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ABSTRACT

This paper proposes to decompose seismic records into atomic events, each defined
by a smooth phase function and a smooth amplitude function. This decomposition is
intrinsically nonlinear and calls for a nonconvex least-squares optimization formulation,
along the lines of full waveform inversion. To overcome the lack of convexity, we
propose an iterative refinement-expansion scheme to initialize and track the phase and
amplitude for each atomic event. For short, we call the method “phase tracking”.

The initialization is carried out by applying Multiple Signal Classification (MUSIC) to
a few seed traces where events can be separated and identified by their arrival times
and amplitudes. We then construct the initial solution at the seed traces using linear
phase functions from the arrival times and constant amplitude functions, assuming
the medium is mostly dispersion-free. We refine this initial solution to account for
dispersion and imperfect knowledge of the wavelet at the seed traces by fitting the
observed data using a gradient descent method. The resulting phase and amplitude
functions are then carefully expanded across the traces in an adequately smooth way
to match the whole data record.

We demonstrate the proposed method on two synthetic records and a field record.
Because the parametrization of the seismic events is physically meaningful, it also
enables a simple form of bandwidth extension of the observed shot record to unobserved
low and high frequencies. We document this procedure on the same shot records.
Bandwidth extension is in principle helpful to initialize full waveform inversion with
frequency sweeps, and enhance its resolution.

INTRODUCTION

In this paper, we address the problem of decomposing a seismic record into elementary, or
atomic components corresponding to individual wave arrivals. Letting ¢ for time and x for
receiver location, we seek to decompose a shot profile d into a small number r of atomic
events v; as

d(t,z) ~ Zvj(t,;v). (1)
j=1

Each v; should consist of a single wave front — narrow yet bandlimited in ¢, but coherent
across different & — corresponding to an event of direct arrival, reflection, refraction, or
corner diffraction.

In the simplest convolutional model, we would write v;(t,z) = a;j(z)w(t — 7j(x)) for
some wavelet w, amplitude a;(x), and time shift 7;(x). In the Fourier domain, this model
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would read ‘
j(w, ) = W(w)aj(z)e @), (2)

This model fails to capture frequency-dependent dispersion and attenuation effects, phase
rotations, inaccurate knowledge of w, and other distortion effects resulting from near-
resonances. To restore the flexibility to encode such effects without explicitly modeling
them, we consider instead throughout this paper the expression

Uj(w, 7) = D(w)aj(w, z)e™ ), (3)

where the amplitudes a; and the phases b; are smooth in z and w, and b; deviates little
from an affine (linear + constant) function of w. If the guess w(w) for the wavelet is not
entirely inaccurate, the amplitude a;(w, ) is meant to compensate for it.

Finding physically meaningful, smooth functions a; and b; to fit a model such as Equa-
tion 1 and 3 is a hard optimization problem. Its nonconvexity is severe: it can be seen as a
remnant, or cartoon, of the difficulty of full waveform inversion from high-frequency data.
We are unaware that an authoritative solution to either problem has been proposed in the
geophysical imaging community.

Many methods have been proposed to pick individual seismic events, such as AR fil-
ters (Leonard and Kennett, 1999) (close in spirit to the matrix pencil method (Hua and
Sarkar, 1990)), cross-correlations (Cansi, 1995), wavelets (Zhang et al., 2003), neural net-
works (Gentili and Michelini, 2006), etc. These papers mostly address the problem of
picking isolated arrivals time, not parametrizing interfering events across traces. Some data
processing methods operate by finding local slope events, such as plane-wave annihilation
(Fomel, 2002). This idea have been used to construct prediction filters for localized wavelet-
like expansion methods (Fomel and Liu, 2010), which in turn allow to solve problems such as
trace interpolation in a convincing manner. It is plausible that concentration or clustering
in an appropriate wavelet-like domain could be the basis for an algorithm of event sepa-
ration. Separation of variables in moveout-corrected coordinates has also been proposed
to identify dipping events, such as in (Raoult, 1983) and (Blias, 2007). Smoothness crite-
ria along reflection events have been proposed for separating them from diffraction events,
such as in Fomel et al. (2007). These traditional methods fail for the event decomposition
problem as previously stated:

e Because of cycle-skipping, gradient descent quickly converges to uninformative local
minima.

