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Abstract—We introduce a novel multichannel blind de-
convolution (BD) method that extracts sparse and front-
loaded impulse responses from the channel outputs, i.e.,
their convolutions with a single arbitrary source. A crucial
feature of this formulation is that it doesn’t encode support
restrictions on the unknowns, unlike most prior work on
BD. The indeterminacy inherent to BD, which is difficult
to resolve with a traditional `1 penalty on the impulse
responses, is resolved in our method because it seeks
a first approximation where the impulse responses are:
“maximally white” — encoded as the energy focusing
near zero lag of the impulse-response auto-correlations;
and “maximally front-loaded” — encoded as the energy
focusing near zero time of the impulse responses. Hence we
call the method focused blind deconvolution (FBD). The
focusing constraints are relaxed as the iterations progress.
Note that FBD requires the duration of the channel outputs
to be longer than that of the unknown impulse responses.

A multichannel blind deconvolution problem that is ap-
propriately formulated by sparse and front-loaded impulse
responses arises in seismic inversion, where the impulse
responses are the Green’s function evaluations at different
receiver locations, and the operation of a drill bit inputs the
noisy and correlated source signature into the subsurface.
We demonstrate the benefits of FBD using seismic-while-
drilling numerical experiments, where the noisy data
recorded at the receivers are hard to interpret, but FBD
can provide the processing essential to separate the drill-bit
(source) signature from the interpretable Green’s function.

Index Terms—Blind deconvolution, seismic interferome-
try, phase retrieval, channel identification, dereverberation,
front-loaded, coprime.

I. INTRODUCTION

There are situations where seismic experiments are to
be performed in environments with a noisy source e.g.,
when an operating borehole drill is loud enough to reach
the receivers. The source generates an unknown, noisy
signature s(t) at time t; one typically fails to depend-
ably extract the source signature despite deploying an
attached receiver. For example, the exact signature of the
operating drill bit in a borehole environment cannot be
recorded because there would always be some material
interceding before the receiver [1]. The noisy-source sig-
nals propagate through the subsurface, and result in the
data at the receivers, denoted by di(t). Imaging of the
data to characterize the subsurface (seismic inversion)
is only possible when they are deconvolved to discover
the subsurface Green’s function. Similarly, in room
acoustics, the speech signals s(t) recorded as di(t) at a
microphone array are distorted and sound reverberated
due to the reflection of walls, furniture and other objects.
Speech recognition and compression is simpler when
the reverberated records di(t) at the microphones are
deconvolved to recover the clean speech signal [2], [3].

The response of many such physical systems to a
noisy source is to produce multichannel outputs. The

n observations or channel outputs, in the noiseless
case, are modeled as the output of a linear system that
convolves (denoted by ∗) a source (with signature s(t))
with the impulse response function:

di(t) = {s ∗ gi}(t). (1)

Here, gi(t) is the ith channel impulse response and di(t)
is the ith channel output. The impulse responses contain
physically meaningful information about the channels.
Towards the goal of extracting the vector of impulse
responses [g1(t), . . . , gn(t)] or simply [gi] and the source
function s(t), we consider an unregularized least-squares
fitting of the channel-output vector [d1(t), . . . , dn(t)] or
[di]. This corresponds to the least-squares multichannel
deconvolution [4]–[6] of the channel outputs with an
unknown blurring kernel, i.e., the source signature. It
is well known that severe non-uniqueness issues are
inherent to multichannel blind deconvolution (BD); there
could be many possible estimates of [gi], which when
convolved with the corresponding s will result in the
recorded [di] (as formulated in (6) below).

Therefore, in this paper, we add two additional con-
straints to the BD framework that seek a solution where
[gi] are:

1) maximally white — encoded as the energy focusing
near zero lag (i.e., energy diminishing at non-zero
lags) of the impulse-response auto-correlations and

2) maximally front-loaded — encoded as the energy
focusing near zero time of the most front-loaded
impulse response.

We refer to them as focusing constraints. They are
not equivalent to `1 minimization,∗ although they also
enforce a form of sparsity. These are relaxed as the
iterations progress to enhance the fitting of the channel
outputs. Focused blind deconvolution (FBD) employs
the focusing constraints to resolve the indeterminacy
inherent to the BD problem. We identify that it is
more favorable to use the constraints in succession after
decomposing the BD problem into two separate least-
squares optimization problems. The first problem, where
it is sufficient to employ the first constraint, fits the
interferometric or cross-correlated channel outputs [7],
rather than the raw outputs, and solves for the inter-
ferometric impulse response. The second problem relies
on the outcome of the previous problem and completes
FBD by employing the second constraint and solving
for the impulse responses from their cross-correlations.
This is shown in the Fig. 1. According to our numerical
experiments, FBD can effectively retrieve [gi] provided
the following conditions are met:

∗That is, minimizing
∑

t |gi(t)| to promote sparsity.
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• the duration length of the unknown impulse re-
sponses should be much briefer than that of the
channel outputs;

• the channels are sufficiently dissimilar in the sense
of their transfer-function polynomials being co-
prime in the z-domain.

