
NESTED DOMAIN DECOMPOSITION WITH POLARIZED TRACES
FOR THE 2D HELMHOLTZ EQUATION
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Abstract. We present a solver for the 2D high-frequency Helmholtz equation in heterogeneous,
constant density, acoustic media, with online parallel complexity that scales empirically as O(N

P
),

where N is the number of volume unknowns, and P is the number of processors, as long as P =
O(N1/5). This sublinear scaling is achieved by domain decomposition, not distributed linear algebra,
and improves on the P = O(N1/8) scaling reported earlier in [103]. The solver relies on a two-level
nested domain decomposition: a layered partition on the outer level, and a further decomposition of
each layer in cells at the inner level. The Helmholtz equation is reduced to a surface integral equation
(SIE) posed at the interfaces between layers, efficiently solved via a nested version of the polarized
traces preconditioner [103]. The favorable complexity is achieved via an efficient application of the
integral operators involved in the SIE.

1. Introduction. It has become clear over the past several years that the right
mix of ideas to obtain an efficient Helmholtz solver, in the high-frequency regime,
involves domain decomposition with accurate transmission conditions. The first em-
pirical O(N) complexity algorithm, where N is the number of degrees of freedom,
was the sweeping preconditioner of Engquist and Ying [33] that uses a decomposition
in grid-spacing-thin layers coupled with an efficient multi-frontal solver at each layer.
Subsequently, Stolk proposed different instances of domain decomposition methods
[88, 89] that restored the ability to use arbitrarily thick layers, improving the efficiency
of the local solves at each layer, with the same O(N) claim. Liu and Ying recently
presented a recursive version of the sweeping preconditioner in 3D that decreases the
offline cost to linear complexity [68] and a variant of the sweeping preconditioner
using an additive Schwarz preconditioner [67]. Many other authors have proposed
algorithms with similar complexity claims that we review in Section 1.2, which we
briefly compare in Section 1.3.

Although these algorithms are instances of efficient iterative methods, they have
to revisit all the degrees of freedom inside the volume in a sequential (or sweeping)
fashion at each iteration. This sequential computation thus hinders the scalability of
the algorithms to large-scale parallel architectures.

Two solutions have been proposed so far to mitigate the lack of asymptotic scal-
ability in the high-frequency regime:

• Poulson et al. [80] parallelized the sweeping preconditioner in 3D by using
distributed linear algebra to solve the local system at each layer, obtaining
a O(N) complexity. This approach should in principle reach sublinear com-
plexity scalings in 2D. The resulting codes are complex, and using distributed
linear algebra libraries can be cumbersome for industrial application because
of licensing issues.

• Zepeda-Núñez and Demanet [103] proposed the method of polarized traces,
with an online empirical runtime O(N/P ) in 2D, where N is the number
of degrees of freedom in the volume1, and P is the number of nodes, in a
distributed memory environment, provided that P = O(N1/8), and that the
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medium does not contain micro-structures at the wavelength level with a pre-
ferred orientation aligned with the sweeping direction2. The communication
cost is a negligible O(N1/2P ).

In this paper we follow, and improve on the latter approach. The method of
polarized traces relies on a layered domain decomposition coupled with an surface
integral equation (SIE) posed at the interfaces between subdomains that is easy to
precondition. The algorithm has two stages: an expensive but parallel offline stage
that is performed only once, and a fast online stage that is performed for each right-
hand side (source). The above-mentioned online complexity is the result of: first,
the efficient preconditioner; and second, the precomputation and compression of the
operators involved in the SIE and its preconditioner during the offline stage.

The main improvements of the solver presented in this paper stem from a nested
layered domain decomposition in two levels. In the outer level we use an equivalent
matrix-free formulation of the SIE that relies on solving a local problem within each
layer, with equivalent sources at the interfaces. In the inner level, we decompose each
layer in cells and we use the original method of polarized traces to solve the local
problems efficiently, via a local SIE posed at the interfaces between cells within a
layer. As it will be explained in the sequel, the operators involved in the local SIE
at each local problem are much smaller, making them cheaper to precompute and
to apply. Finally, the number of layers and cells can be balanced to increase the
parallelism and hence reduce the asymptotic runtime.

1.1. Results. We propose a variant of the method of polarized traces using a
nested domain decomposition approach. This novel approach results in an algorithm
with an empirical asymptotic online runtime of O(N/P ) provided that P = O(N1/5),
which results in a lower asymptotic online runtime in a distributed memory environ-
ment. Moreover, the nested polarized traces method also has lower memory footprint3,
and lower offline complexity, as shown in Table 1.1. The parameter α in Table 1.1 is
the exponent of the empirical asymptotic complexity4.

The nested polarized traces method inherits the modularity from the original
method of polarized traces; it can easily be extended to more complex physics and
higher order discretizations; and it takes advantage of new developments in direct
methods such as [52, 83, 99] and in better block-low-rank and butterfly matrix com-
pression techniques such as [6, 12, 65].

In addition, we propose a few minor improvements to the original scheme pre-
sented in [103] to obtain better accuracy, and to accelerate the convergence rate. We
provide :

1. an equivalent formulation of the method of polarized traces that involves a
discretization using Q1 finite elements on a Cartesian grid using a suitable
quadrature rule to compute the mass matrix. This formulation can be easily
generalized to high-order finite differences and high-order finite elements, thus
circumventing the labor-intensive summation by parts;

2 As it will be explained in the sequel, the combination of higher frequencies and thinner subdo-
mains increases the number of iterations, thus resulting in a mild deterioration of the scalings.

3The offline complexity for the method of polarized in this case (Table 1.1) is higher than in [103]
because we assume that we have P nodes instead of N1/2P .

4We choose to express the complexity with respect to the global number of degrees of freedom,
N , in order to provide a cleaner expression in Table 1.1. of the application of a compressed numerical
Green’s function with respect to N . The exact definition of α is given in Section 4.3. In this case,
the value of α = 3/4 is estimated empirically
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Stage Polarized traces Nested polarized traces

offline O
(
N3/2/P

)
O
(
(N/P )3/2

)
online O (PNα +N/P ) O

(
P 1−αNα +N/P

)
Table 1.1

Runtime of both formulations (up to poly-logarithmic factors), supposing only P nodes, one
node per layer for the method of polarized traces, and one node per cell for the nested domain
decomposition with polarized traces. The value of α depends on the ability to compress local Green’s
functions in partitioned low-rank form; there exist theoretical and practical arguments for setting
α = 3/4. In that case, the N/P contribution dominates P 1−αNα as long as P = O(N1/5). These
scalings hold provided that the medium does not contain micro-structures at the wavelength level
presenting a preferred orintation aligned with the sweeping direction.

2. and, a variant of the preconditioner introduced in [103], in which we used a
block Gauss-Seidel iteration instead of a block Jacobi iteration, that improves
the convergence rate.

Even though the nested approach presented in this paper has a lower asymptotic
online runtime than the method of polarized traces, in practice, the latter is faster.
This is due to the large constants resulting from iterating within each layer in the
nested approach. In order to reduce the constants, we introduce a small variant of the
nested approach, which relies on a compressed LU factorization to solve the local SIE
within each layer. The asymptotic online runtimes remains unchanged, with much
lower constants albeit with a more thorough precomputation.

1.2. Related work. Using domain decomposition to solve PDE’s can be dated
back to Schwarz [86] and Lions [66], in which the Laplace equation is solved itera-
tively. However, using such techniques to solve the Helmholtz problem was proposed
for the first time by Després in [29], which led to the development of many different
approaches focusing mostly on the discretization of the Helmholtz equation; in partic-
ular: the ultra weak variational formulation (UWVF) [17], which, in return, spawned
plane wave methods such as the Trefftz formulation of Perugia et al. [76], the plane
wave discontinuous Galerkin method [53, 58], the discontinuous enrichment method
of Farhat et al. [39], the partition of unity method (PUM) by Babuska and Melenk [4],
the least-squares method by Monk and Wang [78], and, more recently, the multi-trace
formulation of Hiptmair and Jerez-Hanckes [24, 57], among many others. A recent
and thorough review can be found in [59].

Moreover, the ideas of Lions and Després lead to the development of various
domain decomposition algorithms, which can be classified as Schwarz algorithms (for
a review on classical Schwarz methods see [18, 90]) with or without overlap for the
Helmholtz equation [13, 25, 28, 51, 70, 74]. However, soon it became evident that the
convergence rate of such algorithms was spectacularly dependent on the boundary
conditions prescribed at the interfaces between subdomains.

In the quest to design boundary conditions that ensured a fast convergence Gan-
der introduced the framework of optimized Schwarz methods in [40]. Within that
framework, Gander et al. provided an optimal non-local boundary condition, which
is then approximated by an optimized Robin boundary condition [43]. How to design
better approximations has been studied in [42, 45, 46, 48]. More recently Boubendir
et al. [14] presented a quasi-optimal optimized Schwarz method using Padé approxi-
mations of the Dirichlet to Neumann (DtN) map.

The idea of mixing domain decomposition and absorbing boundary condition was
first explored by Engquist and Zhao [34] for elliptic problems. The application of such
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ideas to the Helmholtz problem can be traced back, to great extent, to the AILU pre-
conditioner of Gander and Nataf [44], in which a layered domain decomposition was
used; and to Plessix and Mulder [79] in which a similar idea is used using separation
of variables. However, it was Engquist and Ying who showed in [33, 32] that such
ideas could yield fast methods to solve the high-frequency Helmholtz equation, by
introducing the sweeping preconditioner, which was then extended by Tsuji and col-
laborators to different discretizations and physics [92, 93, 94]. Since then, many other
papers have proposed methods with similar claims. Stolk [88] proposed a domain de-
composition method using single layer potentials to transfer the information between
subdomains. Geuzaine and Vion explored randomized techniques [23] to probe the
DtN map [8] in order to approximate the absorbing boundary conditions within a
multiplicative Schwarz iteration [96, 97]. Chen and Xiang proposed another instance
of efficient domain decomposition where the emphasis is on transferring sources from
one subdomain to another [21, 22], which has inspired similar methods [64, 63, 30].
Most of the methods mentioned above can be recast as optimized Schwarz methods
(cf. [20]). Closely related to the content of this paper, we find the method of polarized
traces [103], and an earlier version of this work [102].

Luo et al. proposed the fast sweeping Huygens method, based on an approximate
Green’s function computed via geometric optics, coupled with a butterfly algorithm,
which can handle transmitted waves in very favorable complexity [69, 81].

Alongside iterative methods, some advances have also been made on multigrid
methods. Brandt and Livshits developped the wave-ray method [15], in which the
oscillation error is eliminated by a ray-cycle using a geometric optics approximation;
Haber and MacLachlan proposed an alternative formulation that can be solved by
standard multigrid methods [56]; Erlangga et al. [37] showed how to implement a
simple, although suboptimal, complex-shifted Laplace preconditioner with multigrid.
Another variant of complex-shifted Laplacian method with deflation was studied by
Sheikh et al. [87]. The choice of the optimal complex-shift was studied by Cools and
Vanroose [26] and by Gander et al. [49]. Finally, the generalization of the complex
shifted Laplacian preconditioner to the elastic wave equation has been studied by
Rizzuti and Mulder [82]. We point out that most of the multigrid methods mentioned
above exhibit a suboptimal dependence of the number of iterations to converge with
respect to the frequency, making them ill-suited for high frequency problems. How-
ever, they are easy to parallelize resulting in small runtimes, as shown by Calandra
et al. [16].

A good early review of iterative methods for the Helmholtz equation is in [36].
Another review paper that discussed the difficulties generated by the high-frequency
limit is [38].

