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Summary

In this paper, we present a new way of approximating the inverse of the wave-equation Hessian, also called normal
operator, arising in the context of wave-based imaging such as seismic imaging. Our approach is based on the pseudo-
differential nature of the operator. Thanks to this property, both the operator and its inverse can be approximated
through a linear combination of only a few basis matrices. The coefficients in this expansion are obtained via least-
square fitting from a certain number of applications of the normal operator on adequate randomized trial functions
built in curvelet space (matrix probing). It can be shown that the least-square system thus obtained is well-conditioned
with high probability. The choice of basis matrices is such that the approximation to the operators can be applied
with low computational complexity. We give details on how to construct appropriate trial functions and demonstrate
the performance of the preconditioner (approximate inverse) through several examples.

Introduction

The major goal of reflection seismology is to recover the physical properties of the subsurface for some region of space.
Generally, the only information available to the investigator are surface measurements (seismograms) collected at var-
ious locations over some finite time interval. We shall denote these measurements as d(r, s, t) where r and s represent
the receiver and source position respectively, and t represents time. In addition to this, we shall assume that the
density is constant throughout the medium in the region of interest so that only the speed of sound m(x) needs to
be recovered (x is a spatial variable).

A common way to approach this inversion problem is through the least-square functional,

J [m] =
1

2
||d−F [m]||22.

where we seek to minimize the misfit error J [m]. Here, F represents the modeling or imaging operator ; it takes as
input a given velocity model m0(x) and produces an output d0(r, s, t) in data space. When an acceptable estimate
of the background velocity is available, it is mathematically reasonable to assume that F is a properly linearized
operator. From a practical point of view, this means that F can be represented as a matrix. Thus, upon discretizing
our region we can write

J [m] =
1

2
||d− Fm||22,

where F is now a matrix and m is a vector representing the speed of sound at every point of the discretization. The
solution of this system is well-known and given by the normal equations,

(F ∗F )m = F ∗d , m = (F ∗F )−1F ∗d

We refer to the wave-equation Hessian as the normal operator F ∗F in this expression. As can been seen, the operator
needs to be inverted to reach the solution. This is the problem we shall address throughout the remainder of this
paper.

Theory

Several techniques are available to solve such a system. They are commonly separated into two families : direct
methods (such as Gauss elimination) and iterative methods (such as Jacobi iterations). For this particular problem
however, we need to rule out direct methods. This is because they usually require O(N3) steps which is prohibitively
expensive especially with seismic problems where N, the number of grid points, can be very large. We are therefore
left with iterative methods.

Iterative methods generally tend to offer much better performances than direct methods on large problems. However,
these performances degrade quickly as the condition number of the matrix, that is the ratio of the largest singular
value over the smallest singular value, increases. Now, since the matrix F ∗F is generally badly conditioned, some
additional step is required for fast convergence, and this comes in the form of a preconditioner.

A preconditioner P is nothing more than an approximate inverse. The way it works is as follows : assume we are
given a badly conditioned square matrix A and a vector b and need to solve the system Ax = b iteratively. Because
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of the ill-conditioning, a large number of iterations is likely to be needed. However, by premultiplying both sides of
the system by P we get,

PAx = Pb

where PA ≈ I since P ≈ A−1. This is a much better conditioned system which can now be solved quickly.

We are therefore interested in finding an approximate inverse for the matrix F ∗F . At this point, we need to introduce
the concept of pseudo-differential operator (ΨDO). A ΨDO L is a linear operator that is usually written in the following
form,

Lm(x) =

Z
e−2πıxξa(x, ξ)m̂(ξ)dξ

where m̂(ξ) represents the Fourier transform of m(x) and the symbol a(x, ξ) satisfies very specific smoothness proper-
ties. A ΨDO usually operates on a function as a scaling factor (which depends on the location x) and a filter (which
depends on the frequency ξ). To put it in the words of Nammour & Symes ([1]), it is a dip-dependent scaling and
filtering.

There is a fair amount of literature pointing to the fact that, under fairly general assumptions, the wave-equation
Hessian F ∗F and its inverse (F ∗F )−1 belong to the family of pseudo-differential operators ([2], [3], [4], [5]). This is
why we introduce the concept here. In addition, thanks to the smoothness of the symbol a(x, ξ), such operators can
very easily be compressed ([6]) i.e. we can write

F ∗F ≈
pX

n=1

αnCn , (F ∗F )−1 ≈
pX

n=1

βnCn

where {Cn} is an adequate set of basis matrices and p is small. The approximation error generally decays very fast
with p.

Therefore, in order to find an approximation to (F ∗F )−1, it is sufficient to seek the coefficients {βn}pn=1 in the above
expression. For this purpose, we chose to use matrix probing. Matrix probing proceeds as follows :

1. Choose an appropriate vector : v

2. Apply the normal operator : (F∗F)v

3. Apply the approximate inverse :
Pp
n=1 βn [Cn(F∗F)v]

4. Solve the linear system for the βn’s in the least-squares sense.

In short, what matrix probing does is to find coefficients {βn} such that
Pp
n=1 βnCn best represents the inverse of

F ∗F on the vector v solely.

Up to this point, the algorithm is very similar in flavour to that of Nammour & Symes ([7], [1]). However, whereas
the latter authors use the migrated image (F ∗d) as the vector v, we propose to use multiple random vectors. There
are good reasons why we believe this is an improvement. Among others can be found generalizability ; as we shall
show, our method not only provide a good preconditioner but recovers an approximate inverse that is uniformly good
among all vectors in the range of F ∗F .

