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ABSTRACT

The availability of low frequency data is an important factor in the success of full waveform

inversion (FWI) in the acoustic regime. The low frequencies help determine the kinemati-

cally relevant, low-wavenumber components of the velocity model, which are in turn needed

to avoid convergence of FWI to spurious local minima. However, acquiring data below 2

or 3 Hz from the field is a challenging and expensive task. In this paper we explore the

possibility of synthesizing the low frequencies computationally from high-frequency data,

and use the resulting prediction of the missing data to seed the frequency sweep of FWI.

As a signal processing problem, bandwidth extension is a very nonlinear and delicate

operation. In all but the simplest of scenarios, it can only be expected to lead to plausible

recovery of the low frequencies, rather than their accurate reconstruction. Even so, it still

requires a high-level interpretation of bandlimited seismic records into individual events,

each of which is extrapolable to a lower (or higher) frequency band from the non-dispersive

nature of the wave propagation model. We propose to use the phase tracking method for
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the event separation task. The fidelity of the resulting extrapolation method is typically

higher in phase than in amplitude.

To demonstrate the reliability of bandwidth extension in the context of FWI, we first use

the low frequencies in the extrapolated band as data substitute, in order to create the low-

wavenumber background velocity model, and then switch to recorded data in the available

band for the rest of the iterations. The resulting method, EFWI for short, demonstrates

surprising robustness to the inaccuracies in the extrapolated low frequency data. With two

synthetic examples calibrated so that regular FWI needs to be initialized at 1 Hz to avoid

local minima, we demonstrate that FWI based on an extrapolated [1, 5] Hz band, itself

generated from data available in the [5, 15] Hz band, can produce reasonable estimations of

the low wavenumber velocity models.
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INTRODUCTION

Since proposed by Tarantola (1984), full waveform inversion (FWI) has established itself

as the default wave-equation-based inversion method for subsurface model building. In

contrast to ray-based traveltime tomography (e.g. Woodward et al. (2008)), FWI includes

both phase and amplitude information in the seismograms for elastic parameter estimation.

When working with reflection data, the model update of FWI is similar to a migration image

of the data residual, given the background propagation velocity (Claerbout, 1985; Biondi

and Symes, 2004). The accuracy of the resolved model is controlled by the frequency

band in the data and the accuracy of the initial (background, macro) model. When this

initial macromodel is not sufficiently accurate, the iterative process of FWI gets trapped in

undesirable local minima or valleys (Virieux and Operto (2009)). The lack of convexity is

intrinsic and owes to the relatively high frequencies of the seismic waveforms.

In spite of an extensive literature on the subject, a convincing solution has yet to emerge

for mitigating these convergence issues. So far, the community’s efforts can be grouped into

three categories.

In the first category, misfit functions different from least-squares have been proposed to

emulate traveltime shifts between the modeled and recorded waveforms. Luo and Schuster

(1991) proposed to combine traveltime inversion with full waveform inversion, where the

misfit is measured over the maximum correlation time lag. Ma and Hale (2013) and Baek

et al. (2014) proposed variants of FWI augmented with warping functions directly estimated

from the data. However, these methods move away from the attractive simple form of the

least-squares formulation and require additional data processing steps which are themselves

not guaranteed to succeed in complex propagation geometries.
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In the second category, additional degrees of freedom are introduced to (attempt to)

convexify the waveform inversion in higher dimensions. The extension of velocity with a

non-physical dimension was first introduced by Symes and Carazzone (1991). Recently,

Shen (2004); Symes (2008); Sun and Symes (2013) and Biondi and Almomin (2014) showed

that a velocity extension along the subsurface-offset, planewave ray-parameter, or time lag

axis is able to describe the large time shift in wave propagation. Warner and Guasch (2014)

extended the model space to include trace-based Wiener filters comparing the modeled and

recorded data. van Leeuwen and Herrmann (2013) extended the model space to include the

whole wavefield so that the reconstructed wavefield fits the data by design. All these meth-

ods rely on an iterative formulation to gradually restrict the extended nonphysical model

space to the physical model space, which is often a delicate process without guarantees. In

addition, they introduce significant computational cost and memory usage in addition to

the already very expensive FWI.