e Because datasets don’t often have useful low frequencies, multiscale sweeps cannot be
seeded to guide gradient descent iterations toward the global minimum.

e Because the events are intertwined by possibly destructive interference, simple counter-
examples show that greedy “event removal” methods like matching pursuit cannot be
expected to succeed in general.

e Because wavefront shapes are not known in advance, linear transforms such as the slant
stack (Radon), velocity scan, wavelets/curvelets, or any other kind of nonadaptive
filters, don’t suffice by themselves. The problem is intrinsically nonlinear.
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The contribution of this paper is the observation that tracking in x and w, in the
form of careful growth of a trust region, can satisfactorily mitigate the nonconvexity of
a simple nonlinear least-squares cost function, yielding favorable decomposition results on
some synthetic shot profiles and some field data. We have not been able to deal with the
nonconvexity of this cost function in any other way than by tracking.

Seismic records from field experiments contain many types of events resulting from the
interaction between the source and the complex subsurface. Separating these events has
been a long-standing challenge in seismic data processing. The successful resolution of this
question would have a number of implications:

e It would improve our ability to discriminate events based on the different physical
processes that generated them: P-S wave separation, primary-multiple separation,
reflection-diffraction separation, simultaneous recording separation, etc.

e It automates the “traveltime picking” operation, hence may help prepare a dataset
for traveltime tomography.

e A description of the dataset in terms of phases and amplitudes is adequate for inter-
polation of missing samples. It is also the proper domain in which model reduction
should be performed in the high-frequency regime.

e Perhaps most importantly, it enables a not-entirely-inaccurate extrapolation to high
and low frequencies not present in the dataset, with a possible application to seeding
frequency sweeps in full waveform inversion.

This paper is organized as follows. We first define the objective function and derive its
gradient. We point out that the objective function is severely nonconvex and explain an
explicit initialization scheme with Multiple Signal Classification (MUSIC) and the expansion
and refinement scheme for phase and amplitude tracking. Finally, we demonstrate our
separation algorithm on two synthetic records and a field record. We illustrate the potential
of event separation for extrapolation to unobserved frequencies in the last two examples.

METHOD

Cost function and its gradient

We consider the nonlinear least-squares optimization formulation with a Tykhonov-like cost
function

Tagb) = 5 lltw,o) - dw,2)lB

+ A IVEbw, )|+ p Y [[Vabi(w,2)]13
i i

+ 1Y IVewaj(w,2)]3, (4)
J

where d is the measured data in the frequency domain, Vi and V%, with k£ = w,z, re-
spectively denote first-order and second-order partial derivatives, and V,, ; denotes the full
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gradient. The prediction w is

,
U(w,x) = g w)aj(w, ) ij(“”x),
Jj=1

with the wavelet w(w) assumed known to a certain level of accuracy. (Mild phase and
amplitude inaccuracies in w(w) are respectively compensated by b;(w,z) and a;(w,x).)
The constants A, u, and v are chosen empirically.

It is important to regularize with V2b;(w, z) rather than V,b;j(w,z), so as to penalize
departure from dispersion-free linear phases rather than penalize large traveltimes.

The cost function is minimized using a gradient descent within a growing trust region.
The gradients of (4) with respect to a; and b; are computed as follows:

oJ 1,0u ou*
— = —(=—dfu"+ou—)+2 V ; 5
55, = 205, *0igg) 2 ©)
oJ 1,0u ou*
= = a 2AV2 - V2b; + 2uV2b;
ob, = gy, 00 0Ty ) AV Vb, + 2V,
where
ou ou* b,
R — 7 D * 1 6
9a, we "7, Ja; =w'e (6)
i _ —iaje i ou _ iw*a;e’
ob; - J " b, N J
du=u—d

The notation VEJ’I refers to the Laplacian in (w,z) and * denotes complex conjugation.
All the derivatives in the regularization terms are discretized by centered second-order
accurate finite differences.

The inverse problem defined by the objective function in equation (4) is clearly non-
convex, in large part due to the oscillatory nature of seismic data. Matching oscillations
pointwise generically runs into the cycle skipping problem. Lack of convexity is also found
in phase retrieval problems (Demanet and Hand, 2014; Gholami, 2014), though in a less
severe form.

