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SUMMARY

The availability of low frequency data is an important factor
in the success of full waveform inversion (FWI) in the acous-
tic regime. The low frequencies help determine the kinemat-
ically relevant, low-wavenumber components of the velocity
model, which are in turn needed to avoid convergence of FWI
to spurious local minima. However, acquiring data below 2 or
3 Hz from the field is a challenging and expensive task. In this
paper we explore the possibility of synthesizing the low fre-
quencies computationally from high-frequency data, and use
the resulting prediction of the missing data to seed the fre-
quency sweep of FWI. To demonstrate the reliability of band-
width extension in the context of FWI, we first use the low
frequencies in the extrapolated band as data substitute, in or-
der to create the low-wavenumber background velocity model,
and then switch to recorded data in the available band for the
rest of the iterations. The resulting method, extrapolated FWI
(EFWI), demonstrates surprising robustness to the inaccura-
cies in the extrapolated low frequency data. With a synthetic
Marmousi model, we demonstrate that FWI based on an ex-
trapolated [1,5] Hz band, itself generated from data available
in the [5,15] Hz band, can produce reasonable estimations of
the low wavenumber velocity models.

INTRODUCTION

Since proposed by Tarantola (1984), full waveform inversion
(FWI) has established itself as the default wave-equation-based
inversion method for subsurface model building. In contrast
to ray-based traveltime tomography (e.g. Woodward et al.
(2008)), FWI includes both phase and amplitude information
in the seismograms for elastic parameter estimation. When
working with reflection data, the model update of FWI is sim-
ilar to a migration image of the data residual, given the back-
ground propagation velocity (Claerbout, 1985). The accuracy
of the resolved model is controlled by the frequency band in
the data and the accuracy of the initial (background, macro)
model. When this initial macromodel is not sufficiently accu-
rate, the iterative process of FWI gets trapped in undesirable
local minima or valleys (Virieux and Operto (2009)). The lack
of convexity is intrinsic and owes to the relatively high fre-
quencies of the seismic waveforms.

In spite of an extensive literature on the subject, a convincing
solution has yet to emerge for mitigating these convergence
issues. So far, the community’s efforts can be grouped into
three categories. In the first category, misfit functions different
from least-squares have been proposed to emulate traveltime
shifts between the modeled and recorded waveforms (Luo and
Schuster, 1991; Ma and Hale, 2013). However, these methods
move away from the attractive simple form of the least-squares
formulation and require additional data processing steps which
are themselves not guaranteed to succeed in complex propaga-

tion geometries. In the second category, additional degrees
of freedom are introduced to (attempt to) convexify the wave-
form inversion in higher dimensions (Symes and Carazzone,
1991; Shen, 2004; Biondi and Almomin, 2014). These meth-
ods rely on an iterative formulation to gradually restrict the ex-
tended nonphysical model space to the physical model space,
which is often a delicate process. Moreover, they introduce
significant computational cost and memory usage in addition
to the already very expensive FWI. In the third category, the
tomographic and migration components in the FWI gradient
are separated and enhanced at different stages of the iterations
(Mora, 1989; Tang et al., 2013; Alkhalifah, 2015). Although
these methods do enhance the low wavenumber components of
the FWI gradient, the essential difficulty of ensuring correct-
ness of the tomographic component is still mostly untouched.

The most straightforward way to increase the basin of attrac-
tion of the least-squares FWI objective function is to seed it
with low frequency data only, and slowly enlarge the data band-
width as the descent iterations progress. However, until several
years ago, the low frequency energy below 5 Hz was often
missing due to instrument limitations. More recently, as the
importance of the low frequencies became widely recognized
by the industry, broadband seismic data with high signal-to-
noise ratio between 1.5 Hz and 5 Hz started being acquired at
a significantly higher cost than previously.