In the third category, the tomographic and migration components in the FWI gradi-

ent are separated and enhanced at different stages of the iterations. Based on a nonlinear

iterative formulation, Mora (1989) decomposed the wavefields according to their propaga-

tion directions. Then the low and high wavenumber components of the velocity model are

extracted using correlations of these directional wavefields. Following a similar approach,

Tang et al. (2013) proposed to enhance the tomographic components at the early iterations

and gradually reduce its weights towards convergence. Alkhalifah (2015) further separate

the gradient components based on the scattering angle at the imaging point. Although these

methods do enhance the low wavenumber components of the FWI gradient, the essential

difficulty of ensuring correctness of the tomographic component is still mostly untouched.

The most straightforward way to increase the basin of attraction of the least-squares
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objective function is to seed it with low frequency data only, and slowly enlarge the data

bandwidth as the descent iterations progress. However, until several years ago, the low

frequency energy below 5 Hz was often missing due to instrument limitations. More re-

cently, as the importance of the low frequencies became widely recognized by the industry,

broadband seismic data with high signal-to-noise ratio between 1.5 Hz and 5 Hz started

being acquired at a significantly higher cost than previously. To synthesize some form of

low frequency information, Wu et al. (2013) proposed using the envelope function. Simi-

larly, Wenyi Hu et al. (2014) proposed to use the low frequency information hiding in the

difference between data at two adjacent frequencies. Both studies demonstrated that fitting

“manufactured” low frequency information produces somewhat improved low wavenumber

models that enabled closer initialization for the subsequent FWI with the band-limited

recordings. However, neither method attempts to approximate the actual low frequency

recordings, and neither choice of nonlinear low-frequency combination is justified by a ra-

tionale that they succeed at convexifying the FWI objective function. The situation is

worse: it is easy to find examples where the wave-equation Hessian of an augmented FWI

functional with, say, the envelope function and a lowpass filter, still have undesirable large

eigenvalues growing as the frequency increases.

The premise of this paper is that the phase tracking method, proposed in Li and Demanet

(2015), is a reasonably effective algorithm for extrapolating the low frequency data based

on the phases and amplitudes in the observed frequency band. A tracking algorithm is able

to separate each seismic record into atomic events, the amplitude and phase functions of

which are smooth in both space and frequency. With this explicit parameterization, the

user can now fit smooth non-oscillatory functions to represent and extrapolate the wave

physics to the unrecorded frequency band. Although the resulting extrapolated data can
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only be expected to accurately reproduce the low frequency recordings in very controlled

situations, they are nevertheless adequate substitutes that appear physically plausible in a

broad range of scenarios. We are not aware that there is any other attempt at synthesizing

low frequency data in the seismic literature. (The mathematical problem of provinding

tight guarantees concerning extrapolation of smooth functions from the knowledge of their

noisy samples has however been solved in our companion paper (Demanet and Townsend,

2016).)

In this paper, we test the reliability of the extrapolated low frequency data on two nu-

merical examples in the constant-density acoustic regime. In both cases, the low frequencies

between 1 Hz and 5 Hz are extrapolated from the recordings at 5 Hz and above. We demon-

strate that although the extrapolated low frequencies are sometimes far from exact, the low

wavenumber models obtained from the extrapolated low frequencies are often suitable for

initialization of FWI at higher frequencies.

METHOD

Review of full waveform inversion with truncated Gauss-Newton iterations

Conventional full waveform inversion (FWI) is formulated in data space via the minimization

of the least-squares mismatch between the modeled seismic record u with the observed

seismic record d,

J(m) =
1

2

∑
r,s,t

(us(xr, t;m)− dr,s,t)2, (1)

where m is the slowness of the pressure wave, s indexes the shots, and xr are the receiver

locations. We also write sampling at the receiver locations with the sampling operator S

as us(xr, t;m) = Sus(x, t;m). The modeled wavefield us(x, t;m) is the solution of a wave
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equation (discretized via finite differences in both space and time):

(
m2 ∂

2

∂t2
−∇2

)
us = fs, (2)

with fs a source wavelet at location xs, and ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
the Laplacian operator.

