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SUMMARY

We apply recent advances in deep neural networks to three
classes of geophysical problems stemming from ambient noise
imaging: wavespeed inversion in homogeneous media in the
presence of anisotropic sources, local wavespeed inversion in
inhomogeneous media, and source directionality estimation in
homogeneous media. Our networks are inspired by those com-
monly in the signal processing literature, such as convolutional
networks and LSTMs, but use a training procedure that ap-
pears unique to physical problems: data is generated on the
fly and only used to compute a single gradient, then discarded
and never seen again. These techniques prove to be highly per-
formant and quite flexible — they easily accomodate for data
gathered from different sensor geometries, or for different pri-
ors in the data generating procedure. We also find preliminary
evidence that, in simplified analogues of these problems, the
nodes in deeper layers of our networks are computing physi-
cally meaningful quantities.

INTRODUCTION

Starting early in this decade, deep neural networks — most no-
tably convolutional networks (ConvNets) (Lecun et al 1998),
(Krizhevsky et al 2017), generative adversarial networks (GANs)
(Goodfellow at al 2014), and long short-term memory net-
works (LSTMs) (Hochreiter and Schmidhuber 1997) — have
taken over many areas of traditional signal processing, from
computer vision to language translation, and have even trounced
the best human players the board game Go (Silver et al 2016).
The contribution of this paper is to bring these methods to bear
on certain inversion problems in geophysics. While neural net-
works have been used in geophysics before, see e.g. (Asadi
et al 2017), we believe we are the first to apply them to the
inversion problems at hand. Further, our architectures lever-
age recent powerful innovations in the deep learning literature,
and we see strong improvements in performance relative to
“vanilla” artificial neural networks.

In this paper we study three problems:

e Wavespeed inversion in homogeneous media, when sources

are anisotropic
e Wavespeed inversion in inhomogeneous media

e Recovery of the anisotropy of sources in homogeneous
media, represented both by parameters in some prede-
fined model and by pointwise intensity

In all three cases our neural networks achieve excellent perfor-
mance, even in the presence of strong noise. We additionally
study the toy problem of aligning two noisy signals, for which
the cross-correlation is well-suited, and observe that neural
networks trained to solve this problem appear to be computing
something akin to the cross-correlation in their deep layers.

EXPERIMENTS, NETWORKS, AND TRAINING

All of our exprimentds were on synthetic data, in both noisy
(with noise energy up to approximately up to 10% of the sig-
nal energy) and noiseless settings. We used three networks
to achieve our results: a locally connected architecture, a so-
called “relational network™ (Santoro et al 2017), and convolu-
tional LSTMs (Hochreiter and Schmidhuber 1997). These are
shown below.

In the homogeneous case, we gathered data from two or three
sensors located (randomly) near the origin, and generated Gaus-
sian noise sources in the far-field (either uniformly or with
some anisitropy in the intensity, depending on the experiment)
and propagated them to the sensors with the Green’s function.
Combined with the simulated discrete sampling rate this only
requires a simple FFT, so that we could generate new data on
the fly for each gradient calculation. This means there is no
distinction between training and testing data; the network only
every saw any data point once. Since most theoretical guaran-
tees for stochastic gradient descent only apply in this “true”
setting, the success of networks in this setting indicate that
they are doing something nontrivial (and are most definitely
not memorizing data). The state of the art in a simpler setting
— with isotropic noise — is known to be the cross-correlation.
Specifically, the peak of the cross-correlation between two sen-
sors gives the traveltime between them.

It is not practical to compute the inhomogeneous Green’s func-
tion (and there is no guarantee that it could be quickly applied)
so we used a direct solver instead. Our data generation process
was otherwise similar, except that we sampled on a square grid
of 2500 sensors to maximize the data gathered from each sim-
ulation. We then used the readings of four sensors in a cross
shape, over a limited time window, as input to our networks.
Out of twenty simulations, we usde fifteen for training and left
five for testing, as well as the final 10% of each time trace
at every sensor in every simulation. Both testing sets yielded
similar results, indicating that the networks did not memorize
data either from any simulation or from any particular sensor.
Our experimental setups are shown below.
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Figure 1: Examples of the networks we used. Cartoons of
a locally connected architecture, a CLSTM, and a relational
architecture with cross-correlations as its input.

RESULTS

Our results are best summarized in figures. The networks per-
formed extremely well, notably in the case of two sensors.
Considering the problem of inverting for wavespeed from di-
rectional sources, with three sensors, classical cross-correlations
can achieve up to 1 —cos 7r/3 & 0.133 relative error, while with
just two they can achieve no approximation — for a wave com-
ing in orthogonally to the line between the two sensors the
peak of the cross-correlation will be at 0, and for small angles
the situation is nearly as dire. In contrast, our neural networks
were able to reliably invert for wavespeed independently of the
source distribution using just two sensors.

We had similar success in recovering the source intensities
themselves. Using two sensors we can never expect determine
whether a wave came from angle 6 or —6, but up to this sign
ambiguity we were able to recover the source distribution. The
use of a third sensor resolves this ambiguity in theory and in
practice.

Our results in the inhomogeneous case were also quite good:
we were able to reliably invert for wavespeed for velocity pro-
files that the network had never seen before. Notice that that
the network only saw fifteen models and our model space is
two-dimensional (with velocity of the form ax + by + ¢); this
means that the network cannot be learning the model space,
but must have identified something more basic about the rela-
tionship between the traces and the model.

