
Image Inpainting by Correspondence Maps : a Deterministic Approach

Laurent Demanet
California Institute of Technology

Applied and Computational Mathematics, MC 217-50
1200 E. California Blvd, Pasadena, CA 91125, USA

demanet@acm.caltech.edu

Bing Song and Tony Chan
Univeristy of California Los Angeles

Mathematics Department
520 Portola Plaza, Los Angeles, CA 90095-1555, USA

{ songbing, chan }@math.ucla.edu

Abstract

The success of some recent texture synthesis methods,
see [8, 17], suggests that there exists an underlying formu-
lation explaining their performance and paving the way to
more involved modeling. Based on their ideas, we formal-
ize a low-level global deterministic solution for image in-
painting.

A correspondence map is defined as linking each blank
or missing pixel to the pixel where its value is taken from, in
the seed image. The above-mentioned algorithms are seen
as descent procedures to minimize a functional of this cor-
respondence map, the inpainting energy. We discuss why
they should not be seen as procedures to sample a probabil-
ity distribution on the correspondence maps. We therefore
question the claims that probability is anywhere involved at
this explanatory level.

The algorithm we use is mostly taken from [17]. The
latter however suffers from a strong directional bias, the
direction in which texture is grown. We restore rotation-
invariance at the level of both the target function and the al-
gorithm. Our encouraging numerical results could not have
been obtained by a directional texture-growing algorithm.

1. Introduction

The problem we address in this report is that of image
inpainting or disocclusion. A special case is texture synthe-
sis constrained by boundary matching with a seed texture.
Given an image u where a few pixels or a whole region Ω
is missing, we wish to recover the lacking information in
the best possible way to the eye. A few principles come to

mind when trying to give this problem a more precise state-
ment :

1. The seed image should provide a guideline to the syn-
thesis of the missing pixels. The result of inpainting
should locally be visually close to parts of the known
image.

2. In addition to considering the seed image, one might
wish to consider a set of images, build a summariz-
ing account of their properties, and use this as learned
a posteriori knowledge.

3. Our a priori knowledge of some typical image prop-
erties (there are uniform regions, edges, texture, etc.)
should provide other indications for the inpainting.

4. At yet a higher level, our understanding of the scene
can give us hints at how to inpaint properly.

The method we present in section 2 is at a ‘low level’
since it only concentrates on the first approach. Variational
or PDE-based inpainting methods [2, 7], on the other hand,
are based on some a priori information (e.g. the functional
to minimize) as well as data fitting (e.g. the boundary con-
dition), so they fall in between the third and first categories.
Markov random field texture models, cfr. [19], consist in
building a big probability distribution from a large set of im-
ages, and then sampling it in order to synthesize the learned
patterns. This follows approach number 2 above.

Section 2 formulates the inpainting problem as the min-
imization of a new inpainting functional. An algorithm to
reach a good local minimum is then described. The core of
the paper, sections 3, is a discussion related to the new for-
mulation. Issues related to its deterministic vs. probabilistic
interpretation are addressed. Some numerical experiments



are presented in section 4. Directions for future research are
given in section 5.

2. Inpainting by correspondence maps

2.1. Formulation

We are given a known image (intensity function) u(α)
defined on the pixels α ∈ I\Ω for some missing region Ω.
The problem is to recover the unknown intensities u(α) for
α ∈ Ω. Our strategy is to define a correspondence map F :
Ω → I\Ω and to paste the pixel values from the seed image
as u(α) := u(F (α)). This is depicted in Fig. 1.