Starting with an initial model m(0), we use a gradient-based iterative scheme to update

the model

m(i+1) = m(i) − α
(
JT
r Jr

)−1
JT
r r(m

(i)), (3)

where m(i) is the model at the ith iteration, r = Su(m(i))− d is the data residual, Jr is the

Jacobian matrix, and α is the step length for the update.

In practice, the normal matrix JT
r Jr is too large to build explicitly and is often ap-

proximated by an identity matrix. In this paper we choose to precondition this matrix by

approximately solving the following system using a few iterations of the conjugate gradient

method (Claerbout, 1985; Metivier et al., 2013),

min
δm
||r(m(i))− Jr(m

(i))δm||22, (4)

where δm is the unknown increment in model. The linear iteration in (4) is also known

as Least-Squares Reverse Time Migration (LSRTM), which effectively removes the source

signature and produces “true-amplitude” velocity perturbation at convergence. Due to

the limited computational resource and the ill-conditioned matrix JT
r Jr, we truncate the

Gauss-Newton inversion at 3 iterations for each nonlinear step. Then a careful line search is

performed to make sure the objective function (Equation 1) decreases in the nonlinear iter-

ations. (Another effective way of preconditioning the normal operator is to use randomized

matrix probing, see Demanet et al. (2012).)

To help the iterative inversion avoid local minima, we perform frequency-continuation
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FWI starting from the lowest available frequency with a growing window. Algorithm 1

shows the workflow for FWI with the truncated Gauss-Newton iterations.

Review of phase tracking and frequency extrapolation

In a previous paper (Li and Demanet, 2015), we demonstrated that there exist interesting

physical scenarios in which low frequency data can be synthesized from the band-limited

field recordings using nonlinear signal processing. This processing step is performed before

full waveform inversion in the frequency domain. To extrapolate the data from the recorded

frequency band to lower (and higher) frequencies, the phase tracking method consists in

solving the following optimization problem to separate the measured data to its atomic

event-components: minimize

Jtracking({aj , bj}) =
1

2
||û(ω, x)− d̂(ω, x)||22

+ λ
∑
j

||∇2
ω bj(ω, x)||22 + µ

∑
j

||∇x bj(ω, x)||22

+ γ
∑
j

||∇ω,x aj(ω, x)||22, (5)

where d̂ are the measured data in the frequency domain; ∇k and ∇2
k, with k = ω, x,

respectively denote first-order and second-order partial derivatives; ∇ω,x denotes the full

gradient; and the predicted data record û is modeled by the summation of r individual

events:

û(ω, x) =
r∑
j=1

v̂j =
r∑
j=1

ŵ(ω)aj(ω, x)eibj(ω,x), (6)

where the wavelet ŵ(ω) is assumed known to a certain level of accuracy. The constants λ,

µ, and γ are chosen empirically.

The optimization problem for event tracking here is reminiscent of full waveform inver-

sion with high-frequency data, hence shares a similar level of nonconvexity. Yet, by posing
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Algorithm 1 FWI with truncated Gauss-Newton iterations

Initialize m0

for i ∈ 0 · · ·N do

r(i) ← Su(m(i))− d

if ||ri|| < ε then

Converged with model m(i)

else

Initialize Gauss-Newton iterations

p0 = r(i); A = Jr(m
(i)); g0 = ATp0

First iteration as steepest descent

δp0 = Ag0; α0 ← δp0 · δp0
δp0 · p0

δm1 = −αjp0; p1 = p0 − α0δp0

for j ∈ 1 · · ·n do

gj = ATpj ; δpj = Agj

 αj

βj

←
 δpj−1 · δpj−1 δpj−1 · δpj

δpj · δpj−1 δpj · δpj


−1  pj · δpj−1

pj · δpj


δpj ← αjδpj−1 + βjδpj ; gj ← αjgj−1 + βjgj

pj+1 ← pj − δpj ; δmj+1 ← δmj − gj

end for

Line search to find γ(i)

m(i+1) ← m(i) − γ(i)δmn+1

end if

end for
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it as a data processing problem, the nonconvexity can be empirically overcome with an

explicit initialization scheme using Multiple Signal Classification (MUSIC), coupled with

a careful trust-region “expansion and refinement” scheme to track the smooth phase and

amplitude. We refer the reader to the detailed algorithm in the previous paper (Li and

Demanet, 2015).