In another exciting direction, much progress has been made on making direct
methods efficient for the Helmholtz equation. Such is the case of Wang et al.’s method
[99], which couples nested dissection and multi-frontal elimination with H-matrices
(see [31] for the multi-frontal method, and [50] for nested dissection). Another example
is the work of Gillman, Barnett and Martinsson on computing Dirichlet to Neumann
maps in a multiscale fashion [52]. Recently, Ambikasaran et al. [1] proposed a direct
solver for acoustic scattering for heterogeneous media using compressed linear algebra
to solve an equivalent Lippmann-Schwinger equation. These methods are extremely
efficient for elliptic and low frequency problems due to the high compressibility of the
Green’s functions [7]. However, it is not yet clear whether offline linear complexity
scalings for high-frequency problems can be achieved this way (cf. [35]), though good
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direct methods are often faster in practice than the iterative methods mentioned at
the beginning of this Section. The main issue with direct methods is the lack of scala-
bility to very large-scale problems due to the memory requirements and prohibitively
expensive communication overheads.

Finally, beautiful mathematical reviews of the Helmholtz equation are [77] and
[19]. A more systematic and extended exposition of the references mentioned here
can be found in [101].

1.3. Comparison to other preconditioners. There has been a recent effort
to express the fast preconditioners based on domain decomposition and absorbing
boundary conditions in terms of optimized Schwarz method [20, 47, 55], in particu-
lar, the method of polarized traces can be re-casted, algorithmically, as an optimized
Schwarz method; however, the polarization of the waves using discrete integral re-
lations, and in particular, the recasting of the volumetric problem as an extended
algebraically exact integral problem posed at at the interfaces between layers, seems
to escape the general framework. We do not aim to compare the method of polarized
traces nor its nested variant under the framework of optimized Schwarz methods,
which would be out of the scope of this paper. Instead, we aim to briefly compare
the method of polarized traces against some related methods in the literature5 .

We start by comparing the method of polarized traces to the original sweeping
preconditioner. The sweeping preconditioner is based on a block LDLt factorization,
coupled with the remarkable observation that the inverse of the blocks of D correspond
to a half-space problem. The inverse of the blocks can be either compressed using
H-matrices6 [32] or applied using an auxiliary problem [33], in which the half-space
problem is truncated using a high-quality PML. The sweeping preconditioner acts on
the volume problem, and it needs to revisit all the degrees of freedom, thus hindering
parallelization, which is mostly achieved by parallelized linear algebra [80]. On the
other hand, the method of polarized traces preconditions a SIE posed on the interfaces
reducing the number of degrees of freedom. The application of the SIE and the
preconditioner can be parallelized and accelerated using fast summation algorithms,
and the number of iterations to convergence is, in general, much smaller.

Another method based on the sweeping preconditioner is the source transfer
method [21], an overlapping domain decomposition. In this method the residual in a
generous overlap, times a smooth window, is used to propagate the information to the
neighboring domains, in a fashion that resembles an iterative refinement iteration. If
the window is chosen as a Heaviside function; the source transfer method has some
striking similarities to the rapidly converging DDM method [88] and the method of
polarized traces. However, the source transfer method is a preconditioner for the
volume problem, needing to revisit all the degrees of freedom each iteration, and the
generous overlap between subdomain can be prohibitively expensive in 3D.

The closest algorithm to the method of polarized traces is the rapidly converging
domain decomposition method of Stolk [88], in which the information is transfered
between subdomains using a single layer potential in [88] and using both single and
double layer potential in [89]. The later has the same form as the sweeps in the
method of polarized traces (see [104]). Stolk’s method preconditions the volume
problem, which requires him to move the boundaries of the subdomains and to use

5We refer the interested reader to [41] for a short exposition on possible shortcomings of sweeping-
like preconditioners.

6This is possible, in homogeneous media, thanks to the compressibility of the Green’s function
when considering elongated structured [72].
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a step of iterative refinement between sweeps. In practice, Stolk’s method has lower
constants but a higher asymptotic runtime in 2D.

Finally, we compare the method of polarized traces to the double sweep precondi-
tioner, which is, by construction, an optimized Schwarz method. In [97] the Helmholtz
problem is posed as a boundary problem between interfaces using different boundary
conditions. The boundary problem is then solved iteratively, using an Schwarz itera-
tion accelerated with preconditioned GMRES. The main disadvantage of the double
sweep preconditioner is its complexity. To converge in O(1) iterations, the double
sweep preconditioner requires a good knowledge of the DtN map, which is probed
using randomized methods (cf. [8]) during an offline stage. As a consequence, the lin-
ear systems at each subdomain have a non-local boundary condition, which results in
matrices with large dense blocks, making the local linear systems expensive to solve.

At the level of the formulation there exists some differences between the two meth-
ods; in [97] the resulting system posed on the the interfaces has a block-tridiagonal
structure, which is hard to solve iteratively; however, some off-diagonal blocks, which
represent self-interactions within layers, are small, so they can be neglected. The
resulting sparsified system has an interlaced structure and it can be solved by back-
substitution, in which each block is a local solve with a non-local boundary condition.
In contrast, the method of polarized traces transitions from a volumetric discretiza-
tion to an extended equivalent boundary problem, without approximation making it
better suited to cases in which the self-interactions, such as multiple scattering within
a layer, can not be neglected. By exploiting the block structure of the latter we can
easily construct an efficient preconditioner based on a block Gauss-Seidel iteration
within a GMRES [85] or BiCGstab [95] iteration.Finally, we point out that the differ-
ent types of sweeps described in [98] can be seamlessly deduced using different block
splittings of the extended SIE.

1.4. Organization. The present paper is organized as follows :
• we review the formulation of the Helmholtz problem and the reduction to a

boundary integral equation in Section 2;
• in Section 3 we review the method of polarized traces;
• in Section 4 we present two variants of the nested solver, and we provide the

empirical complexity observed;
• finally, in Section 5 we present numerical experiments that corroborate the

complexity claims.

2. Formulation. Let Ω be a rectangle in R2, and consider a layered partition
of Ω into L slabs, or layers {Ω`}L`=1 as shown in Fig 2.1. Define the squared slowness
as m(x) = 1/c(x)2, x = (x, z). As in geophysics, we may refer to z as depth, and we
suppose that it points downwards. Define the global Helmholtz operator at frequency
ω as

Hu =
(
−4−mω2

)
u in Ω, (2.1)

with an absorbing boundary condition on ∂Ω implemented via perfectly matched
layers (PML) [9, 10, 61].

Let us define f ` as the restriction of f to Ω`, i.e., f ` = fχΩ` , where χΩ` is the
characteristic function of Ω`. Define the local Helmholtz operators as

H`u =
(
−4−mω2

)
u in Ω`, (2.2)

with absorbing boundary conditions on ∂Ω`. Finally, let u be the solution to Hu = f .
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As for any domain decomposition method we seek to find u by solving the local
systems H`v` = f `χΩ` . In order to compute u, classical domain decomposition meth-
ods (cf. [90]) requires a coupling between the subdomains, which usually takes the
form of continuity or boundary conditions. In this case, the global coupling between
subdomains is realized via a reduction of the problem posed on the volume to a prob-
lem posed on the interfaces between layers, resulting in a SIE. The main tool used in
this endeavor is the Green’s representation formula (GRF) in each layer.

If the global Green’s function G, given by HG(x,y) = δ(x − y), is known, then
we can write in the interior of each layer

u(x) = Gf `(x) +

∫
∂Ω`

(
G(x,y)∂νyu(y)dy − ∂νyG(x,y)u(y)

)
dSy, (2.3)

for x ∈ Ω`, and Gf `(x) =
∫

Ω
G(x,y)f `(y)dy. One remarkable, and mostly underval-

ued, property of the GRF is that (2.3) remains true even if we change the Green’s
function for a local Green’s function, which we denote G`, provided that

HG`(x,y) = δ(x− y) (2.4)

is satisfied for x,y ∈ Ω`, where H acts on x.
Using the local GRF, the solution can be written without approximation in each

layer as

u(x) = G`f `(x) +

∫
∂Ω`

(
G`(x,y)∂νyu(y)dy − ∂νyG`(x,y)u(y)

)
dSy (2.5)

for x ∈ Ω`, where G`f `(x) =
∫

Ω` G
`(x,y)f `(y)dy and G`(x,y) is the solution of

H`G`(x,y) = δ(x − y). Where H` coincides with H in Ω` by construction, thus G`

satisfies (2.4).
Denote Γ`,`+1 = ∂Ω` ∩ ∂Ω`+1. Supposing that Ω` are thin slabs either extending

to infinity, or surrounded by a damping layer on the lateral sides, we can rewrite (2.5)
as

u(x) = G`f `(x)−
∫

Γ`−1,`

G`(x,x′)∂zu(x′)dx′ +

∫
Γ`,`+1

G`(x,x′)∂zu(x′)dx′

+

∫
Γ`−1,`

∂zG
`(x,x′)u(x′)dx′ −

∫
Γ`,`+1

∂zG
`(x,x′)u(x′)dx′. (2.6)

The knowledge of u and ∂zu on the interfaces Γ`,`+1 therefore suffices to recover
the solution everywhere in Ω. We show in Section 2.2 how to build, via an algebraic
reduction, a discrete SIE (based on (2.6)) posed on the interfaces between boundaries
{Γ`,`+1}L−2

`=1 , and whose solution is exactly the restriction of the global solution to the
interfaces between layers. Once the solution at the interfaces is known, the solution
can be reconstructed at each layer exactly using (2.6). The remaining question is
how to efficiently solve the SIE using an iterative method. The answer lies within the
concept of polarization, which is the main topic of the next section.

2.1. Polarization. In this section we provide the rationale for the polarization
of waves, concept that plays a crucial role to solve the SIE mentioned above efficiently.
We say that a wave is polarized at an interface when it is generated by sources sup-
ported only on one side of that interface.
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Fig. 2.1. Layered domain decomposition. The orange grid-points represent the PML for the
original problem, the light-blue represent the artificial PML between layers, and the red grid-points
correspond to u in (2.11).

In order to express the polarizing conditions in boundary integral form, we briefly
recall the rationale provided in [103]. Let consider Fig. 2.2, where x = (x, z) with z
pointing down. Consider a interface Γ partitioning R2 as Ωdown ∪ Ωup, with f 6= 0
in Ωdown. Let x ∈ Ωup, and consider a contour made up of Γ and a semi-circle D
at infinity in the upper half-plane Ωup. In case the wave speed becomes uniform
past some large radius, the Sommerfeld radiation condition (SRC) puts to zero the
contribution on D in Green’s representation formula (GRF) [62, 75] resulting in the
incomplete Green’s formula

u(x) =

∫
Γ

(
∂G

∂zy
(x,y)u(y)−G(x,y)

∂u

∂zy
(y)

)
dSy, x ∈ Ωup \Γ. (2.7)

On the other hand, if x approaches Γ from below, then we obtain the annihilation
formula

0 =

∫
Γ

(
∂G

∂zy
(x,y)u(y)−G(x,y)

∂u

∂zy
(y)

)
dSy, x→ Γ from below. (2.8)

We can observe that (2.7) and (2.8) are equivalent; either one can be used as the
definition of a polarizing boundary condition on Γ. In this case we can say that a
wavefield is up-going with respect to Γ if it was generated by a source located below γ,
or equivalently, if its Dirichlet and Neumann traces, denoted u↑ and ∂zu

↑, satisfy the
annihilation condition (2.8). We can easily express the same annihilation condition
for a down-going wavefield by the annihilation formula

0 =

∫
Γ

(
− ∂G
∂zy

(x,y)u(y) +G(x,y)
∂u

∂zy
(y)

)
dSy, x→ Γ from above. (2.9)

In order to efficiently solve the globally coupling SIE, we define an extended
system by introducing extra variables. We split u = u↑ + u↓ and ∂zu = ∂zu

↑ +
∂zu
↓ on Γ`,`+1, by letting (u↑, ∂zu

↑) be polarized up in Ω` (according to (2.8)), and
(u↓, ∂zu

↓) polarized down (according with (2.9)) in Ω`+1. Together, the interface fields
u↑, u↓, ∂zu

↑, ∂zu
↓ are the polarized traces that serve as unknowns for the numerical

method.
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Fig. 2.2. Illustration of (2.7) and (2.8).

