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Abstract. We make a detailed numerical study of the spectrum of two Schrödinger

operators L± arising in the linearization of the supercritical nonlinear Schrödinger

equation (NLS) about the standing wave, in three dimensions. This study was

motivated by a recent result of the second author on conditional asymptotic stability of

solitary waves in the case of a cubic nonlinearity. Underlying the validity of this result

is a spectral condition on the operators L±, namely that they have no eigenvalues nor

resonances in the gap (a region of the positive real axis between zero and the continuous

spectrum,) which we call the gap property. The present numerical study verifies this

spectral condition, and further shows that the gap property holds for NLS exponents

of the form 2β + 1, as long as β∗ < β ≤ 1, where

β∗ = 0.913958905 ± 1e − 8.

Our strategy consists of rewriting the original eigenvalue problem via the Birman-

Schwinger method. From a numerical analysis viewpoint, our main contribution is an

efficient quadrature rule for the kernel 1/|x−y| in R3, i.e., provably spectrally accurate.

As a result, we are able to give similar accuracy estimates for all our eigenvalue

computations. We also propose an improvement of the Petviashvili’s iteration for the

computation of standing wave profiles which automatically chooses the radial solution.

All our numerical experiments are reproducible. The Matlab code can be

downloaded from

http://www.acm.caltech.edu/~demanet/NLS/
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1. Introduction

Suppose that ψ(t, x) = eitα2

φ(x) with α 6= 0 and x ∈ Rd is a standing wave solution of

the NLS

i∂tψ + ∆ψ + |ψ|2βψ = 0, (1)

where 0 < β < 2
d−2

if d ≥ 3 and 0 < β <∞ if d = 1, 2. Here we assume that φ = φ(·, α)

is a ground state, i.e.,

α2φ− ∆φ = φ2β+1, φ > 0.

It is known that such φ exist and that they are radial, smooth, and exponentially

decaying, see Strauss [Str1], Berestycki, Lions [BerLio], and for uniqueness,

Coffman [Cof], McLeod, Serrin [McS], and Kwong [Kwo]. In one dimension d = 1,

these ground states are explicitly given as

φ(x) =
(β + 1)

1

2β

cosh
1

β (βx)
(2)

when α = 1 (for other values of α 6= 0 rescale), but in higher dimensions no explicit

expression is known. From now on, we shall assume that d = 3.

A much studied question is the stability of these standing waves, both in

the orbital (or Lyapunov) sense and the asymptotic sense. For the former,

see for example Shatah [Sha], Shatah, Strauss [ShaStr], Grillakis, Shatah,

Strauss [GriShaStr1], [GriShaStr2], Weinstein [Wei1], [Wei2], Grillakis [Gri], and

for the latter, Soffer, Weinstein [SofWei1], [SofWei2], Buslaev, Perelman [BusPer1],

[BusPer2], Cuccagna [Cuc]. Reviews are in Strauss [Str2] and Sulem, Sulem [SulSul].

See also Fröhlich, Tsai, Yau [FroTsaYau], and Fröhlich, Gustafson, Jonsson,

Sigal [FroGusJonSig].

In order to study stability, one generally linearizes around the standing wave. This

process leads to matrix Schrödinger operators of the form

H = H0 + V =

[
−∆ + α2 0

0 ∆ − α2

]
+

[
−V1 −V2

V2 V1

]

on L2(Rd) × L2(Rd). Here, V1 = (β + 1)φ2β and V2 = βφ2β.

Conjugating H by the matrix

[
1 i

1 −i

]
leads to the matrix operator

[
0 iL−

−iL+ 0

]

with

L− = −4 + α2 − φ2β

L+ = −4 + α2 − (2β + 1)φ2β
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The continuous spectrum of both L− and L+ equals [α2,∞). Since L−φ = 0 and

φ > 0, it follows that zero is a simple eigenvalue and the bottom of the spectrum of L−.

Moreover, L+∂jφ = 0 for 1 ≤ j ≤ 3 so that ker(L+) ⊂ {∂jφ : 1 ≤ j ≤ 3}. In fact, for

monomial nonlinearities it is known that there is equality here, see Weinstein [Wei2]‡,
and that there is a unique negative bound state of L+.

It is known that L− ≥ 0 implies that the spectrum spec(H) satisfies spec(H) ⊂
R∪iR and that all points of the discrete spectrum other than zero are eigenvalues whose

geometric and algebraic multiplicities coincide. On the other hand, the zero eigenvalue

of H has geometric multiplicity four and algebraic multiplicity eight provided β 6= 2
3
,

whereas for the L2-critical case β = 2
3

the algebraic multiplicity increases to ten. For

this see [Wei1], [BusPer1] or [RodSchSof1], [CucPelVou], [CucPel], [ErdSch].

In order to carry out a meaningful asymptotic stability analysis it is essential to

understand the discrete spectrum of H. The root space at zero was completely described

by Weinstein [Wei2]. Moreover, it is also well-known that

spec(H) ⊂ R iff β ≤ 2

3

whereas in the range 2
3
< β < 2 there is a unique pair of simple complex-conjugate

eigenvalues ±iγ. This latter property reflects itself in the nonlinear theory in the

following way: Orbital stability holds iff β < 2
3
, see Berestycki, Cazenave [BerCaz],

Weinstein [Wei2], Cazenave, Lions [CazLio], and [GriShaStr1], [GriShaStr2].

In [Sch] the second author investigated conditional asymptotic stability for the

unstable case β = 1 (for related work on stable manifolds for PDE see Pillet,

Wayne [PilWay], Gesztesy, Jones, Latushkin, Stanislavova [GesJonLatSta], and Tsai,

Yau [TsaYau]). This analysis depended on the fact that zero is the only eigenvalue of

H in the interval [−α2, α2] and that the edges ±α2 are not resonances. The fact that

±α2 are neither eigenvalues nor resonances is the same as requiring that the resolvent

(H− z)−1 remains bounded on suitable weighted L2(R3) spaces for z close to ±α2.

Using ideas of Perelman [Per2], it is shown in [Sch] that these properties can be

deduced from the following properties of L+, L−: Neither L+ nor L− have any

eigenvalues in the gap (0, α2] and L− has no resonance at α2.

In one dimension d = 1, the spectral properties of L− and L+ can be determined

completely since the generalized eigenfunctions of these operators (more precisely, the

Jost solutions) can be given explicitly in terms of certain hypergeometric functions, see

Flügge [Flu], Problem 39 on page 94. This is due to the special form of the ground

state (2).

Unfortunately, it seems impossible to determine similar properties for the case

of three dimensions by means of purely analytical methods. We therefore verify this

gap property of L± numerically via the Birman-Schwinger method, see Reed and

Simon [ReeSim4]. We will refer to the gap property as the fact that L± have no

eigenvalues in (0, α2] and no resonance at α2. Our main result is as follows.

‡ In this paper a restriction β ≤ 1 is imposed in d = 3, but using Kwong’s results [Kwo] allows one to

obtain the full range β < 2 by means of Weinstein’s arguments
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Claim 1. There exists a number β∗ = .913958905 ± 1e − 8 so that for all β∗ < β ≤ 1

the gap property holds.