Having obtained the individual events, we make explicit assumptions about their phase

and amplitude functions in order to extrapolate outside of the recorded frequency band.

Namely, we assume that the Earth is nondispersive, i.e., the phase is affine (constant +

linear) in frequency, and the amplitude is to a good approximation constant in frequency

– though both are variable in x, of course. A least-squares fit is then performed to find

the best constant approximations aj(ω, x) ' αj(x), and the best affine approximations

bj(ω, x) ' ωβj(x) + φj(x), from values of ω within the useful frequency band. These phase

and amplitude approximations can be evaluated at values of ω outside this band, to yield

synthetic flat-spectrum atomic events of the form

v̂ej (ω, x) = αj(x)ei(ωβj(x)+φj(x)). (7)

These synthetic events are multiplied by a band-limited wavelet, and summed up, to create

a synthetic dataset.

The effectiveness of this method for event identification is limited by many factors,

chiefly the resolution of the MUSIC algorithm and the signal-to-noise ratio of the data. The

algorithm often tracks the strong events and treats the weak events as noise. Moreover,

the amplitudes of the events are less predictable than the phases, due to propagation and

interfering effects. Therefore, the extrapolated data record is inexact, typically with higher

fidelity in phase than in amplitude. In the following section, we test the reliability of
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the extrapolated low frequencies by initializing the frequency continuation of FWI. Our

goal is to bring reliable low wavenumber information in the model by fitting the phase of

the extrapolated data and to help enlarge the basin of attraction for FWI when the low

frequencies are missing from data.

NUMERICAL EXAMPLES

In this section, we demonstrate the reliability of the extrapolated low frequencies on two

synthetic examples. The first model is a wide aperture, one-sided version of the classic

Camembert model (Tarantola, 1984; Gauthier et al., 1986), where the accuracy of frequency

extrapolation can be analyzed carefully on the data record. The second is the Marmousi

model, where the frequency extrapolation is tested in a more complex and geologically

relevant environment. In both examples, we compare three cases while keeping the initial

models fixed:

• In the control case, frequencies from 1 Hz to 15 Hz are used in the frequency contin-

uation of FWI.

• In the extrapolated FWI case, we first extrapolate the data between 5 Hz and 15 Hz to

the frequency band between 1 Hz and 5 Hz. The extrapolated data are used to build

the low wavenumber model to further initialize the frequency continuation starting at

5 Hz.

• In the missing low-frequency case, frequency continuation of FWI starts from the

lowest frequency at 5 Hz.
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Synthetic example: Camembert model

In this example, we model the synthetic seismic records on the classic Camembert model.

We work with the reflection setting where 41 sources and 401 receivers are evenly spaced

on the surface. The maximum offset between the sources and receivers is 4 km. A circular

low velocity anomaly (v = 1700 m/s) is placed in a constant velocity background (v = 2000

m/s).

Figure 1(a) shows one record between 5 and 15 Hz. The tracking algorithm picked up

the two strong reflection events from the top and the bottom of the low velocity anomaly.

The black dotted line overlaid on Figure 1 denotes the inverted arrival time for each event.

The inverted two reflection events are shown in Figure 1(b). The tracking algorithm does

not perfectly reproduce the input recording, leaving behind the weaker multiple reflection

events trailing the second reflection event. Energy from these missing events will appear as

phase and amplitude errors at lower frequency when events interfere with each other.

Following the extrapolation strategy in Equation 7, we extend each event from the

recorded frequency band to higher and lower frequency bands. Figure 2 shows the compari-

son between inverted phase function (solid line) and the extrapolated phase function (dashed

line). Although the inverted phase function is not perfectly linear with respect to frequency

for each event, the extrapolated phase function represents a reasonable approximation to

the inverted phase function.

Figure 3 compares the modeled low frequency shot profile (a) with the extrapolated

low frequency shot profile (b). The two shot profiles differ from each other in both ampli-

tude and phase. Discrepancies in amplitude are caused by the crude “constant amplitude”

assumption, while discrepancies in phase are caused by the interference of the unmodeled
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weak events. Nonetheless, the extrapolated low frequency shot profile is a reasonable ap-

proximation of the modeled one for FWI.