At this stage however, there are obvious issues with the method. First, there is no guarantee that a good approx-
imation of the inverse on a single vector v (or a finite set of vectors {vk}Kk=1 for that matter) represents a good
approximation of the inverse on any other vector. Secondly, if the operator F ∗F possesses a non-trivial null-space
and v happens to belong to this null-space, it is hopeless to try to recover v since (F ∗F )v ≡ 0.

To alleviate the first issue, we make use of multiple random vectors v. In fact, we claim that the use of random
vectors is the key to recovering an approximation to the whole matrix (F ∗F )−1. It would be much more difficult
to carry through the argument were the vectors deterministic. Numerical experiments confirm this observation. In
addition, it has been shown by ([8]) that, under certain conditions on the basis matrices, the use of random vectors
leads to a well-conditioned linear system with high probability (step 4 in the above algorithm). Finally, applying the
approximation can be done in very low complexity ([9]).

For the second problem, we need to characterize the null-space. For this purpose, the references mentioned above
are once again useful since they provide explicit algebraic equations characterizing the null-space. From a physical
standpoint, what these equations state is that an element belongs to the range space (the orthogonal complement of
the null-space) of F ∗F if it takes the form of a small reflector for which there exist a ray going from a given source
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to a given receiver and such that it is reflected in a specular manner on the reflector. The rays are assumed to travel
in the background medium in accordance with the laws of geometrical optics.

The adequate mathematical object to express such a concept comes in the form of curvelets. In short, curvelets are
anisotropic wavelets ; they are functions that are well-localized in phase-space and segregate between angular regions
of the frequency domain ([10],[11]). In other words, they are the mathematical equivalent of the small reflectors
introduced above. They can be used to filter out the null-space components of any given vector as follows,

1. Create a random vector v (white noise or Rademacher).

2. Proceed to a forward fast curvelet transform ([12]).

3. Use ray-tracing (ODE45, phase flow ([13]), etc.) to remove elements of the null-space.

4. Apply the inverse fast curvelet transform.

A depiction of the result obtained after applying the above algorithm to white noise is shown in Figure 1. Once such
vectors are available, we implement the algorithm introduced earlier.

Figure 1: White noise(left), Result of applying a curvelet mask (right)

Examples

In this section, we present results obtained by applying the algorithm presented in the previous section to the classical
Marmousi benchmark, and compare the performance with the Nammour-Symes deterministic algorithm.

First, we present results of a more qualitative nature ; Figure shows (from left to right) the original Marmousi model,
the true solution of the least-square problem, the migrated image(F ∗d only) and the solution obtained after applying
our approximate inverse with 4 random vectors {vk}4k=1 to F ∗d. All experiments presented here were carried out
with a uniform background velocity. Nonuniform background was also investigated and we found that, for a fixed
number of parameters, the performance tend to decay as the background gets less and less smooth.

As can be seen, the migrated image already exhibits the high-frequency content of the solution i.e. the scattering
surfaces can already be seen. However, it suffers from a lack of of illumination, especially for scatterers deep in the
subsurface. On the other hand, we notice that an application of the approximate inverse attenuates this problem
significantly. The image thus obtained is much closer to the solution than originally which is a compelling evidence
that the preconditioner works.

Figure 3 shows the relative error between the true solution (Figure 2) and the solution obtained after applying the
preconditioner (a MSE below 1 means the preconditioner is working). R1, R3 and R5 refer to the number of random

Figure 2: In order from left to right : Marmousi model, true solution, migrated image, application of
preconditioner to migrated image
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verctors used to fit the data, that is 1, 3 and 5 respectively. NS1 refers to the deterministic Nammour-Symes algo-
rithm where a single vector is used to fit the parameters (the migrated image). For the latter, we only show the case
where a single vector is used namely because it is the best case. Indeed, performances diminish when more vectors
belonging to the Krylov subspace of F ∗F ( for instance ((F ∗F )F ∗d, (F ∗F )2F ∗d, ...) are used to fit the parameters.
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Figure 3: Relative MSE vs number of parameters for the Marmousi model

On this particular example, it seems that it would not be much advantageous to use our algorithm instead of the NS
algorithm since both exhibit similar performance at their best. However, as was mentioned earlier we have reasons to
believe that our approximation is more robust ; thanks to the randomness of the trial vectors, we are really recovering
an approximate to the full inverse. That is, given any other vector of the form w = F ∗Fv, the application of our
approximate inverse to w shall recover a good approximation of v. This is hard to guarantee with deterministic
vectors. This claim is bolstered through numerical experiments that are presented in Figure 4. In this particular
example, we generated three random vectors (different from the original trial functions) and applied the NS scheme
and our algorithm to try to recover each one. We present the averaged MSE as a function of the number of trial
vectors and the number of parameters.

Conclusions

In conslusion, we have presented a way of obtaining a preconditioner for the wave equation Hessian based on ideas of
randomized testing, pseudo-differential symbols, and phase-space localization. Numerical experiments show that the
proposed solution belongs to a class of effective preconditioners. The precomputation only requires applying the wave
equation Hessian once, or a small number of times. Fitting the inverse Hessian involves solving a small least-squares
problem, of size p-by-p, where p is ordinarily much smaller than n and the Hessian is n-by-n.

It is anticipated that the techniques developed in this paper will be of particular interest in 3D seismic imaging and
with more sophisticated physical models that require identifying a few different parameters (elastic moduli, density).
In that setting, properly inverting the Hessian with low complexity algorithms to unscramble the multiple parameters
will be particularly desirable.
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Figure 4: Generalization error (Relative MSE vs number of parameters
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