This statement can also be continued beyond β = 1. We only went up to 1 since

β = 1 alone is needed in [Sch]. In the range β < β∗, our numerical analysis shows that

the operator L+ has eigenvalues in the gap (0, 1]. This is perhaps surprising, since it

shows that the gap property does not hold for the entire L2(R3) super-critical range
2
3
< β < 2. However, it does hold at β = 1. In particular, the method of proof

from [Sch] does not apply to all β > 2
3

since it relies on the gap property. In contrast, in

one dimension d = 1, Krieger and the second author [KriSch], showed that this method

does apply to the entire super-critical range β > 2. In fact, there the gap property does

hold for all β > 1, see [Flu].

In the remainder of this paper, we will be concerned with the description of the

numerical method, and will study its convergence properties. Our approach naturally

splits into two halves. The first half addresses accurate computation of the soliton.

As the latter is the ground state solution of a nonlinear elliptic equation this is a

nontrivial issue. For this purpose we rely on the iteration method of Petviashvili, see the

recent work of Pelinovsky and Stepanyants [PelSte]. We modify the approach of these

authors somewhat by introducing a corrective term which automatically re-centers the

approximate soliton at each step of the iteration. In this way we arrive at a positive

solution which is radial and satisfies the defining semi-linear elliptic PDE to very good

precision. Theorem 2 is the main statement concerning convergence of the Petviashvili

iteration.

The second half of this paper deals with the numerical implementation of the

Birman-Schwinger method. This requires a suitable discretization of the corresponding

Birman-Schwinger operator. As we will see, this problem can be reduced to the accurate

computation of ∆−1, the inverse Laplacian on R3. We introduce new quadrature weights

for the free-space Green’s function 1
4π|x−y|

, which makes the computation of the integral

exact on bandlimited functions. The formula is based on the sine-integral special

function and should be of indepedent interest to numerical analysts. Theorem 3 is

our main result concerning the super-algebraic (near-exponential) convergence of the

proposed discretization of the Birman-Schwinger operator. Corollary 10 translates this

convergence result into accuracy bounds for the eigenvalues.

All our results assume exact arithmetic. It is natural to ask whether rigorous

bounds can be obtained in the presence of round-off errors. Results of this nature

could be obtained in the context of interval arithmetic but would go beyond the scope

and ambition of this paper. In all our experiments truncation errors always appear to

dominate round-off errors.

Finally, we would like to mention that our code appears to be very robust and

therefore should also apply to many other problems of a related nature. The Matlab

source can be downloaded from the web-site of the first author.
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2. Description of the numerical method

2.1. The Birman-Schwinger method

A direct numerical computation of the eigenvalues of L± would be problematic near α2,

the edge of the continuous spectrum. For example, it is unclear if a perceived numerical

eigenvalue at 0.99α2 belongs to the gap or if it has escaped from the continuous spectrum

due to numerical approximation. Decay of the corresponding eigenfunction might help

in making a decision, but this criterion is unacceptable over a truncated computational

domain. Instead, we will reformulate the problem by the Birman-Schwinger method,

which we now recall.

Let H = −4 − V , where V > 0 is a bounded potential that decays at infinity.

In our case, this is H = L± − α2I. We would like to filter out positive eigenvalues, so

assume Hf = −λ2f where λ > 0 and f ∈ L2. Then g = Uf , where U =
√
V satisfies

g = U(−4 + λ2)−1Ug.

In other words, g ∈ L2 is an eigenfunction of

K(λ) = U(−4 + λ2)−1U

with eigenvalue one. Note that K(λ) is a compact, positive operator. Conversely, if

g ∈ L2 satisfies K(λ)g = g, then

f := U−1g = (−4 + λ2)−1Ug ∈ L2

and Hf = −λ2f . Moreover, the eigenvalues of K(λ) are strictly increasing as λ → 0.

Hence, we conclude that

#
{
λ : ker(H + λ2) 6= {0}

}
= #

{
E > 1 : ker(K(0) − E) 6= {0}

}
,

counted with multiplicity.

Finally, in view of the symmetric resolvent identity, viz.,

(H − z)−1 = (−4− z)−1 + (−4− z)−1U
[
I − U(−4− z)−1U

]−1

U(−4− z)−1.

This shows that the Laurent expansion of (H − z)−1 around z = 0 does not involve

negative powers of z iff I + U(−4− z)−1U is invertible at z = 0 which is the same as

requiring that

ker{I − U(−4)−1U} = {0}
because of the Fredholm alternative (assuming that V decays sufficiently fast at infinity

to insure compactness). In other words, if H has no resonance or eigenvalue at the

origin, then K(0) will not show an eigenvalue E = 1, and conversely.

Let us count the eigenvalues {λj}∞j=1 of K(0) = U(−4)−1U (which are all non-

negative) in decreasing order. Then we arrive at the following conclusion: Let N be

a positive integer. Then the operator H has exactly N negative eigenvalues

and neither an eigenvalue nor a resonance at zero iff λ1 ≥ . . . ≥ λN > 1 and

λN+1 < 1.
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Note that spectrum of the self-adjoint, compact Birman-Schwinger operator K(0)

is discrete and robust to numerical perturbations near E = 1, which is the desired

numerical effect. Since K(0) is compact, eigenvalues cannot accumulate at E = 1 from

below. This is in contrast to any naive discretization attempt of the original spectral

problem, which would lead to such an accumulation by way of the continuous spectrum

of H. This is the reason why only the Birman-Schwinger method is successful here.

In view of the preceding, we therefore need to show the following to justify [Sch]:

For β = 1, the second largest eigenvalue of§

K−(x, y) =
φβ(x)φβ(y)

4π|x− y|
is below one, and the fifth largest eigenvalue of

K+(x, y) = (2β + 1)
φβ(x)φβ(y)

4π|x− y|
is below one. These properties will then imply the gap property, i.e., L± have no

eigenvalues in (0, 1] and no resonance at 1.

2.2. The modified Petviashvili’s iteration

The first step of the numerical method is to find the soliton φ(x), which is the unique

positive, radial, decaying solution of

−∆φ+ φ = |φ|2βφ, (3)

unique up to translation. As mentioned earlier, φ(x) is in fact exponentially decaying.

A naive approach would be to solve a descent equation like

∂u

∂t
= ∆u− u+ |u|2βu,

but, as shown in [BerLioPel], this equation is unstable near the fixed manifold of interest.

Instead, we will solve the modified Petviashvili’s iteration which reads

φn+1 = Mγ
n (I − ∆)−1(|φn|2βφn) + δ

3∑

j=1

Rn,j
∂φn

∂xj

(4)

The initial guess φ0 can for example be taken as a Gaussian. The choice of constants

Mn, Rn,j, γ and δ is crucial for convergence of the iteration, and is given by‖

Mn =

∫
(1 + |ξ|2)(φ̂n)2 dξ
∫
φ̂n

̂(|φn|2βφn) dξ
, (5)

Rn,j =

∫
(1 + |ξ|2)φ̂n ∂̂jφn dξ∫
∂̂jφn [∂j(|φn|2βφn)]∧ dξ

, (6)

§ Note that due to the scaling x 7→ αx and φ(x, α) = α
1

β φ(αx) we may assume that α = 1. From now

on we set φ(x) = φ(x, 1).
‖ The notation [. . .]∧ means the Fourier transform of the quantity in the brackets.
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γ =
2β + 1

2β
, (7)

δ = −1/2, (8)

where ∂j = ∂
∂xj

, and the hat denoting Fourier transformations. It is important that

no complex conjugates be taken in these Fourier integrals. This iteration, without

the second term, was introduced by Petviashvili in 1976, and convergence was proved

recently in [PelSte]. The addition of the second term is a minor increment whose purpose

is to fix a potential source of instability due to numerical discretization and to force the

iteration to choose the radial soliton (centered at the origin). This will be explained

and justified in section 3.