Initialization

We initialize the iterations by making use of an explicit solution of the minimization problem
in a very confined setting where

e we pick a single seed trace x where the events of interests are well separated,

e we pick a subset of seed frequencies w around the dominant frequency of the source
wavelet, and
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e after deconvolving the source wavelet, we assume a simplified model where the am-
plitudes are constant, and the phases are linear in w. As a result, we momentarily
return to the convolutional model

Aw) ~ Z ;e (7)
j=1

of equation (2) in order to locally approximate equation (3).

In this situation, the problem reduces to a classical signal processing question of identifica-
tion of sinusoids, i.e., identification of the traveltimes 7; and amplitudes a;. There exist at
least two high-quality methods for this task: the matrix pencil method of Hua and Sarkar
(1990), and the Multiple Signal Classification (MUSIC) algorithm (Schmidt, 1986; Biondi
and Kostov, 1989; Kirlin and Done, 1999). We choose the latter for its simplicity and
robustness®.

Assume for the moment that the number 7 of events is known, though we address its
determination in the sequel. The MUSIC algorithm only needs data {d(w;)} at m = 2r +1
frequencies in order to determine the arrival times and amplitudes for r different events. In
practice, the number m of frequencies may be taken to be larger than 2r 4 1 if robustness
to noise is a more important concern than the lack of linearity of the phase in w. In either
case, we sample the data d(w;) on a grid of spacing Aw around the dominant frequency wy
of the source wavelet, where the signal-to-noise ratio is relatively high.

The variant of the MUSIC algorithm that we use in this paper requires building a
Toeplitz matrix, whose columns are constructed by translates of the data samples as

Aj(wf) A(Awffl) CZ(Wf k+1)
T d(w{”-&-l) d(";’f) d(wf.k+2) | ()
dWpip-1) - d(wpr1)  d(wy)

where k = (m — 1)/2. After a singular value decomposition(SVD) of T, we separate the
components relative to the r largest singular values, from the others, to get

T=Ux,Vl +U,2, VL

We interpret the range space of Uy as the signal space, and the range space of U, as the
noise space, hence the choice of indices. The orthogonal projector onto the noise subspace
can be constructed from U,, as

P, =U,U’. 9)
We then consider a quantitative measure of the importance of any given arrival time ¢ €

[0, 32X ], via the estimator function

1

o(t) = 15 (10)

In the exponent, & is a vector with k consecutive frequencies on a grid of spacing Aw.

*It would be a mistake to use either ¢; minimization, or iterative removal pursuit algorithms, for this
sinusoid identification sub-problem.
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In practice, the number of individual events is a priori unknown. The determination of
this number is typically linked to the extraneous knowledge of the noise level, by putting to
zero the eigenvalues of T' below some threshold ¢, chosen so that the resulting error vector
has a magnitude that matches the pre-determined level.

In the noiseless case, the estimator function in Equation 10 has r sharp peaks that
indicate the r arrival times 7; for the r events. In the noisy case, or in the case when the
phases b; are nonlinear in w, the number of identifiable peaks is a reasonable estimator
for r, and the locations of those peaks are reasonable estimators of 7, such that the signal
contains r phases locally of the form w;+ const. In field applications, this procedure should
be applied in a trust region 2 which contains a handful of nearby traces. The consistent
arrival times 7;(z) across traces provide a more robust estimation for the coherent events.
Once the traveltimes 7; are found, the amplitudes a; follow from solving the small, over-
determined system in equation (7). Each complex amplitude is further factored into a
positive amplitude and a phase rotation factor, and the latter is absorbed into the phase.
We summarize the initialization procedure in Algorithm 1.

Algorithm 1 Initialization with MUSIC

Select a trust region 2 and a threshold level e
for x € 2 do
Build the Toeplitz matrix T and SVD
Build the projection matrix P,, with threshold e
Compute the estimator a(t)
Pick the peaks of a(t) to determine r(x) arrival times 7;(x)
Solve for the amplitude a;(x)
end for
Find the consistent 7;(x), a;j(x) and determine r

Tracking by expansion and refinement

The phases and amplitudes generated by the initialization give local seeds that need to be
refined and expanded to the whole record:

e The refinement step is the minimization of (4) with the data misfit restricted to the
current trust region 2. In other words, we use the result of initialization in the form
of Equation (2) as an initial guess, and upgrade it to take the more accurate form (3).

e The expansion step consists in growing the region €2 to include the neighboring fre-
quency samples, and extending the solution smoothly to the neighboring traces.

