
A fast butterfly algorithm for the hyperbolic Radon transform
Jingwei Hu*, Sergey Fomel, The University of Texas at Austin, Laurent Demanet, Massachusetts Institute of Technol-
ogy, and Lexing Ying, The University of Texas at Austin

SUMMARY

We introduce a fast butterfly algorithm for the hyperbolic
Radon transform commonly used in seismic data processing.
For two-dimensional data, the algorithm runs in complexity
O(N2 logN), where N is representative of the number of points
in either dimension of data space or model space. Using a se-
ries of examples, we show that the proposed algorithm is sig-
nificantly more efficient than conventional integration.

INTRODUCTION

In seismic data processing, the Radon transform (RT) (Radon,
1917) is a set of line integrals that maps mixed and overlap-
ping events in seismic gathers to a new transformed domain
where they can be separated (Gardner and Lu, 1991). The line
integrals can follow different curves; straight lines (linear RT
or slant stack), parabolas (parabolic RT), or hyperbolas (hyper-
bolic RT or velocity stack) are most commonly used. A ma-
jor difference between these transforms is that the former two
are time-invariant whereas the latter is time-variant. When the
curves are time-invariant, the transform can be performed effi-
ciently in the frequency domain by the Fourier transform shift
theorem. On the contrary, the hyperbolic Radon transform has
to be computed in the time domain, which is not feasible in
general due to the large size of seismic data. Nevertheless,
the hyperbolic transform is often preferred as it better matches
the true seismic events. Based on the special properties of the
Radon operator, many approaches were proposed to speed up
the computation in the time domain (Thorson and Claerbout,
1985; Sacchi, 1996; Cary, 1998; Trad et al., 2002).

In this work, we construct a fast butterfly algorithm to effi-
ciently evaluate the hyperbolic Radon transform. As opposed
to the conventional, expensive velocity scan (i.e., direct inte-
gration + interpolation), our method provides an accurate ap-
proximation in only O(N2 logN) operations for 2D data. Here
N depends only on the range of the parameters and can often
be chosen small compared to the problem size. The adjoint of
the hyperbolic transform can be implemented similarly with-
out extra difficulty.

The Radon transform has been widely used to separate and
attenuate multiple reflections (Hampson, 1986; Yilmaz, 1989;
Foster and Mosher, 1992; Herrmann et al., 2000; Moore and
Kostov, 2002; Hargreaves et al., 2003; Trad, 2003). By in-
troducing the fast solver, our hope is to improve the inversion
process either iteratively or directly.

The rest of the paper is organized as follows. We first intro-
duce the low-rank approximation and the butterfly structure;
then using these building elements, we construct our fast algo-
rithm. Numerical examples of both synthetic and field data are

presented next to illustrate the accuracy and efficiency of the
proposed algorithm.

ALGORITHM

Assume d(t,h) is a function in the data domain, then a hyper-
bolic Radon transform R maps d to function (Rd)(τ, p) in the
model domain (Thorson and Claerbout, 1985),

(Rd)(τ, p) =
∫

d(
√

τ2 + p2h2,h)dh. (1)

Here t is the time, h is the offset, τ is the intercept, and p
is the slowness. Fixing (τ, p), the hyperbola t =

√
τ2 + p2h2

describes the traveltime for the event; hence integration along
these curves can be used to identify different reflections.

We adopt a different point of view to construct the algorithm
by reformulating the transform (1) as a double integral,

(Rd)(τ, p) =
∫∫

d̂(ω,h)e2πiω
√

τ2+p2h2
dω dh, (2)

where d̂(ω,h) is the Fourier transform of d(t,h) in the t vari-
able. Discretizing (2) in the (ω,h) domain, one obtains

(Rd)(τ, p) =
∑
ω,h

e2πiω
√

τ2+p2h2
d̂(ω,h). (3)

For simplicity, we first perform a linear transformation to map
(τ, p) to x = (x1,x2) ∈ X = [0,1]2, and (ω,h) to k = (k1,k2) ∈
K = [0,1]2: τ = (τmax−τmin)x1+τmin, p= (pmax− pmin)x2+
pmin; ω = (ωmax −ωmin)k1 + ωmin, h = (hmax − hmin)k2 +
hmin. If we define input (source) f (k) = d̂(ω(k1),h(k2)), out-
put (target) u(x) = (Rd)(τ(x1), p(x2)), and the phase function
Φ(x,k) = ω(k1)