In the seismic inversion context, the first condition
is economically beneficial, as usual drilling practice
enables us to record noisy data for a time period
much longer compared to the wave-propagation time.
Also, since drilling is anyway necessary, its use as a
signal source to estimate [gi] is a free side benefit. We
show that the second condition can be satisfied in the
seismic experiments by deploying sufficiently dissimilar
receivers, as defined below, which may yet be arrayed
variously in a borehole, or surface-seismic geometry.

It is shown in [8] that multichannel blind deconvo-
lution is dependent on the condition that the transfer
functions are coprime, i.e., they do not share common
roots in the z-domain. The BD algorithms in [9], [10]
are also based on this prerequisite. In this regard, due
to the difficulty of factoring the high order channel
polynomials, [11] proposed a method for identification
of common roots of two channel polynomials. Interest-
ingly, they have observed that the roots do not have to be
exactly equal to be considered common in BD. Khong
et al. [12] uses clustering to efficiently extract clusters of
near-common roots. In contrast to these methods, FBD
doesn’t need the identification of the common roots of
the channel polynomials.

Surveys of BD algorithms in the signal and image
processing literature are given in [13], [14]. A series of
results on blind deconvolution appeared in the literature
using different sets of assumptions on the unknowns.
The authors in [15], [16] show that BD can be efficiently
solved under certain subspace conditions on both the
source signature and impulse responses even in the
single-channel case. [17] showed the recovery of the
unknowns in multichannel BD assuming that the source
is sparse in some known basis and the impulse responses
belong to known random subspaces. The experimental
results in [18] show the successful joint recovery of
Gaussian impulse responses with known support that are
convolved with a single Gaussian source signature. BD
algorithms with various assumptions on input statistics
are proposed in [19]–[21]. Compared to the work in
these articles, FBD doesn’t require any assumptions
on 1) support of the unknowns, 2) statistics of the
source signature and 3) the underlying physical models;†

although, it does apply a type of sparsity prior on
the [gi]. Note also that regularization in the sense of
minimal `1 i.e., mean-absolute norm, as some methods
employ, does not fully address the type of indeterminacy
associated with BD.

Deconvolution is also an important step in the pro-
cessing workflow used by exploration geophysicists to
improve the resolution of the seismic records [23]–
[25]. Robinson [26] developed predictive decomposition

†Some seismic BD algorithms design deconvolution operators
using an estimated subsurface velocity model [22].

[27] of the seismic record into a source signature and
a white or uncorrelated time sequence corresponding
to the Earth’s impulse response. In this context, the
impulse responses [gi] correspond to the unique subsur-
face Green’s function g(~x, t) evaluated at the receiver
locations [~xi], where the seismic-source signals are
recorded. Spiking deconvolution [28], [29] estimates a
Wiener filter that increases the whiteness of the seismic
records, therefore, removing the effect of the seismic
sources. In order to alleviate the non-uniqueness issues
in blind deconvolution, recent algorithms in geophysics:

• take advantage of the multichannel nature of the
seismic data [30]–[33];

• sensibly choose the initial estimates of the [gi] in
order to converge to a desired solution [33]; and/or

• constrain the sparsity of the [gi] [31].
Kazemi et al. [34] used sparse BD to estimate source
and receiver wavelets while processing seismic records
acquired on land. The BD algorithms in the current
geophysics literature handle roughly impulsive source
wavelets that are due to well-controlled sources, as
opposed to the noisy and uncontrollable sources in FBD,
about which we assume very little. It has to be observed
that building initial estimates of the [gi] is difficult for
any algorithm, as the functional distances between the
[di] and the actual [gi] are quite large. Unlike standard
methods, FBD does not require an extrinsic starting
guess.

The Green’s function retrieval is also the subject
of seismic interferometry [35]–[40], where the cross-
correlation (denoted by ⊗) between the records at two
receivers with indices i and j,

dij(t) = {di ⊗ dj}(t) = {sa ∗ gij}(t), (2)

is treated as a proxy for the cross-correlated or in-
terferometric Green’s function gij= gi ⊗ gj . A classic
result in interferometry states that a summation on the
gij over various noisy sources, evenly distributed in
space, will result in the Green’s function due to a virtual
source at one of the receivers [41]. In the absence of
multiple evenly distributed noisy sources, the interfero-
metric Green’s functions can still be directly used for
imaging [42]–[46], although this requires knowledge of
the source signature. The above equation shows that the
goal of interferometry, i.e., construction of gij given dij ,
is impeded by the source auto-correlation sa= s⊗ s. In
an impractical situation with a zero-mean white noisy
source, the dij would be precisely proportional to gij ;
but this is not at all realistic, so we don’t assume a white
source signature in FBD and eschew any concepts like
virtual sources.

The failure of seismic noisy sources to be white‡ is
already well known in seismic interferometry [39], [50].
To extract the response of a building, [51] propose a
deconvolution of the recorded waves at different loca-
tions in the building rather than the cross-correlation.
Seismic interferometry by multi-dimensional deconvo-
lution [52]–[55] uses an estimated interferometric point

‡For example, the noise generated by drill bit operations is heavily
correlated in time [47]–[49].
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spread function as a deconvolution operator. The results
obtained from this approach depend on the accuracy
of the estimated point spread function, which relies
on a uniform distribution of multiple noisy sources in
space. In contrast to these seismic-interferometry-by-
deconvolution approaches, FBD is designed to perform
a blind deconvolution in the presence of a single noisy
source and doesn’t assume an even distribution of the
noisy sources. In the presence of multiple noisy sources,
as preprocessing to FBD, one has to use seismic blind
source separation. For example, [56], [57] used inde-
pendent component analysis for convolutive mixtures to
decompose the multi-source recorded data into isolated
records involving one source at a time.