These steps are nested rather than alternated: the inner refinement loop is run until the
value of J levels off, before the algorithm returns to the outer expansion loop. The expansion
loop is itself split into an outer loop for (slow) expansion in z, and an inner loop for (rapid)
expansion in w. The nested ordering of these steps is crucial for convergence to a meaningful
minimizer.
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A simple trick is used to speed up the minimization of J in the complement of €2, where
only the regularization terms are active: a;(w,z) is extended constantly in x and w, while
bj(w,x) is extended constantly in x, and linearly in w. These choices correspond to the
exact minimizers of the Euclidean norms of the first and second derivatives of a; and b;
respectively, with zero boundary conditions on the relevant derivatives at the endpoints.
This trick may be called “preconditioning” the regularization terms.

At the conclusion of this main algorithm, the method returns r phases bj(w, x) that are
approximately linear in w and approximately constant in x; and r amplitudes a;(w, x) that
are approximately constant in both x and w; such that

c/l\(w, x) o~ Z w(w)aj(w, )l (@) (11)

Jj=1

We summarize the procedure of the refinement and expansion in Algorithm 2.

Algorithm 2 Phase and amplitude tracking algorithm

Input: observed data d(w,z), estimated wavelet w(w), trust region Q = [Tpey Tendl
MUSIC: run Algorithm 1 to obtain 7, a;j(x), and 7j(x)
initialize a?(w,x) — R(a;(x)), and b?(w,:v) —
fori=0,1,---N —1do
Forward modeling: obtain 4(w, z)
Objective function evaluation: compute J within the range of Q
if J < e then
if Q covers the whole record then
Converge: Output a;j(w,z) and b;(w, z)
else
Expand: Q « [Tpeg — Az Tepg + A
aj(w, Tpeg — Ax) < aj(W, Tpeg),  bj(W, Toeg — AT) <= bj(w, Tpeg)
a4j(w, Teng + AT) <= aj(w, Tend), (W, Tenag + Az) = bj(w, Tend)

wrj(2) + S(a())

end if
else
Compute gradient: 5%_ and gT“j
31?;1 ate model: a;™ «aj — 7,5, b < b — O,
end i
end for

In the sequel, we refer to the respective plots of b; and a; as functions of w and z as a
“phase spectra” and “amplitude spectra”.

Application: frequency extrapolation

Frequency extrapolation, a.k.a. bandwidth extension, is a tantalizing test of the quality
of a representation such as (11). A least-squares fit is first performed to find the best
constant approximations a;(w,z) ~ «;(x), and the best affine approximations b;(w, z) ~
wpj(x)+¢;(x), from values of w within a useful frequency band. These phase and amplitude
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approximations can be evaluated at values of w outside this band, to yield synthetic flat-
spectrum atomic events of the form

a;j(z) el (whBi(2)+¢;(x))

These synthetic events can be further multiplied by a high-pass or low-pass wavelet, and
summed up, to create a synthetic dataset. This operation is the seismic equivalent of
changing the pitch of a speech signal without speeding it up or slowing it down.

Extrapolation to high frequencies should benefit high resolution imaging, whereas ex-
trapolation to low frequencies should help avoid the cycle-skipping problem that full wave-
form inversion encounters when the low frequencies are missing from the data.

Notice that extrapolation to zero frequency is almost never accurate using such a simple
procedure: more physical information is required to accurately predict zero-frequency wave
propagationT .

NUMERICAL EXAMPLES

In this section, we demonstrate the tracking method on two synthetic data records and one
field data record. The first synthetic example illustrates the workflow behind the iterations.
In the second synthetic example, we test our algorithm on a noisy seismic record obtained
by finite difference modeling, with application to frequency extrapolation.

