
A fast butterfly algorithm for generalized Radon transforms

Jingwei Hu1, Sergey Fomel2, Laurent Demanet3, and Lexing Ying4

1Institute for Computational Engineering and Sciences (ICES)

The University of Texas at Austin

1 University Station, C0200, Austin, TX 78712, USA

hu@ices.utexas.edu

2Bureau of Economic Geology and Department of Geological Sciences

Jackson School of Geosciences

The University of Texas at Austin

University Station, Box X, Austin, TX 78713, USA

sergey.fomel@beg.utexas.edu

3Department of Mathematics

Massachusetts Institute of Technology

77 Massachusetts Avenue, Cambridge, MA 02139, USA

laurent@math.mit.edu

4Department of Mathematics

and Institute for Computational and Mathematical Engineering (ICME)

Stanford University

450 Serra Mall, Bldg 380, Stanford, CA 94305, USA

lexing@math.stanford.edu

(February 11, 2013)

GEO-2013-

Running head: Fast Generalized Radon Transforms

1

ABSTRACT

Generalized Radon transforms such as the hyperbolic Radon transform cannot be imple-

mented as efficiently in the frequency domain as convolutions, thus limiting their use in

seismic data processing. We introduce a fast butterfly algorithm for the hyperbolic Radon

transform. The basic idea is to reformulate the transform as an oscillatory integral op-

erator and to construct a blockwise low-rank approximation of the kernel function. The

overall structure follows the Fourier integral operator (FIO) butterfly algorithm. For two-

dimensional data, the algorithm runs in complexity O(N2 logN), where N depends on the

maximum frequency and offset in the dataset and the range of parameters (intercept time

and slowness) in the model space. Using a series of examples, we show that the proposed

algorithm can be significantly more efficient than the conventional time-domain integration.

2

INTRODUCTION

In seismic data processing, the Radon transform (RT) (Radon, 1917), or slant stack, is a

set of line integrals that map mixed and overlapping events in seismic gathers to a new

transformed domain where they can be separated (Gardner and Lu, 1991). The integrals

can also be taken along curves: parabolas (parabolic RT), or hyperbolas (hyperbolic RT

or velocity stack) are most commonly used. A major difference between these transforms

is that the former two are time-invariant (i.e., involve a convolution in time) whereas the

latter is time-variant. When the curves are time-invariant, the transform can be performed

efficiently in the frequency domain using the convolution theorem. However, this approach

does not work for time-variant transforms. As a result, the hyperbolic Radon transform is

usually thought of as requiring a computation in the time domain, which is computationally

expensive due to the large size of seismic data. Nevertheless, the hyperbolic transform is

often preferred as it better matches the true seismic events in common midpoint (CMP)

gathers (Thorson and Claerbout, 1985).

In this work, we construct a fast butterfly algorithm to effectively evaluate time-variant

transforms such as the hyperbolic Radon transform. As opposed to the conventional, costly

velocity scan (i.e., direct integration + interpolation in the time domain), our method

provides an accurate approximation in only O(N2 logN) operations1 for 2-D data. Here N

depends on the maximum frequency and offset in the dataset and the range of parameters

(intercept time and slowness) in the model space, and can often be chosen small compared to

the grid size. The adjoint of the transform can be evaluated similarly without extra difficulty.

Note that the algorithm introduced in this paper only deals with the fast implementation of

a single integral operator (forward Radon transform or its adjoint), not an iteration process

1All the log in this paper refer to logarithm to base 2.

3

for its inversion which is the main objective of much previous work on fast Radon transforms

(Sacchi, 1996; Trad et al., 2002; Liu and Sacchi, 2002; Wang and Ng, 2009).

Radon transforms have been widely used to separate and attenuate multiple reflections

(Hampson, 1986; Yilmaz, 1989; Foster and Mosher, 1992; Herrmann et al., 2000; Moore and

Kostov, 2002; Hargreaves et al., 2003; Trad, 2003). As having fast implementations of both

forward and adjoint transforms is an essential component of least-squares minimization, our

hope is that the current fast algorithm will help to make the hyperbolic Radon transform

an accessible tool for improving the inversion process.

The term “generalized Radon transform” connotes a broader context where integrals

are taken along arbitrary parametrized sets of smooth curves. The term was introduced by

Beylkin in (Beylkin, 1984, 1985), where the author showed that an asymptotically-correct

inverse follows from an amplitude correction to the adjoint. Kirchhoff migration and its

(regularized) inverse can be expressed as generalized Radon transforms. The algorithm

presented in this paper can in principle be applied in the context of Kirchhoff migration,

although we do not attempt to do so here.

The rest of the paper is organized as follows. We first introduce the low-rank approxima-

tion and the butterfly structure of the hyperbolic Radon operator; then use these building

elements to construct our fast algorithm. A brief description of the algorithm is given in the

main text; while a complete derivation can be found in the appendix. Numerical examples

of both synthetic and field data are presented to illustrate the accuracy and efficiency of

the proposed algorithm.

4

ALGORITHM

Assume d(t, h) is a function in the data space. The hyperbolic Radon transform R maps d

to a function (Rd)(τ, p) in the model space (Thorson and Claerbout, 1985) through

(Rd)(τ, p) =

∫
d(
√
τ2 + p2h2, h) dh. (1)

Here t is time, h is offset, τ is intercept time, and p is slowness. Fixing (τ, p), the hyperbola

t =
√
τ2 + p2h2 describes the traveltime for the event. Hence integration along these curves

can be used to identify different reflections.