Numerically, (I − ∆)−1 is realized in the Fourier domain, and Fourier

transformations are implemented via the Fast Fourier Transform (FFT). Discretization

issues are addressed in the next section. In practice, the iteration is accelerated via

Aitken’s method applied pointwise, i.e.,

φA
n (x) = φn(x) − (φn+1(x) − φn(x))2

φn+2(x) − 2φn+1(x) + φn(x)
.

The iteration is stopped when the Euler-Lagrange equation (3) is satisfied up to

some very small tolerance in L2. The resulting approximation of the soliton will be

denoted by φ̃.

2.3. Truncation and Discretization

We now take up the task of computing the eigenvalues of the Birman-Schwinger

operators as defined in Section 2.1. The first step is to truncate the three-dimensional

computational domain to a cube of sidelength L centered at the origin and to discretize

functions f(x) by evaluating them on the regular grid

xj = (j1, j2, j3)
L

N
, (9)

with j1, j2, j3 integers obeying −N/2 ≤ jk ≤ N/2−1. Operators are, in turn, discretized

as matrices acting on ‘vectors’ of function samples f(xj). Tools of numerical linear

algebra can then be invoked to compute the eigenvalues of these matrices.

Typical values of L and N for which discretizing K± is expected to be reasonably

accurate are L ' 20 and N ' 100. In this context, several vectors of N 3 ' 106

function samples can comfortably be stored simultaneously in the memory of a 2005-

era computer, but we cannot yet afford to manipulate matrices containing N 6 ' 1012

elements. This rules out the possibility of using popular approaches such as the QR

algorithm, which compute eigenvalues by operating directly on the matrix entries.

Instead, we will resort to a modification of the power method, known as the

implicitly restarted Arnoldi iteration, which is implemented in Matlab’s eigs command

[Eigs]. This method has the advantage of only requiring applications of the operator to

diagonalize, i.e., matrix-vector products. For well-conditioned problems, such as the one
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we are addressing, eigs computes the top eigenvalues of the finite matrix up to machine

precision, i.e., about 15 decimal digits in Matlab.

The only remaining issue is then to find a good discretization K̃± of the Birman-

Schwinger operators K±, and to quantify the accuracy. Multiplication by φ(x) to some

power will be done sample-wise on the grid xj. Inverting minus the Laplacian in a

space of decaying functions over R3, or equivalently convolving with the fundamental

solution G(x) = 1
4π|x|

, is a bit more complicated. Discretizing G(x) by sampling at xj

is quite inaccurate and is problematic if x = 0 belongs to the grid xj. Dividing by |ξ|2
in frequency poses similar difficulties. Instead, for reasons which will be explained in

Section 3, we use the following discretization,

G̃(xj) =

{
1

2π2|xj |

(
L
N

)3
Si(

πN |xj |

L
) if xj 6= 0,

1
2π

(
L
N

)2
if xj = 0.

(10)

where Si(x) =
∫ x

0
sin t

t
dt. The discrete (circular) convolution of G̃(xj) with a vector

f(xj) is computed efficiently as the multiplication ̂̃G(xj) f̂(xj) of their respective FFT,

followed by an inverse FFT.

In this context, applying the full Birman-Schwinger operator, say K−, to a vector

of samples f(xj) consists of the obvious sequence of steps: (1) multiply f(xj) by

Ũ(xj) = φ̃(xj)
β, (2) perform an FFT, (3) multiply the result by ̂̃G(xj), (4) perform

an inverse FFT, and finally (5) multiply the result by Ũ(xj) again.

Since the complexity of a one-dimensional FFT in Matlab is O(N logN) operations

for most values of N (not necessarily a power of two), one application of K̃± will require

O(N 3 logN) operations. This is a substantial improvement over the naive matrix-vector

product which would require O(N 6) operations.

3. Convergence analysis

3.1. The modified Petviashvili’s iteration

In this section we discuss convergence of the iteration (4). The first result in this

direction, in the case δ = 0, can be found in ref. [PelSte]. To make this discussion

self-contained, we recall their argument and apply it to our specific problem.

Theorem 2. (Pelinovsky, Stepanyants.) Let φ(x) be the unique radial solution

of (3) and H1
r (R3) denote the subset of all radial functions in H1(R3). Consider the

iteration (4) with Mn and γ given by equations (5), but δ = 0. Then there exists an

open neighborhood N of φ in H1
r (R3), in which φ is the unique fixed point and (4)

converges to φ. The iteration is strictly stable in the sense that, for all φ0 ∈ N ,

||φn+1 − φ||1 ≤ (1 − C)||φn − φ||1, 0 < C ≤ 1, (11)

where || · ||1 is the norm in the Sobolev space H1(R3).
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Proof. Put p = 2β + 1. Let us first write down the linearized iteration, about the fixed

point φ, for the perturbation wn = φn − φ. It reads¶

ŵn+1 = (1 − p)γanφ̂+ p
φ̂p−1 ∗ ŵn

1 + |ξ|2 , (12)

where ∗ denotes convolution, an comes from the linearization of Mn, and is given by

an =

∫
wnφ

p dx∫
φp+1 dx

.

(Up to higher-order terms, we have the asymptotic relation 1 + (1 − p)an ∼Mn.) This

formula suggests that φ plays a special role for the stability of the linearized iteration.

Indeed, we claim that we can actually expand wn as

wn = anφ+ qn, (13)

where an is exactly as defined above, and qn is a remainder. In order to see this, let us

introduce the operator A = (I − ∆)−1H, where H = I − ∆ − pφp−1. It is easy to check

that is it bounded and self-adjoint with respect to the H1 inner product,

(f, g) ≡ 〈f, (I − ∆)g〉.
The operator A therefore provides a spectral decomposition of L2(R), orthogonal with

respect to the inner product (·, ·). It was noticed in [PelSte], (or by a straightforward

extension of their argument,) that the spectra of A and H obey

dim(neg(A)) = dim(neg(H)) = 1,

null(A) = null(H) = 3.

The first four eigenfunctions of A are precisely φ and ∂iφ, with eigenvalues 1 − p < 0

and 0 respectively. Equation (13) is just the expansion of wn in this orthogonal system.

Since the iterates φn are all radial, the components along ∂iφ are zero. The remainder

qn belongs to the space Yp defined by

Yp = {u ∈ L2(R3) : 〈u, φp〉 = 〈u, ∂iφ
p〉 = 0}.

In the space Yp, the spectrum of A is strictly positive, bounded from below by the fifth

eigenvalue+ λ5 > 0 and from above by

λM = sup
u

(u,Au)

(u, u)
= 1 − p inf

u

〈u, φp−1u〉
(u, u)

= 1.

For the last equality we have used the fact that φ(x) > 0 and φ(x) → 0 as |x| → ∞.