√
τ(x1)2 + p(x2)2h(k2)2, then (3) becomes

u(x) =
∑
k∈K

e2πiΦ(x,k) f (k), x ∈ X , (4)

which falls into the general discretized form of Fourier inte-
gral operators. Our algorithm for computing the summation in
equation (4) follows that of Candès et al. (2009). Readers are
referred there for detailed mathematical exposition.

Low-rank approximations

The magnitude of the phase Φ(x,k) determines the degree of
oscillation of the kernel e2πiΦ(x,k). Let N be an integer power
of two, which is on the order of the maximum of |Φ(x,k)|
for x ∈ X and k ∈ K. The exact choice of N depends on the
desired efficiency and accuracy of the algorithm, and several
examples will be given in the numerical results. The design of
the fast algorithm relies on the key observation that this kernel,
properly restricted to subdomains of x and k, admits accurate
and low-rank separated approximations; i.e., if A and B are two
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square boxes in X and K, with sidelengths w(A), w(B) obeying
w(A)w(B)≤ 1/N, then

e2πiΦ(x,k) ≈
rε∑

t=1

α
AB
t (x)β AB

t (k), x ∈ A, k ∈ B,

where the number rε of expansions is independent of N for
fixed error ε . Furthermore, it is shown that this low-rank ap-
proximation can be constructed by a tensor-product Cheby-
shev interpolation of e2πiΦ(x,k) in the x variable when w(A)≤
1/
√

N and in the k variable when w(B)≤ 1/
√

N. Specifically,
when w(B)≤ 1/

√
N, αAB

t and β AB
t are given by

α
AB
t (x) = e2πiΦ(x,kB

t ), (5)

β
AB
t (k) = e−2πiΦ(x0(A),kB

t )LB
t (k)e

2πiΦ(x0(A),k); (6)

when w(A)≤ 1/
√

N, αAB
t and β AB

t are given by

α
AB
t (x) = e2πiΦ(x,k0(B))LA

t (x)e
−2πiΦ(xA

t ,k0(B)), (7)

β
AB
t (k) = e2πiΦ(xA

t ,k). (8)

Here x0(A) and k0(B) denote the center of the boxes A and B.
LB

t (k) is the 2D Lagrange interpolation on the Chebyshev grid
kB

t :

LB
t (k) =

 qk1−1∏
s1=0,s1 6=t1

k1− kB
s1

kB
t1 − kB

s1

 qk2−1∏
s2=0,s2 6=t2

k2− kB
s2

kB
t2 − kB

s2

 ,

with kB
t = {(kB

t1 ,k
B
t2) | k0(B) +w(B)(zi1 ,zi2), 0 ≤ i1 ≤ qk1 −

1, 0 ≤ i2 ≤ qk2 − 1, rε = qk1 qk2}, and zi =
1
2 cos( iπ

q−1 ) is the
1D Chebyshev grid of order q on [−1/2,1/2]. LA

t (x) and xA
t

are defined accordingly.

Butterfly structure

To realize the above idea, the butterfly algorithm (Michielssen
and Boag, 1996; O’Neil and Rokhlin, 2007) turns out to be an
appropriate tool. The main data structure underlying the al-
gorithm is a pair of dyadic trees TX and TK . The tree TX has
X = [0,1]2 as its root box (level 0) and is built by recursive,
dyadic partitioning of X until level L = logN, where the finest
boxes are of sidelength 1/N. The tree TK is built similarly but
in the opposite direction. Figure 1 shows such a partition for
N = 4. A crucial property of this structure is that at arbitrary
level l, the sidelengths of a box A in TX and a box B in TK
always satisfy w(A)w(B) = 1/N. Thus, a low-rank approxi-
mation of the kernel e2πiΦ(x,k) is available.

Fast butterfly algorithm

Our goal is to approximate the partial sum generated by the
sources k inside any fixed box B: uB(x) :=

∑
k∈B e2πiΦ(x,k) f (k).

