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The imaging and computing group

Fundamental aspects of inverse wave scattering.

Scalable computation
of high-frequency waves

Randomized algorithms
for HPC

Nonconvex
optimization

Data processing
and learning



Exploration: surveys /
borehole

Monitoring: reservoirs /
CO2 injection sites



FWI vs. interferometric inversion – m0

Exact model
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FWI vs. interferometric inversion – d



FWI vs. interferometric inversion – initial m

Initial guess

 

 

0 1000 2000 3000 4000 5000 6000 7000

0

500

1000

1500

2000

2500

3000

1500

2000

2500

3000

3500

4000

4500



FWI vs. interferometric inversion – m

Non−linear interferometric inversion
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FWI vs. interferometric inversion – m0

Exact model
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Why seismic imaging in a math dept?

Inverse scattering is challenging:

1 The optimization problems are nonconvex.
Cartoon scenarios: no known reliable minimization method.

2 Current methods not designed for extreme uncertainties.
Not clear what is data vs. noise.

3 Current algorithms do not scale.
Small bang for your computer buck.

Past 10-20 years: increasing CS/math/stats components
in addition to geophysics



Interferometry: a new way to view data

Cross-correlations are robust to disordered kinematics

Time reversal (phys): Fink et al. 1993.

Time reversal (math) Bal,
Papanicolaou, Ryzhik, 2002; Bal,
Ryzhik 2003

CINT imaging: Borcea, Papanicolaou,
Tsogka, 2003, 2005

Seismic interf. (phys): Weaver et al.
2001; Campillo, Paul 2003; Snieder,
2004; Wapenaar et al. 2006

Seismic interf. (math): Bardos et al.
2008; Colin de Verdiere 2009; Garnier,
Papanicolaou, Solna 2009+

Wapenaar et al. 2010

Interferometric inversion: leverage robustness of similar quantities
for inverting the underlying physics



Locating microseisms with interferometry

Least-squares inversion Interferometric inversion



Road ahead

Uncertainties: from quantification to rectification

Toward an understanding of

How to rethink waveform inversion for robustness

What is benign vs. unredeemable model ignorance

New resolution scalings

Development of large-scale optimization methods

Computing and data processing in high dimensions

Close links to recent progress in polynomial
optimization and information sciences

Re-usable software



Bonus slides



What is interferometry?

Optical interferometry: observe

|d1(x , ω) + d2(x , ω)|2 = |d1|2 + 2 Re d1(x , ω)d2(x , ω) + |d2|2

Example:
d1(x , ω) = e iωx/c

d2(x , ω) = e iω(x+∆x)/c

⇒ d1d2 = e−iω(∆x)/c

∆x ∼ micrometer



Interferometry is everywhere

Interferometry in real life:

X-ray diffraction crystallography: phase retrieval

Passive SAR imaging from opportunity sources

Passive seismic imaging from ambient noise

In all cases, d1(ω)d2(ω) with a model d = Fm.

Cross-correlation: d1(ω)d2(ω) = FT of
∫
d1(τ)d2(τ − t)dτ .

More generally, d(r1, s1, ω1)d(r2, s2, ω2).



Why interferometry in inverse problems?

Either:

Observe d1(ω)d2(ω):
measurements come in this form.

Decide to form d1(ω)d2(ω):
leverage stability of quadratic quantities.



Agenda

1. How to reliably solve such quadratic systems

Stability to data errors



Measurements and inverse problems

Linear measurements from an imaging device: di = (Fm0)i + ei ,
i = (r , s, ω). Usual proposal:

min
m

∑
i

|di − (Fm)i |2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Invert for m, but leverage the model robustness of didj . Form
interferometric measurements: Dij = didj for some pairs (i , j).
Simplest expression:

min
m

∑
(i ,j)∈E

|Dij − (Fm)i (Fm)j |2

for some incomplete set E of data pairs. Compensates for some
uncertainties in F .



Fitting linear vs. interferometric measurements

min
m

∑
(i ,j)∈E

|Dij − (Fm)i (Fm)j |2

Problem 1: quartic objective with spurious local minima

Solution: relaxation

Lifting: new unknown M for mm∗, subject to rank(M) = 1.

Semidefinite relaxation: constrain instead to M � 0.

When done, compute leading eigenvector of M, get e iαm.

Turned the problem into one of rank-1 matrix recovery

(links to Lasserre 2001; Chai et al. 2010; and Candès et al, 2011)



Fitting linear vs. interferometric measurements

min
m

∑
(i ,j)∈E

|Dij − (Fm)i (Fm)j |2

Problem 2: size of E needs to be kept in check: N2 vs N.

