , where µz is
used to denote the vector of monomials of degree less than t,
µz = (zα)α∈NK

t
. (see [7] for more details on the structure of

1Note that in the case of convex optimization those conditions are necessary
and sufficient.



those matrices), problem (7) can be stated as

minimize Tr(M)

subject to
∑
ζ

(h`)ζ
‖Bζ+κ‖2F

〈M ,Bζ+κ〉+ (h`)0 = 0.

for κ ∈ NK2(t−dh`
), 1 ≤ ` ≤ L

M � 0, M =
∑
γ

mγBγ + e1e
T
1 .

(9)

The first sum is taken over all the coefficients of each constraint
h`(x) = 0, h`(x) =

∑
ζ(h`)ζx

ζ and the second sum is taken
over all moments mγ of order up to 4.

We now derive the first order optimality conditions
−A∗λ̃ − I ∈ ∂ıK(M0) for problem (9) by writing down the
Lagrangian dual function for this problem, and by finding a
dual vector λ̃ such that 0 ∈ ∂L(M0, λ̃). Introducing multi-
pliers for each of the polynomial constraints, the Lagrangian
dual function can be written as

L(M ,λ, ξ) = Tr(M) + 〈M −
∑
γ

mγBγ − e1e
T
1 , ξ〉

+
∑
`

∑
κ∈NK

2(t−dh`
)

λ`,κ

∑
ζ

(h`)ζ
‖Bζ+κ‖2F

〈Bζ+κ,M〉


+ ıK(M).

The multipliers λ`,κ correspond to each of the original and
shifted polynomial constraints while ξ encode the redudant
structure of the matrix M . Usual convex optimization theory
states that M0 = m0m

T
0 is a minimizer for problem (9) iff

one can find dual vectors (ξ,λ) such that 0 ∈ ∂L(M0,λ, ξ).
This leads to the following conditions on ξ,λ. Let

T =
{
m0v

T + vmT
0 , v ∈ R|N

K
2 |
}
,

T⊥ being its orthogonal complement, and let ZT denote the
projection of Z onto the subspace T . Then, λ`,κ and ξ combine
into a dual certificate Z, and together must obey

1) Z = −I−ξ−
∑
`

∑
κ∈NK

2(t−dh`
)

λ`κ

∑
ζ

(h`)ζ
‖Bζ+κ‖2F

Bζ+κ


2) ZT = 0, ZT⊥ � 0

3) 〈Bγ , ξ〉 = 0, ∀γ 6= 0.

The conditions ZT = 0 and ZT⊥ � 0 arise from requiring
Z to be a subgradient of the indicator of the psd cone (see [9]
for more details).

The following proposition guarantees unique recovery.

Proposition 2: To ensure unique recovery of M0, in ad-
dition to the conditions 1), 2), and 3) mentioned above, it is
sufficient to require ZT⊥ ≺ 0 as well as injectivity on T of
the linear constraints A(M) = b arising from the polynomial
constraints h`(z) = 0.

Proof: Let us decompose Z into Z = −I + Z ′

Tr(M0) = 〈I,M0〉 = 〈IT ,M0〉 = 〈Z ′T ,M0〉
= 〈Z ′,M0 −M〉+ 〈Z ′,M〉 = 〈Z ′,M〉
= 〈IT ,MT 〉+ 〈(Z ′)T⊥ ,M〉
= Tr(MT ) + 〈(Z ′)T⊥ ,M〉
< Tr(M) for MT⊥ 6= 0

The second line comes from the fact that Z ′ belongs to the
range of A∗ and A(M) = A(M0). The last inequality is due
to Z ′T⊥ ≺ IT⊥ which since M � 0 implies 〈(Z ′)T⊥ ,M〉 <
Tr(MT⊥) for MT⊥ 6= 0. The last inequality thus implies
MT⊥ = 0. Finally MT = (M0)T by injectivity of the
constraints on T .

Note that, to satisfy ZT⊥ ≺ 0 and ZT = 0, it is sufficient
to ask for m0 ∈ Null(Z) and to require −Z to be psd
and exact rank |NK2 | − 1. In the next section, we show how
an equivalent polynomial form can help us construct a dual
certificate satisfying those conditions.

Equivalent polynomial certificate

We will call sum-of-squares (SOS), any polynomial p(z)
for which there exists a decomposition p(z) =

∑m
j=1 s

2
j (z)

for some polynomials sj ∈ R[z]. Introducing a polynomial
version of proposition 2, requires the following lemma from [6]
relating SOS and semidefinite programming (SDP),

Lemma 1 (Equivalence between SOS and SDP): Let p ∈
R[z] with p =

∑
α∈NK

2t

pαz
α be a polynomial of degree ≤ 2t,

the following assertions are equivalent,

i) p is a sum-of-squares

ii) There exists a positive semidefinite matrix X such that

p(z) = µTzXµz, (10)

The conditions of proposition 2, together with lemma 1
imply the following proposition arising from the polynomial
nature of problem (6),

Proposition 3 (Polynomial Form): To ensure unique re-
covery of M0, in addition to the injectivity of the constraints
on T , it is sufficient to find a sum of (|NK2 | − 1) linearly
independent squares s2

j (z) of degree less than or equal to 4,
polynomials λ`(z) of degree less than or equal to 4 − 2dh`

and constant ρ such that

q(z) =
∑
j

s2
j (z) =

∑
α∈NK

2

z2α − ρ+
∑
`

h`(z)λ`(z), (11)

and such that q(z0) = 0.