The remainder of this paper is organized as follows.
We explain the indeterminacy of unregularized BD
problem in section II. In section III, we introduce FBD
and argue that it can resolve this indeterminacy. This
paper contains no theoretical guarantee, but we regard
the formulation of such theorems as very interesting.
In section IV, we demonstrate the benefits of FBD
using both idealized and practical synthetic seismic
experiments.

II. MULTICHANNEL BLIND DECONVOLUTION

The z-domain representations are denoted in this pa-
per using the corresponding capital letters. For example,
the ith channel output after a z-transform is denoted by

Di(z) =

T∑
t=0

di(t)z
−t.

The traditional algorithmic approach to solve BD is a
least-squares fitting of the channel output vector [di :
{0, . . . , T} → R] to jointly optimize two functions i.e.,
the impulse response vector associated with different
channels [gi : {0, . . . , τ} → R] and the source signature
s : {0, . . . , T} → R. The joint optimization can be
suitably carried out using alternating minimization [58],
[59]: in one cycle, we fix one function and optimize
the other, and then fix the other and optimize the first.
Several cycles are expected to be performed to reach
convergence.

Definition 1 (LSBD: Least-squares Blind Deconvolu-
tion). It is a basic formulation that minimizes the least-
squares functional:

U(s, [gi]) =

n∑
k=1

T∑
t=0

{dk(t)− {s ∗ gk}(t)}2; (3)

(ŝ, [ĝi]) = argmin
s,[gi]

U (4)

subject to

T∑
t=0

s2(t) = 1. (5)

Here, ŝ and [ĝi] denote the predicted or estimated
functions corresponding to the unknowns s and [gi],
respectively. We have fixed the energy (i.e., sum-of-
squares) norm of s in order to resolve the scaling
ambiguity. In order to effectively solve this problem,

Figure 1: Focused blind deconvolution uses two focusing
constraints to resolve the indeterminacies of the multi-
channel blind deconvolution. Note that this is not an
algorithmic flowchart, but explains the two components
of the regularization in FBD.

it is required that the domain length T + 1 of the first
unknown function s be longer than the domain length
τ + 1 of the second unknown function [gi] [8].

Ill-posedness is the major challenge of BD, irrespec-
tive of the number of channels. For instance, when the
number of channels n = 1, an undesirable minimizer
for (3) would be the temporal Kronecker δ(t) for the
impulse response, making the source signature equal the
channel output. Even with n ≥ 1, the LSBD problem
can only be solved up to some indeterminacy. To quan-
tify the ambiguity, consider that a filter φ(t) 6= δ(t) and
its inverse φ−1(t) (where φ∗φ−1 = δ) can be applied to
each element of [gi] and s respectively, and leave their
convolution unchanged:

di(t) = {s ∗ gi}(t) = {{s ∗ φ−1} ∗ {gi ∗ φ}}(t). (6)

If furthermore s ∗ φ−1 and [gi ∗ φ] obey the constraints
otherwise placed on s and [gi], namely in our case
that s and [gi] should have duration lengths T + 1
and τ + 1 respectively, and the unity of the source
energy, then we are in presence of a true ambiguity
not resolved by those constraints. We then speak of
φ as belonging to a set Q of undetermined filters.
This formalizes the lack of uniqueness [8]: for any
possibly desirable solution (ŝ, [ĝi]) and every φ ∈ Q,
(ŝ ∗ φ−1, [ĝi ∗ φ]) is an additional possibly undesirable
solution. Taking all φ ∈ Q spawns all solutions in a set P
that equally minimize the least-squares functional in (3).
Accordingly, in the z-domain, the elements in [Ĝi] of
almost any solution in P share some common root(s),
which are associated with its corresponding unknown
filter Φ(z). In other words, the channel polynomials
in [Ĝi] of nearly all the solutions are not coprime. A
particular element in P has its corresponding [Ĝi] with
the fewest common roots — we call it the coprime
solution.

III. FOCUSED BLIND DECONVOLUTION

The aim of focused blind deconvolution is to seek the
coprime solution of the LSBD problem. Otherwise, the
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channel polynomials [Ĝi] will typically be less sparse
and less front-loaded in the time domain owing to the
common roots that are associated with the undetermined
filter φ of (6). For example, including a common root r
to the polynomials in [Ĝi] implies an additional factor
(z − r) that corresponds to subtracting [r gi(t)] from
[gi(t + 1)] in the time domain, so that the sparsity is
likely to reduce. Therefore, the intention and key innova-
tion of FBD is to minimize the number of common roots
in the channel polynomials [Ĝi] associated with Φ(z).
It is difficult to achieve the same result with standard
ideas from sparse regularization.