To test the accuracy and reliability of the extrapolated record, we initialize the frequency

continuation of FWI using the extrapolated data. Starting from a constant velocity model

(v = 2000 m/s), Figure 4(b) shows the inversion result using the extrapolated low frequency

(1 - 5 Hz) data in comparison with the inversion result using the modeled low frequency

data (Figure 4(a)). Although the positive velocity sidelobes are stronger in the extrapolated

result, both inversion tests resolve the low wavenumber structure of the velocity model.

We continue the frequency continuation of FWI starting from the initial models in Fig-

ure 4 and obtain the final inversion results in Figure 5. Figure 5(a) shows the inversion

result in the control case when all the frequencies (1 to 15 Hz) are used in the frequency con-

tinuation. The inversion successfully delineates the boundary of the low velocity anomaly.

Figure 5(b) shows the inversion result when low frequency (1 to 5 Hz) energy is missing

from the inversion. Thanks to the low wavenumber information extracted from the low

frequency extrapolated data, FWI without low frequencies has converged to a meaningful

velocity model. In comparison, FWI starting from a constant background velocity model

and 5 Hz data cannot resolve the low wavenumber velocity structure, yielding mispositioned

boundaries of the velocity anomaly, as shown in Figure 5(c).

One important issue to notice is that the velocity value of the anomaly has not been

fully recovered in any of the three cases. This is primarily due to the limited number of

iterations that only enable the updates within the available frequency. In the control case,

the inversion will resolve the exact model if we let FWI iterate to convergence – an unrealistic

proposition when the data come noisy. Due to the inaccuracies in the extrapolated data, we
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stop the inversion after 50 iterations to avoid overfitting the unreliable fine scale features in

the data. We compare the pseudo-logs at x = 0 between the true velocity and the inverted

velocity in Figure 6. The true velocity anomaly is −300 m/s with respect to the background,

whereas the inversion results only recovers half the perturbation with side-lobes of similar

opposite perturbations. We find that these inverted results match well with a band-limited

version of the true velocity model, where frequencies below 1 Hz and above 15 Hz are not

present in the model.

Further tests reveal that the lowest frequency that is needed to recover the circular shape

of the Camembert model is 1 Hz (acquisition and iterative scheme fixed). FWI starting from

2 Hz will only resolve the boundary of the Camembert model, which might lead to erroneous

interpretations. For this simple model, our extrapolation algorithm continues to yield stable

results as we increase the lowest available frequency in the recorded data. With the highest

available frequency fixed at 15 Hz, the lowest frequency for a reliable extrapolation can be

as high as 8 Hz.

Synthetic example: Marmousi model

In this example, we test the reliability of the extrapolated low frequency on the Marmousi

model (Figure 7(a)). We restrict FWI to reflection events only by limiting the maximum

offset to 500 m in the inversion. The starting model for FWI is a 1.5 D linearly increasing

velocity profile (Figure 7(b)). It is an extremely challenging task for FWI to recover large

low-wavenumber discrepancies between the initial model and the true model, especially in

the deeper section (below 2 km).

Figure 8 shows the comparison between the modeled band-limited (5−15 Hz) shot profile
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(a) with the inverted shot profile by event tracking (b). The tracking algorithm is set up to

identify up to 10 strongest events in each shot record. On this particular shot profile, nine

events are identified. The tracking algorithm recovers the input record very well. Figure 9

shows the comparison between the modeled and the extrapolated low frequency (1− 5 Hz)

shot profile, amplitude normalized. Despite the amplitude and slight phase discrepancy,

the extrapolated shot profile approximates the modeled shot profile sufficiently well in the

low frequency band for the purpose of initializing FWI.

Reliability of the extrapolated low frequencies (1− 5 Hz) are tested with FWI at these

low frequencies. Figure 10 shows the inverted velocity model using modeled data (a) and

using extrapolated data (b). Although not as detailed as Figure 10(a), the velocity model

inverted using the extrapolated data correctly captures the very low wavenumber component

of the true model. These models are used to initialize FWI with data at higher frequencies.

Figure 11 compares the final inverted results after a full bandwidth FWI continuation.

In the shallow region (above 2 km), velocity models resolved in the control case and the

extrapolated case are very similar with accurately imaged fine layers and normal faults.