The map F should be chosen so that the synthesized re-
gion looks as much as possible like parts of the seed image.
Define the neighborhood Nα of a pixel α as, say, the set of
its eight surrounding neighbors (Nα cannot contain α). Vi-
sual closeness of two pixel neighborhoods Nα and Nβ can
be measured using the usual Euclidean distance

d2(Nα, Nβ) =
∑

γ∈N0

|u(α + γ) − u(β + γ)|2, (1)

where N0 denotes the neighborhood of the origin. One can
now define a global indicator of performance, the inpaint-
ing energy or functional, as

E(F ) =
∑

α∈Ω

d2(Nα, NF (α)). (2)

This is the objective to be minimized with respect to F . In
other words, finding F amounts to filling Ω in the visually
most faithful way by pixels of the seed image.

An ambiguity appears in this definition when the neigh-
borhood NF (α) of the target pixel is not fully contained in
the image I or if it overlaps with unknown pixels in Ω. The
most obvious way to deal with this problem is to restrict the
range of F to ‘acceptable’ pixels β, in the sense that Nβ is
fully contained in I\Ω.

Classical variational formulations (see [2, 7]) are based
on the smoothness of the interpolant u on the occluded re-
gion Ω. They are local in the sense that only information at
the boundary ∂Ω of Ω is really taken into account. Here the
situation is very different. The synthesized image need not
be smooth : the objective is a functional of F , not directly of
u. A minimizing correspondence map F has itself no rea-
son to be smooth. Inpainting from a correspondence map is
obviously a global (in contrast to local) method.

Our inpainting energy is at a much more elementary level
than a regularization functional like TV, in the sense that it is
defined with poor learned (a posteriori) knowledge or sub-
jective (a priori) assumption on what the solution should
look like. Minimizing E(F ) is not really a model, it is
hardly more than one possible low-level formulation of the
inpainting problem. A set of pixel neighborhoods built from
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Figure 1. The correspondence map F : Ω →
I\Ω

a single texture or image sample does not qualify satisfac-
torily as a set of model parameters.

Let us remark that this inpainting functional E(F ) does
not lend itself easily to minimization, unlike the nicer con-
vex functionals sometimes found in image processing. It
possesses lots of local minima. Finding a global minimum
is probably a hard combinatorial problem.

2.2. Algorithm

The following algorithm is a descent for E(F ). It is
based on local minimizations at every unknown pixel. Infor-
mation is grown from the border to the inside of Ω in multi-
ple sweeps. The main ideas are taken from [8, 17]. How our
implementation differs from theirs is detailed below.

We follow the following steps :

1. Initialization of the map F at random.

2. Select a pixel α in Ω immediately near the border of
Ω.

3. Update F (α) by neighborhood matching. This means
finding a pixel β ∈ I\Ω minimizer of d(Nα, Nβ) so
that F (α) := β. Then assign u(α) := u(F (α)).

4. Repeat 2 and 3 for all the pixels inside Ω and near the
border. Then go to the next row of pixels, not immedi-
ately adjacent to the border, etc. until every pixel of Ω
is visited.

5. Sweep again the totality of Ω, i.e. repeat 2 through 4,
until E(F ) stagnates at a minimum value.

This basic scheme can be made faster and more efficient
in a variety of different ways. We have implemented the fol-
lowing improvements.

• Codebook Pruning. An exhaustive search is far from
being necessary when looking for a good match among
the seed pixels (step 3 above). One can restrict the



search for a good neighborhood match to a subset of
the seed pixels, e.g. chosen randomly and not too far
from the current α. Typically a decimation of a fac-
tor 10 still produces visually similar results. If we call
‘codebook’ the set of neighborhoods Nα of the candi-
dates α, this is codebook pruning.

• More likely candidates. There are a few natural pixels
to include in the set of candidates in the seed image.
They should not all be chosen randomly. Suppose all
the neighbors of a pixel α have already been inpainted,
then a good candidate for F (α) would be F (α−β)+β

for β close to the origin. This way, larger regions of the
known image are likely to be copied in Ω. We learned
that this strategy has also been adopted in [1].