¶ Throughout this paper, we use the following convention for the Fourier transform:

f̂(ξ) =

∫
e−ix·ξf(x) dx, f(x) =

1

(2π)3

∫
eix·ξ f̂(ξ) dξ.

+ It always exists by Lemma 2.5 in [PelSte]
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The recurrence equations for an and qn can be found from equation (12),

an+1 = (p− γ(p− 1))an,

qn+1 = (I − A)qn.

The choice we made for γ ensures that the component along φ is immediately put to

zero (in the linearized iteration.) It is also clear that we have ||qn+1||1 ≤ (1 − λ5)||qn||1
in H1(R3). In the scope of the linearized iteration, equation (11) follows with C = λ5.

Call P the nonlinear operator for the Petviashvili iteration in the case δ = 0, so that

(4) is written as φn+1 = P(φn). We follow [PelSte] and apply the contraction mapping

theorem in a neighborhood of the fixed point φ, within the closed subspace H1
r (R3). We

have already computed the Fréchet derivative of P at φ,

P ′(φ)w = (I − A)PYp
w, (14)

where PYp
is the projection onto Yp, orthogonal in H1. Let 0 < ε < λ5. By continuity

of P ′(u) as a function of u, in the operator H1 norm, we can assert that there exists a

small open neighborhood N of φ in which

||P ′(u)||1→1 < 1 − λ5 + ε.

By a standard application of the contraction mapping theorem (see [HutPym] p.126),

the fixed point is unique in N and we have the estimate

||φn+1 − φ||1 ≤ (1 − λ5 + ε)||φn − φ||1.
This concludes the proof.

Let us now examine how the above argument generalizes to the case δ 6= 0. The

purpose of the second term in equation (4) is precisely to put to zero the components

along the three basis functions ∂iφ, should the initial condition not be radial. This is

also useful in the context of the numerical realization of P , since numerical round-off

errors do not correspond in general to radial perturbations. To be precise, the linearized

iteration (12) becomes

ŵn+1 = (1 − p)γanφ̂+ 2δ
∑

j=1,2,3

bn,j ∂̂jφ+ p
φ̂p−1 ∗ ŵn

1 + |ξ|2 ,

with an as previously and

bn,i =

∫
wn∂iφ

p dx∫
∂iφ∂iφp dx

is the component of wn along ∂iφ, in the natural H1 inner product. Asymptotically,

note that Rn,i ∼ 2bn,i. In order to obtain the above formula for bn,i we have linearized

φn = φ+wn, used the PDE (I −∆)φ = φp and applied Parseval’s theorem. So we have

wn = anφ+
∑

j

bn,j∂jφ+ qn,
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and the recurrence relation for bn,i is

bn+1,i = (1 + 2δ)bn,i.

Choosing δ = −1/2 as advocated previously will put to zero the components along ∂iφ.

The coefficients bn,j are not directly available in practice which is why Rn,i is defined

solely in terms of the current iterate φn. It is easy to check that any radial φn yields

Rn,i = 0, but that a small translation by a vector εv would make Rn,i proportional

to ε. So the constant Rn,j measures departure from radialness, and the purpose of the

correction term is precisely to keep Rn,j close to zero. This property is useful in the

context of the numerical realization of the operator P , since numerical round-off errors

do not correspond in general to radial perturbations. In practice this modification works

very well, see section 4.

As we saw, the analysis of the linearized iteration does not pose any difficulty.

However, we leave the extension of the argument of theorem 2 to the full nonlinear

iteration as an open problem. The difficulty is that the operator P is in general not

defined on H1, because the constants Rn,i involve 3/2 derivatives of φn in L2. A fortiori,

P is not Frechet-differentiable for functions in H1. Note that the contraction argument

needs to be modified, since the soliton φ is not unique in H1(R3) – it is unique up to

a translation. The question of stability of the modified Petviashvili’s iteration in the

non-radial case is possibly related to the problem of proving uniqueness of the radial

soliton, which, in itself, is not trivial.

3.2. Truncation and Discretization

In this section we prove spectral convergence of the proposed discretization of the

Birman-Schwinger operator, which is numerical analysis jargon for almost-exponential,

or super-algebraic convergence with respect to the large discretization parameters L and

N/L. We study the numerical algorithm exactly as implemented in the code, without

any simplification, except for the assumption of exact arithmetic.

Recall that we denote by xj = (j1, j2, j3)
L
N

, j ∈ Z3, the nodes of a cubic grid with

spacing L/N in all three directions, not necessarily bounded in some of the arguments

that follow. Obviously, we take L ≤ N . Unless otherwise specified, we are considering

the operator K−, since K+ = (2β + 1)K−.

We now formulate our main result. Most of the rest of this section is devoted to its

justification. We will use the notation 〈x〉 =
√

1 + |x|2.
Theorem 3. Let K be the Birman-Schwinger operator as above, and K̃ its numerical

realization, extended to functions of continuous x by sampling and interpolation (see

below for details). Let τ > 0 be the decay rate of U(x) = φ(x)β, |U(x)| ≤ C · e−τ |x|.

Assume that Petviashvili’s method gives an accurate approximation φ̃ of the soliton in

the sense that, for some ε > 0, and denoting Ũ = φ̃β,

|U(xj) − Ũ(xj)| ≤ C · min(
ε

〈xj〉
, e−τ |xj |). (15)
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Then we have, for all s > 3/2 and f ∈ Hs(R3), in exact arithmetic,

||(K − K̃)f ||L2 ≤ Cs ·
[
ε+ Le−τL/4 +

(
N

L

)−s
]
· ||f ||Hs , (16)

for some constant Cs > 0 depending on s.

Discretization is error-free in the context of the Shannon sampling theorem. Let us

introduce BN/L(R3), the space of band-limited square-integrable functions,

BN/L(R3) = {u ∈ L2(R3) : û(ξ) = 0, |ξ| > πN/L}.
The hat denotes Fourier transformation. We can then define the sampling operator S,

and interpolation operator T , as

S : BN/L(R3) → `2, f(x) 7→ {f(xj)}.

T : `2 → BN/L(R3), {f(xj)} 7→
∑

j∈Z3

h(x− xj)f(xj).

Here h(x) is the interpolating kernel defined by ĥ(ξ) =
(

L
N

)3
if |ξ| ≤ πN

L
, and zero

otherwise. The content of Shannon’s sampling theory is that S is an isometry from

BN/L(R3) to `2, and T is in that context both the adjoint and a left inverse for S on

its range (hence the interpolation property of h.) Note that the properly normalized `2

norm is

‖{f(xj)}j‖`2 =

√√√√
(
L

N

)3∑

j

|f(xj)|2

With a slight abuse of notations, let us denote by G̃ the operator of discrete

convolution by G̃(xj), with

G̃(xj) =

{
1

2π2|xj |

(
L
N

)3
Si(

πN |xj |

L
) if xj 6= 0,

1
2π

(
L
N

)2
if xj = 0.

(17)

Recall that xj are the points of a Cartesian grid. This particular expression for the

weights G̃(xj) is chosen so that the inversion of the Laplacian is exact on decaying

functions, bandlimited in the space BN/L(R3). By ‘decaying’, we mean a member of

some weighted L2 space. More generally, let us introduce weighted Sobolev spaces as

Hs
m(R3) = {u : 〈x〉mu(x) ∈ Hs(R3)},

and equipped with the norm

||u||s,m = ||〈x〉mu||s.
Of course, L2

m = H0
m.