The discrete system is then set up from discrete algebraic reformulations7 of the
local GRF (2.6) with the polarizing conditions (2.8) and (2.9), in a manner that will
be made explicit in Section 3. The resulting system has a 2-by-2 structure with block-
triangular submatrices on the diagonal, and comparably small off-diagonal submatri-
ces. A very good preconditioner consists in inverting the block-triangular submatrices
by back- and forward-substitution. One application of this preconditioner can be seen
as a sweep of the domain to compute transmitted (as well as locally reflected) waves
using (2.7). From extensive numerical experiments provided in [103], the structure of
the system ensures that the number of GMRES iterations grows at most as logω, pro-
vided that the m does not contain a large resonant cavity nor micro-structures at the
wavelength level with a preferred orientation aligned with the domain decomposition.

The rationale presented above can be seamlessly translated to the algebraic level,
as it will be done in Section 3, in which, for the sake of reproducibility, we follow a
mostly algebraic description of the algorithm.

2.2. Discrete Realization. In order to compress the notation, and yet provide
enough details so that the reader can implement the algorithm presented in this paper,
we recall the notation used in [103].

We can discretize (2.1) using second order finite differences (Appendix A) or Q1
finite elements (Appendix B), and we obtain the global linear system

Hu = f , (2.10)

which we aim to solve using a domain decomposition approach that relies on solving
the local systems H`, which are the discrete version of (2.2).

As it was explained in the prequel, the coupling between the subdomains is re-
alized via an equivalent discrete SIE, which relies on a discrete version of (2.6). In
this section we briefly explain, at an algebraic level, the reduction of (2.10) to an
equivalent discrete SIE of the form

Mu = f , (2.11)

7The algebraic reformulation is performed using either summation by parts, as done in [103], or
the much less labor intensive approach shown in Appendix C.

9



where u are the degrees of freedom of u at the interfaces between layers (see Fig. 2.1)
and M is defined below after some basic notation has been introduced.

We suppose that the full domain has N = nx×nz discretization points, that each
layer has nx × n` discretization points, and that the number of points in the PML,
npml, is the same in both dimension and in every subdomain (light blue and orange
nodes in Fig. 2.1).

In both discretizations the mesh is structured so that we can define xp,q =
(xp, zq) = (ph, qh). We assume the same ordering as in [103], i.e.

u = (u1,u2, ...,unz
), (2.12)

and we use the notation

uj = (u1,j , u2,j , ..., unx,j), (2.13)

for the entries of u sampled at constant depth zj . We write u` for the wavefield
defined locally at the `-th layer, i.e., u` = χΩ`u, and u`k for the values at the local
depth8 z`k of u`. In particular, u`1 and u`n` are the top and bottom rows9 of u` (see
red grid-points in Fig. 4.2). We then gather the interface traces in the vector

u =
(
u1
n1 ,u2

1,u
2
n2 , ...,uL−1

1 ,uL−1
nL−1 ,u

L
1

)t
. (2.14)

Define the numerical local Green’s function in layer ` by

H`G`(xi,j ,xi′,j′) = H`G`
i,j,i′,j′ = δ(xi,j − xi′,j′), (2.15)

if (i, j) ∈ J−npml + 1, nx + npmlK × J−npml + 1, n` + npmlK;10 where the discrete
dirac delta11 is given by

δ(xi,j − xi′,j′) =

{
1
h2 , if xi,j = xi′,j′ ,
0, if xi,j 6= xi′,j′ ,

(2.16)

and where the operator H` acts on the (i, j) indices.
Furthermore, for notational convenience we consider G` as an operator acting on

unknowns at the interfaces, as follows.
Definition 2.1. We consider G`(zj , zk) as the linear operator defined from

[−npml

+ 1, nx + npmlK× {zk} to J−npml + 1, nx + npmlK× {zj} given by

(
G`(zj , zk)v

)
i

= h

nx+npml∑
i′=−npml+1

G`((xi, zj), (xi′ , zk))vi′ , (2.17)

where v is a vector in Cnx+2npml , and G`(zj , zk) are matrices in C(nx+2npml)×(nx+2npml).
Moreover, (2.17) is the discrete counterpart of∫

R
G`((x, zj), (x

′, zk))v(x′, zk)dx′. (2.18)

8We hope that there is little risk of confusion in overloading zj (local indexing) for zn`
c+j

(global

indexing), where n`c =
∑`−1
j=1 n

j is the cumulative number of points in depth.
9We do not consider the PML points here.

10The set denoted by Ja, bK is equivalent to {i ∈ Z; a ≤ i ≤ b}
11The definition is for a finite difference discretization. We refer the reader to the Appendix C

for a more general definition.
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The interface-to-interface operator G`(zj , zk) is indexed by two depths – following
the jargon from fast methods we call them source depth (zk) and target depth (zj).
In particular, it represents the wavefield sampled at zj produced by a source (in this
case a measure) located at zk.

Definition 2.2. We consider G↑,`j (vn` ,vn`+1), the up-going local incomplete

Green’s integral; and G↓,`j (v0,v1), the down-going local incomplete Green’s integral,
as defined by:

G↑,`j (vn` ,vn`+1) = G`(zj , zn`+1)

(
vn`+1 − vn`

h

)
(2.19)

−
(

G`(zj , zn`+1)−G`(zj , zn`)

h

)
vn`+1,

G↓,`j (v0,v1) = −G`(zj , z0)

(
v1 − v0

h

)
+

(
G`(zj , z1)−G`(zj , z0)

h

)
v0.(2.20)

In the sequel we use the shorthand notation G`(zj , zk) = G`
j,k when explicitly building

the matrix form of the integral systems.
We can observe that Def. 2.2 is the discrete counterpart of (2.7), in which we

used two neighboring traces to define the normal derivative. The expression above is
the result of a discrete Green’s representation formula that can be deduced from a
laborious summation by parts (for more details, see [103]).

Finally, we define the Newton potential as resulting from a local solve inside each
layer.

Definition 2.3. Consider the local Newton potential N `
k applied to a local source

f ` as

N `
k f ` =

n`∑
j=1

G`(zk, zj)f
`
j . (2.21)

By construction N `f ` satisfies the equation
(
H`N `f `

)
i,j

= fi,j for −npml + 1 ≤ i ≤
nx + npml and 1 ≤ j ≤ n`.

Following the notation introduced above, the discrete SIE reduction of the original
discrete Helmholtz equation, issued from (2.6), takes the form:

G↓,`1 (u`0,u
`
1) + G↑,`1 (u`n` ,u

`
n`+1) +N `

1 f ` = u`1, (2.22)

G↓,`
n` (u`0,u

`
1) + G↑,`

n` (u`n` ,u
`
n`+1) +N `

n`f
` = u`n` , (2.23)

u`n` = u`+1
0 , u`n`+1 = u`+1

1 , (2.24)

if 1 < ` < L, with

G↑,1n1 (u1
n1 ,u1

n1+1) +N 1
n1f1 = u1

n1 , u1
n1 = u2

0, u1
n1+1 = u2

1, (2.25)

and

G↓,L1 (uL0 ,u
L
1 ) +NL

nLfL = uL1 , uL−1
nL−1 = uL0 , uL−1

nL−1+1
= uL1 . (2.26)

This was we referred to as Mu = f in (2.11), and whose structure is depicted in
Fig. 3.1 (left).

Finally, the online stage of the algorithm is summarized in Alg. 1.
Algorithm 1. Online computation using the SIE reduction
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1: function u = Helmholtz solver( f )
2: for ` = 1 : L do
3: f ` = fχΩ` . partition the source
4: end for
5: for ` = 1 : L do
6: N `f ` = (H`)−1f ` . solve local problems (parallel)
7: end for

8: f =
(
N 1
n1f1,N 2

1 f2,N 2
n2f2, . . . ,NL

1 fL
)t

. form r.h.s. for the integral system

9: u = (M)
−1

f . solve (2.11) for the traces
10: for ` = 1 : L do
11: u`j = G↑,`j (u`n` ,u

`
n`+1) + G↓,`j (u`0,u

`
1) +N `

j f ` . reconstruct local solutions
12: end for
13: u = (u1,u2, . . . ,uL−1,uL)t . concatenate the local solutions
14: end function

3. The method of polarized traces. In this section, we review succinctly the
formulation of the method of polarized traces at an algebraic level; for further details
see [101]. From Alg. 1 we can observe that the local solves (lines 5-7 in Alg. 1) and
the reconstruction (lines 10-12 in Alg. 1) can be performed concurrently; the only
sequential bottleneck is the solution of (2.11) (line 9 in Alg. 1). For the sake of clarity
we use matrices to explain the preconditioner; however, all the operations can be
performed in a matrix-free fashion, as it will be explained in Section 4.1.

The method of polarized traces was developed to solve (2.11) efficiently. The
method utilizes an extended equivalent SIE formulation which relies on :

• a decomposition of the wave-field at the interfaces in two components, up-
going and down-going;

• integral relations to close the new extended system;
• a permutation of the unknowns to obtain an easily preconditionable system

via classical matrix splitting (see Section 4.2.2 of [84]).
Following the notation introduced in Section 2.2, the resulting extended system (see
Section 3.5 in [103]) can be written as

G↑,`1 (u`,↑
n` ,u

`,↑
n`+1

) + G↓,`1 (u`,↓0 ,u`,↓1 ) + G↑,`1 (u`,↓
n` ,u

`,↓
n`+1

) +N `
1 f ` = u`,↑1 + u`,↓1 , (3.1)

G↓,`
n` (u`,↑0 ,u`,↑1 ) + G↑,`

n` (u`,↑
n` ,u

`,↑
n`+1

) + G↓,`
n` (u`,↓0 ,u`,↓1 ) +N `

n`f
` = u`,↑

n` + u`,↓
n` , (3.2)

G↑,`0 (u`,↑
n` ,u

`,↑
n`+1

) + G↓,`0 (u`,↓0 ,u`,↓1 ) + G↑,`0 (u`,↓
n` ,u

`,↓
n`+1

) +N `
0 f ` = u`,↑0 , (3.3)

G↓,`
n`+1

(u`,↑0 ,u`,↑1 ) + G↑,`
n`+1

(u`,↑
n` ,u

`,↑
n`+1

) + G↓,`
n`+1

(u`,↓0 ,u`,↓1 ) +N `
n`+1f

` = u`,↓
n` , (3.4)

for ` = 1, ..., L; or equivalently

M u = f , u =

(
u↓

u↑

)
; (3.5)

where we write

u↓ =
(
u↓,1n1 ,u

↓,1
n1+1,u

↓,2
n2 , ...,u

↓,L−1
nL−1 ,u

↓,L−1
nL−1+1

)t
, (3.6)

u↑ =
(
u↑,20 ,u↑,21 ,u↑,30 , ...,u↑,L0 ,u↑,L1

)t
, (3.7)

to define the components of the polarized wavefields, and u↓ + u↑ = u. The indices
and the arrows are chosen such that they reflect the propagation direction. For
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example, u↓,`n1 represents the wavefield leaving the layer ` at its bottom, i.e propagating
downwards and sampled at the bottom of the layer.

Fig. 3.1. Sparsity pattern of the SIE matrix in (2.11) (left), and the polarized SIE matrix in
(3.8) (right) .