• Multiresolution. The construction of the correspon-
dence map can be done in a multiresolution way, by
successive refinements on embedded grids. Inpainting
(steps 2 through 5) is done at a very coarse scale first,
on a downsampled image I and inpainting mask Ω.
Using an appropriate interpolation procedure one can
then recursively refine this guess at finer and finer res-
olutions. This way interactions can occur at a much
larger scale than the size of the neighborhood (a 3 by 3
square, say).

• Extension to color images. This is straightfor-
ward if we understand that for vector-valued inten-
sities the absolute value |u| becomes the l2-norm
‖u‖ =

√

u2
1 + u2

2 + u2
3.

The algorithm presented in [17] is very similar to the
one presented here with one noticeable difference. Their
neighborhood is ‘causal’ in the sense that only known or
already inpainted pixels are taken into account in the neigh-
borhood. This has the big computational advantage of pro-
ducing good results after only one sweep of Ω, for exam-
ple in raster-scan order, but is highly anisotropic. In con-
trast, the functional (2) is rotation-invariant and the algo-
rithm presented above is meant to correct the bias of causal-
ity. A more detailed discussion of this causal vs. noncausal
aspect will be given in the next section. Let us also men-
tion that [17] uses a clever tree structure of the codebook in
order to speed up the search (by making it approximate).

3. Discussion

3.1. Remarks on the algorithm

This section aims at clarifying the deeper link be-
tween the formulation in terms of inpainting energy
and the ‘pixel-pasting-by-neighborhood-matching’ algo-
rithm we presented.

Let us go back for a moment to causal neighborhoods
as in [8, 17]. We number the pixels of Ω in raster-scan or-

der (from left to right and top to bottom) as α1, α2, . . . , αn.
When visiting pixel αi, step 3 of our algorithm consists in
solving the following problem,

min
F (αi)

d(Nαi
, NF (αi))

given F (α1), F (α2), . . . , F (αi−1).
(3)

The seed image u on I\Ω is also hidden in the constraints,
we drop it for notational convenience. That the values of
F (αi+1), . . . are not present in the condition is what we re-
fer to as the ‘causality’ property of the neighborhood.

This can also be seen as the maximization of the condi-
tional probability

P (F (αi)|F (α1), . . . , F (αi−1)) = Ce−d2(Nαi
,NF (αi)

).

(4)
Here C is an appropriate normalization constant. The
choice of an exponential is not compulsory at this level but
will prove useful below when we take logarithms. It is now
natural to consider the corresponding joint probability dis-
tribution P (F (α1), . . . , F (αn)). Causality of the neighbor-
hood is indeed a clever way to factorize it via Bayes’ rule
as

P (F (α1))P (F (α2)|F (α1)) . . .

P (F (αn)|F (α1), F (α2), . . . , F (αn−1)).
(5)

The global ‘inpainting energy’ is therefore nothing but

E(F ) = − log P (F (α1), . . . , F (αn))

=
∑

αi∈Ω

d2(Nαi
, NF (αi)) + C, (6)

for some unimportant constant C.
Obtaining the global minimum of (6) is a different and

much more difficult problem than performing the succes-
sive neighborhood matchings (3). This is true regardless of
whether the neighborhood is causal or not. When designing
a method to solve such a hard optimization problem there is
a trade-off to solve between the ability to make the energy
decrease and the ability to escape from local minima. The
successive minimizations (3) can be considered as a rather
naive but very fast greedy procedure to reach a good point
of low energy. This is how we understand the success of the
algorithms in [8, 17].

The reader might wonder where we needed causality
of the neighborhood in the above reasoning. If for ex-
ample each neighborhood Nα is symmetric around the
pixel α, we can still introduce the inpainting energy as 6
and define a corresponding total probability distribution as
Ce−E(F ). But the latter would not neatly factorize anymore
via Bayes’ rule. It would actually be forbidden to consider
each Ce−d2(Nα,NF (α)) as a conditional probability. The for-
mal application of Bayes’ rule would give different values
for the joint probability depending on the order in which



pixels are taken. Instead, the right conditional probabilies
to consider in the non-causal case are

P (F (α)|F (Nα)) = Ce−d̃2(Nα,NF (α)),

where the notation F (Nα) refers to all the values of F for
the pixels in Nα, and with the distance d̃ defined as

d̃2(Nα, NF (α)) =
∑

γ∈N0

|u(α + γ) − u(F (α) + γ)|2

+
∑

γ∈N0

|u(F (α)) − u(F (α − γ) + γ)|2.