Instead of approximating the integral in equation (1) directly, we reformulate it as a

double integral,

(Rd)(τ, p) =

∫∫
d̂(f, h)e2πif

√
τ2+p2h2 df dh, (2)

where f is the frequency, d̂(f, h) is the Fourier transform of d(t, h) in t. A simple discretiza-

tion of (2) yields2

(Rd)(τ, p) =
∑
f,h

e2πif
√
τ2+p2h2 d̂(f, h). (3)

The reason that the hyperbolic RT is harder to compute than the linear RT (t = τ + ph) or

the parabolic RT (t = τ + ph2) should be clear from equation (3): product fτ in the phase

cannot be decoupled from other terms.

To construct the fast algorithm, we first perform a linear transformation to map all

discrete points in (f, h) and (τ, p) domains to points in the unit square3 [0, 1] × [0, 1], i.e.,

a point (f, h) ∈ [fmin, fmax]× [hmin, hmax] is mapped to k = (k1, k2) ∈ [0, 1]× [0, 1] via

f = (fmax − fmin)k1 + fmin, h = (hmax − hmin)k2 + hmin;

2For simplicity, the area element is omitted; the same symbols f , h, τ , and p are used for both continuous

and discrete variables.
3We use [a, b]× [c, d] to represent a 2-D rectangular domain in xy-plane, with x ∈ [a, b] and y ∈ [c, d].

5

a point (τ, p) ∈ [τmin, τmax]× [pmin, pmax] is mapped to x = (x1, x2) ∈ [0, 1]× [0, 1] via

τ = (τmax − τmin)x1 + τmin, p = (pmax − pmin)x2 + pmin.
4

If we define input g(k) = d̂(f(k1), h(k2)), output u(x) = (Rd)(τ(x1), p(x2)), and the phase

function Φ(x,k) = f(k1)
√
τ(x1)2 + p(x2)2h(k2)2, then equation (3) can be written as

u(x) =
∑
k∈K

e2πiΦ(x,k)g(k), x ∈ X. (4)

This form is the discrete version of an oscillatory integral of the type

u(x) =

∫
K
e2πiΦ(x,k)g(k) dk, x ∈ X, 5 (5)

whose fast evaluation has been considered in Candès et al. (2009). Our method for com-

puting the summation (4) follows the FIO butterfly algorithm introduced there.

Low-rank approximations

Clearly the range and gradient of phase Φ(x,k) determine the degree of oscillations in

the kernel e2πiΦ(x,k). Let N be an integer power of two, which is on the order of the

maximum value of |Φ(x,k)| for x ∈ X and k ∈ K (the exact choice of N depends on the

desired efficiency and accuracy of the algorithm, which will be made specific in numerical

examples). The design of the fast algorithm relies on the key observation that the kernel

e2πiΦ(x,k), when properly restricted to subsets of X and K, admits accurate and low-rank

separated approximations. More precisely, if A and B are two square boxes in X and K,

with sidelengths w(A), w(B) obeying w(A)w(B) ≤ 1/N — in which case the pair (A,B) is

4The notations x and k are adopted to be consistent with the Candès et al. paper referenced below.
5Throughout the paper, K and X will either be used for sets of discrete points or square domains

containing them. The meaning should be clear from the context.

6

called admissible — then∣∣∣∣∣e2πiΦ(x,k) −
rε∑
t=1

αABt (x)βABt (k)

∣∣∣∣∣ ≤ ε, for x ∈ A, k ∈ B, (6)

where rε is independent of N for a fixed error ε. Here (and in the sequel) the subscript t is

slightly abused: t should be understood as multi-indices (t1, t2), and accordingly rε is the

total number of terms in a double sum. Furthermore, Candès et al. (2009) show that this

low-rank approximation can be constructed via a tensor-product Chebyshev interpolation of

e2πiΦ(x,k) in the x variable when w(A) ≤ 1/
√
N , and in the k variable when w(B) ≤ 1/

√
N .

Specifically, when w(B) ≤ 1/
√
N , αABt and βABt are given by

αABt (x) = e2πiΦ(x,kBt), (7)

βABt (k) = e−2πiΦ(x0(A),kBt)LBt (k)e2πiΦ(x0(A),k); (8)

and when w(A) ≤ 1/
√
N , αABt and βABt are given by

αABt (x) = e2πiΦ(x,k0(B))LAt (x)e−2πiΦ(xAt ,k0(B)), (9)

βABt (k) = e2πiΦ(xAt ,k). (10)

The boldface letters kBt , xAt ,x0(A),k0(B) denote 2-D vectors. kBt is a point on the 2-D,

qk1×qk2 Chebyshev grid in box B centered at k0(B): let kBt = (kBt1 , k
B
t2), k0(B) = (kB01 , k

B
02

),

then

kBt1 = kB01 + w(B)zt1 , 0 ≤ t1 ≤ qk1 − 1, (11)

kBt2 = kB02 + w(B)zt2 , 0 ≤ t2 ≤ qk2 − 1, (12)

where {
zti =

1

2
cos

(
πti

qki − 1

)}
0≤ti≤qki−1, i=1,2

(13)

7

is the 1-D Chebyshev grid of order qki on [−1/2, 1/2]. See Figure 1 for an illustration.

LBt (k) is the 2-D Lagrange interpolation on this Chebyshev grid:

LBt (k) =

 qk1−1∏
s1=0,s1 6=t1

k1 − kBs1
kBt1 − kBs1

 qk2−1∏
s2=0,s2 6=t2

k2 − kBs2
kBt2 − kBs2

 . (14)

Analogously, xBt is a point on the 2-D, qx1×qx2 Chebyshev grid in box A centered at x0(A),

and LAt (x) is the 2-D Lagrange interpolation defined on this grid. Based on the discussion

above, the number rε of expansions in (6) is equal to qk1qk2 when w(B) ≤ 1/
√
N , and qx1qx2

when w(A) ≤ 1/
√
N .