After a permutation of the entries (see Section 3.5 in [103], in particular Fig. 5),
and some basic algebraic operations, the matrix in (3.5) takes the form

M =

[
D↓ U

L D↑

]
, (3.8)

where D↓ and D↑ are, respectively, block-lower triangular and block-upper triangu-
lar matrices with identity diagonal blocks, thus easily invertible using a block back-
substitution (see Fig. 3.1 (right) ).

Finally, the method of polarized traces seeks to solve the system in (3.5) using
an iterative method, such as GMRES, coupled with an efficient preconditioner issued
from a matrix splitting, which relies on the application of (D↓)−1 and (D↑)−1.

We point out that the blocks of M have a physical meaning. D↓ takes in account

the waves propagating downwards, D↑ considers the waves propagating upwards, U
takes in account the reflections of waves propagating upwards and being reflected
downwards, and U takes in account the down-going waves reflected upwards.

3.1. Gauss-Seidel preconditioner. In this paper, we use a block Gauss-Seidel
iteration as a preconditioner to solve the polarized system in (3.5) instead of the block
Jacobi iteration used in [103]. The Gauss-Seidel preconditioner is given by

PGS

(
v↓

v↑

)
=

(
(D↓)−1v↓

(D↑)−1
(
v↑ − L(D↓)−1v↓

) ) , (3.9)

and the Jacobi preconditioner is given by

P Jac

(
v↓

v↑

)
=

(
(D↓)−1v↓

(D↑)−1v↑

)
. (3.10)

In our experiments, solving (3.8) using GMRES, or alternatively Bi-CGstab, precon-
ditioned with PGS converges twice as fast as using P Jac as a preconditioner, and the
former exhibits a weaker dependence of the number of iterations for convergence with

13



respect to the frequency. We considered other standard preconditioners, such as sym-
metric successive over-relaxation (SSOR) (see section 10.2 in [84]), but they failed to
yield faster convergence, while being more computationally expensive to apply.

We point out that M can be partitioned in smaller blocks. In that case, we can
recover the X and NX sweeps, see Table 3 of [89], when we precondition the system
with a Jacobi or Gauss-Seidel iteration respectively.
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Fig. 3.2. Eigenvalues for the preconditioned polarized systems using the block Jacobi (left) and
the block Gauss-Seidel (right) preconditioner, using the BP2004 model [11] with L = 5, npml = 10,
and ω = 34π (top row) and ω = 70π (bottom row).

Fig. 3.2 depicts the eigenvalues for M preconditioned with PGS and P Jac. We can

observe that for PGS the eigenvalues are more clustered and there exist fewer outliers.
There exists extensive numerical evidence that indicates that a more tight clustering
of the spectrum away from zero can be related to a fewer number of iteration needed
to convergence12 thus explaining the faster convergence of the GMRES iterations
preconditioned with P Jac.

The system in (3.5) is solved using GMRES preconditioned with PGS. Moreover,
as in [103] one can use an adaptive H-matrix fast algorithms for the application of
integral kernels, which in this case, are used for the solution of the local problems
defined in each layer.

4. Nested solver. The main drawback of the method of polarized traces is its of-
fline precomputation that involves computing, storing, and compressing the interface-

12If the preconditioned systems were represented by normal matrices, then from Theorem 35.2
of [91] the clustering of the eigenvalues would explain the fewer number of iteration needed to
convergence. For a more extensive treatment of non-normal matrices, see [54] and references therein.
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to-interface Green’s functions needed to assemble M. In 3D this approach would
become impractical given the sheer size of the resulting matrices. To alleviate this
issue, we present an equivalent matrix-free approach that relies on local solves with
sources at the interfaces between layers.

Fig. 4.1. Nested Decomposition in cells. The orange grid-points represent the PML for the
original problem, the light-blue represent the artificial PML between layers, and the pink grid-points
represent the artificial PML between cells in the same layer. Compare to Fig. 2.1.

As it will be explained in the sequel, the matrix-free approach relies on the fact
that the blocks of M (as well as the blocks of D↓ and D↑) are the restrictions of local
Green’s functions. Thus they can be applied via a local solve (using, for example, a
multifrontal sparse direct solver such as [2, 60, 27] among many others) with sources at
the interfaces. This same observation was used in [103] to reconstruct the solution in
the volume (see Section 2.3, in particular (28), in [103]). However, given the iterative
nature of PGS (that relies on inverting D↓ and D↑ by block-backsubstitution) solving
the local problems naively would incur a deterioration of the online complexity, in
particular, the parallelization. This deterioration can be circumvented if we solve
the local problems inside the layer via the same boundary integral strategy as in the
method of polarized traces, in a nested fashion. This procedure can be written as a
factorization of the Green’s integral in block-sparse factors, as will be explained in
Section 4.2.

The nested domain decomposition approach involves a layered decomposition in
L ∼

√
P layers, such that each layer is further decomposed in Lc ∼

√
P cells, as

shown in Fig. 4.1.

In addition to the lower online complexity achieved by the nested approach, the
offline complexity is much reduced; instead of computing large Green’s functions for
each layer, we compute much smaller interface-to-interface operators between the
interfaces of adjacent cells within each layer, resulting in a lower memory footprint.

The nested approach consists of two levels:

• the outer solver, which solves the global Helmholtz problem, (2.10), using the
matrix-free version of the method of polarized traces to solve (2.11) at the
interfaces between layers;
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• and the inner solver, which solves the local Helmholtz problems at each layer,
using an integral boundary equation to solve for the degrees of freedom a the
interfaces between cells within a layer.

4.1. Matrix-free approach. We proceed to explain how to implement the
method of polarized traces using the matrix-free approach. We point out that the
matrix-free approach is only used in the outer SIE; we still need to assemble and fac-
torize the local systems (or local SIE’s); however, the outer SIE is never assembled.

As stated before, the backbone of the method of polarized traces is to solve (3.8)
iteratively with GMRES using (3.9) as a preconditioner. In this section we explain

how to apply M and PGS in a matrix-free fashion; and we provide the pseudo-code
for the method of polarized traces using the matrix-free approach with the local solves
explicitly identified.

From (3.1), (3.2), (3.3) and (3.4), each block of M is a Green’s integral, and its
application to a vector is equivalent to sampling a wavefield generated by suitable
sources at the boundaries. The application of the Green’s integral to a vector v, in
matrix-free approach, consists of three steps:

• from v we form the sources at the interfaces,
• we perform a local direct solve inside the layer,
• and we sample the solution at the interfaces.

The precise algorithm to apply M in a matrix-free fashion is provided in Alg. 2.
Algorithm 2. Application of the boundary integral matrix M

1: function u = Boundary Integral( v )

2: f̃1 = −δ(zn1+1 − z)v1
n` + δ(zn1 − z)v2

n1 . forming equivalent sources

3: w1 = (H1)−1f̃1

4: u`n` = w`
n` − v`n` . sampling

5: for ` = 2 : L− 1 do

6:
f̃ ` = δ(z1 − z)v`−1

n`−1 − δ(z0 − z)v`1
−δ(zn`+1 − z)v`n` + δ(zn` − z)v`+1

1

. forming equivalent sources

7: w` = (H`)−1f̃ ` . inner solve
8: u`1 = w`

1 − v`1; u`n` = w`
n` − v`n` . sampling

9: end for
10: f̃L = δ(z1 − z)vL−1

nL−1 − δ(z0 − z)vL1 . forming equivalent sources

11: wL = (HL)−1f̃L

12: uL1 = wL
1 − vL1 . sampling

13: end function

Alg. 2 can be easily generalized for M. We observe that there is no data depen-
dency within the for loop, which yields an embarrassingly parallel algorithm.

Matrix-free preconditioner. For the sake of clarity we present a high level
description of the implementation of (3.9) using the matrix-free version.

We use the notation introduced in Section 3 (in particular, (3.6) and (3.7)) to
write explicitly the matrix-free operations for the block Gauss-Seidel preconditioner
in (3.9). Alg. 3 and 4 have the physical interpretation of propagating the waves across
the domains, and Alg. 5 can be seen as the up-going reflections generated by a down-
going wave field. The following algorithms can be easily derived from Section 3.5 in
[103].

Algorithm 3. Downward sweep, application of (D↓)−1

1: function u↓ = Downward Sweep( v↓ )
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2: u↓,1n1 = −v↓,1n1 . invert the diagonal block

3: u↓,1n1+1 = −v↓,1n1+1
4: for ` = 2 : L− 1 do

5: w` = (H`)−1
[
δ(z0 − z)u↓,`−1

n`−1+1
− δ(z1 − z)u↓,`−1

n`−1

]
. inner solve

6: u↓,`
n` = wn` − v↓,`

n` . sample the wavefield and subtract the r.h.s.

7: u↓,`
n`+1

= wn`+1 − v↓,`
n`+1

. sample the wavefield and subtract the r.h.s.
8: end for

9: u↓ =
(
u↓,1n1 ,u

↓,1
n1+1,u

↓,2
0 , ...,u↓,L−1

0 ,u↓,L−1
1

)t
10: end function

Algorithm 4. Upward sweep, application of (D↑)−1

1: function u↑ = Upward sweep( v↑ )

2: u↑,L0 = −v↑,L0 . invert the diagonal block

3: u↑,L1 = −v↑,L1

4: for ` = L− 1 : 2 do

5: w` = (H`)−1
[
−δ(zn`+1 − z)u

↑,`−1
1 + δ(zn` − z)u↑,`−1

0

]
. inner solve

6: u↑,`1 = w`
1 − v↑,`1 . sample the wavefield and subtract the r.h.s.

7: u↑,`0 = w`
0 − v↑,`0 . sample the wavefield and subtract the r.h.s.

8: end for

9: u↑ =
(
u↑,10 ,u↑,11 ,u↑,2n2 , ...,u

↑,L−1
nL−1 ,u

↑,L−1
nL−1+1

)t
10: end function

Algorithm 5. Upward Reflections, application of L

1: function u↑ = Upward Reflections( v↓ )
2: for ` = 2 : L− 1 do

3:
f ` = δ(z1 − z)v↓,`0 − δ(z0 − z)v↓,`1

−δ(zn`+1 − z)v
↓,`+1
1 + δ(zn` − z)v↓,`+1

0

4: w` = (H`)−1f ` . inner solve

5: u↑,`1 = w`
1 − v↓,`1 . sample the wavefield and subtract the identity

6: u↑,`0 = w`
0 . sample the wavefield

7: end for
8: fL = δ(z1 − z)v↑,L0 − δ(z0 − z)v↑,L1

9: wL = (HL)−1fL . local solve

10: u↑,L1 = wL
1 − v↓,L1 . sample the wavefield and subtract the identity

11: u↑,L0 = wL
0 . sample the wavefield

12: u↑ =
(
u↑,20 ,u↑,21 ,u↑,3n2 , ...,u

↑,L−1
nL−1 ,u

↑,L
nL+1

)t
13: end function

We observe that the for loop in line 2-7 in Alg. 5 is completely parallel. On
the other hand, in Alg. 3 and 4, the data dependency within the for loop forces
the algorithm to run sequentially. The most expensive operation is the inner solve
performed locally at each layer. We will argue in Section 4.2 that using a nested
approach, with an appropriate reduction of the degrees of freedom, we can obtain a
highly efficient inner solve, which yields a fast application of the preconditioner.

Matrix-free solver. We provide the full algorithm of the matrix-free solver
using the method of polarized traces coupled with the Gauss-Seidel preconditioner.
The main difference with the original method of polarized traces in [103] is that we
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use Algs. 2, 3, 4, and 5 within the GMRES iteration (line 8 of Alg. 6) instead of
compressed matrix-vector multiplications.