Lemma 4. We have

(T G̃ Sf)(x) =
1

4π

∫

R3

1

|x− y|f(y) dy,

for all f ∈ BN/L(R3) ∩ L2
1(R

3).
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Proof. The restriction f ∈ L2
1 is simply chosen so that the integral makes sense. Since

f ∈ BN/L(R3), we can express it as

f(x) =
∑

j

h(x− xj)f(xj).

Substituting in the integral, we get

(−∆)−1f(xj) =
∑

k∈Z3

1

4π

∫
1

|xj − y|h(y − xk) dy f(xk)

=
∑

k∈Z3

w(j, k)f(xk).

The quadrature weights w(j, k) can be computed explicitly. By Parseval,

w(j, k) =
1

(2π)3

∫
1

|ξ|2 e
−i(xj−xk)·ξĥ(ξ) dξ.

In the event xj 6= xk, we can express this integral in a spherical coordinate frame whose

z-axis is aligned with xj − xk. It becomes

w(j, k) =
1

(2π)2

(
L

N

)3 ∫ πN/L

0

r2dr

∫ π

0

sin θdθ
1

r2
e−i|xj−xk|r cos θ,

=

(
L

N

)3
1

(2π)2

∫ πN/L

0

dr

∫ 1

−1

ei|xj−xk|rx dx,

=

(
L

N

)3
1

(2π)2
2

∫ πN/L

0

sin |xj − xk|r
|xj − xk|r

dr,

=

(
L

N

)3
1

2π2

1

|xj − xk|
Si

(
πN |xj − xk|

L

)
.

Si(x) is the special function
∫ x

0
sin t/t dt. Thus we have w(j, k) = G̃(xj − xk), as in

equation (10). The special case xj = xk can be handled separately in a similar fashion,

and one can check that it corresponds to the limit xj −xk → 0 in the general expression.

We have just proved that G̃Sf = S(−∆−1)f. Now the output (−∆)−1f is not in

general square-integrable, see also Lemma 8 below, but it is still band-limited. The

interpolation operator T is still the inverse of sampling for band-limited functions with

some growth, so we obtain the desired conclusion.

Remark. It is interesting to notice that the choice we made for ĥ, the indicator of a

ball, as a model for bandlimited functions is not standard. The most natural frequency

window associated to a Cartesian grid is the indicator of the cube [−πN/L, πN/L]3.

Choosing a cubic window for the definition of Bstd
N/L, the space of L2 band-limited

functions, would have made the sampling operator S not only an isometry, but a unitary

map from Bstd
N/L onto `2. In our context, with the spherical window, S is only unitary

from BN/L to a subset of `2, namely the range SBN/L. However, in the context of

Poisson’s equation, spherical windows are better suited as a model for bandlimited

functions since they allow us to formulate a closed-form expression for the weights

G̃(xj).
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Remark. The introduction of balls instead of cubes to define bandlimited functions

is merely a convenient characterization of the set of functions for which the numerical

quadrature is exact. Theorem 3, however, does not make any assumption on functions

being band-limited inside a ball. In fact, the functions we have to discretize, like the

soliton φ(x), are not band-limited. The price to pay is a small truncation error, which

we now quantify in a sequence of lemmata.

The following elementary lemma establishes the fact that the smoother the function,

the more accurate its sampling.

Lemma 5. For all s > 3/2 and f ∈ Hs(R3),

‖f − TSf‖L2 ≤ Cs

(
N

L

)−s

‖f‖s.

The constant Cs is a decreasing function of s ∈ (3/2,∞).

Proof. Sampling in x corresponds to periodizing in ξ, so the Fourier transform of TSf−f
is

F (ξ) =
∑

m∈Z3

f̂(ξ − 2πmN/L)χ|ξ|≤πN/L(ξ) − f̂(ξ).

We get two contributions, call them (I) and (II), in

‖F‖2
2 =

∫

|ξ|≤πN/L

|
∑

m6=0

f̂(ξ − 2πmN/L)|2 dξ

+

∫

|ξ|>πN/L

|f̂(ξ)|2 dξ.

The second integral (II) is easily bounded by

(II) ≤ sup
|ξ|>πN/L

〈ξ〉−2s · ‖f‖2
s ≤ π−2s

(
N

L

)−2s

‖f‖2
s.

The first integral (I) can be expressed as

(I) =
∑

m6=0

∑

m′ 6=0

Im,m′

where

Im,m′ =

∫

B0(πN/L)

|f̂(ξ − 2πm
N

L
)f̂(ξ − 2πm′N

L
)|,

≤ sup
|ξ|≤πN/L

〈ξ − 2πmN/L〉−s · sup
|ξ|≤πN/L

〈ξ − 2πm′N/L〉−s

×
∫

B0(πN/L)

|f̂(ξ − 2πmN/L)| 〈ξ − 2πmN/L〉s

· |f̂(ξ − 2πm′N/L)| 〈ξ − 2πm′N/L〉s dξ.
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Obviously sup|ξ|≤πN/L〈ξ−2πmN/L〉−s ≤ C ·
(
|m|N

L

)−s
, and the integral can be bounded

by Cauchy-Schwarz. We have thus separated

Im,m′ ≤ C · JmJm′ ·
(
N

L

)−2s

,

where

Jm = |m|−s

√∫

|ξ+2πm N
L
|≤πN/L

|f̂(ξ)|2〈ξ〉2s dξ.

Each point ξ in the frequency domain is covered by at most one ball B2πm N
L
(πN/L).

Consequently, Cauchy-Schwarz for sequences gives

∑

m6=0

Jm ≤ C ·
√∑

m6=0

|m|−2s ·
√∫

R3

|f̂(ξ)|2〈ξ〉2s dξ.

The sum over m converges only when s > 3/2 in three dimensions. This governs the

dependence of the constant Cs on s. Each Jm gives one factor ‖f‖s, which completes

the argument.

Notice that the above result is sharp with respect to the range of s for which

it is valid. The Sobolev embedding from Hs into continuous functions is only valid

when s > 3/2 in three dimensions, and it does not in general make sense to sample a

discontinuous function.

Let us note in passing that Lemma 5 generalizes without difficulty to weighted

norms.

Lemma 6. For all s > 3/2, m ∈ Z, and f ∈ Hs
m(R3),

‖f − TSf‖L2
m
≤ Cs

(
N

L

)−s

‖f‖s,m.

Proof. It is sufficient to exhibit a bandlimited multiplier ξm(x) equivalent to 〈x〉m in the

sense that

C1〈x〉m ≤ ξm(x) ≤ C2〈x〉m,
for then weighted norms can be expressed with ξm instead, and

ξm(f − TSf) = (Id− TS)ξmf.

Then the conclusion would follow from an application of Lemma 5 to ξmf .

Such a function ξm(x) can be constructed by convolving 〈x〉m by some appropriate

nonnegative, band-limited kernel. For example,

ξm(x) = 〈x〉m ∗
3∏

j=1

(sinc(
xj

a
))2|m|+4

will do for m 6= 0, provided a > 0 is chosen so that the band limit of the kernel is

compatible with the sampling of S.
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We will frequently need to switch from discrete to continuous norms, using the

following result.