(7)

This expression can be obtained by isolating the depen-
dence on a given α in the expression of the total energy.
The application of Bayes’ rule does not extend much be-
yond

P (F (α)|F (Nα)) =
P (F (α) and F (Nα))

P (F (Nα))
.

It is instructive to compare equations (1) and (7). The
first term in (7) is exactly d2 and measures neighborhood
closeness at α vs. F (α). The second term is present be-
cause α is itself a neighbor of the pixels which are in its
neighborhood. It measures how much changing F at α dis-
rupts the neighborhood matches for the pixels surrounding
α. Of course the algorithm of section 2 can be modified by
using this new distance d̃ instead of d. It has the advantage
of making the global energy decrease at every step (this is
not necessarily the case with d), and is therefore guaranteed
to reach a local minimum. However this idea comes with a
big drawback. The algorithm becomes a pure descent and
loses all its ‘creativity’ to find a good local minimum. Typ-
ically it would produce uniformly gray or colored regions
by copy-pasting pixels from a flat smooth region in the seed
image. This is why we kept the original d in our algorithm.
The true problem is the need for clever algorithms to mini-
mize the functional E(F ).

3.2. Deterministic vs. Probabilistic

So far we have associated probability and energy,
through E = − log p + C or p = Ce−E , but this identifi-
cation is only formal. The models people build from these
two concepts can be very different.

• An ‘energy’ functional E(F ) should be minimized. For
our purposes it is a criterion that sorts every possi-
ble argument F in a definite order, from the best one
(lowest energy) to the worst ones (highest energy).
We are therefore interested in the (often unique) argu-
ment of the minimum. Examples related to our purpose
include regressions in statistics, denoising-deblurring

problems addressed by variational or Bayesian meth-
ods in image processing, and of course variational in-
painting [7].

• A probability distribution p(F ) should be sampled. For
our purposes it is a criterion that sorts each event into
categories, e.g. as typical or non-typical. All the typical
events have approximately the same probability. All
the non-typical events have approximately zero proba-
bility, or have a very high probability but then are by
far outnumbered by the typical events. We are inter-
ested in any one of these typical events. Examples in-
clude the simulation of Markov Random Field models
in statistical mechanics or texture synthesis [4, 19].

In some sense a probability model is ‘weaker’ than an en-
ergy model. It does not manage to rank all the events into a
significant one-dimensional scale. Moreover, the most prob-
able outcomes of a random vector need not look like the
vast majority of typical outcomes, so it might turn out to be
a bad idea to try and maximize the probability. The classi-
cal example is a multivariate random variable made of i.i.d.
N(0, 1), which typical samples look like ‘noise’, but which
most probable outcome is the vector that is identically equal
to zero (this is not ‘typical’).

The two paradigms are usually used in very different
contexts to address very different questions. However it is
not clear yet where solutions to inpainting should belong.
As far as the simple ’neighborhood-matching’ algorithms
are concerned, most authors seem to classify them as sam-
pling from a distribution. A hint in this direction is the com-
plete factorization of the probability distribution (5) into
conditional probabilities in the case of a causal neighbor-
hood. This is an ideal setting for sampling the joint distri-
bution : just sample the successive conditional distributions
one after the other. This is called Gibbs sampling and is the
core of the approach in [13].