Algorithm 6. Matrix-free polarized traces solver

1: function u = Matrix-free solver( f )
2: for ` = 1 : L do
3: f ` = fχΩ` . partition the source

4: w` =
(
H`
)−1

(f `) . solve local problems
5: end for

6: f =
(
w1
n1 ,w2

1, ...,w
L
1

)t
; f0 =

(
w1
n1+1,w

2
0, ...,w

L
0

)t
7: f =

(
f
f0

)
. form the r.h.s. for the polarized integral system

8:

(
u↓

u↑

)
= u =

(
PGSM

)−1
PGSf . solve using GMRES

9: u = u↑ + u↓ . add the polarized components
10: f̃1 = f1 − δ(zn1+1 − z)u1

n1 + δ(zn1 − z)u2
1 . reconstruct local solutions

11: u1 =
(
H1
)−1

(f̃1)
12: for ` = 2 : L− 1 do

13:
f̃ ` = f ` + δ(z1 − z)u`−1

n`−1 − δ(z0 − z)u`1
−δ(zn`+1 − z)u`n` + δ(zn` − z)u`+1

1

14: u` =
(
H`
)−1

(f̃ `)
15: end for
16: f̃L = fL + δ(z1 − z)uL−1

nL−1 − δ(z0 − z)uL1
17: uL =

(
HL
)−1

(f̃L)
18: u = (u1,u2, . . . ,uL−1,uL)t . concatenate the local solutions
19: end function

The matrix-free solver in Alg. 6 has three stages :

• lines 2-7: preparation of the r.h.s. for the outer polarized integral system,
this can be done concurrently within each layer;

• lines 8-9: solve for the traces at the interfaces between layers, using precondi-
tioned GMRES, and applying M and the preconditioner via the matrix-free
approach with Algs. 2, 3, 4 and 5;

• lines 10-18: reconstruction of the solution inside the volume at each layer,
which can be performed independently of the other layers.

4.2. Nested inner and outer solver. In the presentation of the matrix-free
solver (Alg. 6), we have extensively relied on the assumption that the inner systems
H` can be solved efficiently in order to apply the Green’s integrals fast. In this section
we describe the algorithms to compute the solutions to the inner, or local, systems
efficiently, and then we describe how the outer solver calls the inner solver.

From the analysis of the rank of the off-diagonal blocks of the Green’s functions
we know that the Green’s integrals can be compressed in a way that results in a
fast application in O(n3/2) time (see Section 5 in [103]), but this approach requires
precomputation and storage of the Green’s functions. The matrix-free approach in
Alg. 6 does not need expensive precomputations, but it would naively perform a di-
rect solve in the volume (inverting H`), resulting in an application of the Green’s
integral in O(N/L) complexity up to logarithmic factors (assuming that a good di-
rect method is used at each layer). This becomes problematic when applying the
preconditioner, which involves O(L) sequential applications of the Green’s integrals
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as Algs. 3 and 4 show. This means that the unaided application of the precondi-
tioner using the matrix-free approach would result in an algorithm with linear online
complexity, in particular, the method would behave similarly to a sweeping-like pre-
conditioner. The nested strategy (that we present below) mitigates this issue resulting
in a lower O(Lc(n/L)3/2) (up to logarithmic factors) complexity for the application
of each Green’s integral, where Lc is the number of cells per layer.

f ` u`

Fig. 4.2. Sketch of the application of the Green’s functions using a nested approach. The
sources are in red (left) and the sampled field in green (right). The application uses the inner
boundaries as proxies to perform the solve.

We follow the matrix-free approach of Alg. 6, but instead of a direct solver to
invert H`, we use a nested solver, i.e., we use the same reduction used in Ω to each
layer Ω`. We reduce the local problem at each layer to solving a discrete integral
system analog to (2.11) with a layered decomposition in the transverse direction given
by

M`u` = f `, for ` = 1, .., Lc. (4.1)

We suppose that we have Lc ∼ L ∼
√
P cells in each layer.

The nested solver uses the inner boundaries, or interfaces between cells, as proxies
to perform the local solve inside the layer efficiently. The efficiency can be improved
when the inner solver is used in the applications of the Green’s integral within the
preconditioner. The improved efficiency stems from the localization of the sources,
and the sampling of the solution on the interfaces, which allows us to precompute
and compress some for the operations. In that case, the application of the Green’s
integral can be decomposed into three steps:

• using precomputed Green’s functions at each cell we evaluate the wavefield
generated from the sources to form f ` (from red to pink in Fig. 4.2 (left));
this operation can be represented by a sparse block matrix M`

f ;

• we solve (4.1) to obtain u` (from pink to blue in Fig. 4.2 (right));
• finally, we use the Green’s representation formula to sample the wavefield at

the interfaces (from blue to green in Fig. 4.2), this operation is represented
by another sparse-block matrix M`

u.

Using the definition of the incomplete integrals in Section 2.2 the algorithm de-
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scribed above leads to the factorization
G↓,`0 (v0,v1) + G↑,`0 (vn` ,vn`+1)

G↓,`1 (v0,v1) + G↑,`0 (vn` ,vn`+1)

G↓,`
n` (v0,v1) + G↑,`

n` (vn` ,vn`+1)

G↓,`
n`+1

(v0,v1) + G↑,`
n`+1

(vn` ,vn`+1)

 = M`
u

(
M`
)−1

M`
f ·


v0

v1

vn`

vn`+1

 , (4.2)

in which the blocks of M`
f and M`

u are dense, but compressible in partitioned low

rank (PLR)13 form.

Algorithms. We now provide the algorithms in pseudo-code for the the inner
solver, Alg. 7, and we provide the necessary modifications to Alg. 6 for the outer
solve. In addition, we provide a variant of the inner solver that is crucial to obtain
the online complexity mentioned at the beginning of the paper (i.e. O(N/P ) provided
that P = O(N1/5)).

In order to reduce the notational burden, we define the inner solve using the
same notation as before. We suppose that each layer Ω` is decomposed in Lc cells,
noted {Ω`,c}Lc

c=1. We extend all the definitions from the matrix-free solver to the inner
solver, by indexing the operations by ` and c, in which, ` stands for the layer-index
and c for the cell-index within the layer.

For each Ω`, we apply the variable swap x̃ = (z, x), which is noted by R such
that R2 = I. Under the variable swap, we can decompose Ω` in Lc layers, or cells,
{Ω`,c}Lc

c=1 to which we can apply the machinery of the boundary integral reduction
at the interfaces between cells. The resulting algorithm has the same structure as
before. The variable swap is a suitable tool that allows us to reuse to great extent
the notation introduced in [103]. Numerically, the variable swap just introduced is
implemented by transposing the matrices that represent the different wavefields.

Algorithm 7. Inner Solve, for applying (H`)−1 in Algs. 3, 4 and 5

1: function w = Inner Solver`( f `)
2: g` = R ◦ f ` . variable swap
3: for c = 1 : Lc do
4: g`,c = gχΩ`,c . partition the source
5: end for
6: for c = 1 : Lc do
7: N `,cg`,c = (H`,c)−1g`,c . solve local problems
8: end for

9: g` =
(
N `,1
n1 g`,1,N `,2

1 g`,2,N `,2
n2 g`,2, . . . ,N `,Lc

1 g`,Lc

)t
. form r.h.s.

10: v` =
(
M`
)−1

g` . solve for the traces (4.1)

11: for c = 1 : Lc do . local reconstruction
12: v`,cj = G↑,`,cj (v`,c

n` ,v
`,c
n`+1

) + G↓,`,cj (v`,c0 ,v`,c1 ) +N `,c
j g`,c

13: end for
14: v` = (v`,1,v`,2, . . . ,v`,Lc−1,v`,Lc)t . concatenate the local solutions
15: w = R ◦ v` . variable swap
16: end function

To obtain the nested solver, we modify Alg. 6, and the algorithm it calls, by
replacing (H`)−1 by the inner solver.

13A PLR matrix is a H-matrix obtained by an adaptive dyadic partitioning and multilevel com-
pression, see Section 3 in [103]

20



• If the support of the source is the whole layer and the wavefield is required in
the volume, we use the inner solve as prescribed in Alg. 7 without modifica-
tions. In Alg. 6 we modify lines 4, 11, 14, and 17, in which (H`)−1 is replaced
by Alg. 7.

• If the source term is concentrated at the interfaces between layers, and the
wavefield is needed only at the interfaces, we reduce the computational cost
by using a slight modification of Alg. 7, according to (4.2). In this variant, the
local solves in line 7 of Alg. 7 (which is performed via a LU back-substitution)
and the reconstruction (lines 11 to 15 in Alg. 7), are replaced by precomputed
operators as it was explained above. Within the GMRES loop (line 10 in
Alg. 6), we replace (H`)−1 with the variant of Alg. 7 following (4.2), in line
5 of Alg. 3; line 4 of Alg. 4, and lines 4 and 9 of Alg. 5.

The choice of algorithm to solve (4.1) and to apply the Green’s integrals dictates
the scaling of the offline complexity and the constant of the online complexity. We can
either use the method of polarized traces or the compressed-block LU solver, which
are explained below.

4.2.1. Nested polarized traces. To efficiently apply the Green’s integrals us-
ing Alg. 7, we need to solve (4.1) efficiently. One alternative is to use the method
of polarized traces in a recursive fashion to solve the system at each layer. We call
this approach the method of nested polarized traces. Following [103] this approach
has the same empirical scalings, at the inner level, as those found in [103] when the
blocks are compressed in PLR form.

Although, as it will be explained Section 4.3, in this case the complexity is lower,
we have to iterate inside each layer to solve each system, which produces large con-
stants for the application of the Green’s integrals in the online stage.

4.2.2. Inner compressed-block LU. An alternative to efficiently apply the
Green’s integrals via Alg. 7, is to use the compressed-block LU solver (see Chapter
3 in [101]) to solve (4.1). Given the banded structure of M` (see Fig. 3.1 (left)), we
perform a block LU decomposition without pivoting. The resulting LU factors are
block sparse and tightly banded. We have the factorization

M` = L` U`, (4.3)

which leads to

G` = M`
u(U`)−1(L`)−1M`

f , (4.4)

in which G` represents the linear operator at the left-hand-side of (4.2). Following
Section 3 in [101],(U`)−1(L`)−1 can be done in the same complexity as the nested
polarized traces, at the price of a more thorough precomputation. The improved com-
plexity is achieved by inverting the diagonal blocks of the LU factors, thus reducing
(U`)−1 and (L`)−1 to a sequence of matrix-vector multiplications that are further
accelerated by compressing the matrices in PLR form.

The main advantage of the inner compressed solver with respect to using the
method of polarized traces in the layer solve, is that we do not need to iterate and
the system to solve is half the size. Therefore, the online constants are much lower
than using the method of polarized traces for the inner solve.

4.3. Complexity. Table 4.1 summarizes the complexities and number of pro-
cessors at each stage of the nested polarized traces method in Section 4.2.1.
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Step Nnodes active Complexity per node Communication

LU factorizations O(P ) O
(
(N/P + log(N))3/2

)
O (1)

Green’s functions O(P ) O
(
(N/P + log(N))3/2

)
O (1)

Local solves O(P ) O
(
N/P + log(N)2

)
O (1)

Sweeps 1 O(P (N/P + log(N)2)α) O(PN1/2)
Reconstruction O(P ) O

(
N/P + log(N)2

)
O (1)

Table 4.1
Number of nodes active, complexity, and communication cost of the different steps of the pre-

conditioner, in which α depends on the compression of the local matrices, thus on the scaling of the
frequency with respect to the number of unknowns. The value of α depends on the compression rate
of the discrete integral operator, which depends on the scaling of ω, N , and the maximum rank of
the blocks (see Section 5.3 of [103], in particular, Table 4). Typically α = 3/4.