1. Initialization. At level l = 0, let A be the root box of TX . For
each leaf box B ∈ TK , equations (5, 6) are valid since w(B) ≤
1/
√

N. Then for x ∈ A, uB(x) ≈
∑rε

t=1 e2πiΦ(x,kB
t )δ AB

t , where
δ AB

t :=
∑

k∈B β AB
t (k) f (k) is given by

δ
AB
t = e−2πiΦ(x0(A),kB

t )
∑
k∈B

(
LB

t (k)e
2πiΦ(x0(A),k) f (k)

)
.
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Figure 1: Butterfly structure for the special case of N = 4.

Due to the special form of αAB
t , δ AB

t can be treated as equiva-
lent sources located at kB

t . We next aim at updating δ AB
t until

the end level L. This is done as follows.

2. Recursion. At l = 1,2, ...,L/2, for each pair (A,B), let Ap
be A’s parent and Bc,c = 1,2,3,4 be B’s children (see Figure
1). For each child, we have available from the previous level
an approximation of the form

uBc(x)≈
rε∑

t ′=1

e2πiΦ(x,kBc
t′ )δ

ApBc
t ′ , for x ∈ Ap.

Summing over all children gives

uB(x)≈
4∑

c=1

rε∑
t ′=1

e2πiΦ(x,kBc
t′ )δ

ApBc
t ′ , for x ∈ Ap.

Since A ⊂ Ap, this is of course true for any x ∈ A. On the
other hand, e2πiΦ(x,k) also has a low-rank approximation of
equivalent sources at the current level,

uB(x)≈
rε∑

t=1

e2πiΦ(x,kB
t )δ

AB
t , for x ∈ A.

An easy calculation suggests

δ
AB
t =

4∑
c=1

rε∑
t ′=1

β
AB
t (kBc

t ′ )δ
ApBc
t ′ .

Substituting β AB
t in (6) yields

δ
AB
t = e−2πiΦ(x0(A),kB

t )
4∑

c=1

rε∑
t ′=1

(
LB

t (k
Bc
t ′ )e

2πiΦ(x0(A),kBc
t′ )δ

ApBc
t ′

)
.
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3. Switch. A switch of the representation to (7, 8) is needed at
l = L/2 since (5, 6) is no longer valid as l > L/2. Indeed, we
can set

δ
AB
t =

rε∑
s=1

e2πiΦ(xA
t ,kB

s )δ
AB
s ,

where {δ AB
t } denotes the new set of coefficients and {δ AB

s }
the old set.

4. Recursion. The rest of the recursion is analogous. For
l = L/2+1, ...,L, we have

δ
AB
t =

4∑
c=1

rε∑
t ′=1

α
ApBc
t ′ (xA

t )δ
ApBc
t ′ .

Substituting αAB
t in (7) gives

δ
AB
t =

4∑
c=1

e2πiΦ(xA
t ,k0(Bc))

rε∑
t ′=1

(
LAp

t ′ (x
A
t )e
−2πiΦ(xAp

t′ ,k0(Bc))δ
ApBc
t ′

)
.

5. Termination. Finally we reach l = L, and B is the entire
domain K. For each x ∈ A,

u(x) = uB(x)≈
rε∑

t=1

α
AB
t (x)δ AB

t .

We thus set (after plugging in αAB
t in (7))

u(x)= e2πiΦ(x,k0(B))
rε∑

t=1

(
LA

t (x)e
−2πiΦ(xA

t ,k0(B))δ AB
t

)
, x∈A.

Discussion

The main workload for the fast butterfly algorithm is in steps
2 and 4. For each level, there are N2 pairs of boxes (A,B), and
the operations between each A and B is a constant small num-
ber (depends on rε ). Since there are logN levels, the total cost
is O(N2 logN). It is not difficult to see that step 3 takes O(N2),
and steps 1 and 5 take O(Nω Nh) and O(Nτ Np) operations.
Considering the initial Fourier transform of preparing data in
the (ω,h) domain, we conclude that the overall complexity
of the algorithm is roughly O(NtNh logNt +C(rε )N2 logN +
Nω Nh + Nτ Np). Normally Nω = Nt , but by symmetry and
compactness of the Fourier transform d̂(ω,h) (typical for most
seismic data), we can significantly shorten the domain for ω ,
hence further reduce the computational load.