Instead, we believe that E(F ) should be minimized
rather than Ce−E(F ) sampled. As far as we experienced,
no harm was done when trying to reach a good mini-
mum. The descent never seems to reach atypical highly
probable states. Thus no need for a careful sampling. The
pixel-pasting-by-neighborhood-matching approach is pre-
sumably not involved enough to require a true probabilistic
modeling. The numerical experiments supporting this con-
clusion are shown in the next section.

Other thought experiments confirm this. Take for in-
stance an infinite periodic pattern, occluded by any reason-
able mask. It is perfectly inpainted by the original pattern,
which is visually reasonable and therefore qualifies as ‘typ-
ical’. In that case the inpainting energy is zero, as low as it
can get. There is no room for atypical solutions, no need for
a probabilistic modeling.

This provides an explanation for the difference of per-
formance of the algorithms in [8] and [17] : the former



approach insists on sampling the conditional probabilities
whereas the latter approach simply maximizes them. This
results in a much faster algorithm without loss of visual
quality of the synthesized texture. The numerical experi-
ments supporting this conclusion are shown in the next sec-
tion.

There is a way to re-introduce probability in our set-
ting, not at a modeling level but rather as a tool to solve
the optimization problem. When getting trapped at a non-
satisfactory local minima is the inevitable faith of naive
descent procedures, people often resort to ’stochastic de-
scents’ to have a better chance of reaching the global min-
imum. For instance, simulated annealing intuitively keeps
the system from freezing at a high-energy state by “shak-
ing it hard enough” during a slow cooling. For the particu-
lar case of our pixel synthesis algorithm, it could mean ran-
domly assigning a disadvantageous target F (α) to the cur-
rent pixel α. Of course such a procedure would consider-
ably slow down the descent but could prove useful to out-
put a better looking result. One reference for these proba-
bilistic optimization algorithms is [4]. These tools turn out
to be closely related to sampling strategies, but our mes-
sage here is that the deterministic vs. probabilistic nature of
the model investigated is a different question.

3.3. Continuous images

If we model the image u as a function from I ⊂ R
2 to R,

and the correspondence map as a function F from Ω ⊂ R2

to I\Ω ⊂ R
2, the total inpainting energy to be minimized

over F is expressed as

E(F ) =

∫

Ω

dy

∫

R2

dxχ(x)|u(F (y − x))− u(F (y)− x)|2,

(8)
where χ(x) is an indicator function of the neighborhood of
0. Then, as before, u(x) = u(F (x)) for every x ∈ Ω. Well-
posedness, existence, uniqueness and regularity of the mini-
mizers of this highly nonconvex functional seem quite chal-
lenging questions.

4. Numerical experiments

Fig. 2 is a synthetic geometric example. On the left is the
image to be inpainted, the ’noise’ indicating the mask where
the pixel intensity values are occluded or missing. On the
right is the result after inpainting. In this example, the min-
imum of the inpainting energy is zero. Fig. 3 is de Bonet’s
texture sample nr. 161. Again, (a) is the occluded image, (b)
is the inpainting result and (c) is the energy vs. the number
of sweeps. The energy decreases quickly in a few sweeps
and then stagnates till some approximately steady state is
reached. Note that plot (c) was obtained only from running
the algorithm at the finest resolution. Fig. 4 shows that the

Figure 2. Inpainting a synthetic image. Left:
The image to be inpainted. The ’noisy square’
in the middle indicates the occluding mask.
Right: After inpainting.

algorithm can also be very successfully applied to textured
images. Fig. 6 is the ’Barbara’ image that contains both a
texture and a cartoon part : (a) is the degraded image, (b) is
the result of inpainting by correspondence map. We observe
that the texture part is mostly recovered. (c) is the result of
TV inpainting. We can see that the texture part is not recov-
ered at all. Another very efficient way to process this im-
age would be to decompose the image as a texture plus car-
toon image and then use a different inpainting method for
each part. See [3] for details.

In all the above examples and many others the quality of
the result does not degrade as the number of sweeps gets
very large. This supports the conclusion that the model be-
hind the algorithm is deterministic and not probabilistic, in
the sense discussed above.