The runtimes and complexities presented in Table 4.1 use the following setup:
We suppose that we have available O(P ) nodes, and they are organized following the
domain decomposition in Fig. 4.1. In particular, we have L ∼

√
P layers, O(

√
P )

nodes per layer, and O(1) nodes per cell, i.e., Lc ∼
√
P and L · Lc ∼ P . We suppose

that the factorized matrices, and compressed Green’s functions are local to the nodes
associated to a cell. The cells communicate only with theirs neighbors induced by the
topology of the decomposition. For simplicity we do not count the logarithmic factors
from the nested dissection; however, we consider the logarithmic factors coming from
the extra degrees of freedom in the PML14.

4.3.1. Offline Complexity. The offline stage is composed of the LU factoriza-
tions at each cell containing O(N/P +log(N)) points, the computation of the Green’s
function that involves solving O(n/

√
P ) local systems in each cell, and the compres-

sion of the resulting Green’s functions in PLR form. The complexities for each node
are presented in From Table 4.1; furthermore, the compression of the Green’s func-
tions takes a negligible O(n/

√
P log(n/

√
P )) time per node (see Table 2 and Section

5.1 in [103]) using randomized methods (cf. [73]) to accelerate the compression step.
From Table 4.1, the offline stage is embarrassingly parallel at the cell level and it

has an overall runtime O
(
(N/P )3/2

)
, up to logarithmic factors, as stated in Table 1.1.

When using the inner compressed-block LU method, we have the same complexity
but with an extra O(N3/2/P ) cost in the offline stage, making it comparable to the
method of polarized traces in [103], although with a lower online complexity.

4.3.2. Online Complexity. For the online stage, the runtime of the local solves
and the reconstruction in each cell is independent of the frequency and embarrassingly
parallel; the runtime is then dominated by the complexity of multifrontal methods,
as stated in Table 4.1.

The sweeps are however, fully sequential, as shown in Table 4.1. Moreover, given
the nested nature of the preconditioner, we have two kinds of sweeps:

• the inner sweeps within a layer that are used to apply the Green’s integral in
the outer SIE,

• and the outer sweeps, which sweeps from layer to layer applying the Green’s
integrals in a matrix-free fashion; therefore, relying on the inner sweeps.

The runtime of the inner sweeps depends on the compression rate of the integral
operators involved in the local SIE, which is given by α that is exponent of the

14They are more visible in the runtime scalings presented below.
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empirical asymptotic complexity of the application of integral operators with respect
to N . The value of α depends on the scaling between the frequency and the number
of degrees of freedom per dimension. If the frequency scales as ω ∼

√
n, the regime

in which second order finite-differences and Q1 finite elements are expected to be
quasi-optimal, we empirically obtain α = 5/8 (see Fig. 13 in [103]); however, we
assume the more conservative value α = 3/4. The latter is in better agreement with
a theoretical analysis of the ranks of the off-diagonal blocks of the Green’s functions
under a geometrical optics approximation (see Section 5 in [103], in particular, Table
4 and Lemma 7; for further details on the compressibility of Green’s functions for
smooth heterogeneous media see [35]).

In such scenario, the complexity of the application of the Green’s integral at the
layer level depends on the complexity of the application of each of the factors in the
right-hand side of (4.2), i.e., M`

u, (M`)−1, and M`
f .

For the operators M`
u and M`

f , we can compress theirs blocks in PLR format

(see Section 5 of [103]). From (4.2) and Fig. 4.2, we can clearly see that M`
u and M`

f

are integral operators with blocks involving the numerical Green’s function local to
each cell sampled at the interfaces. Each block can be represented by a matrix of size
(n/L+ log(n))× (n/L+ log(n))15, thus after compression it is possible to apply each
block in O((n/L+ log(n))2α) time. This last statement is backed from the extensive
numerical experiments whose results are summarixed in Table 4 of [103], in which the
complexity of the application of a compressed n × n matrix issued from the discrete
Green’s function, is O(n2α) or, following the fact that N = n2, O(Nα). Finally,
given that the operators M`

u and M`
f have Lc blocks, then they can be applied in

O(Lc(n/L+ log(n))2α) time.

For the application of (M`)−1, the remaining term in (4.2), we can solve (4.1)
using either the compressed-block LU or the nested polarized traces in O(Lc(n/L +
log(n))2α) time. We follow the same procedure as in the method of polarized traces:
we build an extended local SIE, and we solve the local SIE iteratively using precondi-
tioned GMRES. The solve is accelerated by compressing the blocks of the local SIE.
Each block of the local SIE is represented by a (n/L+log(n))×(n/L+log(n)) matrix,
thus, following Section 4 in [103], the application of each block can be performed in
O((n/L+ log(n))2α) time. Therefore, given that each layers has Lc cells, the applica-
tion of the local SIE and the local preconditioner after compression can be performed
in O(Lc(n/L + log(n))2α) time. For the case of the compressed-block LU variant a
similar argument provides the same asymptotic complexity.

This yields a runtime of O(Lc(n/L+log(n))2α) for each application of the Green’s
integral, at the layer level, using the factorization in (4.2).

Finally, to apply the Gauss-Seidel preconditioner on the outer SIE, we need to per-
form outer sweeps, each requiring O(L) applications of the Green’s integrals, resulting
in a runtime of O(L ·Lc(n/L+ log(n))2α) to solve (3.5). Using the fact that L ∼

√
P ,

Lc ∼
√
P , N = n2 and adding the contribution of the other steps of the online stage;

we have that the overall online runtime is given by O(P 1−αNα +P log(N)α +N/P +
log(N)2). Supposing that P = O(N) and neglecting the logarithmic factors we have
that the overall runtime is given by O(P 1−αNα +N/P ) as stated in Table 1.1.

Moreover, if α = 3/4, then we have that the online complexity is O(N/P ) (up
to logarithmic factors) provided that P = O

(
N1/5

)
. The communication cost for

15The logarithmic factor comes from the fact that the traces are taken transversally to each layer,
then we need to consider the extra PML nodes, which grow as O(logn).
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Fig. 4.3. BP2004 geophysical benchmark model [11]

the online part is O(nP ), and the memory footprint is O(P 1/4N3/4 + P log(N)3/4 +
N/P + log(N)2), which represents an asymptotic improvement with respect to [103],
in which the memory footprint is O(PN3/4 +N/P + log(N)2) .

It was already explained in [103] why α = 3/4 is a reasonable assumption. Empir-
ically, α is often closer to 5/8, but this seems to be an overly optimistic pre-asymptotic
scaling. Theoretically, the case can be made for α = 3/4 in the continous geometri-
cal optics scenario when G(x, y) = Aω(x, y)eiωΦ(x,y) for smooth Aω(x, y) and Φ(x, y)
except when x 6= y, and Aω(x, y) further depending on ω in a harmless polyhomo-
geneous way 16. When ω ∼ n, then it is easy to show (by factoring out the leading
plane wave) that the largest constant-rank blocks have size O(

√
ω) = O(

√
n). Further

bookkeeping on the partitioned low-rank structure induced by these blocks shows that
the compressed matrix-vector multiplication can be realized in O(n3/2) = O(N3/4)
operations, yielding α = 3/4. This argument is not rigorous for two reasons: (i)
geometrical optics may not be a good approximation, and (ii) it does not take into
account the fact that the Green’s function for the discretized problem may be far from
that of the PDE. If the Green’s functions are not compressed, it is clear that α = 1.

5. Numerical results. The code used for the numerical experiments was writ-
ten in MATLAB, and the experiments were performed in a dual socket server with
two Xeon E5-2670 and 384 GB of RAM. Given the lack of parallelism of the MATLAB
implementation we only benchmark the sequential bottleneck of the online compu-
tation, which is the only non embarrassingly parallel operation. Following Table 4.1
the communication cost is asymptotically negligible, so we focus the benchmarks on
the number of iterations needed for convergence, and on the compressibility of the
Green’s functions at the inner level.

In this section we provide numerical evidence of the following claims:

• the fast convergence of the method of polarized traces for a typical geophysical
benchmark model and its agnosticity to the type of sources;

• the behavior of the preconditioner using two different matrix splittings and
different Krylov iterative methods to solve the outer problem;

• the dependence of the number of iteration to convergence with respect to the
frequency, the contrast of the medium, the number of subdomains and the
number of layers in layered media.

• the effectiveness of the compression of the local matrices to reduce the run-
time,

• the complexity reduction due to the compression of the local matrices coupled
with a proper scaling of the number of subdomains.

16I.e., Aω(x, y) has no highly oscillatory components depending on ω.
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N ω/2π [Hz] L× Lc u0 = 0 u0 = rand
60× 169 1.25 6× 3 3 5
120× 338 2.5 12× 6 4 6
239× 675 5.0 24× 12 5 8
478× 1349 10.0 48× 24 6 10
955× 2697 20.0 96× 48 6 12

Table 5.1
Maximum number of iterations required to reduce the relative residual to 10−5, using GMRES

with the Gauss-Seidel preconditioner, for 50 realizations of a random source, using a zero initial
guess an a randomly generated initial guess. In this case, f = ω/2π ∼ n; the number of layers and
the number of cells inside each layer grows as n; the number of points in the PML scales as log(N),
and the sound speed is given by the BP 2004 model (see [11]).

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Fig. 5.1. Two iterations of the preconditioner, from left to right and top to bottom: initial
guess with only local solves; first iteration, second iteration, solution. The background model is given
by the BP 2004 model [11] shown in Fig. 4.3.

5.1. Fast convergence. Fig. 5.1 depicts the fast convergence of the method
when using the BP2004 model17 (see Fig. 4.3), point sources and a layered domain
decomposition with vertical layers. After a couple of iterations the exact and ap-
proximated solutions are indistinguishable to the naked eye. Fig. 5.2 depicts the
fast convergence of the method of polarized traces when using the BP2004 model
as wave-speed, but with a global random source. We can observe that the method
converges extremely fast, after 2 iterations the exact and approximated solutions are
indistinguishable to the naked eye. Even though most of the experiments shown in
this manuscript were performed using randomly located point sources, which are of
paramount importance in Geophysics to approximate seismic sources, the behavior
of the solver is agnostic to the form and location of the source as shown in Table
5.2, which presents the number of iterations to convergence, when using a randomly
located point source, or a global source randomly generated by the rand function in
MATLAB.

5.2. Convergence using different matrix splittings and Krylov solvers.
In the prequel we have defined two different preconditioners: the block Jacobi (3.10),
and block Gauss-Seidel preconditioner (3.9); which are essentially different block ma-
trix splittings of the polarized system in (3.8). We compare the performance of the
both preconditioners for two different Krylov subspace methods used to solve the po-

17The 2004 BP model is a typical benchmark model in the Geophysical community, and it includes
simplified geologic features usually found in the Eastern/Central Gulf of Mexico and off-shore Angola.
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Fig. 5.2. Two iterations of the preconditioner using a random source supported in the physical
domain, from left to right and top to bottom: initial guess with only local solves; first iteration,
second iteration, solution. The background model is given by the BP 2004 model [11] shown in
Fig. 4.3.

N ω/2π [Hz] L× Lc s = δ(x) s = rand
60× 169 1.25 6× 3 3 3
120× 338 2.5 12× 6 4 4
239× 675 5.0 24× 12 4 5
478× 1349 10.0 48× 24 5 5
955× 2697 20.0 96× 48 5 6

Table 5.2
Maximum number of iterations required to reduce the relative residual to 10−5, using GMRES

with the Gauss-Seidel preconditioner, for 50 realizations of a randomly located point source and a
randomly generated global source. In this case, f = ω/2π ∼ n; the number of layers and the number
of cells inside each layer grows as n; the number of points in the PML scales as log(N), and the
sound speed is given by the BP 2004 model (see [11]).

larized system. In particular, the polarized system is solved iteratively using either
GMRES or Bi-CGstab [95] preconditioned with either the Gauss-Seidel preconditioner
(3.9) or the Jacobi preconditioner (3.10). Table 5.3 summarizes the typical behav-
ior of the different combinations of preconditioners and Krylov solvers; it shows the
number of iterations needed to converge when the polarized system (3.5) is solved for
different frequencies and number of subdomains using the BP 2004 model.