A simple way of viewing expressions (7) – (10) is: when w(B) ≤ 1/
√
N , plugging (7)

into the approximation (6) (leaving βABt (k) as it is) yields

e2πiΦ(x,k) ≈
∑
t

e2πiΦ(x,kBt)βABt (k), for x ∈ A, k ∈ B. (15)

For fixed x, the right hand side of (15) is just a special interpolation of function e2πiΦ(x,k) in

variable k, where kBt are the interpolation points, βABt (k) are the basis functions. Likewise,

when w(A) ≤ 1/
√
N , plugging (10) into (6), we get

e2πiΦ(x,k) ≈
∑
t

e2πiΦ(xAt ,k)αABt (x), for x ∈ A, k ∈ B. (16)

For fixed k, the right hand side of (16) is a special interpolation of e2πiΦ(x,k) in variable x:

xAt are the interpolation points, αABt (x) are the basis functions.

Once the expansion (6) is known, the partial sum

uB(x) :=
∑
k∈B

e2πiΦ(x,k)g(k) (17)

generated by points k inside a box B can be approximated by

uB(x) ≈
∑
k∈B

∑
t

αABt (x)βABt (k)g(k) =
∑
t

αABt (x)δABt , for x ∈ A, (18)

8

where

δABt :=
∑
k∈B

βABt (k)g(k). (19)

The case that the box B represents the whole domain K is of particular interest, since

it corresponds to the original problem. Therefore, if we can find the set of interaction

coefficients δABt relative to all admissible couples of boxes (A,B) with B = K, our problem

will be solved.

Butterfly structure

The coefficients δABt for B = K are however not readily available. The so-called butterfly

algorithm turns out to be an appropriate tool. It was introduced by Michielssen and Boag

(1996), and generalized by O’Neil et al. (2010); Candès et al. (2009). Different applications

include Ying (2009); Demanet et al. (2012). The latter also provides a complete error

analysis of the method in Candès et al. (2009).

The idea of the butterfly algorithm is to obtain δABt for B = K at the last step of a

hierarchical construction of all the coefficients δABt for all pairs of admissible boxes (A,B)

belonging to a quad tree structure. The algorithm starts with very small boxes B, where

δABt are easily computed by direct summation, and gradually increases the sizes of the boxes

B in a multiscale fashion. In tandem, the sizes of the boxes A where uB is evaluated must

decrease to respect the admissibility of each couple (A,B). The computation then mostly

consists in updating coefficients δABt from one scale to the next — from finer to coarser B

boxes, and from coarser to finer A boxes.

The main data structure underlying the algorithm is a pair of quad trees TX and TK .

The tree TX has [0, 1] × [0, 1] as its root box (level 0) and is built by recursive, dyadic

9

partitioning until level L = logN , where the finest boxes are of sidelength 1/N . The tree

TK is built similarly but in the opposite direction. Figure 2 shows such a partition for

N = 4. A crucial property of this structure is that at arbitrary level l, the sidelengths of a

box A in TX and a box B in TK always satisfy

w(A)w(B) =
1

2l
1

2L−l
=

1

N
.

Thus a low-rank approximation of the kernel e2πiΦ(x,k) is available at every level of the tree,

for every couple of admissible boxes (A,B).

Fast butterfly algorithm

With the previously introduced low-rank approximations and the butterfly structure, we

are ready to describe the fast algorithm. Our goal is to approximate δABt (19) so as to get

uB(x) (18) by traversing the tree structure (Figure 2) from top to bottom on the X side,

and from bottom to top on the K side. This can be done in five major steps. To avoid too

much technical detail, we deliberately defer the complete derivation of the algorithm until

the appendix, and only summarize here the final updating formulas for each step.

1. Initialization. At level l = 0, let A be the root box of TX . For each leaf box B ∈ TK ,

construct the coefficients {δABt } by

δABt = e−2πiΦ(x0(A),kBt)
∑
k∈B

(
LBt (k)e2πiΦ(x0(A),k)g(k)

)
. (20)

2. Recursion. At l = 1, 2, ..., L/2, for each pair (A,B), let Ap be A’s parent and

{Bc, c = 1, 2, 3, 4} be B’s children from the previous level (see also Figure A-1). Update

{δABt } from {δApBct′ } by

δABt = e−2πiΦ(x0(A),kBt)
∑
c

∑
t′

(
LBt (kBct′)e2πiΦ(x0(A),kBc

t′)δ
ApBc
t′

)
. (21)

10

3. Switch. At middle level l = L/2, for each (A,B) compute the new set of coefficients

{δABt } from the old set {δABs } by

δABt =
∑
s

e2πiΦ(xAt ,k
B
s)δABs . (22)

4. Recursion. At l = L/2 + 1, ..., L, for each pair (A,B), update {δABt } from {δApBct′ } of

the previous level by

δABt =
∑
c

e2πiΦ(xAt ,k0(Bc))
∑
t′

(
L
Ap
t′ (xAt)e−2πiΦ(x

Ap

t′ ,k0(Bc))δ
ApBc
t′

)
. (23)

5. Termination. Finally at level l = L, B is the entire domain K. For every box A in

X and every x ∈ A, compute u(x) by

u(x) = e2πiΦ(x,k0(B))
∑
t

(
LAt (x)e−2πiΦ(xAt ,k0(B))δABt

)
. (24)

Discussion

To analyze the algorithm’s numerical complexity, let us assume the numbers of Chebyshev

points in every box and every dimension of K and X are all equal to a small constant q,

i.e., qk1 = qk2 = qx1 = qx2 = q and rε ≡ q2. The main workload of the fast butterfly

algorithm is in Steps 2 and 4. For each level, there are N2 pairs of boxes (A,B), and the

operations between each A and B is O(r2
ε), which can be further reduced to O(r

3/2
ε) by

performing Chebyshev interpolation one dimension at a time. Since there are logN levels,

the total cost is O(r
3/2
ε N2 logN). It is not difficult to see that Step 3 takes O(r2

εN
2), and

Steps 1 and 5 take O(rεNfNh) and O(rεNτNp) operations. Considering the initial Fourier

transform of preparing data in the (f, h) domain, we conclude that the overall complexity

of the algorithm is O(NhNt logNt+r
3/2
ε N2 logN+r2

εN
2 +rε(NfNh+NτNp)). The analysis

in Candès et al. (2009) shows that the relation between rε and error ε is rε = O(log4(1/ε)).