Synthetic example: 3-event separation

In this example, we create an artificial 3-event seismic record by convolving a Ricker wavelet
along the travel time curves of one direct arrival event, one water bottom reflection event,
and one reflection event from a deeper layer. The dominant frequency of the Ricker wavelet
is 20 Hz. The amplitude of the Ricker wavelet decreases with increasing offset. After
generating the data in the time domain, we bring the data to the frequency domain and
use the band between 5 Hz and 35 Hz for inversion.

The reference seismic profile is shown in Figure 1(a). The events are well separated
when the offset is small. As the offset grows, the three events cross each other. Moreover,
the water bottom reflection event approaches the water column direct arrival as its asymp-
tote. Therefore, both events becomes almost perfectly aligned at large offsets over 2.5 km.
Separating these crossing and overlapping events is a somewhat challenging task to any
automatic event tracker.

To initialize the method, we choose three seed traces where the events are well separated.
We train the MUSIC algorithm with only 7 frequencies around the dominant frequency of
the Ricker wavelet for each trace. Figure 2(a) shows one seismic trace at = 200 m. The
MUSIC estimator with many trial arrival times is shown in Figure 2(b). The peaks of the
MUSIC estimator accurately pinpoint the reference arrival times of the events.

TThe exception is free-space wave propagation in 3D, where the Green’s function has a linear phase and
constant amplitude in w, hence completely predictable from two samples in w.
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With these three seed traces, we run the expansion-refinement tracking algorithm ex-
plained earlier. The inverted seismic profile is shown in Figure 1(b). The kinematics
(phases) and the amplitudes are almost perfectly resolved.

Figure 3 shows the comparison between the inverted atomic events on the top row with
the reference atomic events on the bottom row. The different events were separated with
high accuracy. Figure 4 shows the phase spectra (top row) and the amplitude spectra
(bottom row) for the reference atomic events. In comparison, we show the phase spectra
(top row) and the amplitude spectra (bottom row) for the inverted atomic events in Figure
5. The phase spectra for all the events are accurately recovered. However, the amplitude
spectra for the first two events are not perfectly recovered due to the ambiguities at large
offsets.

(a) (b)
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Figure 1: Comparison of the reference seismic profile in (a) and the inverted seismic profile
in (b). Figures are clipped to the same value. The inversion perfectly reconstructs the
seismic data.
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Figure 2: Comparison of the seismic trace at x = 200 m in (a) and its MUSIC estimator (blue
curve) and the picked travel time (red diamond) in (b). The MUSIC estimator accurately

identifies the arrival times of each event.
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Figure 3: Comparison of the inverted atomic events (top row) with the true atomic events
(bottom row). Figures are clipped to the same value. The inversion accurately reconstructs
the atomic events.
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Figure 4: Phase spectrum (top row) and amplitude spectrum (bottom row) of the true
atomic events.
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Figure 5: Phase spectrum (top row) and amplitude spectrum (bottom row) of the inverted
atomic events. Plots in this figure are clipped at the same value as the plots in Figure
4, respectively. Notice the amplitudes are well reconstructed before the three events cross
(offset less than 2 km). After the crossing point, the direct arrival and the water bottom
reflection are perfectly overlapped, causing the amplitude spectra (panel (d) and (e)) are
not perfectly resolved due to the ambiguity. Nonetheless, the corresponding phase spectra
(panel (a) and (b)) are well reconstructed.
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Synthetic example: shallow Marmousi model

In this example, we test our method on a more realistic shot gather. The shot gather is
generated from a shallow part of the Marmousi model using finite difference modeling. The
finite difference scheme is second-order accurate in time and forth-order accurate in space.
We use a 20 Hz ricker wavelet as the source wavelet. Receiver spacing is 40 m.

As preprocessing, we remove the direct arrival from the shot record, because it has the
strongest amplitude that would overwhelm the record. We apply an automatic gain control
(AGC) to the remaining events so that the amplitudes on the record is more balanced. We
mute the later arrivals in the data so that we resolve a limited number of events at a time.
Finally, we add 30% i.i.d. Gaussian noise to the data within the bandwidth between 7 and
40 Hz.

Figure 6(a) shows the shot record with 6 clear events after preprocessing. For inversion
of the atomic events, we consider the data only between 7 and 40 Hz. We choose three
seed traces around x = 1.5 km where the events are well separated. We apply the MUSIC
algorithm using 13 frequencies around the dominant frequency. Figure 7(a) shows one
example of the seed trace at x = 1.5 km. The MUSIC estimator accurately determines the
arrival times of the six different events, as shown in Figure 7(b).