We can observe that for this particular model, the number of iterations to con-
verge depends weakly on the frequency and the number of subdomains when a hori-
zontally layered decomposition is used. Moreover, when the system is preconditioned
with PGS the iterative solver converge twice as fast as when using P Jac as a pre-
conditioner, which can be loosely explained by the clustering of the eigenvalues of
the preconditioned systems, as shown in Fig. 3.2. Table 5.3 shows that the number
of iterations for Bi-CGstab are half the number of iterations for GMRES; however,
Bi-CGstab needs two applications of the matrix and preconditioner per iteration, re-
sulting in a comparable computational cost, albeit with a smaller memory foot-print
for Bi-CGstab.

We point out that we used a zero initial guess for both GMRES and Bi-CGstab
iterative solvers. Even though it is possible to use a random initial guess, it is not
recommended given that the number of iterations will increase compared to a zero
initial guess. Table 5.1 shows that the number of iterations to convergence using a
random initial guess (generated using the rand command in MATLAB) retains the
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N ω/2π [Hz] L× Lc GSgmres Jgmres GSbicgstab Jbicgstab
120× 338 2.50 9× 3 5 10 2.5 5
239× 675 5.0 18× 6 6 11 3 6
478× 1349 10.0 27× 9 6 12 3.5 6.5
955× 2697 20.0 36× 12 8 15 4 7
1910× 5394 40.0 45× 15 8 17 4.5 9.5

Table 5.3
Number of iterations required to reduce the relative residual to 10−7, using GMRES and

BiCGstab preconditioned with the Gauss-Seidel and Jacobi preconditioners. f = ω/2π ∼ n; the
number of points in the PML scales as log(N), and the sound speed is given by the BP 2004 model
(see [11]).

same asymptotic behavior as before, albeit with larger constants.

5.3. Layered media. Although the asymptotic behavior of the sweeping type
solvers seems to be weakly dependent of the frequency, the number of subdomains,
the source, and the initial guess, this kind of methods can be very sensitive to the
medium and to the orientation of the layered decomposition. One typical example of
the former is a medium containing large resonant cavities, for which the number of
iterations becomes highly frequency dependent. One example of the later is layered
media with multi-scale structures at the wavelength level: if the domain decomposi-
tion is performed perpendicularly to the layers in the media (i.e., the layers in the
decomposition are perpendicular to the layers present in the medium), the empirical
behavior of the method remains the same; however, if the domain decomposition is
performed parallel to the layers, there is a detriment on the convergence rate.

We showcase this behavior using two different parts of the Marmousi2 [71] model.
We use the central part of the model, as in Fig. 5.3 (left), in which we observe several
layers that span different length-scales, but without a preferred orientation; and the
left-most part of the model, as in Fig. 5.3 (right), in which most of the layers are
oriented horizontally. Table 5.4 shows the number of iterations to convergence for
each portion of the model, using a decomposition with either horizontal or vertical
layers. When the medium does not posses a preferred orientation, both decomposi-
tions performs roughly the same; however, when there is a preferred orientation the
decomposition with layers perpendicular to the preferred orientation performs bet-
ter. This difference in the performance is due to the increasing number of layers and
frequency simultaneously; in fact, the number of iterations depends weakly on the
frequency when the number of layers is constant as shown in Table 5.5.

We interpret the detriment of the convergence rate as follows: from [103] it is
known that the performance of the method of polarized traces is roughly proportional
to energy scattered back at each sweep compared to the energy transmitted, which is
closely linked to the number of reflections of the wave-field when interacting with the
medium. In particular, the interactions within each subdomain are treated seamlessly
using a direct solver, and interactions across subdomains are treated iteratively. The
method handles the propagating waves in a sequential fashion by sweeping the waves
traveling across the subdomains, and treating the reflections in an ulterior sweep in
the opposite direction. For example, if the medium is constant, then at each sweep
most of the energy of the waves will be transmitted across subdomains, up to a small
amount that is reflected given the imperfection of the absorbing boundary conditions.
However, if the medium exhibits discontinuities in the wave speed, which will produce
new reflexions, then energy will be scattered back. These new reflections need to be
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Fig. 5.3. Truncated Marmousi models: left: the central part without a preferred layered
structure, right: left-most part, with a horizontally layered structure.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1

-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1

-0.05

0

0.05

0.1

Fig. 5.4. Solutions to the Marmousi2 patches for ω/(2π) = 35: left: solution to the Helmholtz
equation for the central patch of the Marmousi2 model, right: solution to the Helmholtz equation for
the left-most patch of the Marmousi2 model

propagated in an ulterior sweep in the opposite direction, which will provoke new
reflections that need to be propagated in a subsequent sweep and so on.

If the medium presents a handful of layers as in Fig. 5.5, and the frequency and the
number of sub-domains increases we have that most of the subdomains will not present
any interior reflections. Thus, during the sweeps the waves are transmitted seamlessly
across most subdomains until they hit a subdomain containing a discontinuity, in
which a reflection is created, which will need to be transmitted in an ulterior sweep.
In this case, the number of reflections in the domain is mostly frequency independent.
Therefore, provided that enough absorption is used for the transmission conditions
between subdomains, the performance of the method is preserved as shown in Table
5.6.

It is well known that waves interact with structures that have a characteristic
length of the same order than the wavelength. In the case of a layered medium
with multi-scale structures, as the one presented in Fig. 5.3 (right), as the frequency
increases, or the wavelength decreases, the waves will increasingly interact with in-
creasingly thinner layers thus increasing the amount of energy scattered back.

If the frequency increases but the number of layers is constant, then the increased
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N ω/2π L Itercent,vert Itercent,hor Iterlay,vert Iterlay,hor

88× 88 8 6 4 4 3 4
175× 175 17 12 4 5 3 6
350× 350 35 24 5 6 4 7
700× 700 70 48 6 7 4 7

1400× 1400 140 96 7 8 5 12
2800× 2800 280 192 8 9 7 18

Table 5.4
Number of iterations required to reduce the relative residual to 10−5, using GMRES precondi-

tioned with the Gauss-Seidel preconditioner, in two different patches of the Marmousi2 model [71]
using either a horizontal or vertical layered decomposition. The subscripts indicate in which medium
the Helmholtz equation was solved: lay stands for the layered patch in Fig. 5.3 right; whereas, cent
stands for the centered patch in Fig. 5.3 left. f = ω/2π ∼ n; the number of layers scales as L ∼ n;
and the number of points in the PML scales as log(N).

N ω/2π L Iterlay,vert Iterlay,hor

88× 88 8 6 3 4
175× 175 17 6 3 5
350× 350 35 6 4 6
700× 700 70 6 4 6

1400× 1400 140 6 4 6
2800× 2800 280 6 5 6

Table 5.5
Number of iterations required to reduce the relative residual to 10−5, using GMRES precon-

ditioned with the Gauss-Seidel preconditioner, using the layered patch of the Marmousi2 model
[71] as depicted in Fig. 5.3 (right), using either a horizontal or vertical layered decomposition.
f = ω/2π ∼ n; the number of layers is fixed and equal to 6; and the number of points in the PML
scales as log(N).

number of interaction due to the increment on the frequency are handled with a
direct method within each subdomain, the only interactions handled iteratively are
the transmission and reflection between subdomains, which remains almost constant
as the frequency increases, as depicted by Table 5.5.

However, if the number of domains increases as the frequency increases, then the
orientation of the domain decomposition is crucial. If the orientation is perpendicular
to the layered media, then, as the frequency increases, the energy scattered from the
micro structures is efficiently handled via a direct method within each subdomain.
The interaction between subdomains will be composed of mostly transmitted waves
propagating within each of the layers present in the medium. These interactions are
efficiently handled by the sweeps. In such cases the method retains its performance
as shown in Table 5.4. However, if the domain decomposition aligned to the layered
media, then the method needs to properly handle all the internal reflection between
the increasingly numbers of subdomains in a sequential fashion, thus resulting in an
increasingly number of iterations to convergence as shown in Table 5.4.

Finally, the performance of the method is not only function of the number of
layers, it is function of the strength of the reflections, which is directly linked to the
contrast between layers. For example in a layered medium with strong contrast, the
amount of energy scattered back will increase, meaning that the sweeps needs to take
in account more reflections, as shown in Table 5.6.

We point out that in these numerical experiments we used L ∼ n, which is
a much more astringent conditions that the one used in the nested version of the
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Fig. 5.5. Layered media used for the numerical experiments with different contrast, the left
medium has a maximum contrast of 2.0 in the wave speed, and the right medium has a maximum
contrast of 3.0.

N ω/2π L Iter2.0 Iter3.0

60× 60 6 4 2 2
120× 120 12 8 2 2
240× 240 24 16 2 3
480× 480 48 32 3 4
960× 960 96 64 3 5

1920× 1920 192 128 5 7
Table 5.6

Number of iterations required to reduce the relative residual to 10−5, using GMRES precon-
ditioned with the Gauss-Seidel preconditioner, for the layered models in Fig. 5.5, using a vertical
domain decomposition, for two different contrasts. f = ω/2π ∼ n; the number of layers scales as
L ∼ n; and the number of points in the PML scales as log(N).

algorithm, in which L ∼ Lc ∼
√
P , where P = O(N1/5). In order to keep an online

complexity sublinear, the number of layers and cells in the decomposition grows slowly
with respect to the frequency. This fact coupled with the very efficient transmission
conditions between cells, greatly attenuates the grow in the number of iterations for
the nested solver within a layer, even in the case of multi-scale layers with a preferred
orientation.

5.4. Fast methods. Table 5.3 depicts the efficiency of the preconditioner mea-
sured in the number of iterations for convergence; however, in order to obtain sub-
linear runtimes we need to compress the integral kernels. As noted in [103] the scaling
of the number of degrees of freedom with the frequency is critical to obtain the cor-
rect asymptotic compression rate. If the scaling is too aggressive, as in Table 5.3, the
pollution error will be overwhelming and the compression rate of the integral operator
will suffer. In order to account for the pollution error, in Table 5.7 we use the scaling
n ∼ ω2, which is known to be quasi-optimal for finite-elements and finite differences
(even though it is widely believed that n ∼ ω3/2 is enough, cf. [5])

Table 5.7 shows the sublinear18 O(P 1−αNα + P log(N)α) scaling of the runtime

18The same scaling hold for other typical geophysical benchmarks such as Marmousi2 [71], in
which convergence is achieved in 4-6 iterations.
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N ω/2π [Hz] 6× 2 24× 8 42× 14 60× 20
120× 338 2.50 (4) 0.42 (4) 8.30 (4) 24.8 (4) 51.7
239× 675 3.56 (4) 0.74 (5) 9.15 (5) 26.1 (5) 52.8
478× 1349 5.11 (4) 1.52 (5) 11.6 (5) 30.8 (5) 59.9
955× 2697 7.25 (5) 3.32 (5) 17.9 (6) 38.5 (6) 68.8
1910× 5394 10.3 (5) 6.79 (6) 29.6 (6) 58.7 (6) 98.3

Table 5.7
Number of GMRES iterations (bold) required to reduce the relative residual to 10−5, along with

average execution time (in seconds) of one GMRES iteration using the compressed direct method,
for different N and P = L× Lc. The frequency is scaled such that f = ω/2π ∼

√
n, the number of

points in the PML scales as log(N), and the sound speed is given by the BP 2004 model (see [11]).
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t[
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Nested polarized traces

Compressed-block LU

O(N5/8 )

O(N5/8 )

Fig. 5.6. Runtime for one GMRES iteration using the two different nested solves, for L = 9
and Lc = 3, ω ∼

√
n, in which the maximum ε-rank in the adaptive PLR compression (see Section

5.1 in [103] for further details) scales as maxrank ∼
√
ω and ε = 10−8. Moreover, for the nested

polarized traces, the accuracy for the GMRES inner solve is fixed to 10−6.

of one GMRES iteration for α = 5/8, as shown by Fig. 5.6. Once again we can
observe that the number of iterations to converge depends weakly on the frequency
and the number of subdomains. From Fig. 5.6 depicts the efficient compression of the
discrete integral operators, we can observe that both methods (nested polarized traces
and compressed-block LU) have the same asymptotic runtime, but with different
constants19, the same scaling holds for different numbers of cells and layers.