Solution: view E as the set of edges of a graph G , and pose the
problem as one of graph design.

ω(r , s ,    )
11 1

(r , s ,    )ω
2 22



Interferometric waveform inversion

Well-posedness: G should be well connected.

Adjacency matrix: Aij = 1 if (i , j) ∈ E , zero otherwise

Laplacian matrix: N − A, with N a diagonal of node degrees

Data-weighted Laplacian matrix: Lij = |di ||dj |, i 6= j .

Note λ1(L) = 0.

Definition

G is an expander graph if L has a large spectral gap λ2(L), i.e.,
when λ2(L) is a nonnegligible fraction of λN(L).



Interferometric waveform inversion

Let 0 = λ1(L) < λ2(L) < . . . be the egval of the data-weighted L.

Theorem (D, Jugnon, 2013)

Consider noisy data Dij = (Fm0)i (Fm0)j + εij . Assume F is
invertible. Assume G is connected with loops. Consider any
method that imposes

∑
(i ,j)∈E |Dij − (FMF ∗)ij | ≤ σ with M � 0,

then defines m as the leading eigenvector of M. Assume
‖ε‖1 + σ ≤ λ2(L)/2. Then

‖m − e iαm0‖
‖m0‖

≤ 15κ(F )2

√
‖ε‖1 + σ

λ2(L)

Compare with least-squares: ‖m−m0‖
‖m0‖ ≤ κ(F ) ‖e‖‖d‖ .



Implications

Proof: concentration of a convex combination.
Alternatively, L is a dual certificate ( L1 = 0, L � 0 on 1⊥ )

Corollary

Phase retrieval from |(Fm0)i + e ik2π/3(Fm0)j |2 + εij , k = 1, 2, 3.
Depending on how G is chosen, the recovery is

minimally robust with 3N measurements (1/
√
λ2 ∼ N);

robust with 3dG
2 N measurements (dG = node degree)

(see PhaseLift, Candès et al. 2011)

Erdos-Renyi graph: expected λ2 > c > 0 with degree O(logN).

Related: Singer et al. 2011



Use a nonsmooth iterative method

Practical numerical aspects:

Keep M separated throughout: let M = RRT with
rank(R) = 2 (Burer-Monteiro 2003). Quasi-Newton: LBFGS.

Convergence: slowdown vs. LS of a factor 10-100.



Agenda

2. Why is interferometric inversion interesting

New way of handling model errors (errors in F )



Experimental setting
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Radar / seismic / ultrasound
forward scattering map
F : m 7→ d .

m: reflectivity map, m = 1/c2.

d : wavefield data dr ,s,ω.

F : solve a wave equation and sample at receivers. Linearized
as F = δF/δm. Explicitly:

d = Fm

⇔

(m0∂tt −∆) us = −m ∂ttu0,s , dr ,s,ω = ûs(xr , ω)



Interferometric inversion

min
M

tr(M) s.t. M � 0,
∑

(i ,j)∈E

|didj − (FMF ∗)ij |2 ≤ σ2.

Choice of E: random, sparse pairs of moderately close r , s, ω.
(E should not be the identity i = j . It should not be the complete graph either.)

Choice of σ: above some threshold in order to get robustness in F .



Linear vs. interferometric inversion

Classic least squares optimization
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Optimization over quadratic data
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Exact m0 = 1 (exact F )



Linear vs. interferometric inversion

Classic least squares optimization
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Optimization over quadratic data
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Inexact m0 = 1.06 (approximate F )



Linear vs. interferometric inversion

Classic least squares optimization
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Optimization over quadratic data
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Local minima in unrelaxed quartic formulation

Reconstructed Born scatterer from rank−1 quartic optimization
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Robustness to m0: explanation

With m0 = 1/c2, let

F , F̃ : full-aperture Born modeling operators in velocity c, c̃ ,
frequency ω, receiver radius R.

Theorem (D., Jugnon, 2014)

Let
m̃(x) =

c

c̃
m
(c
c̃
x
)
, M̃ = m̃ ⊗ m̃

Then
‖Fm − F̃ m̃‖2 & ‖Fm‖2

and

‖FMF ∗ − F̃ M̃F̃ ∗‖1 .
ω diam2(m)

c R
‖FMF ∗‖1

⇒ m̃ compatible with interferometric measurements.



Robustness to sensor location

Full aperture, MIMO, uniform medium m0 = 1,

but wrong sensor locations.