Towards this end, focused blind deconvolution solves
a series of two least-squares optimization problems with
focusing constraints. These constraints, described in the
following subsections, can guide FBD to converge to
the desired coprime solution. Note that this prescription
does not guarantee that the recovered impulse responses
should consistently match the true impulse responses;§

nevertheless, we empirically encounter a satisfactory re-
covery in most practical situations of seismic inversion,
as discussed below.

The first problem considers fitting the cross-correlated
channel outputs to jointly optimize two functions i.e., the
impulse-response cross-correlations [gij ] between every
possible channel pair and the source-signature auto-
correlation sa. The focusing constraint in this problem
will resolve the indeterminacy due to the amplitude
spectrum of the unknown filter φ in (6) such that
the impulse responses [gi] are maximally white. Then
the second problem completes the focused blind de-
convolution by fitting the above-mentioned impulse-
response cross-correlations, to estimate [gi] from [gij ].
The focusing constraint in this problem will resolve
the indeterminacy due to the phase spectrum of the
unknown filter φ such that the impulse responses [gi] are
maximally front-loaded. As shown in the Fig. 1, these
two problems will altogether resolve the indeterminacies
of BD discussed in the previous section.

A. Focused Interferometric Blind Deconvolution

In order to isolate and resolve the indeterminacy
due to the amplitude spectrum of φ(t), we consider a
reformulated multichannel blind deconvolution problem.
This reformulation deals with the cross-correlated or in-
terferometric channel outputs, dij : {−T, . . . , T} → R,
as in (2), between every possible channel pair (cf., [45]),
therefore ending the indeterminacy due to the phase
spectrum of φ(t).

Definition 2 (IBD: Interferometric Blind Deconvolu-
tion). We use this problem to lay the groundwork for
the next problem, and benchmarking. The optimization
is carried out over the source-signature auto-correlation

§In the seismic context, FBD does not guarantee that the recovered
Green’s function satisfies the wave equation with impulse source.

sa : {−T, . . . , T} → R and the cross-correlated or in-
terferometric impulse responses gij : {−τ, . . . , τ} → R:

V (sa, [gij ]) =

n∑
k=1

n∑
l=k

T∑
t=−T

{dkl(t)− {sa ∗ gkl}(t)}2;

(7)
(ŝa, [ĝij ]) = argmin

sa,[gij ]

V (8)

subject to sa(0) = 1; sa(t) = sa(−t).

Here, we denoted the (n + 1)n/2-vector
of unique interferometric impulse responses
[g11, g12, . . . , g22, g23, . . . , gnn] by simply [gij ]. We fit
the interferometric outputs dij after max normalization.
The motivation of conveniently fixing sa(0) is not only
to resolve the scaling ambiguity but also to converge
to a solution, where the necessary inequality condition
sa(t) ≤ sa(0)∀ t is satisfied. More generally, the
function sa(t) is the autocorrelation of s(t) if and only
if the Toeplitz matrix formed from its translates is
positive semidefinite, i.e., Toeplitz(sa) � 0. This is a
result known as Bochner’s theorem. This semidefinite
constraint can be realized by projecting Toeplitz(sa)
onto the cone of positive semidefinite matrices at each
iteration of the nonlinear least-squares iterative method
[60]. Nonetheless, in the numerical experiments, we
observe convergence to acceptable solutions by just
using the weaker constraints of IBD, when is data noise
is sufficiently small.

Similar to LSBD, IBD has unwanted minimizers
obtained by applying a filter ψ−1 to sa and ψ to each
element of [gij ], but it is easily computed that ψ has
to be real and nonnegative in the frequency domain
(|z| = 1) and related to the amplitude spectrum of φ(t).
Therefore, its indeterminacy is lesser compared to that
of the LSBD approach.

Definition 3 (FIBD: Focused Interferometric Blind
Deconvolution). FIBD starts by seeking a solution of
the underdetermined IBD problem where the impulse
responses are “maximally white", as measured by the
concentration of their autocorrelation near zero lag. To-
wards that end, we use a regularizing term that penalizes
the energy of the impulse-response auto-correlations
proportional to the non-zero lag time t, before returning
to solving the regular IBD problem.

W (sa, [gij ]) = V (sa, [gij ]) + α

n∑
k=1

τ∑
t=−τ

t2g2kk(t); (9)

(ŝa, [ĝij ]) = argmin
sa,[gij ]

W (10)

subject to sa(0) = 1; sa(t) = sa(−t).

Here, α > 0 is a regularization parameter. We consider
a homotopy [61] approach to solve FIBD, where (10)
is solved in succession for decreasing values of α,
the result obtained for previous α being used as an
initializer for the cycle that uses the current α. The
focusing constraint resolves the indeterminacy of IBD.
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Minimizing the energy of the impulse-response auto-
correlations [gii] proportional to the non-zero lag time
will result in a solution where the impulse responses are
heuristically as white as possible. In other words, FIBD
minimizes the number of common roots, associated
with the IBD indeterminacy Ψ(z), in the estimated
polynomials [Ĝij ], facilitating the goal of FBD to seek
the coprime solution. The entire workflow of FIBD is
shown in the Algorithm 1. In most of the numerical
examples, we simply choose α = ∞ first, and then
α = 0.