The premise of this paper is that the phase tracking method,
proposed in Li and Demanet (2015), is a reasonably effective
algorithm for extrapolating the low frequency data based on
the phases and amplitudes in the observed frequency band. A
tracking algorithm is able to separate each seismic record into
atomic events, the amplitude and phase functions of which are
smooth in both space and frequency. With this explicit param-
eterization, the user can now fit smooth non-oscillatory func-
tions to represent and extrapolate the wave physics to the un-
recorded frequency band. Although the resulting extrapolated
data can only be expected to accurately reproduce the low fre-
quency recordings in very controlled situations, they are never-
theless adequate substitutes that appear physically plausible in
a broad range of scenarios. We are not aware that there is any
other attempt at synthesizing low frequency data in the seismic
literature. (The mathematical problem of providing tight guar-
antees concerning extrapolation of smooth functions from the
knowledge of their noisy samples has however been solved in
our companion paper (Demanet and Townsend, 2016).)

In this paper, we test the reliability of the extrapolated low fre-
quency data on a synthetic Marmousi example in the constant-
density acoustic regime. The low frequencies between 1 Hz
and 5 Hz are extrapolated from the recordings at 5 Hz and
above. We demonstrate that although the extrapolated low fre-
quencies are sometimes far from exact, the low wavenumber
models obtained from the extrapolated low frequencies are of-
ten suitable for initialization of FWI at higher frequencies.
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METHOD

Review of waveform inversion with truncated Gauss-
Newton iterations
Conventional FWI is formulated in data space via the mini-
mization of the least-squares mismatch between the modeled
seismic record u with the observed seismic record d,
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Starting with an initial model m

(0), we use a gradient-based
iterative scheme to update the model
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where m

(i) is the model at the i

th iteration, r = Su(m(i))�d is
the data residual, J

r

is the Jacobian matrix, and a is the step
length for the update.

In practice, the normal matrix JT
r Jr is too large to build ex-

plicitly and is often approximated by an identity matrix. In
this paper we choose to precondition this matrix by approx-
imately solving the following system using a few iterations
of the conjugate gradient method (Claerbout, 1985; Metivier
et al., 2013),

min
dm

||r(m(i))�J
r

(m(i))dm||22, (4)

where dm is the unknown increment in model. The linear iter-
ation in (4) is also known as Least-Squares Reverse Time Mi-
gration (LSRTM), which effectively removes the source sig-
nature and produces “true-amplitude” velocity perturbation at
convergence. Due to the limited computational resource and
the ill-conditioned matrix JT

r Jr, we truncate the Gauss-Newton
inversion at 3 iterations for each nonlinear step. Then a careful
line search is performed to make sure the objective function
(Equation 1) decreases in the nonlinear iterations. (Another
effective way of preconditioning the normal operator is to use
randomized matrix probing, see Demanet et al. (2012).)

To help the iterative inversion avoid local minima, we perform
frequency-continuation FWI starting from the lowest available
frequency with a growing window.

Review of phase tracking and frequency extrapolation

In a previous paper (Li and Demanet, 2015), we demonstrated
that there exist interesting physical scenarios in which low fre-
quency data can be synthesized from the band-limited field

recordings using nonlinear signal processing. This process-
ing step is performed before full waveform inversion in the
frequency domain. To extrapolate the data from the recorded
frequency band to lower (and higher) frequencies, the phase
tracking method consists in solving the following minimiza-
tion problem to separate the measured data to its atomic event-
components:
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where b
d are the measured data in the frequency domain; —

k

and —2
k

, with k=w,x, respectively denote first-order and second-
order partial derivatives; —w,x denotes the full gradient; and
the predicted data record bu is modeled by the summation of r

individual events:
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where the wavelet bw(w) is assumed known to a certain level
of accuracy. The constants l , µ , and g are chosen empirically.

The optimization problem for event tracking here is reminis-
cent of full waveform inversion with high-frequency data, hence
shares a similar level of nonconvexity. Yet, by posing it as a
data processing problem, the nonconvexity can be empirically
overcome with an explicit initialization scheme using Multiple
Signal Classification (MUSIC), coupled with a careful trust-
region “expansion and refinement” scheme to track the smooth
phase and amplitude. We refer the reader to the detailed algo-
rithm in the previous paper (Li and Demanet, 2015).