Since q(z) is SOS, to satisfy ZT = 0 is suffices to require
sj(z0) = 0. Indeed we have

{sj(z0) = 0} ⇐⇒ {〈
∑
j

sjs
T
j ,m0y

T+ymT
0 〉,y ∈ R|N

K
2 |} = 0.

The value of the constant ρ is fixed by enforcing q(z0) = 0.
The last term on the RHS of (11) is a contribution of degree
≤ 4 from the ideal I := {

∑L
j=1 ujhj | u1, . . . , uL ∈ R[z]}

generated from the constraints hj .



IV. CONSTRUCTION OF THE CERTIFICATE

Remember that z is given by the concatenation z = (x, y)
of all first order monomials arising in problem (5). Our con-
struction of the certificate is based on generating the canonical
squares (zα−zα0 )2 for all |α| ≤ 2 from the ideal; the squared
monomials arising from the trace norm and the constant ρ.

First let us show that for all monomials zα with |α| = 1
one can build the polynomial −2zαzα0 + 2(zα0 )2 by using a
decomposition from the ideal of degree at most 3.

• Either the constraint zα = zα0 is present explicitly
(zα = y` corresponds to an element of the first row
of X and h`(z) ≡ y`− (y0)` is a constraint in Ω) and
one can then just multiply this constraint by −2(zα0 )
to get the desired polynomial −2(z0)αzα + 2(zα0 )2

• Or the first order monomial zα, |α| = 1, appears in
a chain like (3) or (4).

Let zα = z`. Since the graph is connected, there exists a
chain

zi1 → zi1zi2 → zi2zi3 → zi3zi4 . . .→ zi`−1
z` (12)

such that if we denote the corresponding numerical values by
ai1 , ai1ai2 , . . . ,ai`−1

a`, the constraints zi1−ai1 , . . . , zi`−1z`−
a`ai`−1

belong to Ω and thus to the ideal I.

Using (12), one can recursively combine the elements of
the chain in the following way,

ai`−2
ai`−1

(z` − a`) =(z`zi`−1
− a`ai`−1

)zi`−2

− (zi`−2
zi`−1

− ai`−2
ai`−1

)z`
+ a`ai`−1

(zi`−2
− ai`−2

).

This telescoping relation holds for all ` throughout the chain
until the second element, (zi2 ), for which we have ai1(zi2 −
ai2) = (zi2zi1 − ai2ai1) − zi2(zi1 − ai1) ∈ I. The key
here is that one can make use of the bilinear constraints to
get a propagation argument which remains degree-3 since the
multiplicative factor a`ai`−1

in front of the propagation term
(zi`−2

− ai`−2
) remains constant.

Now that we can build the polynomials −2akzk + 2a2
k for

all k as degree-3 decompositions from the ideal I, one can just
add those polynomials to the frace and constant ρ contributions
(z2
k − a2

k) in order to get the squares (zk − ak)2. We thus get
|NK1 | − 1 of the required squares.

The remaining
(
K
2

)
decompositions for the second order

squared polynomials (zα − zα0 )2 for |α| = 2, are built from
the first order decompositions, the trace, and constant ρ as
follows. ∀α,β with |α|, |β| = 1,

(zαzβ − zα0 z
β
0 )2 = (zαzβ)2 − (zα0 z

β
0 )2

− 2zα0 z
β
0 (zαzβ − zα0 z

β
0 ),

(13)

where the first two terms arise from the contribution of the
trace and ρ, and the third one can be expressed from the ideal
I with degree at most 4, as

−2zα0 z
β
0 (zαzβ − zα0 z

β
0 ) = (−2zαzα0 + 2(zα0 )2)(zβ0 )2

+ (zβ − zβ0 )(−2zαzα0 )zβ0
(14)

The first term is of degree at most 3 and the second one is of
degree at most 4.

Injectivity of the polynomial constraints on T

To conclude, we show that the linear map A is injective
on T . For this purpose, let us show that the nullspace of A
is empty on T . Let us consider any Z = m0v

T + vmT
0 .

Normalization of Z11 implies v1 = 0 and reduces Z to a
matrix for which the first column equals the first row and is
given by (v2 . . . , v|NK

2 |).

Then recall that there is a least one constraint setting to
zero one of the elements of the first column. So there exists
` s.t. v` = 0. Accordingly the whole corresponding row and
column reduce to ((m0)`vk)k≤|NK

2 |. Since (m0)` 6= 02, one
can then apply the next constraint z`zm = 0 which implies
vm = 0. By recursively applying this idea, one can show that
the first block of Z corresponding to the monomials of degree
at most 2 is zero. The remaining part of the matrix can then
be set to 0 as well trough the structural constraints (equality of
corresponding monomials) for the first row/column and then
using the fact that Z is defined as m0v

T + vmT
0 .

V. CONCLUSION

In this note we show that rank-1 matrix completion can be
solved exactly from the second round of the Lasserre hierarchy
as soon as it meets the minimal necessary conditions on the
measurements for solvability. To the best of our knowledge, it
is the first time that a deterministic certificate is constructed
for a higher level (> 1) of convex relaxation for a completion
problem.
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