Both models have trouble resolving a high resolution and accurate velocity model in the

deep region, because reflections from the dipping reflectors and the anticline structure have

not been sufficiently recorded due to the limited offset. In comparison, FWI starting at

5 Hz yields little meaningful information about the subsurface. The inversion failed to

update the low wavenumber structure of the velocity model and placed reflectors at wrong

positions.

Figure 12 compares pseudo velocity logs at three surface locations. Velocity models

in both control and extrapolated cases recover the true velocity model very well above 1
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km. Quality of the inverted model degrades with depth. However, both velocity models

capture the low wavenumber components of the velocity model. The maximum updates in

the deeper section are as high as 1000 m/s. The huge velocity error prevents FWI starting

at 5 Hz from converging to the true model.

DISCUSSION

In the Camembert example, we have carefully examined the accuracy of the phase tracking

method for low frequency extrapolation. There are two main reasons that both the am-

plitude and the phase of the extrapolated data are inexact. First, the tracking algorithm

determines the number of individual events as an initialization step. This number may

decrease (for event truncation), but may not increase (for even bifurcation) as the tracking

expands. These untracked events are the main contributors to the errors in the extrapo-

lated phase function. An aggregation method, with event fragments tracked in subsets of

traces and merged into actual composite events, may help improve the accuracy of the event

tracking and phase extrapolation. Second, compared with the phase extrapolation based on

non-attenuative physics, the amplitude extrapolation is less constrained by physical princi-

ples. To improve the accuracy of the extrapolated amplitudes, a higher order polynomial

or rational function can be used to approximate the amplitude variation with respect to

frequency. However, we do not expect the extrapolation to perfectly reconstruct the am-

plitudes. Consequently, although the extrapolated data are adequate for initializing FWI,

they are not suitable for absolute impedance inversion and amplitude-based rock property

interpretation.

Due to the inaccuracy in their phase and amplitude, we do not allow FWI to fully fit

the data at the extrapolated low frequencies. This limits the resolution of the inverted
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FWI model. With hundreds of more iterations in the control case, FWI starting at 1 Hz

can reduce the data residual to 1% at each frequency band. Hence, the velocity model

can be fully resolved (with all wavenumber components) because of the availability of both

low frequency and long offsets. To the contrary, overfitting the extrapolated data at low

frequencies would lead the inversion to undesired local minima and spurious models. FWI

with limited number of iterations resolves a good estimate of the velocity model within

the increased available frequency band, but it cannot perfectly resolve the model at all

wavenumbers due to both the slow convergence and the potential local minima introduced

by the inaccuracies in the extrapolated data.

In our numerical examples, the extrapolated low frequencies are used only to initialize

FWI in order to obtain a low wavenumber model. As soon as the frequency continuation

moves to the recorded frequency band, the extrapolated low frequencies are abandoned.

This leaves the low wavenumber components of the model space unconstrained in later FWI

iterations. A proper combination of the extrapolated data and the recorded data needs to

be studied to ensure a fully constrained inversion for velocity in the whole wavenumber

band.

CONCLUSION

To mitigate the nonconvexity of FWI, we propose to start the frequency continuation using

the extrapolated low frequency data. The extrapolation is only feasible after decomposing

the seismic records into individual atomic events via phase tracking for each isolated arrival.

Numerical examples demonstrate that full waveform inversion is surprisingly tolerant to

inaccuracies in the amplitude and phase of the extrapolated events. Initializing with the

extrapolated low frequencies mitigates the severe nonconvexity that FWI suffers from when

17



only high frequency data are available. By explicitly obtaining the phase and amplitude of

each individual event, our method shares an important feature with travel time tomography:

its ability to extract kinematic information from high frequencies only. We call the method

extrapolated FWI, or EFWI for short.
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LIST OF FIGURES

1 Comparison between the recorded shot profile (a) and the inverted shot profile

(b) on the Camembert model within the recorded bandwidth (5 − 15 Hz). The inverted

shot profile recovers the phase and the amplitude of the two strong reflection events, whose

estimated arrival times are denoted by the dotted line in panel (a). The inversion does not

recover the weak multiple reflection events behind the second reflection event. Energy from

these missing events will show up as phase and amplitude errors at lower frequency when

events become interfering with each other.