B. Focused Phase Retrieval

FIBD resolves a component of the LSBD ambiguity
and estimates the interferometric impulse responses.
This should be followed by phase retrieval (PR) — a
least-squares fitting of the interferometric impulse re-
sponses [ĝij ] to optimize the impulse responses [gi]. The
estimation of [gi] in PR is hindered by the unresolved
LSBD ambiguity due to the phase spectrum of φ(t).
In order to resolve the remaining ambiguity, we use a
focusing constraint in PR.

Definition 4 (LSPR: Least-squares Phase Retrieval).
Given the interferometric impulse responses [gij ], the
aim of the phase retrieval problem is to estimate un-
known [gi].

X([gi]) =

n∑
k=1

n∑
l=i

τ∑
t=−τ

{ĝkl(t)− {gk ⊗ gl}(t)}2; (11)

[ĝi] = argmin
[gi]

X (12)

LSPR is ill-posed. Consider a white filter χ(t) 6= δ(t),
where χ ⊗ χ = δ, that can be applied to each of
the impulse responses, and leave their cross-correlations
unchanged:

gij(t) = {gi ⊗ gj}(t) = {{gi ∗ χ} ⊗ {gj ∗ χ}}(t). (13)

If furthermore gi ∗ χ obeys the constraint otherwise
placed, namely in our case that the impulse responses
should have duration length τ , then we are in the pres-
ence of a true ambiguity not resolved by this constraint.
It is obvious that the filter χ(t) is linked to the remaining
unresolved component of the LSBD indeterminacy, i.e.,
the phase spectrum of φ(t).

Definition 5 (FPR: Focused Phase Retrieval). FPR seeks
a solution of the underdetermined LSPR problem where
the impulse responses [gi] are “maximally front-loaded”.
It starts with an optimization that fits the interferometric
impulse responses only linked with the most front-
loaded channel¶ f , before returning to solving the
regular LSPR problem. We use a regularizing term that

¶In the seismic context, the most front-loaded channel corresponds
to the closest receiver i = f to the noisy source, assuming that the
traveltime of the waves propagating from the source to this receiver
is the shortest.

penalizes the energy of the most front-loaded response
gf proportional to the time t 6= 0:

Y ([gi]) =

n∑
k=1

τ∑
t=−τ

{ĝkf (t)− {gk ⊗ gf}(t)}2

+ β

τ∑
t=0

g2f (t)t
2; (14)

[ĝi] = argmin
gi

Y. (15)

Here, β ≥ 0 is a regularization parameter. Again, we
consider a homotopy approach to solve this optimiza-
tion problem, where the above equation is solved in
succession for decreasing values of β. FPR chooses the
undetermined filter χ such that gi ∗ χ has the energy
maximally concentrated or focused at the front (small t).
Minimizing the second moment of the squared impulse
responses will result in a solution where the impulse
responses are as front-loaded as possible. The entire
workflow of FPR is shown in the Algorithm 2. In all
the numerical examples, we simply choose β =∞ first,
and then β = 0. Counting on the estimated impulse
responses from FPR, we return to the LSBD formulation
in order to finalize the BD problem.

C. Sufficiently Dissimilar Channel Configuration

FBD seeks the coprime solution of the ill-posed
LSBD problem. Therefore, for the success of FBD, it
is important that the true transfer functions do not share
any common zeros in the z-domain. This requirement is
satisfied when the channels are chosen to be sufficiently
dissimilar. The channels are said to be sufficiently
dissimilar unless there exists a spurious γ and [gi] such
that the true impulse-response vector [g0i ] = [γ ∗ gi].
Here, γ is a filter that 1) is independent of the channel
index i; 2) belongs to the set Q of filters that cause
indeterminacy of the LSBD problem; 3) doesn’t simply
shift gi in time. In our experiments, FBD reconstructs
a good approximation of the true impulse responses
if the channels are sufficiently dissimilar. Otherwise,
FBD outputs an undesirable solution (s0 ∗ γ−1, [gi]),
as opposed to the desired (s0, [γ ∗ gi]), where s0 is the
true source signature. In the next section, we will show
numerical examples with both similar and dissimilar
channels.

IV. NUMERICAL SIMULATIONS

A. Idealized Experiment I

We consider an experiment with n = 20, τ = 30
and T = 400. The aim is to reconstruct the true
impulse responses [g0i ], plotted in Fig. 2a, from the
channel outputs generated using a Gaussian random
source signature s0. The impulse responses of similar
kind are of particular interest in seismic inversion and
room acoustics as they reveal the arrival of energy,
propagated from an impulsive source, at the receivers
in the medium. In this case, the arrivals have onsets of
6 s and 10 s at the first channel and they curve linearly
and hyperbolically, respectively. The linear arrival is
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Algorithm 1: Focused Interferometric Blind De-
convolution. Alternating minimization of W , as
in eq. 10, is carried out in succession for de-
creasing values of α.