Having obtained the individual events, we make explicit as-
sumptions about their phase and amplitude functions in order
to extrapolate outside of the recorded frequency band. Namely,
we assume that the Earth is nondispersive, i.e., the phase is
affine (constant + linear) in frequency, and the amplitude is
to a good approximation constant in frequency – though both
are variable in x, of course. A least-squares fit is then per-
formed to find the best constant approximations a
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(x), from values of w within the useful frequency band.
These phase and amplitude approximations can be evaluated at
values of w outside this band, to yield synthetic flat-spectrum
atomic events of the form
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These synthetic events are multiplied by a band-limited wavelet,
and summed up, to create a synthetic dataset.

The effectiveness of this method for event identification is lim-
ited by many factors, chiefly the resolution of the MUSIC al-
gorithm and the signal-to-noise ratio of the data. The algo-
rithm often tracks the strong events and treats the weak events
as noise. Moreover, the amplitudes of the events are less pre-
dictable than the phases, due to propagation and interfering
effects. Therefore, the extrapolated data record is inexact, typ-
ically with higher fidelity in phase than in amplitude. In the
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following section, we test the reliability of the extrapolated
low frequencies by initializing the frequency continuation of
FWI. Our goal is to bring reliable low wavenumber informa-
tion in the model by fitting the phase of the extrapolated data
and to help enlarge the basin of attraction for FWI when the
low frequencies are missing from data.

NUMERICAL EXAMPLES

In this section, we demonstrate the reliability of the extrapo-
lated low frequencies on the Marmousi model. In this example,
we compare three cases while keeping the initial models fixed:

• In the control case, frequencies from 1 Hz to 15 Hz are
used in the frequency continuation of FWI.

• In the extrapolated FWI case, we first extrapolate the
data between 5 Hz and 15 Hz to the frequency band
between 1 Hz and 5 Hz. The extrapolated data are used
to build the low wavenumber model to further initialize
the frequency continuation starting at 5 Hz.

• In the missing low-frequency case, frequency continu-
ation of FWI starts from the lowest frequency at 5 Hz.

We restrict FWI to reflection events only by limiting the maxi-
mum offset to 500 m in the Marmousi model (Figure 1a). The
starting model for FWI is a 1.5 D linearly increasing veloc-
ity profile (Figure 1b). It is an extremely challenging task for
FWI to recover large low-wavenumber discrepancies between
the initial model and the true model, especially in the deeper
section (below 2 km).

Reliability of the extrapolated low frequencies (1� 5 Hz) are
tested with FWI at these low frequencies. Figure 2 shows the
inverted velocity model using modeled data (a) and using ex-
trapolated data (b). Although not as detailed as Figure 2a,
the velocity model inverted using the extrapolated data cor-
rectly captures the very low wavenumber component of the
true model. These models are used to initialize FWI with data
at higher frequencies.

Figure 3 compares the final inverted results after a full band-
width FWI continuation. In the shallow region (above 2 km),
velocity models resolved in the control case and the extrapo-
lated case are very similar with accurately imaged fine layers
and normal faults. Both models have trouble resolving a high
resolution and accurate velocity model in the deep region, be-
cause reflections from the dipping reflectors and the anticline
structure have not been sufficiently recorded due to the limited
offset. In comparison, FWI starting at 5 Hz yields little mean-
ingful information about the subsurface. The inversion failed
to update the low wavenumber structure of the velocity model
and placed reflectors at wrong positions.

Figure 4 compares pseudo velocity logs at three surface loca-
tions. Velocity models in both control and extrapolated cases
recover the true velocity model very well above 1 km. Quality
of the inverted model degrades with depth. However, both ve-
locity models capture the low wavenumber components of the
velocity model. The maximum updates in the deeper section

are as high as 1000 m/s. The huge velocity error prevents FWI
starting at 5 Hz from converging to the true model.

(a) (b)

Figure 1: Marmousi model (a) and the starting model for FWI
(b). The starting model is a 1.5 D linearly increasing velocity
profile from 1500 m/s at the water bottom to 3500 m/s at 3.2
km. The initial model is far from the true especially in the
deeper section.