Corollary 7. Let f ∈ Hs(R3), for s > 3/2. Then

‖f(xj)‖`2 ≤ Cs · ‖f‖Hs .

Proof. Decompose TSf as f + (TSf − f), and estimate in L2. By Lemma 5 and the

sampling theorem,

‖f(xj)‖`2 ≤ ‖f‖L2 + Cs ·
(
N

L

)−s

‖f‖Hs
≤ C · ‖f‖Hs .

Let us collect some more background results. We have already hinted at the fact

that (−∆)−1, defined as the convolution with G(x), is not bounded on L2, or on any

Hs for that matter. But it is bounded between weighted Sobolev spaces. Let us recall

the following classical result from [JenKat].

Lemma 8. (Jensen-Kato) The kernel G(x− y) = 1
4π|x−y|

maps boundedly H−1
m (R3) to

H1
−m′(R3), and is in addition Hilbert-Schmidt from L2

m to L2
−m′, provided

m,m′ >
1

2
and m+m′ > 2.

A similar property holds for the discretized kernel G̃. Weigthed discrete `2 spaces,

relative to the grid xj, are defined as

`2m = {uj : 〈xj〉muj ∈ `2}.
Lemma 9. The kernel G̃(xj − xk) defined in equation (10) maps boundedly `2m to `2−m′

provided

m,m′ >
1

2
and m+m′ > 2.

The operator norm of G̃ is uniform in N/L ≥ 1.

Proof. The Hilbert-Schmidt norm of G̃ between `2m and `2−m′ is

‖G̃‖2
HS =

∑

j,k

|G̃(xj − xk)|2〈xj〉−2m′〈xk〉−2m.

The diagonal part D of the sum, for j = k, is

D =
1

(2π)2

(
L

N

)4∑

j

(1 + |j L
N
|2)−(m+m′)

and can be compared to the integral

D ≤ C · L
N

∫

R3

(1 + |x|2)−(m+m′) dx,
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which converges when m+m′ > 3/2. The off-diagonal part OD, for j 6= k, is bounded

by

OD ≤
(
L

N

)6 ∑

j,k:j 6=k

1

|j L
N
− k L

N
|2 (1 + |j L

N
|2)−m′

(1 + |k L
N
|2)−m.

(because |Si(x)| < 2.) Its continuous counterpart is

OD ≤ C ·
∫

R3

∫

R3

1

|x− y|2 (1 + |x|2)−m(1 + |y|2)−m′

dx dy.

The double integral is the Hilbert-Schmidt norm of G, squared, between L2
m and L2

−m′ ,

and is bounded by lemma 8.

We can now turn to the proof of the main result, theorem 3. The Birman-Schwinger

operator is defined as

K = U(x)(−∆−1)U(x), U(x) = φ(x)β.

The approximation K̃ is defined as

K̃ = T Ũ(xj)G̃cŨ(xj)S,

where the subscript c in G̃c indicates that the convolution is not over the whole

infinite grid L/N × Z3, but is a circular convolution over the finite cubic array

(−L/2 : L/N : (L/2 − L/N))3 (in Matlab notation.) Let us denote this bounded

grid by 2N .

Proof of theorem 3. Let us divide the proof into four successive approximation steps,

using the triangle inequality.

(i) Let us first show that

(I) = ‖T Ũ(xj)(G̃c − G̃)(Ũ(xj)Sf)‖L2

is adequately small in the sense of theorem 3. By Shannon’s sampling theorem (ST

is the orthogonal projector onto RanS,) we can rewrite

(I) ≤ ‖Ũ(xj)(G̃c − G̃)(Ũ(xj)f(xj))‖`2 .

We denote the operation of folding back a grid point by periodicity onto the grid

2N as follows:

bxje ≡ (xj + (1, 1, 1)
L

2
)mod L− (1, 1, 1)

L

2
.

The discrepancy between the two types of convolution is

(G̃c − G̃)g(xj) =
∑

k∈Z3

g(xk)G̃(xj − xk) −
∑

xk∈2N

g(xk)G̃(bxj − xke).

Let us introduce the intermediate quantity

G̃bg(xj) =
∑

xk∈2N

g(xk)G̃(xj − xk),
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where the subscript b stands for ‘bounded convolution’. The first contribution is

(IA) = ‖Ũ(xj)(G̃b − G̃)(Ũ(xj)f(xj))‖`2 ,

= ‖Ũ(xj)
∑

xk /∈2N

G̃(xj − xk)Ũ(xk)f(xk)‖`2 ,

≤ sup
j

|Ũ(xj)〈xj〉2| · ‖G̃‖`2
1
→`2

−2
· sup

xj /∈2N

|Ũ(xj)〈xj〉| · ‖f(xj)‖`2 .

The first factor is obviously bounded by equation (15), the second factor is bounded

by Lemma 9, the third factor is less than ε + C · Le−τL by equation (15), and the

fourth factor is less than C · ‖f‖Hs by Corollary 7.

The second contribution is

(IB) = ‖Ũ(xj)(G̃c − G̃b)(Ũ(xj)f(xj))‖`2 .

The kernels G̃c and G̃b differ only when xj /∈ 2N , and in that case we have the

estimate

|G̃(xj) − G̃(bxje)| ≤
1

L
χxj /∈2N

(j, k).

Therefore

(IB) ≤ 1

L

∥∥∥∥∥∥∥∥
Ũ(xj)

∑

xk∈2N

xk /∈xj+2N

Ũ(xk)f(xk)

∥∥∥∥∥∥∥∥
`2

,

≤ 1

L

∥∥∥∥∥∥∥∥∥
Ũ(xj) ·

√√√√√

(
L

N

)3 ∑

xk∈2N

xk /∈xj+2N

|Ũ(xk)|2

∥∥∥∥∥∥∥∥∥
`2

· ‖f(xj)‖`2 .

The quantity underneath the square root can be bounded, up to a multiplicative

constant, by ∫

x/∈Bxj
(L/2)

e−2τ |x| dx ≤
∫

x/∈B0(L/2−|xj |)

e−2τ |x| dx.

≤ C · 〈L
2
− |xj|〉2e−2τ( L

2
−|xj |).

With this bound, (IB) becomes

(IB) ≤ C

L

√√√√
(
L

N

)3 ∑

xj∈2N

e−τ |xj |〈L
2
− |xj|〉e−τ( L

2
−|xj |) · ‖f(xj)‖`2

≤ C

L

√∫

B0(L)

e−τ |x|〈L
2
− |x|〉e−τ( L

2
−|x|) dx · ‖f(xj)‖`2 ,

≤ CLe−τL/4‖f(xj)‖`2 .

As before, the `2 norm of f(xj) can be bounded, up to a constant, by the Hs norm

of f (Corollary 7). This shows that (IA) and (IB) are both within the bounds of

equation (16).
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(ii) Let us now study the difference

(II) = ‖T Ũ(xj)G̃(Ũ(xj)Sf − SU(x)f)‖L2

We have already observed that T Ũ(xj) is bounded between `2−2 and L2. We also

know from Lemma 9 that G̃ is bounded from `21 to `2−2. Hence, it suffices to show

that the following quantity is adequately small:

‖(Ũ(xj)S − SU(x))f‖2
`2
1

=

(
L

N

)3∑

j

〈xj〉2|Ũ(xj) − U(xj)|2|f(xj)|2.