Preparation gg
generate the cross-correlated or interferometric
channel outputs [dij ] and normalize with d11(0)

Parameters (with example) gg
tolerance for convergence ε = 10−8

~α = {∞, 0 }
Initialize gg

sa(t)←

{
0, if t 6= 0

1, otherwise

gij(t)←

{
0, if i = j and t 6= 0

rand(), otherwise
Results gg

interferometric transfer functions [ĝij ]
autocorrelation for the source signature ŝa

Kernel
foreach α ∈ ~α do /* loop over
decreasing α */

1 W1 =∞; W2 =∞; W1p =W1; W2p =W2;
∆W =∞

2 while ∆W > ε do
3 sa ← argmin

sa

W (sa, [gij ]) s.t. sa(0) = 1

& sa(t) = sa(−t) /* updating
source */

4 W1p ←W1; W1 ←W (sa, [gij ])
5 [gij ]← argmin

[gij ]

W (sa, [gij ])

/* updating interferometric
transfer functions */

6 W2p ←W2; W2 ←W (sa, [gij ])
7 ∆W = max({W1p −W1,W2p −W2 })

/* measure convergance */
8 end
9 end

10 [ĝij ]← [gij]; ŝa ← sa

the earliest arrival that doesn’t undergo scattering. The
hyperbolic arrival is likely to represent a wave that is
reflected or scattered from an interface between two
materials with different acoustic impedances.

LSBD: To illustrate its non-uniqueness, we use three
different initial estimates of s and [gi] to observe the
convergence to three different solutions that belong to P.
The channel responses corresponding to these solutions
are plotted in Figs. 2b–d. At the convergence, the misfit
(given in (3)) in all these three cases U(ŝ, [ĝi]) / 10−6,
justifying non-uniqueness. Moreover, we notice that
none of the solutions is desirable due to insufficient
resolution.

FIBD: In order to isolate the indeterminacy due to the
amplitude spectrum of the unknown filter φ(t) in (6) and
justify the use of the focusing constraint in (9), we plot
the true and undesirable impulse responses after cross-
correlation in the Fig. 3. It can be easily noticed that the

Algorithm 2: Focused Phase Retrieval. Solving
Y , as in eq. 14, in succession for decreasing
values of β. Then solving X in eq. 11.
Preparation gg

get the interferometric filters [ĝij ] using FIBD
Parameters (with example) gg

~β = {∞, 0 }
index of the most front-loaded channel f

Initialize gg

gi(t)←

{
0, if i = f and t 6= 0

rand(), otherwise
Results gg

filters [ĝi]

Kernel
foreach β ∈ ~β do /* loop over
decreasing β */

1 [gi]← argmin
[gi]

Y ([gi])

2 end
3 [gi]← argmin

[gi]

X([gi]) /* return to LSPR

*/
4 [ĝi]← [gi]

Figure 2: Idealized Experiment I. The results are dis-
played as images that use the full range of colors in a
colormap. Each pixel of these images corresponds to a
time t and a channel index i. Impulse responses: a) true;
b)—d) undesired.

Figure 3: Idealized Experiment I. Cross-correlations of
impulse responses corresponding to the Fig. 2: a) true;
b)—d) undesired.
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Figure 4: Idealized Experiment I. a) FIBD estimated
interferometric impulse responses corresponding to the
Fig. 3a, after fitting the interferometric channel outputs.
b) Same as (a), except after white noise is added to
the channel outputs. c) Estimated impulse responses
from FPR by fitting the FIBD-outcome interferometric
impulse responses in (a). d) Same as (c), except fitting
the FIBD outcome in (b).

Figure 5: Idealized Experiment I. Normalized cumu-
lative energy of: a) true; b)—d) undesired impulse
responses corresponding to the Fig. 2.

true impulse-response cross-correlations corresponding
to the first channel are more focused at t = 0 than
the undesirable impulse-response cross-correlations. The
defocusing is caused by the ambiguity related to the
amplitude spectrum of φ(t). FIBD in Algorithm 1 with
~α = [∞, 0.0] resolves this ambiguity and satisfactorily
recovers the true interferometric impulse responses [g0ij ],
as plotted in Fig. 4a. We regard the FIBD recovery be
satisfactory in Fig. 4b when the Gaussian white noise is
added to the channel outputs so that the signal-to-noise
(SNR) is 1 dB.

FPR: In order to motivate the use of the second fo-
cusing constraint, we plotted the normalized cumulative
energy of the true and undesired impulse responses in
the Figs. 5. It can be easily noticed that the fastest rate
of energy buildup in time occurs in the case of the true
impulse responses. In other words, the energy of the
true impulse responses is more front-loaded compared
to undesired impulse responses, after neglecting an
overall translation in time. The FPR in Algorithm 2 with
~β = [∞, 0] satisfactorily recovers [g0i ] that are plotted in:
the Fig. 4c — utilizing [gij ] recovered from the noiseless
channel outputs (Fig. 4a); the Fig. 4d — utilizing [gij ]
recovered from the channel outputs (Fig. 4b) with Gaus-
sian white noise. Note that the overall time translation
and scaling cannot be fundamentally determined.

B. Idealized Experiment II

This IBD-benchmark experiment with n = 20 τ = 30
and T = 400 aims to reconstruct simpler interferometric
impulse responses, plotted in Fig. 6b, corresponding to
the true impulse responses in Fig. 6a. A satisfactory
recovery of [g0ij ] is not achievable without the focusing
constraint — the IBD outcome in the Fig. 6c doesn’t
match the true interferometric impulse responses in the
Fig. 6b, unlike FIBD in the Fig. 6d.