Figure 6(b) shows the inverted shot profile using the proposed tracking algorithm. The
inversion has clearly separated the six strong reflection events from the record, removed the
severe random noise, and improved the coherence of the amplitude along the events. This
demonstrate the robustness of the method. Figure 8 shows the corresponding well-separated
atomic reflection events.

Figure 9 and Figure 10 show the phase and amplitude spectra for each atomic events.
As expected, the phase and amplitude spectra are smooth in both w and x. We allow the
amplitudes of an event to drop to zero when the average estimated energy of this event
at that trace is less than 1% of that at the seed traces. Hence, we allow the events to
be terminated in the middle of the section. At each trace z, we estimate the parameters
aj(z), B;(x), and ¢j(x) and determine the approximated phase spectrum for each event.
With this parametrization, we now extrapolate the data to frequencies within [1,90] Hz.

The atomic events after frequency extrapolation are shown in Figure 11. Compared with
the atomic events in Figure 8, the waveform is much more compact thanks to the increased
bandwidth, whereas the travel time information is kept intact. Figure 7 compares the seed
trace after frequency extrapolation (panel c¢) with the original seed trace (panel (a)). The
waveforms are more compact. The high resolution data could be used for broad-band high
resolution seismic imaging.

In order to evaluate the accuracy of low frequency extrapolation, we model the seismic
record using a broad-band source wavelet, whose amplitude spectrum is mostly flat between
1 and 7 Hz. We then compare the modeled data with the data obtained by frequency
extrapolation within the same bandwidth in Figure 12. Although the amplitudes differ
between the two records, the phase function from the frequency extrapolation represents a
reasonable estimation of the modeled phase function.

There are a few reasons to explain the mismatch between the extrapolated low-frequency
data and the modeled low-frequency data. First, the unmodeled scattering events contribute
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to the low frequencies and overlap with the low frequency signal from the modeled reflection
events. Second, there are numerical dispersion effects on the modeled low frequency data,
whereas the extrapolated record is constructed using a nondispersive assumption. Finally,
the noise in the original record may introduce extra amplitude and phase perturbations,
which do not appear on the noiseless modeled low-frequency record. All of these effects will
manifest themselves in the field applications.

1.5

Time (s)

1.8 ; — ! - -25 1.8 ! ! ! -2.5
0 1 2 3 0 1 2 3
Location (km) Location (km)

Figure 6: Comparison of the noisy shot record in (a) and the inverted shot record in (b).
The inverted data have clearly reconstructed the strong reflection events and removed the
severe random noise in the data. Both amplitude and phase are more coherent along each
reflection event.

Field data example

In this example, we test our algorithm on a shallow field record acquired onshore in China
(Wang et al., 2013). Figure 13(a) shows early events of the record. Strong receiver statics
can be observed from the shifting phases across nearby traces. Strong amplitude variations
are also observed from this record. Figure 13(b) shows the average power spectrum of the
record. The data has a large signal-to-noise ratio between [16 85] Hz. However, the low
frequency components (below 10 Hz) are completely missing from the data.

For the inversion of event separation, we further applied an inner mute to the data and

Geophysics manuscript



Li and Demanet 16 Phase and amplitude tracking

N A

Amplitude
o

-2

Estimator

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Arrival time (s)

()
T T T T T T
| JL Jk V \
| | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Amplitude
o

Figure 7: Comparison of a narrow-band ( [7 40] Hz) seismic trace at = = 1.5 km in (a); its
MUSIC estimator (blue curve) and the picked travel time (red diamond) in (b); and the