11

We would like to mention that this is only the worst case estimate. Numerical results in

the same paper demonstrate that the dependence of rε on log(1/ε) is rather moderate in

practice.

In comparison, the conventional velocity scan requires at least O(NτNpNh) computa-

tions, which quickly becomes a burden as the problem size increases. Yet the efficiency of

our algorithm is mainly controlled by O(N2 logN) with a constant polylogarithmic in ε,

where N is determined by the degree of oscillations in the kernel function e2πif
√
τ2+p2h2 ,

i.e., roughly the range of f , h, τ , and p. In other words, N depends neither on data size

nor on data content (here we mean the data after the Fourier transform), as the Chebyshev

interpolation is only performed on the kernel.

NUMERICAL EXAMPLES

In this section we provide several numerical examples to illustrate the empirical properties of

the fast butterfly algorithm. To check the results qualitatively, we compare with the velocity

scan method (a piecewise constant interpolation is used to minimize the interpolation cost);

to test the results quantitatively, however, it makes more sense to compare with the direct

evaluation of equation (3), since the fast algorithm is to speed up this summation in the

frequency domain, whereas the velocity scan computes a slightly different sum in the time

domain, which may contain interpolation artifacts.

There is no general rule for selecting parameters N , qk1 , qk2 , ... The larger N is, the

fewer Chebyshev points are needed, and vice versa. In practice, parameters can be tuned to

achieve the best efficiency and accuracy trade-off. For simplicity, in the following examples

N and qk1 , qk2 , qx1 , qx2 are chosen such that the relative error between the fast algorithm

12

and the direct computation of (3) is about O(10−2). These combinations are not necessarily

optimal in terms of efficiency.

Synthetic data — square sampling

We start with a simple 2-D example of square sampling. Figure 3 is a synthetic CMP gather

sampled on Nt = Nh = 1000. Figure 4 shows the absolute value of its Fourier transform

on time axis. These band-limited data allow us to shorten the computational range for

f , which can be crucial as N depends on this range. In model space, the sampling sizes

are chosen as Nτ = Np = 1000. Figure 5 is the output of the fast butterfly algorithm for

N = 32, qk1 = qk2 = qx1 = qx2 = 9 (here the range of Φ = f
√
τ2 + p2h2 is about 125).

Figure 6 is the output of the velocity scan. The two methods yield nearly the same results.

The fast algorithm runs in only 1.75 seconds of CPU time, while the velocity scan takes

about 37 s. In Figure 7, we plot the difference between the results of the fast algorithm

and the direct evaluation of (3), where the relative error is 0.0178. For reference, if we let

N = 64 and run the same test, the error decreases to O(10−3) and the running time is 3.63

s.

Synthetic data — rectangular sampling

We now make two synthetic datasets using rectangular sampling Nt = 4000, Nh = 400. The

first one (Figure 8) has the same range as the previous example (Figure 3), while the second

one (Figure 9) doubles the range of time and offset. The results of the fast algorithm are

shown in Figures 10 and 11. The purpose of showing these two examples is to demonstrate

that the choice of N does not depend on the problem size, but rather on the range of

13

parameters — for the data in Figure 9, one has to increase N to preserve the same accuracy

(the range of Φ = f
√
τ2 + p2h2 is about 125 for the first dataset, and 250 for the second

one).

Synthetic data — irregular sampling

Going back to the five steps of the butterfly algorithm, it is clear that the input data g(k) is

only involved at the very first step. Besides, for every (A,B) the operation connecting g(k)

and δABt amounts to a matrix-vector multiplication (see (20)), which does not at all require

the input data to be uniformly distributed (the same argument applies to the output data

u(x)). Therefore, our algorithm can be easily extended to handle the following problem:

(Rd)(τ, p) =

∫∫
d(
√
τ2 + p2(h2

1 + h2
2), h1, h2) dh1 dh2, (25)

where d(t, h1, h2) is a 3-D function. All we need is to introduce a new variable for the

absolute offset h =
√
h2

1 + h2
2, and reorder the values d(t, h1, h2) according to h. Figure

12 shows such synthetic data sampled on Nt = 1000, Nh1 = Nh2 = 128. The output is

obtained on Nτ = 1000, Np = 128. The fast algorithm (Figure 13) runs in only 1.67 s for

N = 64, qk1 = qk2 = qx1 = qx2 = 5 (here the range of Φ = f
√
τ2 + p2(h2

1 + h2
2) is about

162), while the velocity scan (Figure 14) takes more than 125 s.

Field data

We now consider a 2-D field seismic gather in Figure 15. Its Fourier transform is shown

in Figure 16. Due to the comparatively wide frequency bandwidth, N cannot be chosen

too small (here the range of Φ = f
√
τ2 + p2h2 is about 306). The input sampling sizes are

Nt = 1500, Nh = 240, while the output sizes are chosen as Nτ = 1500, Np = 800. Although

14

this small dataset is not very suitable for showcasing the fast algorithm, our method runs

in 6.62 s for N = 128, qk1 = qx1 = 7, qk2 = qx2 = 5 (Figure 17), still outperforming the

velocity scan which takes about 10 s (Figure 18). Note that the simplest interpolation is

used in the velocity scan, any other higher order interpolation will presumably take longer

computation time.