By equation (15) and Corollary 7, we can bound this expression by Cε2‖f‖2
Hs .

(iii) The third contribution

(III) = ‖(T Ũ(xj) − U(x)T )G̃SU(x)f‖L2

can be bounded analogously. We know that SU maps `2 to `22 boundedly, and G̃

maps `22 to `2−1 boundedly. It remains to show that

‖(T Ũ(xj) − U(x)T )g‖L2

is small in proportion to g ∈ `2−1. By the sampling theorem, this is also

‖(Ũ(xj) − SU(x)T )g(xj)‖`2 = ‖(Ũ(xj) − U(xj))g(xj)‖`2

Again, equation (15) allows to bound this quantity by Cε‖g(xj)‖`2
−1

.

(iv) The last, and perhaps most important contribution, is

(IV ) = ‖U(TG̃S + ∆−1)Uf‖L2 .

Obviously, multiplication by U(x) is bounded from H s to Hs
2 , as well as from Hs

−2

to Hs, for all s ≥ 0. So it suffices to show that

‖(TG̃S + ∆−1)g‖L2

−2
≤ Cs ·

(
N

L

)−s

· ‖g‖Hs
2
,

for all s > 3/2. It is key to notice that

TG̃Sg = −∆−1TSg,

which follows from applying Lemma 4 to TSg. Since by lemma 8, ∆−1 is bounded

between L2
2 and L2

−2, it is enough to check that

‖TSg − g‖L2

2
≤ Cs ·

(
N

L

)−s

· ‖g‖Hs
2
.

This is precisely the content of lemma 6. The proof is complete.

It is likely that Theorem 3 could actually be formulated with exponential decay

in N/L, but we leave this as a challenge to the reader. In order to do so, it would

be necessary to prove analyticity of the soliton φ(x), which we believe is still an

open problem in three dimensions. Our numerical experiments strongly support the

analyticity conjecture (see Section 4).
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3.3. Accuracy of eigenvalues

Let us remark that accuracy of the discretization depends crucially on the smoothness of

the function to which the operator is applied. This follows not only from sampling issues,

but also from the choice of quadrature weigths G̃(xj) used to invert the laplacian. As

a consequence, only the eigenvalues of K corresponding to very smooth eigenfunctions

will be computed to high accuracy.

Since K is compact and self-adjoint on L2(R3), let us write its spectral

decomposition as

Kej = λjej, 〈ej, ek〉 = δjk.

Its discrete counterpart K̃ is also self-adjoint and compact (of finite rank), but only on

the space BN/L. We have

K̃ẽj = λ̃j ẽj, 〈ẽj, ẽk〉 = δjk.

Any f ∈ BN/L can therefore be expanded as f =
∑

j〈f, ẽj〉ẽj.

The following result about accuracy of eigenvalues is mostly a consequence of

theorem 3. Let εL,N denote the small factor in the right-hand side of equation (16),

namely

εL,N = Cs ·
[
ε+ Le−τL/4 +

(
N

L

)−s
]
.

Corollary 10. If λj is simple, then

|λj − λ̃j| ≤
εL,N‖ej‖Hs

|〈ej, ẽj〉|
, (18)

and, for εL,N sufficiently small,

‖ej − ẽj‖L2 ≤ 2
εL,N‖ẽj‖Hs

dj

,

where dj = mink 6=j |λj − λk|.
If λj has multiplicity p > 1, denote by Πj the orthoprojector onto the j-th eigenspace,

and Π̃j its numerical counterpart. Then, for all 1 ≤ m ≤ p,

|λj − λ̃j,m| ≤
εL,N

√∑p
n=1 ‖ej,n‖2

Hs

‖Πj ẽj,m‖L2

, (19)

and, for εL,N sufficiently small,

‖Πj − Π̃j‖HS ≤ 2
εL,N

√∑p
n=1 ‖ẽj,n‖2

Hs

dj

.

The above norm is the Hilbert-Schmidt (HS) norm.

Proof. The proof is loosely related to the argument behind Gershgorin’s circle theorem.
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• Take λj simple. Let Π = TS be the orthogonal projection from L2 to BN/L. We

can then expand

Πej =
∑

k

θj,kẽk, θj,k = 〈ej, ẽk〉.

Consider the relation

K̃ej = λjej + rj, (20)

where by theorem 3, the remainder rj = (K̃ −K)ej obeys

‖rj‖L2 ≤ εL,N‖ej‖Hs . (21)

We can project equation (20) onto BN/L and expand it on the basis ẽk, which gives

θj,kλ̃k = θj,kλj + 〈rj, ẽk〉. (22)

For k = j, we can bound

|λj − λ̃j| ≤
|〈rj, ẽj〉|
|θj,j|

,

which is exactly (18) after using the estimate (21) on rj.

In order to obtain the estimate for the eigenfunctions, we should instead consider

Kẽj = λ̃j ẽj + r̃j,

with ‖r̃j‖L2 ≤ εL,N‖ẽj‖Hs , and this time expand it on the basis ek,

θj,kλk = θj,kλ̃j + 〈r̃j, ek〉. (23)

For k = j, it would give the same estimate as (18), but with ẽj substituted for ej.

For k 6= j, we can rewrite equation (23) as

|θj,k| ≤
|〈r̃j, ek〉|
|λ̃j − λk|

. (24)

We are not quite finished since the eigenvalue gap, at the denominator, is measured

with λ̃j instead of λj. Put δj = |λj−λ̃j|. Let us also introduce d̃j = mink 6=j |λ̃j−λk|,
and observe that d̃j ≥ dj − δj. Then, squaring (24) and summing over k 6= j, we

get

∑

k 6=j

|θj,k|2 ≤
‖r̃j‖2

L2

d̃2
j

,

and, as a result,

|θj,j|2 ≥ 1 − ‖r̃j‖2
L2

d̃2
j

. (25)

Our estimate for δj, equation (18), can therefore be improved to

δ2
j ≤ ε2L,N‖ej‖2

Hs

1 − ε2
L,N

‖ẽj‖2

Hs

(dj−δj)2

.
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It is not hard to see that, as εL,N gets small, δj, defined here implicitly, decreases

to zero. Take L, N and 1/ε sufficiently large so that δj ≤ dj/4. Going back to

equation (25), we obtain

|θj,j|2 ≥ 1 − 2
‖r̃j‖2

L2

d2
j

.

The estimate for eigenvectors follows since

‖ej − ẽj‖2 = 2 − 2θjj ≤ 2 − 2θ2
jj.

• Assume now that λj has multiplicity p > 1. The previous argument goes

through, with the following modifications. The change of basis coefficients are

now θjn,k = 〈ejn, ẽk〉, where n = 1, . . . , p. Equation (22) becomes

θjn,kλ̃k = θjn,kλj + 〈rj,n, ẽk〉. (26)

Let us study the discrepancy between λj and λ̃jm, for some m. We need to take a

linear combination of equation (26) with the weights

αn =
θjn,jm√∑
n |θjn,jm|2

.

We then obtain the inequality

|λj − λ̃jm| ≤
∑

n αn|〈rj,n, ẽjm〉|√∑
n |θjn,jm|2

.