trace after frequency extrapolation to ([1 90] Hz) in (c).
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Figure 8: The six well-separated atomic event. Severe noise has been removed from each
event. Both amplitude and phase are more coherent for each event.
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Figure 9: Phase spectrum of each atomic event is smooth along both frequency and space
axes, as required by the optimization.
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Figure 10: Amplitude spectrum of each atomic event is smooth along both frequency and
space axes, as required by the optimization.
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Figure 11: The same six atomic events as in Figure 8 after frequency extrapolation. The
waveform is much more compact thanks to the increased bandwidth, whereas the travel
time information is kept intact.
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Figure 12: Comparison of the shot record modeled with a low frequency broadband ([1
7] Hz) wavelet in (a) and the shot record after frequency extrapolation to [1 7] Hz in
(b). Although the amplitudes differ between the two records, the phase function from the
frequency extrapolation represents a reasonable estimation of the modeled phase function.
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bandpass the data between [16 70] Hz. Figure 14(a) shows the resulting shot record and
we only use this band-limited record to invert for the atomic events. We choose three seed
traces at x = —10,0,+10 km and identify seven events from the coherent phase picks after
applying MUSIC on each trace. Clearly, the algorithm does not identify all the events in
the record (as pointed out by the arrows in Figure 15(a)). Instead, only the strong coherent
events have been selected.

The phase and amplitude tracking algorithm resolves seven atomic events (Figure 16)
and the reconstructed shot record is shown in Figure 14(b). The inverted record has been
cleaned up significantly with fewer weak events and overlapping events. With the smooth-
ness constraints, amplitude and phase of each event across traces are more coherent.

Figure 17 compares the shot record in its full bandwidth with the inverted shot record
after frequency extrapolation to [0.5 120] Hz. Compared with the field record, the arrival
times of the resolved events are preserved in the extrapolated record. However, the recorded
data appears to contain more events than the extrapolated record. We can explain this
observation from two aspects. First, our algorithm indeed does not model all events in the
recorded data. Moreover, due to the missing low frequencies, each event has side lobes in the
recorded data; whereas in the extrapolated data, each selected event has a more compact
support in time.

Figure 18(a) shows the shot record after a lowpass filter at 16 Hz. To make a fair
comparison, we bandpass the extrapolated shot record (Figure 17(b)) between 10 and 16
Hz and plot the resulting record in Figure 18(b). The field record appears very noisy due to
the low signal-to-noise ratio, the receiver statics and the strong amplitude variations across
traces. In contrast, the inverted record after extrapolation reserves the phase information
with improved amplitude coherence across traces. Figure 15(b) compare one extrapolated
trace with the corresponding recorded trace within the low-frequency bandwidth. After
amplitude normalizations, both the amplitude and phase are matched quite well when most
events are successfully identified in the later arrival time. However, the box highlighted
the discrepancy between the extrapolated and the recorded trace in earlier time due to
the unmodeled events. The extrapolate data can be further improved with a second pass
of phase-and-amplitude tracking on the data residual to pick up the remaining coherent
events. Figure 18(c) shows the inverted shot record after extrapolation to [0.5 10] Hz. The
recorded data within this bandwidth has little meaningful signal; whereas the extrapolated
record may provide reliable phase information at these low frequencies.

ASSUMPTIONS AND LIMITATIONS

The fundamental assumption for our tracking algorithm to define seismic events is that
the acoustic or elastic wave equations are mostly dispersion-free, i.e., that they give rise
to solutions with mostly linear phases in the frequency domain. Therefore, in the cases
of surfaces waves and body waves in severely dispersive medium, our algorithm will have
difficulty identifying and tracking the events.