2 Comparison between the inverted phase function (solid line) and the extrapolated

phase function (dashed line) for top (a) and bottom (b) reflection events. The extrapolated

phase function represents a reasonable approximation to the inverted phase function.

3 Comparison between the modeled low frequency (1 - 5 Hz) shot profile (a) and

the extrapolated low frequency shot profile (b) on the Camembert model. Discrepancies

in amplitude are caused by the crude “constant amplitude” assumption. Discrepancies in

phase are caused by the interfering of the unmodeled weak events.

4 Inversion results from FWI with the modeled low frequency (1 - 5 Hz) shot profile

(a) and the extrapolated low frequency shot profile (b). Both inversion tests resolve similar

low wavenumber structure in the velocity model.

5 Comparison between the inverted model from FWI after a full bandwidth contin-

uation. In (a), resulting model from the control case (frequency continuation from 1 to 15

Hz). In (b), resulting model from the extrapolated case (initialization using extrapolated

low frequencies (1 − 5) Hz and frequency continuation with recorded data from 5 to 15

Hz). In (c), resulting model from the missing low-frequency case (frequency continuation

from 5 to 15 Hz). When all the frequencies (1 to 15 Hz) are used in the frequency contin-
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uation, FWI successfully delineates the boundary of the low velocity anomaly. When low

frequencies (1 to 5 Hz) are missing from the data, FWI converges to a velocity model with

meaningful low-wavenumber components with the aid from the extrapolated low frequency

data. Otherwise, FWI cannot resolve the low wavenumber velocity structure, yielding mis-

positioned velocity boundaries.

6 Comparison of the pseudo velocity logs at x = 0 m between the inversion results

and the true velocity model. FWI cannot fully resolve the perturbation of the anomaly due

to the limited bandwidth in the data. Both inversion results match well with the band-

limited (between 1 and 15 Hz) true velocity model.

7 Marmousi model (a) and the starting model for FWI (b). The starting model is a

1.5 D linearly increasing velocity profile from 1500 m/s at the water bottom to 3500 m/s

at 3.2 km. The initial model is far from the true especially in the deeper section.

8 Comparison between the modeled band-limited (5−15 Hz) shot record (a) and the

inverted shot record (b). The tracking algorithm identifies 9 individual events and recovers

the modeled data very well.

9 Comparison between the modeled low frequency (1− 5 Hz) shot record(a) and the

extrapolated low frequency (1−5 Hz) shot record (b). The colorbar denotes the normalized

amplitude. Despite the imperfect reconstruction of phase and amplitude, the extrapolated

low frequencies are adequate for the purpose of initializing FWI.

10 Comparison between the inverted model after FWI using modeled low frequency

(1− 5 Hz) data (a) and using extrapolated low frequency data (1− 5 Hz) (b). Both models

capture the low wavenumber structure of the Marmousi model, although the inverted model

using modeled data contains more details in the shallow part.

11 Comparison between the inverted model from FWI after a full bandwidth contin-
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uation. In (a), resulting model from the control case (frequency continuation from 1 to 15

Hz). In (b), resulting model from the extrapolated case (initialization using extrapolated

low frequencies (1−5) Hz and frequency continuation with recorded data from 5 to 15 Hz).

In (c), resulting model from the missing low-frequency case (frequency continuation from

5 to 15 Hz). A better inverted model can be obtained in the control case if we iterate to

convergence at the lowest frequencies. However, we limit the number of iterations in the

control case to ensure a fair comparison with the extrapolated case.

12 Pseudo velocity logs at three surface locations. The black line denotes the initial

model. The green line denotes the true model. The black, green, red, and blue lines denote

the pseudo log from the initial, true, control and extrapolated model.