C. Idealized Experiment III

We consider another experiment with n = 20 and τ =
30 to reconstruct the true impulse responses [g0i ] (plotted
in Fig. 7a) by fitting their cross-correlations [g0ij ]. A
satisfactory recovery of [g0i ] from [g0ij ] is not achievable
without the focusing constraint — the outcome of LSPR,
in Fig. 7b, doesn’t match the true impulse responses, in
Fig. 7a, but is contaminated by the filter χ(t) in (13).
On the other hand, FPR results in the outcome (Fig. 7c)
that is not contaminated by χ(t).

D. Idealized Experiment IV

This experiment with n = 20, τ = 30 and T = 400
aims to reconstruct the true interferometric impulse
responses, plotted in Fig. 8b, corresponding to the true
impulse responses in Fig. 8a. The outcome of FIBD with
~α = [∞, 0], plotted in Fig. 8c, doesn’t clearly match
the true interferometric impulse responses because the
channels are not sufficiently dissimilar. In this regard,
observe that the Fig.-8a true impulse responses at var-
ious channels i differ only by a fixed time-translation
instead of curving as in Fig. 2a.
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Figure 6: Idealized Experiment II. Interferometric im-
pulse responses: a) true; b) estimated using IBD; c)
estimated using FIBD.

Figure 7: Idealized Experiment III. a) True impulse
responses. b) Estimated impulse responses using LSPR.
c) Estimated impulse responses using FPR.

Figure 8: Idealized Experiment IV. a) True impulse
responses of channels that are not sufficiently dissimilar.
b) True interferometric impulse responses correspond-
ing to (a). c) FIBD estimated interferometric impulse
responses corresponding to (b), after fitting the interfer-
ometric channel outputs.

Figure 9: Idealized Experiment V. a) True impulse
responses that are not front-loaded. b) FPR estimated
impulse responses corresponding to (a), after fitting the
true interferometric impulse responses. c) Same as (a),
but front-loaded. d) Same as (b), but corresponding to
(c).

E. Idealized Experiment V
We consider another experiment with n = 20 and

τ = 30 to reconstruct the true impulse responses [g0i ]
(plotted in Fig. 9a) that are not front-loaded, by fitting
their cross-correlations [g0ij ]. The FPR estimated impulse
responses [ĝi], plotted in Fig. 9b, do not clearly depict
the arrivals because there exists a spurious χ 6= δ
obeying (13), such that [g0i ∗ χ] are more front-loaded
than [g0i ]. We observe that FPR typically doesn’t result
in a favorable outcome if the impulse responses are not
front-loaded. Otherwise, the front-loaded [g0i ], plotted in
Fig. 9c, are successfully reconstructed in Fig. 9d, except
for an overall translation in time.

V. GREEN’S FUNCTION RETRIEVAL

Finally, we consider a more realistic scenario in-
volving seismic-wave propagation in a complex 2-D
structural model, which is commonly known as the
Marmousi model [62] in exploration seismology. The
Marmousi P-wave velocity and impedance plots are
in the Figs. 11a and 11b, respectively. We inject an
unknown band-limited source signal, e.g., due to a drill
bit, into this model for 30 s, such that T = 3600. The
signal’s auto-correlation and power spectrum are plotted
in Figs. 10a and 10b, respectively. We used an acoustic
time-domain staggered-grid finite-difference solver for
wave-equation modeling. The recorded seismic data at
twenty receivers spaced roughly 100m apart, placed at a
depth of roughly 500m, can be modeled as the output of
a linear system that convolves the source signature with
the Earth’s impulse response, i.e., its Green’s function.
We recall that in the seismic context:

• the impulse responses [gi] correspond to the unique
subsurface Green’s function g(~x, t) evaluated at the
receiver locations [~xi], where the seismic-source
signals are recorded;

• the channel outputs [di] correspond to the noisy
subsurface wavefield d(~x, t) recorded at the re-
ceivers only for {0, . . . , T}— we are assuming that
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Figure 10: Source signature for the seismic experiment.
(a) auto-correlation that contaminates the interferometric
Green’s functions in the time domain — only 5% of
T is plotted; (b) power spectrum, where the Nyquist
frequency is 60Hz.

the source may be arbitrarily on or off throughout
this time interval, just as in usual drilling opera-
tions;

• τ denotes the propagation time necessary for the
seismic energy, including multiple scattering, trav-
eling from the source to a total of n receivers, to
decrease below an ad-hoc threshold.

The goal of this experiment is to reconstruct the sub-
surface Green’s function vector [gi] that contains: 1) the
direct arrival from the source to the receivers and 2) the
scattered waves from various interfaces in the model.
The ‘true’ Green’s functions g0i and the interferometric
Green’s functions g0ij , in Figs. 11f and 11c, are generated
following these steps: 1) get data for 1.5 s (τ = 180)
using a Ricker source wavelet (basically a degree-2
Hermite function modulated to a peak frequency of
20 Hz); 2) create cross-correlated data necessary for
[g0ij ]; and 3) perform a deterministic deconvolution on
the data using the Ricker wavelet. Observe that we
have chosen the propagation time to be 1.5 s, such that
T/τ = 20.