(a) (b)

Figure 2: Comparison between the inverted model after FWI
using modeled low frequency (1� 5 Hz) data (a) and using
extrapolated low frequency data (1� 5 Hz) (b). Both models
capture the low wavenumber structure of the Marmousi model,
although the inverted model using modeled data contains more
details in the shallow part.

DISCUSSION

There are two main reasons that both the amplitude and the
phase of the extrapolated data are inexact. First, the track-
ing algorithm determines the number of individual events as
an initialization step. This number may decrease (for event
truncation), but may not increase (for even bifurcation) as the
tracking expands. These untracked events are the main con-
tributors to the errors in the extrapolated phase function. An
aggregation method, with event fragments tracked in subsets
of traces and merged into actual composite events, may help
improve the accuracy of the event tracking and phase extrapo-
lation. Second, compared with the phase extrapolation based
on non-attenuative physics, the amplitude extrapolation is less
constrained by physical principles. To improve the accuracy
of the extrapolated amplitudes, a higher order polynomial or
rational function can be used to approximate the amplitude
variation with respect to frequency. However, we do not ex-
pect the extrapolation to perfectly reconstruct the amplitudes.
Consequently, although the extrapolated data are adequate for
initializing FWI, they are not suitable for absolute impedance
inversion and amplitude-based rock property interpretation.

Due to the inaccuracy in their phase and amplitude, we do not
allow FWI to fully fit the data at the extrapolated low frequen-
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(a) (b)

(c)

Figure 3: Comparison between the inverted model from FWI
after a full bandwidth continuation. In (a), resulting model
from the control case (frequency continuation from 1 to 15
Hz). In (b), resulting model from the extrapolated case (ini-
tialization using extrapolated low frequencies (1� 5) Hz and
frequency continuation with recorded data from 5 to 15 Hz). In
(c), resulting model from the missing low-frequency case (fre-
quency continuation from 5 to 15 Hz). A better inverted model
can be obtained in the control case if we iterate to convergence
at the lowest frequencies. However, we limit the number of
iterations in the control case to ensure a fair comparison with
the extrapolated case.
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Figure 4: Pseudo velocity logs at three surface locations. The
black line denotes the initial model. The green line denotes
the true model. The black, green, red, and blue lines denote
the pseudo log from the initial, true, control and extrapolated
model.

cies. This limits the resolution of the inverted FWI model.
With hundreds of more iterations in the control case, FWI start-
ing at 1 Hz can reduce the data residual to 1% at each fre-
quency band. Hence, the velocity model can be fully resolved
(with all wavenumber components) because of the availabil-
ity of both low frequency and long offsets. To the contrary,
overfitting the extrapolated data at low frequencies would lead
the inversion to undesired local minima and spurious models.
FWI with limited number of iterations resolves a good esti-
mate of the velocity model within the increased available fre-
quency band, but it cannot perfectly resolve the model at all
wavenumber due to both the slow convergence and the poten-
tial local minima introduced by the inaccuracies in the extrap-
olated data.

In our numerical examples, the extrapolated low frequencies
are used only to initialize FWI in order to obtain a low wavenum-
ber model. As soon as the frequency continuation moves to
the recorded frequency band, the extrapolated low frequencies
are abandoned. This leaves the low wavenumber components
of the model space unconstrained in later FWI iterations. A
proper combination of the extrapolated data and the recorded
data needs to be studied to ensure a fully constrained inversion
for velocity in the whole wavenumber band.

CONCLUSION

To mitigate the nonconvexity of FWI, we propose to start the
frequency continuation using the extrapolated low frequency
data. The extrapolation is only feasible after decomposing the
seismic records into individual atomic events via phase track-
ing for each isolated arrival. Numerical examples demonstrate
that full waveform inversion is surprisingly tolerant to inaccu-
racies in the amplitude and phase of the extrapolated events.
Initializing with the extrapolated low frequencies mitigates the
severe nonconvexity that FWI suffers from when only high fre-
quency data are available. By explicitly obtaining the phase
and amplitude of each individual event, our method shares an
important feature with travel time tomography: its ability to
extract kinematic information from high frequencies only.
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