Figure 2: Examples of types of experiments where one would
like to recover the underlying (homogeneous) wavespeed.
They differ in the number of sensors and the assumption on the
directionality of the noise. Top two: experiments amenable to
the cross-correlation. Bottom two: experiments amenable to
our methods.

Figure 3: The experimental setup for inhomogeneous
wavespeed recovery. The background shade represents the
wave velocity. Our experiments used a dense grid of sensors
for efficiency of generating a data set; we only fed the network
four traces at a time, organized in a cross-shape.
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Figure 4: Top left: true (x-axis) vs. predicted (y-axis)
wavespeed for the two-sensor case under the random wedges
distribution. Top right: distribution of the relative absolute er-
rors |£ — x|/x. Bottom: distribution of relative absolute error
for a network trained on the random wedge model but tested
on single sources located at angles /2 or 37/2.

Figure 5: Examples from the test set, never seen by the net-
work, of the source strength recovery problem. The dataset
was composed of intensities taking the form asin 6 + bcos 0,
where 0 is the angle from which the wave originates (in the far
field).
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Figure 6: More strength recovery experiments, from a network
trained on a mixture of the two models. Top: intensities of the
form asin 6 + bcos 6. Bottom: a wedge-type intensity.
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Figure 7: Results for the inhomogeneous case. Top left: pre-
dicted wavespeed against true wavespeed, on the training set.
Top right: predicted wavspeed against true wavespeed, on the
unseen 10000 time samples from the simulations that were
used for training. Bottom: predicted wavespeed against true
wavespeed on unseen simulations.

WHAT’S GOING ON?

The most important open question in the field of deep learning
is arguably what networks are learning, and whether it is more
meaningful than “finding a local minimum”. The most satis-
factory answers exist in the case of convolutional networks.
On the one hand, community folklore holds that examining
the filters in a convolutional network trained to classify images
shows that the early layers learn to identify edges and curves,
the next ones identify simple shapes like circles or rectangles,
and so on; deeper layers compose the results of earlier ones
these to recognize objects built out of simpler parts, in the way
that faces or bicycles are composed of lines and circles. No
such natural interpretability exists for other types of networks,
as far as we know. !

Our attempt to answer this question for the networks we use
is practical. The simplest version of the problems we address
in this paper is to align two noisy signals: given y = 7;(x) + &,
where € is noise and 7y is the circular shift by k coordinates,
how do we recover k? The cross-correlation peak is again the
correct answer. We trained a very simple deep neural network
to solve this inverse problem; a problem instance and a car-
toon of the network we uesd are shown below. It achieved
error rates competitive with cross-correlation, which is unre-
markable, but when we regressed each of its inner nodes on
the degree-2 monomial dictionary, we found that the network
appeared to be computing some version of the coordinates of
the cross-correlation. This remarkable result indicates that, in
some sense, the simplest way to solve this problem is to com-
pute the cross-correlation and then take the pointwise maxi-
mum. We found manifestations of this phenomenon in several
completely different problems; to compute x -y, for instance,
our trained networks appeared to be computing (x4 y)? and
(x—y)? and subtracting them.

t is worth noting that on the theoretical front, a recent line of work (Bruna and Mallat
2012, Mallat 2012) has shown that the general structure of iterating convolutions and non-
linearities automatically “linearizes” all diffeomorphisms, so that the resulting networks are
naturally excellent image/sound classifiers.
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Figure 8: An instance of the problem of aligning noisy signals,
and an example network that we used to solve it. The output of
the network should be the amount that the signals are shifted
by. Left: noiseless instance. Center: noisy instance; the refer-
ence signal is in blue, and the signal to be aligned is in orange.
Right: the network we used.

FUTURE WORK

The first next step is to apply our techniques to real data; work
on this is already underway. We would also like to improve our
results for inhomogeneous wavespeed recovery, and have seen
indications that this is well within reach. This points towards
using neural networks for full-waveform inversion, though we
have not yet touched the issue of detecting discontinuities in
the wavespeed. However, neural networks have proven ef-
fective at sparse recovery, competitive with ¢; minimization
(Baraniuk and Mousavi, 2017), which supports the idea that
they are capable of solving much more complex inverse prob-
lems.

An orthogonal direction of future progress would be to use
our procedure of dictionary fitting to extract formulas or laws
from trained networks. Since we treat the outputs of each node
as functions, with no reference to their position in the network,
this could provide an architecture-independent way to interpret
what neural networks have learned (as opposed to the heavily
architecture-dependent effect of convolutional networks build-
ing multiscale filterbanks for natural image processing).
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Figure 9: The regressed coefficients in the degree-2 dictionary
for several nodes in the interior of the network. We show the
coefficients of the monomials x;x;, where the two indices in-
dex the matrix of coefficients. The cross-correlation has entries
> xixi1¢, which corresponds to an active offset diagonal in the
matrix; note the similarity of the displayed coefficients to a
shifted diagonal. In particular, nodes 50, 52, 54, 55, 59, 62, and
63 exhibit strong cross-correlation behavior. this is just one
slice of all the nodes; at this particular level there are 128, and
the others contain the other entries of the cross-correlation, are
duplicates of the ones shown here, or are spurious. It is com-
mon for neural networks to duplicate or “deactivate” nodes.
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