Computing the adjoint operator

The last example is concerned with the computation of the adjoint of the hyperbolic Radon

transform. Assuming m(τ, p) and d(t, h) are two arbitrary functions (in the discrete sense)

in the model domain and data domain, if we require

〈m(τ, p), (Rd)(τ, p)〉 = 〈(R∗m)(t, h), d(t, h)〉, (26)

where (Rd)(τ, p) is given by equation (3); the inner product 〈·, ·〉 is defined as

〈g1(x, y), g2(x, y)〉 =
∑
x,y

g1(x, y) g2(x, y), ∀g1(x, y), g2(x, y), (27)

then it is easy to verify that the adjoint operator R∗ is given by

(R∗m)(t, h) = F−1
f→t

(∑
τ,p

e−2πif
√
τ2+p2h2m(τ, p)

)
, (28)

where F−1
f→t is the inverse Fourier transform from variable f to t. The summation in

equation (28) again resembles an oscillatory integral operator, therefore the fast algorithm

for computing R applies with minor modifications. The computational cost remains the

same.

We consider still the first example and apply the (discrete) adjoint operators of the fast

butterfly algorithm and the velocity scan respectively to the data in Figures 5 and 6. The

two methods produce very similar results (see Figures 19, 20). It is also clear that the

15

adjoint is far from the inverse, at least for this geometry, hence some kind of least-squares

implementation is needed for inversion process.

To further verify that the numerically computed R∗ is the adjoint operator of R, one

can compare the values of 〈Rd,Rd〉 and 〈R∗Rd, d〉 for arbitrary d. Indeed, the proposed

algorithm passed this dot-product test with a relative error of O(10−7) in single precision.

CONCLUSIONS

We constructed a fast butterfly algorithm for the hyperbolic Radon transform, a class of

time-variant Radon transforms. Compared with the time-consuming integration in the time

domain, the new method runs in only O(N2 logN) operations, where N depends on the

range of frequency and offset in the dataset and the range of intercept time and slowness

in the model space, and can often be chosen smaller than the grid size. Our ongoing

work is studying the performance of this fast solver on the sparse iterative inversion of the

hyperbolic Radon transform applied to multiple attenuation.

Due to the generality of the butterfly algorithm, its application is obviously not limited

to the hyperbolic transform considered here. Using a different phase function, one can easily

extend the algorithm to higher-order transforms. If the slowness or velocity range is not

constant but a corridor around a central function, then a sparse butterfly algorithm can be

defined to save the cost by building the quad tree adaptively (Ying, 2009). Furthermore,

many of the Radon-like integral operators, such as Kirchhoff migration, the apex-shifted

Radon transform, the multi-parameter velocity analysis, etc., can be reformulated in a

similar fashion as we did in this paper. To address these problems, a 3-D version of the

butterfly algorithm might be more appropriate.

16

ACKNOWLEDGMENTS

We are grateful to Tariq Alkhalifah, Anatoly Baumstein, Ian Moore, Daniel Trad, and the

anonymous reviewer for their valuable comments and suggestions. We thank Dr. Alexander

Klokov for preprocessing the field data. We thank KAUST and sponsors of the Texas

Consortium for Computational Seismology (TCCS) for financial support.

APPENDIX A

THE MATHEMATICAL DERIVATION OF THE FAST BUTTERFLY

ALGORITHM

This appendix gives a complete derivation and description of the algorithm, which combines

the low-rank approximations and the butterfly structure introduced in the main text. For

more mathematical exposition, the reader is referred to Candès et al. (2009).

To facilitate the presentation, we add a new figure (Figure A-1) to illustrate the nota-

tions.

1. Initialization. At level l = 0, let A be the root box of TX . For each leaf box B ∈ TK ,

expressions (7) and (8) are valid as w(B) ≤ 1/
√
N . Substituting βABt (8) into the definition

(19) of δABt , we get

δABt = e−2πiΦ(x0(A),kBt)
∑
k∈B

(
LBt (k)e2πiΦ(x0(A),k)g(k)

)
, (A-1)

i.e. the equation (20) in the main text. In addition, for x ∈ A, the partial sum uB(x) (18)

is given by (with αABt (7) plugged in)

uB(x) ≈
∑
t

e2πiΦ(x,kBt)δABt . (A-2)

17

Comparing the right hand sides of (17) and (A-2), if we call g(k) the sources at k, then the

coefficients δABt are just like the equivalent sources at kBt . This initial step is to redistribute

the original sources g(k) located at k (denoted by blue dots in Figure A-1) to equivalent

sources δABt located at Chebyshev grid kBt (not shown in the figure). We next aim at

updating δABt until the end level L.