Seismic interferometry by cross-correlation (see (2))
fails to retrieve direct and the scattered arrivals in the
true interferometric Green’s functions, as the cross-
correlated data [dij ], plotted in Fig. 11d, is contami-
nated by the auto-correlation of the source signature
(Fig. 10a). Therefore, we use FBD to first extract the
interferometric Green’s functions by FIBD, plotted in
the Fig. 11e, and then recover the Green’s functions,
plotted in the Fig. 11g, using FPR. Notice that the FBD
estimated Green’s functions clearly depict the direct
and the scattered arrivals, confirming that our method
doesn’t suffer from the complexities in the subsurface
models.

VI. CONCLUSIONS

Focused blind deconvolution (FBD) solves a series
of two optimization problems in order to perform mul-
tichannel blind deconvolution (BD), where both the
unknown impulse responses and the unknown source
signature are estimated given the channel outputs. It
is designed for a BD problem where the impulse re-
sponses are supposed to be sparse, front-loaded and
shorter in duration compared to the channel outputs; as
in the case of seismic inversion with a noisy source.
The optimization problems use focusing constraints to
resolve the indeterminacy inherent to the traditional BD.
The first problem considers fitting the interferometric
channel outputs and focuses the energy of the impulse-
response auto-correlations at the zero lag to estimate
the interferometric impulse responses and the source
auto-correlation. The second problem completes FBD by
fitting the estimated interferometric impulse responses,
while focusing the energy of the most front-loaded chan-
nel at the zero time. FBD doesn’t require any support
constraints on the unknowns. We have demonstrated the
benefits of FBD using seismic experiments.

APPENDIX A
APPENDIX

In this appendix, we present a simple justification of
the ability of a focusing functional on the autocorrelation
to select for sparsity, in a setting where `1 minimization
is unable to do so. This setting is the special case of
a vector with nonnegative entries, made less sparse by
convolution with another vector with nonnegative entries
as well. This scenario is not fully representative of the
more general formulation assumed in this paper, where
cancelations may occur because of alternating signs. It
seems necessary, however, to make an assumption of no
cancelation (like positivity) in order to obtain the type
of comparison result that we show in this section.

Consider two infinite sequences fi and φj , for i, j ∈ Z
(the set of integers), with sufficient decay so that all the
expressions below make sense, and all the sum swaps
are valid. Assume that fi ≥ 0 and φi ≥ 0 for all i ∈ Z,
not identically zero. Let

gj = (f ∗ φ)j =
∑
i∈Z

fiφj−i,

which obviously also obeys gi ≥ 0 for all i ∈ Z.
Assume the normalization condition

∑
i∈Z φi = 1.

Now consider the autocorrelations

Fj = (f ⊗ f)j =
∑
i

fifj+i,

Gj = (g ⊗ g)j =
∑
i

gigj+i,

and a specific choice of focusing functional,

JF =
∑
j∈Z

j2Fj , JG =
∑
j∈Z

j2Gj .

Proposition 1.

JG ≥ JF ,
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Figure 11: Seismic Experiment. a) Acoustic velocity model for wave propagation. b) Acoustic impedance model
depicting interfaces that reflect waves. c) True interferometric Green’s functions. d) Seismic interferometry by cross-
correlation. e) FIBD estimated interferometric Green’s functions. f) True Green’s functions. g) FBD estimated Green’s
functions.

with equality if and only if φi is the Kronecker δi0.

Proof. All sums run over Z. Start by observing

JF =
∑
j

∑
k

Kjkfjfk, Kjk = (j − k)2,

and

JG =
∑
j

∑
k

Ljkfjfk,

Ljk =
∑
m

∑
n

((j − k)− (m− n))2 φmφn.

For any particular value m− n = a, we have∑
j

∑
k

((j − k)− a)2 fjfk

= a2
∑
j

∑
k

fjfk +
∑
j

∑
k

(j − k)2fjfk

≥ JF ,

(the term linear in j − k drops because j − k is
antisymmetric in j and k, while fjfk is symmetric),
with equality if and only if a = 0.

Now JG is a convex combination of such contribu-
tions:∑

m

∑
n

∑
j

∑
k

((j − k)− (m− n))2 fjfk

φmφn
≥

∑
m

∑
n

[JF ]φmφn

= JF

with equality if and only if the cartesian product supp
φ × supp φ contains only the diagonal m = n. This
latter scenario only arises when supp φ = {0}, which is
only compatible with

∑
i φi = 1 when φi = δi0.

In contrast, notice that
∑

i fi =
∑

i gi, hence f and g
cannot be discriminated with the `1 norm. The `1 norm
is unable to measure the extent to which the support of
f was “spread" by convolution with φ, when

∑
φi = 1,

and when all the functions are nonnegative.
The continuous counterpart of this result, for nonneg-

ative functions f(t) and g(t) =
∫
f(s)φ(t− s)ds, with

nonnegative φ such that
∫
φ(t)dt = 1 in the sense of

measures, involves the autocorrelations

F (t) = (f ⊗ f)(t) =
∫
f(s)f(s+ t)ds,

G(t) = (g ⊗ g)(t),
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and focusing functionals

JF =

∫
t2F (t)dt, JG =

∫
t2G(t)dt.

Then, JG ≥ JF , with equality if and only if φ(t) = δ(t),
the Dirac delta.
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