In comparison, the conventional velocity scan requires at least
O(Nτ NpNh) computations, which quickly become a bottleneck
as the problem size increases. Yet the efficiency of our algo-
rithm is mainly controlled by O(N2 logN), where N is roughly

determined by the degree of oscillation of e2πiω
√

τ2+p2h2 , i.e.,
the range of τ , p, h, and ω . In practice, N can often be chosen
smaller than Nτ , Np, Nh, and Nω .

There is no general rule to select N and the number of Cheby-
shev points qk1 ,qk2 ,qx1 ,qx2 (recall that rε = qk1 qk2 or rε =
qx1 qx2 ). For numerical implementation, these parameters are
tuned to achieve the best efficiency and accuracy.

NUMERICAL EXAMPLES

2D synthetic data

We start with a simple 2D example. Figure 2 shows a synthetic
CMP gather sampled on Nt ×Nh = 10002. Figure 3 shows the
result by the fast butterfly algorithm obtained on Nτ ×Np =
10002. For this problem, our method provides a reasonable
result with N = 32, qk1 = qx1 = 7, qk2 = qx2 = 5 in only 1
second of CPU time, while the traditional velocity scan takes
about 60 s, whose result is also shown here for comparison
(Figure 4).

Figure 2: 2D synthetic CMP gather, Nt ×Nh = 10002.

Figure 3: Output of the fast butterfly algorithm, Nτ ×Np =
10002, N = 32, qk1 = qx1 = 7, qk2 = qx2 = 5; CPU time: 1.26
s.

2D field data

We now consider a real 2D seismic gather in Figure 5. The
sampling sizes are Nt = Nτ = 1500, Nh = 240, and Np = 2000.
Parameters are chosen as N = 128, qk1 = qx1 = 7, qk2 = qx2 =
5. Although the small Nh makes these data not very suitable for
testing the fast algorithm, our method (∼ 7 s) still outperforms
the velocity scan (∼ 43 s) with acceptable accuracy (Figure 6).

3D synthetic data

Since the above discussion does not require the input data to
be uniform, our algorithm can be easily extended to handle the
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Figure 4: Output of the velocity scan, Nτ ×Np = 10002; CPU
time: 61.36 s.

Figure 5: 2D real CMP gather, Nt = 1500, Nh = 240.

Figure 6: Output of the fast butterfly algorithm, Nτ = 1500,
Np = 2000, N = 128, qk1 = qx1 = 7, qk2 = qx2 = 5; CPU time:
7.23 s (ref: CPU time of velocity scan is 42.58 s).

following problem:

(Rd)(τ, p) =
∫∫

d(
√

τ2 + p2(h2
1 +h2

2),h1,h2)dh1 dh2, (9)

where d(t,h1,h2) is a function in 3D rather than 2D. All we

need is to introduce a new variable h =
√

h2
1 +h2

2, and reorder
the values d(t,h1,h2) according to h. Figure 7 is such synthetic
data sampled on Nt ×Nh1 Nh2 = 1000× 1282. The output is
obtained for Nτ×Np = 1000×512. The fast algorithm (Figure
8) runs in only 7 s for N = 64, qk1 = qx1 = 5, qk2 = qx2 = 3,
while the velocity scan takes more than 500 s.

Figure 7: 3D synthetic CMP gather, Nt = 1000, Nh1 = Nh2 =
128.

Figure 8: Output of the fast butterfly algorithm, Nτ = 1000,
Np = 512, N = 64, qk1 = qx1 = 5, qk2 = qx2 = 3; CPU time:
7.34 s (ref: CPU time of velocity scan is 515.25 s).

CONCLUSIONS

We constructed a fast butterfly algorithm for the hyperbolic
Radon transform. Compared with the time-consuming integra-
tion in the time domain, our method runs in only O(N2 logN)
operations, where N is representative of the number of points
in either dimension of data space or model space. An ongo-
ing work is to study the performance of this fast solver for the
sparse iterative inversion of the Radon transform in application
to multiple attenuation.
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