2. Recursion. At l = 1, 2, ..., L/2, for each pair (A,B), let Ap be A’s parent and

{Bc, c = 1, 2, 3, 4} be B’s children from the previous level (see Figure A-1). For each child

Bc, we have available from the previous level an approximation of the form

uBc(x) ≈
∑
t′

e2πiΦ(x,kBc
t′)δ

ApBc
t′ , for x ∈ Ap. (A-3)

Summing over all children gives

uB(x) ≈
∑
c

∑
t′

e2πiΦ(x,kBc
t′)δ

ApBc
t′ , for x ∈ Ap. (A-4)

Since A ⊂ Ap, this is of course true for any x ∈ A. Also we know that equation (15) holds

for kBct′ ∈ B, i.e.,

e2πΦ(x,kBc
t′) ≈

∑
t

e2πiΦ(x,kBt)βABt (kBct′), for x ∈ A. (A-5)

Plugging it into (A-4) yields

uB(x) ≈
∑
c

∑
t′

∑
t

e2πiΦ(x,kBt)βABt (kBct′)δ
ApBc
t′ , for x ∈ A. (A-6)

On the other hand, uB(x) admits a low-rank approximation of equivalent sources at the

current level,

uB(x) ≈
∑
t

e2πiΦ(x,kBt)δABt , for x ∈ A. (A-7)

Equating (A-6) and (A-7) suggests that we can take

δABt =
∑
c

∑
t′

βABt (kBct′)δ
ApBc
t′ . (A-8)

18

Substituting βABt (8), we get

δABt = e−2πiΦ(x0(A),kBt)
∑
c

∑
t′

(
LBt (kBct′)e2πiΦ(x0(A),kBc

t′)δ
ApBc
t′

)
, (A-9)

i.e. the equation (21) in the main text.

3. Switch. A switch of the representation to expressions (9) and (10) is needed at the

middle level l = L/2 since expressions (7) and (8) are no longer valid as soon as l > L/2

(boxes B are getting bigger and bigger so that w(B) ≤ 1/
√
N is no longer satisfied).

Plugging (10) into the definition (19) of δABt , one has

δABt =
∑
k∈B

e2πΦ(xAt ,k)g(k) = uB(xAt). (A-10)

From (A-7),

uB(xAt) ≈
∑
s

e2πiΦ(xAt ,k
B
s)δABs , (A-11)

where we use {δABt } to denote the new set of coefficients and {δABs } the old set. Equating

(A-10) and (A-11), we can set δABt as

δABt =
∑
s

e2πiΦ(xAt ,k
B
s)δABs , (A-12)

i.e. the equation (22) in the main text. This middle step is to switch from equivalent sources

δABs located at Chebyshev grid kBs on the K side to equivalent sources δABt at Chebyshev

grid xAt on the X side.

4. Recursion. The rest of the recursion is analogous to Step 2. For l = L/2 + 1, ..., L,

we have

uB(x) ≈
∑
c

∑
t′

α
ApBc
t′ (x)δ

ApBc
t′ , for x ∈ Ap, (A-13)

thus

uB(xAt) ≈
∑
c

∑
t′

α
ApBc
t′ (xAt)δ

ApBc
t′ ; (A-14)

19

recalling (A-10), one can simply set

δABt =
∑
c

∑
t′

α
ApBc
t′ (xAt)δ

ApBc
t′ . (A-15)

Substituting αABt (9) gives the update

δABt =
∑
c

e2πiΦ(xAt ,k0(Bc))
∑
t′

(
L
Ap
t′ (xAt)e−2πiΦ(x

Ap

t′ ,k0(Bc))δ
ApBc
t′

)
, (A-16)

i.e. the equation (23) in the main text.

5. Termination. Finally we reach the level l = L, and B is the entire domain K. For

every box A in X and every x ∈ A,

u(x) = uB(x) ≈
∑
t

αABt (x)δABt . (A-17)

Plugging in αABt (9), we get

u(x) = e2πiΦ(x,k0(B))
∑
t

(
LAt (x)e−2πiΦ(xAt ,k0(B))δABt

)
, (A-18)

i.e. the equation (24) in the main text. This final step is to transform the equivalent sources

δABt at Chebyshev grid xAt back to the targets u(x) located at x (denoted by red dots in

Figure A-1).

In the above algorithm, L = logN is assumed to be an even number. If it is odd, one

can either switch at level (L− 1)/2 or (L+ 1)/2. Everything else remains unchanged.

20

REFERENCES

Beylkin, G., 1984, The inversion problem and applications of the generalized Radon trans-

form: Commun. Pure Appl. Math., 37, no. 5, 579–599.

——–, 1985, Imaging of discontinuities in the inverse scattering problem by inversion of a

causal generalized Radon transform: J. Math. Phys., 26, no. 1, 99.

Candès, E., L. Demanet, and L. Ying, 2009, A fast butterfly algorithm for the computation

of Fourier integral operators: Multiscale Model. Simul., 7, 1727–1750.

Demanet, L., M. Ferrara, N. Maxwell, J. Poulson, and L. Ying, 2012, A butterfly algorithm

for synthetic aperture radar imaging: SIAM J. Imaging Sciences, 5, 203–243.

Foster, D. J., and C. C. Mosher, 1992, Suppression of multiple reflections using the Radon

transform: Geophysics, 57, 386–395.

Gardner, G. H. F., and L. Lu, eds., 1991, Slant-stack processing: Society of Exploration

Geophysicists. Issue 14 of Geophysics reprint series.

Hampson, D., 1986, Inverse velocity stacking for multiple elimination: J. Can. Soc. Expl.

Geophys., 22, 44–55.

Hargreaves, N., B. verWest, R. Wombell, and D. Trad, 2003, Multiple attenuation using an

apex-shifted Radon transform: EAGE 65th Conference and Exhibition, June 2 -5, 2003,

Stavanger, Norway.

Herrmann, P., T. Mojesky, M. Magesan, and P. Hugonnet, 2000, De-aliased, high-resolution

Radon transforms: SEG Annual Meeting, August 6 - 11, 2000, Calgary, Alberta.

Liu, Y., and M. Sacchi, 2002, De-multiple via a fast least squares hyperbolic Radon trans-

form: SEG Annual Meeting, October 6 - 11, 2002, Salt Lake City, Utah.