24



−3

−2

−1

0

1

2

3

Location (km)

Ti
m

e 
(s

)
(a)

−2 −1 0 1 2

0

0.5

1

1.5

2

2.5

3 −3

−2

−1

0

1

2

3

Location (km)

Ti
m

e 
(s

)

(b)

−2 −1 0 1 2

0

0.5

1

1.5

2

2.5

3

Figure 1: Comparison between the recorded shot profile (a) and the inverted shot profile

(b) on the Camembert model within the recorded bandwidth (5 − 15 Hz). The inverted

shot profile recovers the phase and the amplitude of the two strong reflection events, whose

estimated arrival times are denoted by the dotted line in panel (a). The inversion does not

recover the weak multiple reflection events behind the second reflection event. Energy from

these missing events will show up as phase and amplitude errors at lower frequency when

events become interfering with each other.
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Figure 2: Comparison between the inverted phase function (solid line) and the extrapolated

phase function (dashed line) for top (a) and bottom (b) reflection events. The extrapolated

phase function represents a reasonable approximation to the inverted phase function.
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(a) (b)

Figure 3: Comparison between the modeled low frequency (1 - 5 Hz) shot profile (a) and

the extrapolated low frequency shot profile (b) on the Camembert model. Discrepancies

in amplitude are caused by the crude “constant amplitude” assumption. Discrepancies in

phase are caused by the interfering of the unmodeled weak events.
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(a) (b)

Figure 4: Inversion results from FWI with the modeled low frequency (1 - 5 Hz) shot profile

(a) and the extrapolated low frequency shot profile (b). Both inversion tests resolve similar

low wavenumber structure in the velocity model.
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(a) (b)

(c)

Figure 5: Comparison between the inverted model from FWI after a full bandwidth contin-

uation. In (a), resulting model from the control case (frequency continuation from 1 to 15

Hz). In (b), resulting model from the extrapolated case (initialization using extrapolated

low frequencies (1 − 5) Hz and frequency continuation with recorded data from 5 to 15

Hz). In (c), resulting model from the missing low-frequency case (frequency continuation

from 5 to 15 Hz). When all the frequencies (1 to 15 Hz) are used in the frequency contin-

uation, FWI successfully delineates the boundary of the low velocity anomaly. When low

frequencies (1 to 5 Hz) are missing from the data, FWI converges to a velocity model with

meaningful low-wavenumber components with the aid from the extrapolated low frequency

data. Otherwise, FWI cannot resolve the low wavenumber velocity structure, yielding mis-

positioned velocity boundaries.
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Figure 6: Comparison of the pseudo velocity logs at x = 0 m between the inversion results

and the true velocity model. FWI cannot fully resolve the perturbation of the anomaly due

to the limited bandwidth in the data. Both inversion results match well with the band-

limited (between 1 and 15 Hz) true velocity model.
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(a) (b)

Figure 7: Marmousi model (a) and the starting model for FWI (b). The starting model is

a 1.5 D linearly increasing velocity profile from 1500 m/s at the water bottom to 3500 m/s

at 3.2 km. The initial model is far from the true especially in the deeper section.
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Figure 8: Comparison between the modeled band-limited (5−15 Hz) shot record (a) and the

inverted shot record (b). The tracking algorithm identifies 9 individual events and recovers

the modeled data very well.
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Figure 9: Comparison between the modeled low frequency (1−5 Hz) shot record(a) and the

extrapolated low frequency (1−5 Hz) shot record (b). The colorbar denotes the normalized

amplitude. Despite the imperfect reconstruction of phase and amplitude, the extrapolated

low frequencies are adequate for the purpose of initializing FWI.
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(a) (b)

Figure 10: Comparison between the inverted model after FWI using modeled low frequency

(1− 5 Hz) data (a) and using extrapolated low frequency data (1− 5 Hz) (b). Both models

capture the low wavenumber structure of the Marmousi model, although the inverted model

using modeled data contains more details in the shallow part.
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(a) (b)

(c)

Figure 11: Comparison between the inverted model from FWI after a full bandwidth con-

tinuation. In (a), resulting model from the control case (frequency continuation from 1 to

15 Hz). In (b), resulting model from the extrapolated case (initialization using extrapolated

low frequencies (1−5) Hz and frequency continuation with recorded data from 5 to 15 Hz).

In (c), resulting model from the missing low-frequency case (frequency continuation from

5 to 15 Hz). A better inverted model can be obtained in the control case if we iterate to

convergence at the lowest frequencies. However, we limit the number of iterations in the

control case to ensure a fair comparison with the extrapolated case.
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Figure 12: Pseudo velocity logs at three surface locations. The black line denotes the initial

model. The green line denotes the true model. The black, green, red, and blue lines denote

the pseudo log from the initial, true, control and extrapolated model.
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