E : spacing between correlated r or s < decoherence angle.



Agenda

3. Not-so-special quadratic systems

Toward the convex relaxation of inverse wave scattering



Inverse scattering

Inverse scattering: determine m from

m ∂ttu −∆u = f ,

Su = d .

Hard because m→ d = F(m) is very nonlinear (high frequencies).

No convincing algorithmic progress in 30+ years

Basis for two major seismic imaging conferences each year.



Relaxation of inverse scattering

Inverse scattering: determine m from

m ∂ttu −∆u = f ,

Su = d

Quadratic system in the entries of v = (1,m, u)T .

Lift to X , a proxy for v ⊗ v∗, and get the equivalent rank-1 matrix
recovery problem

∂2
t diagX23 −∆X13 = f ,

SX13 = d ,

X11 = 1,

rank(X ) = 1.



Relaxation of inverse scattering

First-order relaxation L1: drop rank(X ) = 1, add X � 0.
(add min Tr.)

Exact for some problems (e.g. phase retrieval) but not for
inverse scattering. Manifestation: ill-posedness.

Second-order relaxation L2: drop rank(X ) = 1, but encode
determinant conditions XijXk` − XikXj` = 0 via a lifting proxy
X for X ⊗ X . Add X � 0 and X � 0.

Increasingly tighter Lk: hierarchy of moment / sum of squares
relaxation of Lasserre (2001) for polynomial optimization.

No large-scale implementation to date for Lk, k ≥ 2.



Relaxation of inverse scattering

First-order relaxation L1-Rk: relax rank(X ) = 1 into
rank(X ) ≤ k (nonconvex!), with X � 0, and use your favorite
descent method.

Still ill-posed for inverse scattering.

Adjoint-state constraints: pick an underdetermined subset of
constraints A(X ) = b. Solve it in the ULS sense: new
constraint: X = A∗λ. Project out the resulting variable λ by
the adjoint-state method, for speed.

Well-posed, enlarged attraction basin.



Setup Classical FWI

R2+AS Model error



Relaxation methods in imaging

Conclusions:

A systematic way of reducing quadratic/algebraic systems to
rank-1 matrix recovery problems.

Implications for model-robust imaging from interferometric
data: errors in F , not in d .

Toward convex SDP relaxation of inverse scattering: Lasserre
hierarchy / sum of squares.



What is InSAR?

Interferometric SAR: two recorded waveforms d1(ω), d2(ω)

Form

d1(ω)d2(ω) ∼ e2iωR1/ce−2iωR2/c

∼ e iφ

Then relate φ = 2k(R1−R2)/c to h.

Credit:

Bamler, Hartl

ESA



Physical content of interferometry

Example: correlograms

Waveform Traveltime

Absolute d(r , s, ω) τ(r , x)

Relative d(r1, s, ω)d(r2, s, ω) τ(r1, x)− τ(r2, x)



Example: focal spot / diffraction point

Correlations are also robust to background velocity m0 = 1/c2
0 .

Image of a point scatterer: exact c0 = 1.

Backprojection Interferometric imaging
m̃mig(x) m̃ int(x)



Example: focal spot / diffraction point

Correlations are also robust to background velocity m0 = 1/c2
0 .

Image of a point scatterer: inexact c0 = 0.9.

Backprojection Interferometric imaging
m̃mig(x) m̃ int(x)



Robust imaging with correlations

Usual imaging: backprojection/migration (F ∗d)(x) '

m̃mig(x) =
∑
r ,s

∫
e iω(τ(s,x)+τ(x ,r)) d(r , s, ω) dω

Interferometric imaging (Borcea et al., 2002, ’03, ’05):

τ(s, x) + τ(x , r1)− τ(s, x)− τ(x , r2)

and “backproject the correlations”

m̃ int(x) =
∑
r1,r2,s

∫
e iω(τ(x ,r1)−τ(x ,r2))d(r1, s, ω)d(r2, s, ω) dω

(+ windowing tricks)



Use a nonsmooth iterative method

Practical numerical aspects:

Douglas-Rachford splitting (or other nonsmooth primal-dual method)

min f (M)+g(M), Jf = (I+γ∂f )−1, Jg = (I+γ∂g)−1

Rf = 2Jf − I , Rg = 2Jg − I

yk+1 =
1

2
[Rf Rg + I ] yk

Mk = Jg (yk)

Keep M separated throughout. Low-rank heuristics for PM�0.

Convergence: slowdown vs. LS of a factor 10-100.