Michielssen, E., and A. Boag, 1996, A multilevel matrix decomposition algorithm for an-

alyzing scattering from large structures: IEEE Trans. Antennas and Propagation, 44,

21

1086–1093.

Moore, I., and C. Kostov, 2002, Stable, efficient, high-resolution Radon transforms: EAGE

64th Conference and Exhibition, May 27 - 30, 2002, Florence, Italy.

O’Neil, M., F. Woolfe, and V. Rokhlin, 2010, An algorithm for the rapid evaluation of

special function transforms: Appl. Comput. Harmon. Anal., 28, 203–226.

Radon, J., 1917, Über die bestimmung von funktionen durch ihre integralwerte längs

gewisser mannigfaltigkeiten: Berichte über die Verhandlungen der Sächsische Akademie

der Wissenschaften (Reports on the proceedings of the Saxony Academy of Science), 69,

262–277.

Sacchi, M., 1996, A bidiagonalization procedure for the inversion of time-variant velocity

stack operator: CDSST report, 73–92.

Thorson, J. R., and J. F. Claerbout, 1985, Velocity-stack and slant-stack stochastic inver-

sion: Geophysics, 50, 2727–2741.

Trad, D., 2003, Interpolation and multiple attenuation with migration operators: Geo-

physics, 68, 2043–2054.

Trad, D., T. Ulrych, and M. Sacchi, 2002, Accurate interpolation with high resolution

time-variant Radon transforms: Geophysics, 67, 644–656.

Wang, J., and M. Ng, 2009, Greedy least-squares and its application in Radon transforms:

2009 CSPG CSEG CWLS Convention, Calgary, Alberta, Canada.

Yilmaz, O., 1989, Velocity-stack processing: Geophysical Prospecting, 37, 357–382.

Ying, L., 2009, Sparse Fourier transform via butterfly algorithm: SIAM J. Sci. Comput.,

31, 1678–1694.

22

LIST OF FIGURES

1 A 2-D, qk1 × qk2 (qk1 = 7, qk2 = 5) Chebyshev grid in box B. k0(B) is the center

of the box. kBt = (kBt1 , k
B
t2), 0 ≤ t1 ≤ qk1 − 1, 0 ≤ t2 ≤ qk2 − 1 is a point on the grid.

2 The butterfly quad tree structure for the special case of N = 4.

3 2-D synthetic CMP gather. Nt = Nh = 1000. ∆t = 0.004 s, ∆h = 0.005 km.

4 The Fourier transform (absolute value) on time axis of the synthetic data in Figure

3.

5 Nτ = Np = 1000. Output of the fast butterfly algorithm applied to the synthetic

data in Figure 3. N = 32, qk1 = qk2 = qx1 = qx2 = 9 (here the range of Φ = f
√
τ2 + p2h2

is about 125). CPU time: 1.75 s. Purple curve overlaid is the true slowness.

6 Nτ = Np = 1000. Output of the velocity scan applied to the synthetic data in

Figure 3. CPU time: 37.23 s. Purple curve overlaid is the true slowness.

7 Difference between the results of the fast algorithm and the direct evaluation of

equation (3) plotted at the same scale as in Figure 5.

8 2-D synthetic CMP gather. Nt = 4000, Nh = 400. ∆t = 0.001 s, ∆h = 0.0125 km.

9 2-D synthetic CMP gather. Nt = 4000, Nh = 400. ∆t = 0.002 s, ∆h = 0.025 km.

10 Nτ = 4000, Np = 400. Output of the fast butterfly algorithm applied to the

synthetic data in Figure 8. N = 32, qk1 = qk2 = qx1 = qx2 = 9 (here the range of

Φ = f
√
τ2 + p2h2 is about 125). CPU time: 2.46 s. Ref: CPU time of velocity scan:

21.84 s. Purple curve overlaid is the true slowness.

11 Nτ = 4000, Np = 400. Output of the fast butterfly algorithm applied to the

synthetic data in Figure 9. N = 64, qk1 = qk2 = qx1 = qx2 = 9 (here the range of

Φ = f
√
τ2 + p2h2 is about 250). CPU time: 4.35 s. Ref: CPU time of velocity scan:

21.93 s. Purple curve overlaid is the true slowness.

23

12 3-D synthetic CMP gather. Nt = 1000, Nh1 = Nh2 = 128. ∆t = 0.004 s, ∆h1 =

∆h2 = 0.08 km.

13 Nτ = 1000, Np = 128. Output of the fast butterfly algorithm applied to the

synthetic data in Figure 12. N = 64, qk1 = qk2 = qx1 = qx2 = 5 (here the range of

Φ = f
√
τ2 + p2(h2

1 + h2
2) is about 162). CPU time: 1.67 s. Purple curve overlaid is the

true slowness.

14 Nτ = 1000, Np = 128. Output of the velocity scan applied to the synthetic data in

Figure 12. CPU time: 125.54 s. Purple curve overlaid is the true slowness.

15 2-D field CMP gather. Nt = 1500, Nh = 240. ∆t = 0.004 s, ∆h = 0.0125 km.

16 The Fourier transform (absolute value) on time axis of the field data in Figure 15.

17 Nτ = 1500, Np = 800. Output of the fast butterfly algorithm applied to the

field data in Figure 15. N = 128, qk1 = qx1 = 7, qk2 = qx2 = 5 (here the range of

Φ = f
√
τ2 + p2h2 is about 306). CPU time: 6.62 s.

18 Nτ = 1500, Np = 800. Output of the velocity scan applied to the field data in

Figure 15. CPU time: 9.91 s.

19 Output of the adjoint fast butterfly algorithm applied to the data in Figure 5.

N = 32, qk1 = qk2 = qx1 = qx2 = 9.