6. Conclusion. We presented an extension to the method of polarized traces
introduced in [103], with improved asymptotic runtimes in a distributed memory
environment. The method has sublinear runtime even in the presence of rough media
of geophysical interest. Moreover, its performance is completely agnostic to the source.

The method can be embedded efficiently within algorithms that require to solve
systems in which the medium is locally updated in an inversion loop. The method
only needs to be locally modified in order to solve the updated system, thus reducing
the overall computational effort. This algorithm is of special interest in the con-
text of time-lapse full-waveform inversion, continuum reservoir monitoring, and local
inversion.

We point out that this approach can be further parallelized using distributed
linear algebra libraries. Moreover, it is possible to solve multiple right-hand sides
simultaneously, without an asymptotic penalty. This can be achieved by pipelining

19We point out that some gains can be made by using different compressed operators. One can use
one compressed operator with high accuracy to apply M, an operation that is easily parallelizable,
and another with low accuracy to apply the preconditioner that represents the sequential bottleneck.
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the sweeps, i.e., performing additional sweeps before the first one has finished, in order
to maintain a constant load among all the nodes.

Appendix A. Discretization using finite differences.
In order to impose the absorbing boundary conditions, we extend the rectangular

domain Ω = (0, Lx)× (0, Lz) to Ωext = (−δpml, Lx + δpml)× (−δpml, Lz + δpml). The
Helmholtz operator in (2.1) then takes the form

H = −∂xx − ∂zz −mω2, in Ωext, (A.1)

where m is an extension20 of the squared slowness. The differential operators are
redefined following

∂x → αx(x)∂x, ∂z → αz(x)∂z, (A.2)

where

αx(x) =
1

1 + iσx(x)
ω

, αz(x) =
1

1 + iσz(x)
ω

. (A.3)

Moreover, σx(x) is defined as

σx(x) =


C
δpml

(
x

δpml

)2

, if x ∈ (−δpml, 0),

0, if x ∈ [0, Lx],

C
δpml

(
x−Lx

δpml

)2

, if x ∈ (Lx, Lx + δpml),

(A.4)

and similarly for σz(x) 21. In general, δpml goes from a couple of wavelengths in
a uniform medium, to a large number independent of ω in a highly heterogeneous
medium; and C is chosen to provide enough absorption.

With this notation we rewrite (2.1) as

Hu = f, in Ωext, (A.5)

with homogeneous Dirichlet boundary conditions (f is the zero extended version of f
to Ωext).

We discretize Ω as an equispaced regular grid of stepsize h, and of dimensions
nx × nz. For the extended domain Ωext, we extend this grid by npml = δpml/h
points in each direction, obtaining a grid of size (2npml + nx)× (2npml + nz). Define
xp,q = (xp, zq) = (ph, qh).

We use the 5-point stencil Laplacian to discretize (A.5). For the interior points
xi,j ∈ Ω, we have

(Hu)p,q = − 1

h2
(up−1,q − 2up,q + up+1,q)−

1

h2
(up,q−1 − 2up,q + up,q+1)−ω2m(xp,q).

(A.6)
In the PML, we discretize αx∂x(αx∂xu) as

αx(xp,q)
α(xp+1/2,q)(up+1,q − up,q)− αx(xp−1/2,q)(up,q − up−1,q)

h2
, (A.7)

20We assume that m(x) is given to us in Ωext.
21In practice, δpml and C can be seen as parameters to be tuned for accuracy versus efficiency.
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and analogously for αz∂z(αz∂zu). Although we use a second order finite difference
stencil, the method can be easily extended to higher order finite differences. In such
cases, the number of traces needed in the SIE reduction will increase.

Appendix B. Discretization using Q1 finite elements. The symmetric
formulation of the Helmholtz equation takes the form

−
(
∇ · Λ∇+

ω2m(x)

αx(x)αz(x)

)
u(x) =

f(x)

αx(x)αz(x)
, (B.1)

where

Λ(x) =

[
sx(x) 0

0 sz(x)

]
, (B.2)

sx = αx/αz, sz = αz/αx, where αx and αz are defined in (A.3).
In the case of a medium with sharp interfaces, finite differences approximations

give inaccurate results due to the lack of differentiability of the velocity profile. In
such cases, sophisticated quadratures and adaptive meshes have to be implemented
to properly approximate the finite difference operator [100, 3]. We opted for a low
order Q1 finite element discretization, with an adaptive quadrature rule at the dis-
continuities.

(B.1) is discretized using Q1 elements, leading to a discretized matrix

H = S−M, (B.3)

where the stiffness matrix S is computed using a Gauss quadrature. On the other
hand the mass matrix, M, is computed using a quadrature adapted to each element
depending on the local smoothness of the velocity profile:

• if the medium is locally smooth, a fixed Gauss quadrature is used to approx-
imate the integral over the square;

• if the medium is discontinuous, an adaptive trapezoidal rule is used, until a
preset accuracy is achieved.

To discriminate whether the medium is discontinuous, the velocity is sampled
at the Gauss-points, and the ratio between maximum and minimum velocity is com-
puted. If the ratio is smaller than a fixed threshold, the medium is considered smooth;
otherwise it is considered discontinuous.

Using a nodal basis we can write the system to solve as

Hu = f , (B.4)

where u is the point-wise value of the solution at the corners of the mesh and f is the
projection of f onto the Q1 elements, using a high-order quadrature rule.

Appendix C. Green’s representation formula.
We present a generalization of the domain decomposition framework developed

in [103] to Q1 regular finite elements.
We start by providing the algebraic formula for the discrete Green’s representation

formula. We propose a technique to derive such formulas without the time consum-
ing computations performed in the Appendix of [103]. We point out that there are
clear parallels between this derivation and the reduction to an interface problem us-
ing interior Schur complements. However, for the interface system based on Schur
complements, we could not define the polarizing conditions that would allows us to

33



construct an efficient preconditioner, forcing us to solve it using a non-scalable direct
solver.

In the sequel, we perform extensive manipulations on the matrix H, thus we
introduce some notation to help the reader follow the computations. Following that
ordering define in Section 2.2 we write H (and H`) as a block matrix in the form

H =



H1,1 H1,2

H2,1 H2,2 H2,3

. . .
. . .

. . .

. . .
. . . Hnz−1,nz

Hnz,nz−1 Hnz,nz


, (C.1)

in which each block correspond to a fixed z.
We want to derive the algebraic form of the Green’s representation formula. From

Theorem 1 in [103] we know that using the Green’s representation formula locally in
a subdomain would produce a discontinuous solution, such that the exact solution
is recovered inside the domain, and it is zero outside it. The rationale behind the
formalism presented in this section is to find the form of the forcing terms necessary
to force the discontinuity of the local representation22.

An easy manner to deduce the Green’s representation formula is to let

v` = uχΩ` , (C.2)

which is discontinuous, and apply the local differential operator to v`. Finding the
discrete Green’s representation formula can be re-cast as finding the expression of a
system of the form

H`v` = f ` + F`(u), (C.3)

such that its solution v` satisfies v` = uχΩ` , and F depends on the global wavefield
u. In (C.3) we suppose that f ` = fχ` and that H and H` coincide exactly inside
the layer. Within this context the problem of finding the formula for the Green’s
representation formula can be reduced to finding the expression of F`(u) such that
v` satisfies Eq C.2.

For ` fixed we can obtain the expression of F` by evaluating (C.3) and imposing
that v` = uχΩ` . In particular, we need to evaluate (C.3) at the interior of the slab,
at its boundaries and at the exterior.

At the interior of the slab F`(u) is zero, because v` satisfies H`v` = Hu = f = f `.
At the boundaries, the situation is slightly more complex. If we evaluate (C.3) at

k = 1, we have that

H`
1,1v

`
1 + H`

1,2v
`
2 = f `1 + F1(u). (C.4)

Moreover, evaluating Hu = f at the same index yields

H1,0u0 + H1,1u1 + H1,2u2 = f `1 . (C.5)

By imposing that v` = uχΩ` and subtracting (C.4) and (C.5), we have that

F`1(u) = −H1,0u0 = −H`
1,0u0. (C.6)

22The technique to compute the Green’s representation formula, and therefore the transmission
operators in form of an incomplete Green’s integral, was first mentioned, to the authors knowledge,
in Appendix 3B in [101] . More recently, an analogous formulation was used in [89] (see Eqs. (11),
(12) and (13).
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We can observe that the role of F` is to complete (C.3) at the boundary with exterior
data, such that v` satisfies the same equation that u inside the whole layer and not
only in the interior.

Analogously (C.3) can be evaluated at k = 0 obtaining

H`
0,1v

`
1 = F`0(u), (C.7)

and imposing that v` = uχΩ` we obtain that

F`0(u) = H0,1u1 = H`
0,1u1. (C.8)

Finally, for k < 0, the same argument leads to

F`k(u) = 0. (C.9)

We can easily generalize this argument for the other side of a layer obtaining a
generic formula for F`

F`(u) = −δn`H`
n`,n`+1un`+1 + δn`+1H

`
n`+1,n`un` − δ1H`

1,0u0 + δ0H
`
0,1u1,

which can be substituted in (C.3), leading to

H`v` =− δn`H`
n`,n`+1un`+1 + δn`+1H

`
n`+1,n`un` (C.10)

− δ1H`
1,0u0 + δ0H

`
0,1u1 + f `.

In addition, (C.10) can be transformed into the discrete expression of the Green’s
representation formula by applying the inverse of H`, G`. We can then reformulate
the Green’s integral in Def. 2.2 in the form

G↓,`j (v0,v1) = h
[

G`(zj , z1) G`(zj , z0)
]( −H`

1,0v0

H`
0,1v1

)
, (C.11)

G↑,`j (vn` ,vn`+1) = h
[

G`(zj , zn`+1) G`(zj , zn`)
]( H`

n`+1,n`vn`

−H`
n`,n`+1vn`+1

)
.(C.12)

Finally, we can redefine G`(zj , zk) for k = 0, 1, n`, n` + 1, such that they absorb all
the extra factors. In particular, we redefine:

G`
1,0 =− δ1

(
(H`)−1δ0H

`
1,0

)
, G`

1,1 = −δ1
(
(H`)−1δ1H

`
0,1

)
, (C.13)

G`
n,n =− δn

(
(H`)−1δn+1H

`
n+1,n

)
, G`

n,n+1 = −δn
(
(H)−1δnHn,n+1

)
. (C.14)

This redefinition allows us to seamlessly use all the machinery introduced in [103] to
define the SIE and its preconditioner.

Remark 1. As an example, in the case of the unsymmetric finite difference
discretization, the upper and lower diagonal blocks of H are diagonal matrices rescaled
by −1/h2. Then the formula presented here reduces exactly to the formulas computed
by summation by parts in Appendix of [103].
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[29] B. Després. Décomposition de domaine et problème de Helmholtz. Comptes rendus de
l’Académie des sciences. Série 1, Mathématique, 311:313–316, 1990.
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