Observe that ‖Πj ẽjm‖L2 =
√∑

n |θjn,jm|2, and the numerator can be bounded by

Cauchy-Schwarz (in n) to yield (19).

As for the eigenfunctions, Hilbert-Schmidt norms and trace inner products are to

be substituted for their L2 scalar counterpart. More precisely,

‖Πj − Π̃j‖2
HS = Tr(Πj − Π̃j)

2,

= TrΠj + TrΠ̃j − 2TrΠjΠ̃j,

= 2p− 2TrΠjΠ̃j,

so we need to find a bound on the latter quantity. Observe first that

TrΠjΠ̃j =
∑

n

p∑

m=1

|θjn,jm|2.

The change of basis coefficients are normalized in the sense that, for all n = 1, . . . , p,

1 =
∑

k

|θjn,k|2 =
∑

m

|θjn,jm|2 +
∑

k 6=j

|θjn,k|2.

Summing over n, we get

p = TrΠjΠ̃j +
∑

n

∑

k 6=j

|θjn,k|2. (27)

The bound on θjn,k for k 6= j can be obtained as above, and is

|θjn,k| ≤
|〈r̃jn, ek〉|
|λ̃jn − λk|

. (28)
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It is natural to define d̃j = mink,n |λ̃jn − λk|. The way to bound d̃j from below by,

say, 3dj/4 is very analogous to the simple case, and based on some adequate control

of the size of the denominator in equation (19). This can be obtained from

1 = ‖Πj ẽjm‖2
2 +

∑

k 6=jn

|θk,jm|2,

and
∑

k 6=jn

|θk,jm|2 ≤
∑

k 6=jn

|〈rk, ẽjm〉|2
|λk − λ̃jm|2

=
∑

k 6=jn

|〈ek, r̃jm〉|2
|λk − λ̃jm|2

≤ ‖r̃jm‖2
L2

d̃2
j

.

(we have used K = K∗ and K̃ = K̃∗ for band-limited functions.) Eventually, we

use theorem (3) one more time to bound

‖r̃jn‖L2 ≤ εL,N‖ẽjn‖Hs . (29)

The desired estimate is obtained by combining the intermediate inequalities (27)

to (29). This concludes the proof.

Note that, in the formulation of the corollary or in its justification, it is nowhere

necessary to obtain bounds on errors in computing other eigenvalues λk 6= λj. This is

the sense in which our argument is close to Gershgorin’s theorem: we only need one row

of the matrix 〈ej, K̃ek〉, namely, the j-th row.

4. Numerical results and discussion

Our numerical approximation to the soliton φ(x), obtained by Petviashvili’s iteration,

is plotted in log-scale in Figure 1. For this experiment, we have taken β = 1, a cube of

sidelength L = 20 and a grid of size N = 200. Notice the apparent exponential decay

both in space and frequency. Figure 2 checks the convergence of Petviashvili’s iteration,

namely that Mn → 1 and that −∆φn + φn − φ2β+1
n → 0 as n→ ∞.

With the correction term for re-centering, Petviashvili’s iteration yields an

approximation to the soliton that is as radial as allowed by the grid. In this case the

constants Rn,j are kept at or below machine precision, 10−16. Without the correction

term, Rn,j can still be monitored and can become as large as 10−4, signalling a spurious

translation of the same order of magnitude for the soliton. Numerically we prefer to be

on the safe side and use the modified iteration, with the correction term.

In the above setting we observe nice convergence of the error, as measured by

different indicators, to machine accuracy. This is not always the case. For values of L too

big in comparison to N (typically, for L of the order of N/4 and above,) the Petviashvili

iteration possibly reaches acceptable error levels, but then diverges away from the fixed

point. A careful inspection of the remainder −∆φn + φn − |φ2β
n |φn indicates that this

might be due the fifth eigenvalue λ5 of the linearized iteration operator A becoming

negative, in the notations of Section 3.1.
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Figure 1. Left: the soliton φ(r) in space. Right: the soliton φ̂(|ξ|) in frequency. Both

depend only on the radial coordinate.
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Figure 2. Convergence of Petviashvili’s iteration. The x-axis is the number of

iteration. Dotted line: 1 − Mn, where Mn is the Petviashvili constant. Dash-dotted

line: Euler-Lagrange remainder, ‖−∆φn +φn−φ2β+1
n ‖/‖φn‖, with norms in L2. Solid

line: Same remainder, but for the Aitken iterate φA
n .

Next, we show a plot of the two, resp. five largest eigenvalues of the Birman-

Schwinger operator K−, resp. K+, as a function of β in the range [ 2
3
, 1]. As mentioned

earlier, λ2(K−) is less than 1 for all values of β, but there exists a number β∗ below

which λ5(K+) > 1. This is the signature of at least one eigenvalue in the gap of L+,
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for 2/3 ≤ β < β∗ (inspection of λ6 reveals that there is only one eigenvalue in the

gap.) For this experiment, we used L = 15 and N = 60. Note that, in both cases,

λ2 = λ3 = λ4 is triple, and λ5 is simple, so we only show at most 3 curves. Our

numerical implementation correctly picks up the multiplicity, exactly (to all 16 digits),

and in all the cases that we have tried.
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3
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β

Two largest eigenvalues of K
−
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0.9

β

Five largest eigenvalues of K
+

Figure 3. Left: Largest eigenvalues of K−, as a function of β in the range [ 2
3
, 1]. The

first eigenvalue is simple, and the second to fourth are identical (multiplicity 3). Right:

Five largest eigenvalues of K+, as a function of β. The first eigenvalue is simple, the

second to fourth eigenvalues are identical, and the fifth eigenvalue is simple. In both

cases, the value one is indicated by the dotted line.

An accurate computation of the numerical value of the exceptional exponent β∗

requires higher values of L and N . On a 2005 standard desktop, we have tried L = 25

and N = 200. We then obtain β∗ by interpolation of λ5(K+) for different closeby values

of β, see table 1. The confidence on β∗, which we estimate to be about 8 digits, is directly

related to the level of accuracy of λ5(K+). The latter is determined by inspection of

convergence as L and N increase. So the bounds given in Claim 1 would not qualify as

a theorem but merely serve as an indication of how accurate we believe our algorithm

is.

β λ5(K+)

0.91395850 1.00000016477

0.91395875 1.00000006304

0.91395900 0.99999996130

0.91395925 0.99999985957

Table 1. Fifth eigenvalue of K+, as a function of β near β∗. Here L = 25 and

N = 200. Each value took about one day to obtain. Cubic interpolation reveals

β∗ ' 0.913958905 ± 1e − 8.

At this point the reader might wonder if, instead of a full three-dimensional
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simulation, there exists a computational strategy involving only the radial coordinate to

compute both the soliton and the eigenvalues of the Birman-Schwinger operators. We

believe the answer is positive, but will involve significantly different ideas from the ones

presented in this paper. In particular, spectral accuracy will be more difficult to obtain.

We leave the problem of determining more digits of the constant β∗, likely through the

use of a one-dimensional method, as a challenge to the interested reader.

Finally, the Matlab code we used to generate the figures and compute an estimation

of β∗ can be downloaded from

http://www.acm.caltech.edu/~demanet/NLS/.
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