20 Output of the adjoint velocity scan applied to the data in Figure 6.

A-1 The butterfly structure for the special case of N = 4. The top right panel represents

the input domain K with sources g(k) located at k (blue dots). The bottom left panel

represents the output domain X with targets u(x) located at x (red dots). For the pair of

boxes (A,B) at level l = 1, box Ap is called A’s parent at the previous level; four small

boxes Bc are called B’s children at the previous level.

24

kB
t = (kB

t1 , k
B
t2)

k0(B)

B

k1

k2

Figure 1: A 2-D, qk1 × qk2 (qk1 = 7, qk2 = 5) Chebyshev grid in box B. k0(B) is the center

of the box. kBt = (kBt1 , k
B
t2), 0 ≤ t1 ≤ qk1 − 1, 0 ≤ t2 ≤ qk2 − 1 is a point on the grid.

– GEO-2013-

25

Top down Bottom up

TX TK

A

B
l = 1 l = 1

l = 0

l = 0l = 2

l = 2

Figure 2: The butterfly quad tree structure for the special case of N = 4. – GEO-2013-

26

Figure 3: 2-D synthetic CMP gather. Nt = Nh = 1000. ∆t = 0.004 s, ∆h = 0.005 km.

– GEO-2013-

27

Figure 4: The Fourier transform (absolute value) on time axis of the synthetic data in

Figure 3.

– GEO-2013-

28

Figure 5: Nτ = Np = 1000. Output of the fast butterfly algorithm applied to the synthetic

data in Figure 3. N = 32, qk1 = qk2 = qx1 = qx2 = 9 (here the range of Φ = f
√
τ2 + p2h2

is about 125). CPU time: 1.75 s. Purple curve overlaid is the true slowness.

– GEO-2013-

29

Figure 6: Nτ = Np = 1000. Output of the velocity scan applied to the synthetic data in

Figure 3. CPU time: 37.23 s. Purple curve overlaid is the true slowness.

– GEO-2013-

30

Figure 7: Difference between the results of the fast algorithm and the direct evaluation of

equation (3) plotted at the same scale as in Figure 5.

– GEO-2013-

31

Figure 8: 2-D synthetic CMP gather. Nt = 4000, Nh = 400. ∆t = 0.001 s, ∆h = 0.0125

km.

– GEO-2013-

32

Figure 9: 2-D synthetic CMP gather. Nt = 4000, Nh = 400. ∆t = 0.002 s, ∆h = 0.025 km.

– GEO-2013-

33

Figure 10: Nτ = 4000, Np = 400. Output of the fast butterfly algorithm applied to the

synthetic data in Figure 8. N = 32, qk1 = qk2 = qx1 = qx2 = 9 (here the range of

Φ = f
√
τ2 + p2h2 is about 125). CPU time: 2.46 s. Ref: CPU time of velocity scan:

21.84 s. Purple curve overlaid is the true slowness.

– GEO-2013-

34

Figure 11: Nτ = 4000, Np = 400. Output of the fast butterfly algorithm applied to the

synthetic data in Figure 9. N = 64, qk1 = qk2 = qx1 = qx2 = 9 (here the range of

Φ = f
√
τ2 + p2h2 is about 250). CPU time: 4.35 s. Ref: CPU time of velocity scan:

21.93 s. Purple curve overlaid is the true slowness.

– GEO-2013-

35

Figure 12: 3-D synthetic CMP gather. Nt = 1000, Nh1 = Nh2 = 128. ∆t = 0.004 s,

∆h1 = ∆h2 = 0.08 km.

– GEO-2013-

36

Figure 13: Nτ = 1000, Np = 128. Output of the fast butterfly algorithm applied to the

synthetic data in Figure 12. N = 64, qk1 = qk2 = qx1 = qx2 = 5 (here the range of

Φ = f
√
τ2 + p2(h2

1 + h2
2) is about 162). CPU time: 1.67 s. Purple curve overlaid is the

true slowness.

– GEO-2013-

37

Figure 14: Nτ = 1000, Np = 128. Output of the velocity scan applied to the synthetic data

in Figure 12. CPU time: 125.54 s. Purple curve overlaid is the true slowness.

– GEO-2013-

38

Figure 15: 2-D field CMP gather. Nt = 1500, Nh = 240. ∆t = 0.004 s, ∆h = 0.0125 km.

– GEO-2013-

39

Figure 16: The Fourier transform (absolute value) on time axis of the field data in Figure

15.

– GEO-2013-

40

Figure 17: Nτ = 1500, Np = 800. Output of the fast butterfly algorithm applied to

the field data in Figure 15. N = 128, qk1 = qx1 = 7, qk2 = qx2 = 5 (here the range of

Φ = f
√
τ2 + p2h2 is about 306). CPU time: 6.62 s.

– GEO-2013-

41

Figure 18: Nτ = 1500, Np = 800. Output of the velocity scan applied to the field data in

Figure 15. CPU time: 9.91 s.

– GEO-2013-

42

Figure 19: Output of the adjoint fast butterfly algorithm applied to the data in Figure 5.

N = 32, qk1 = qk2 = qx1 = qx2 = 9.

– GEO-2013-

43

Figure 20: Output of the adjoint velocity scan applied to the data in Figure 6.

– GEO-2013-

44

A

B

Ap

TKTX

Bc Bc

Bc Bc

l = 0

l = 1

l = 2

Figure A-1: The butterfly structure for the special case of N = 4. The top right panel

represents the input domain K with sources g(k) located at k (blue dots). The bottom left

panel represents the output domain X with targets u(x) located at x (red dots). For the

pair of boxes (A,B) at level l = 1, box Ap is called A’s parent at the previous level; four

small boxes Bc are called B’s children at the previous level.

– GEO-2013-

45