Another interesting experiment to test this claim is to
start with the occluded original image as initial guess, and
apply the algorithm1. We observe that, on toy inpainting
problems such as the one in Fig. 7, the ’steady-state’ is vi-
sually close to the original image and the inpainting energy
is not significantly lowered. Once again, this validates the
claim that minimizing an energy is the right framework be-
hind the algorithm. Had the algorithm degraded the image
substantially, we could have resorted to sampling strategies
to avoid that phenomenon ; but this is not the case here.

Note that running the algorithm with the ’forbidden’ oc-
cluded part of the image as initial data could be used in prac-
tice to erase unwanted information.

5. Extensions

The low-level inpainting solution consisting of minimiz-
ing (8) will probably gain from being formulated using

1 No multiresolution strategy is adopted here. The initial inpainting map
is computed in an obvious way from the original image by neighbor-
hood matching.
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Figure 3. Inpainting a textured image. This is
a color image (a) The occluded image. (b) Af-
ter inpainting (c) Inpainting energy vs. num-
ber of iterations.

(a) (b)

Figure 4. Inpainting a textured image. (a) The
image to be inpainted. (b) After inpainting.

Figure 5. Inpainting a linear smooth image.
Left: the image to be inpainted. Right: After
inpainting.

some additional a priori information. A few paths can be
followed.

• There is a notion of visual closeness associated with
the energy (8). Namely, for every synthesized pixel
there exists a pixel in the seed image in good agree-
ment in terms of similarity of the neighborhoods. It
would however make little sense if the correspondence
map took the observer to a very distant pixel every-
time a step is taken in the missing region. Rather than
isolated pixels, we expect reasonably large patches to
be pasted into that region. This amounts to requiring
‘smoothness’ of the correspondence map and suggests
adding the following penalization term,

∫

Ω

dy

∫

R2

dxχ(x)|u(F (y − x)) − u(F (y) − x)|2

+λ

∫

Ω

dy ‖∇F (y) − I‖F ,

u(y) = u(F (y)).

In other words the correspondence map should locally
look like the identity (‖ · ‖F is the Frobenius norm).
The parameter λ weights the importance of each term.
How to efficiently implement the minimization of this
new energy is the interesting problem. A step in this di-
rection is [1] where the author does not just select the
pixel candidates randomly in the seed image but also
according to what has already been synthesized. Pref-
erence is precisely given to these pixels that extend the
correspondence map so as to copy larger patches into
the missing region. See also comments in section 2.

• Naturally, the algorithm is well-suited for texture syn-
thesis but sometimes fails on reproducing geometrical
features of the image. This is precisely what TV in-
painting does reasonably well for us. It is therefore
tempting to write combined models such as the fol-



(a)
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Figure 6. Inpainting a real-life image.
(a)Image with missing information, (b) Re-
sult of inpainting by correspondence map.
We can see that the texture part is well re-
covered. (c) Result of TV inpainting.
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Figure 7. Taking original occluded image as
initial guess and applying inpainting. This is
a color image. The point is to illustrate the
claim that the algorithm does not degrade the
image or ‘go too far’ if the number of sweeps
is large. (a) Original image. (b) After inpaint-
ing. (c) Inpainting energy vs. number of iter-
ations. Note that the energy does not always
decrease. This example is not supposed to
show the performance of the method, see ex-
planations in the text.

lowing minimization problem.

min
u,F

E(F ) + λ1TV (u) + λ2||u(F (x)) − u(x)||22,

where TV (u) is the TV norm of u, E(F ) is the to-
tal inpainting energy defined in (8). The issue would
then again be to find a clever algorithm to minimize
this. It is probably a good idea to make λ1 decrease as
the number of iterations (sweeps) increases. This sit-
uation would more or less correspond to choosing the
TV inpainting as initial guess for the usual algorithm.
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