Obviously, frequency extrapolation to the unobserved bandwidth is purely based on the
dispersion-free assumption. We have observed phase errors at the extrapolated frequencies
due to numerical dispersion in the synthetic test, which naturally indicates potential phase
errors due to real dispersion effects in the Earth. However, as long as the dispersion is
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Figure 13: A field data record is shown in (a) and its average power spectrum in (b). The
data shows strong receiver statics (shifty phases across traces) and amplitude variations.
Data has a large signal-to-noise between [16 85] Hz. The low frequency components (below
10 Hz) are missing from the data.
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Figure 14: Comparison of the band limited ([16 70] Hz) shot record in (a) and the inverted
shot record in (b). The inverted data have clearly reconstructed the strong reflection events.
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Figure 15: High frequency ([16 70] Hz) band-limited seismic trace in (a); Low frequency
( [10 16] Hz) band-limited seismic trace in (b). In the top plot, the inverted trace (red)
matches the recorded trace (blue) quite well for the selected events. The arrows point
out two events that has not been selected by the inversion at the early arrival times. In
the bottom plot, we compare the extrapolated trace (red) with the recorded trace (red).
Both the (normalized) amplitude and phase are matched quite well when most events are
successfully identified in the later arrival time. However, the box highlighted the discrepancy
between the extrapolated and the recorded trace in earlier time due to the unmodeled events.
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Figure 16: Seven well-separated atomic event.
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Figure 17: Comparison of the full bandwidth shot record in (a) and the inverted shot
record after frequency extrapolation to [0.5 120] Hz in (b). Kinematic information of the
selected events is well preserved by extrapolation. The recorded data appears to contain
more events than the extrapolated data. The reason can be two fold. First, our tracking
algorithm indeed does not model all the events in the recorded data. Moreover, due to
the missing low frequencies, each event has side lobes in the recorded data; whereas in the
extrapolated data, each selected event has a more compact support.
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Figure 18: Comparison of the shot record after a low pass filter at 16 Hz in (a), the inverted
record after frequency extrapolation to [10 16] Hz in (b), and the inverted record after
frequency extrapolation to [0.5 10] Hz in (c¢). The field record appears to be very noisy due
to low signal-to-noise ratio, the receiver statics and the strong amplitude variations across
traces. In contrast, the extrapolated record within the same bandwidth reserves the phase
information with improved amplitude coherence across traces. The recorded data below 10
Hz has little meaningful signal; whereas the extrapolated record may provide reliable phase
information at these low frequencies.
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mild, the extrapolated low frequency data could be a close approximation to the true low
frequency response. Hence, fitting the extrapolated low frequency waveforms could bring
full waveform inversion (FWI) closer to the global minimum.

Extrapolation to low frequencies is also limited by the inability of the phase-amplitude
model to capture the physics of “zero-frequency radiation” due to the generic presence of a
scattering pole in the Green’s function at w = 0.

The success of the proposed iterative method for the nonconvex optimization formulation
hinges on a delicate interplay between refinement of phases and amplitudes within a trust
region, vs. slowly growing this trust region. If the region is grown too fast, the iterations
will converge to an undesirable local minimum.

The refinement and expansion depend nonlinearly on the regularization parameters, the
determination of which is empirical and can be tedious. We replace the slow converging
regularization term A}, V2 b;(w, x)|3 by implicitly solving the regularization problem.
The rest of the regularization terms are solved explicitly. Letting the partial gradient of b,
at the k" iteration be:

1,0u ou*
k __ - A~ ~ 2 .
8 = 2(7abj ou* + 5u—8bj) + 2uV2b;,

we solve the following implicit system to obtain the phase functions for the (k1) iteration:

A
k+1 _ 1k T'x7pk+1 k
byt = b = SVTVb - ot

Hence, the updated phase functions are
A _
P = (1+ EVTV) (bl — BovE).

This trick allows us to use large A values during the inversion. Numerical tests sug-
gest that the inversion results remain stable with respect to the regularization parameters
when/where the signal-to-noise ratio is high. In general noisy cases, the solutions can be
significantly different with different regularization parameters. The values for each param-
eter in different numerical tests are shown in Table 1.

Case A 7 y
3-event separation 1.0 1.0 2e-3
Shallow marmousi 1.0 le+1 2e-3

Field data 1.0 de+2 3e-3

Table 1: Regularization parameters used in each test.

The most important limitation of the tracking method is the deterioration of the ac-
curacy in phase (hence traveltime) estimation in the presence of unmodeled or splitting
events. Our solution for the determination of the number of events further depends on the
availability of a few seed traces where the MUSIC estimator correctly categorizes them. We
could potentially analyze the variability of the solutions with different regularization pa-
rameters to determine the presence of unmodeled or splitting events, which requires further
investigation.
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CONCLUSIONS

We propose a data-driven method for decomposing seismic records into individual, atomic
events that correspond to isolated arrivals. The only piece of physical information needed
to define these events is the fact that the acoustic or elastic wave equations are mostly
dispersion-free. The explicit handle on each atomic events enables us to approximate the
high and low frequency seismic response beyond the observed frequency bandwidth. The
numerical examples demonstrate the robustness of the method and the potential of using
the extrapolated low frequency data for the initialization of FWI.
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