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The imaging and computing group

Fundamental aspects of inverse wave scattering.
@ Scalable computation
of high-frequency waves

@ Randomized algorithms
for HPC

@ Nonconvex
optimization

@ Data processing
and learning




Exploration: surveys /
borehole




FWI vs. interferometric inversion — mg
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FWI vs. interferometric inversion — d
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FWI vs. interferometric inversion — initial m

Initial guess




FWI vs. interferometric inversion — m

Non-linear interferometric inversion
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FWI vs. interferometric inversion — mg
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Why seismic imaging in a math dept?

Inverse scattering is challenging:

© The optimization problems are nonconvex.
Cartoon scenarios: no known reliable minimization method.

@ Current methods not designed for extreme uncertainties.
Not clear what is data vs. noise.

© Current algorithms do not scale.
Small bang for your computer buck.

Past 10-20 years: increasing CS/math/stats components
in addition to geophysics



Interferometry: a new way to view data

Cross-correlations are robust to disordered kinematics

@ Time reversal (phys): Fink et al. 1993.

@ Time reversal (math) Bal,
Papanicolaou, Ryzhik, 2002; Bal,
Ryzhik 2003

@ CINT imaging: Borcea, Papanicolaou,
Tsogka, 2003, 2005

@ Seismic interf. (phys): Weaver et al.
2001; Campillo, Paul 2003; Snieder,
2004; Wapenaar et al. 2006 r

@ Seismic interf. (math): Bardos et al.

2008; Colin de Verdiere 2009; Garnier,

Papanicolaou, Solna 2009+

Wapenaar et al. 2010

Interferometric inversion: leverage robustness of similar quantities
for inverting the underlying physics



Locating microseisms with interferometry
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Road ahead

Uncertainties: from quantification to rectification

Toward an understanding of
@ How to rethink waveform inversion for robustness
o What is benign vs. unredeemable model ignorance
@ New resolution scalings

Development of large-scale optimization methods
e Computing and data processing in high dimensions
@ Close links to recent progress in polynomial
optimization and information sciences

Seismic Imaging T%?J,ng

@ Re-usable software




Bonus slides



What is interferometry?

@ Optical interferometry: observe

| (x,w) + do(x,w)[* = |di[* + 2Re di (x,w)da(x, w) + |da|?

Example:

di(x,w) = efwx/c
d2(x,w) — eiw(x—i—Ax)/c
= d1d72: e—iw(Ax)/c

Ax ~ micrometer




Interferometry is everywhere

Interferometry in real life:

e X-ray diffraction crystallography: phase retrieval
@ Passive SAR imaging from opportunity sources

@ Passive seismic imaging from ambient noise

In all cases, di(w)d>(w) with a model d = Fm.

Cross-correlation: di(w)da(w) = FT of [ di(7)da(T — t)dT.

More generally, d(ri, s1,w1)d(r2, 5o, w2).



Why interferometry in inverse problems?

Either:

@ Observe di(w)dz(w):
measurements come in this form.

@ Decide to form dj(w)d2(w):
leverage stability of quadratic quantities.



1. How to reliably solve such quadratic systems

Stability to data errors



Measurements and inverse problems

Linear measurements from an imaging device: d; = (Fmo); + €,
i=(r,s,w). Usual proposal:

min Z |d; — (Fm);|?

Invert for m, but leverage the model robustness of d;d;. Form
interferometric measurements: Dj; = d;d; for some pairs (i, ).
Simplest expression:

m|n Z m);(Fm);|?
(iJ)eE

for some incomplete set E of data pairs. Compensates for some
uncertainties in F.



Fitting linear vs. interferometric measurements

m|n Z m);(Fm);|?

(ij)eE

Problem 1: quartic objective with spurious local minima

Solution: relaxation

e Lifting: new unknown M for mm*, subject to rank(M) = 1.
@ Semidefinite relaxation: constrain instead to M = 0.

@ When done, compute leading eigenvector of M, get e ®m
Turned the problem into one of rank-1 matrix recovery

(links to Lasserre 2001; Chai et al. 2010; and Candes et al, 2011)



Fitting linear vs. interferometric measurements

m|n Z |Djj — (Fm)i(F )12

(iJ)eE

Problem 2: size of E needs to be kept in check: N? vs N.

Solution: view E as the set of edges of a graph G, and pose the
problem as one of graph design.

(), s, ©)

(1), 5, @)



Interferometric waveform inversion

Well-posedness: G should be well connected.

o Adjacency matrix: Aj = 1if (i,j) € E, zero otherwise
o Laplacian matrix: N — A, with N a diagonal of node degrees

o Data-weighted Laplacian matrix: Lj = |d;||d}|, i # .

Note A;(L) = 0.

Definition

G is an expander graph if L has a large spectral gap A\»(L), i.e.,
when X2(L) is a nonnegligible fraction of Ay(L).




Interferometric waveform inversion

Let 0 = A1(L) < A2(L) < ... be the egval of the data-weighted L.

Theorem (D, Jugnon, 2013)

Consider noisy data Dj; = (Fmg);(Fmo); + €;;. Assume F is
invertible. Assume G is connected with loops. Consider any
method that imposes 3 _; ycg |Dij — (FMF*);j| < o with M = 0,
then defines m as the leading eigenvector of M. Assume

llellr + o < Aa(L)/2. Then

[[m — e’“mo| 2 [lelli+o
Nm =€ Mol & 15 k(F)2 /1L T 9
|| mo| Ao(L)

Compare with least-squares: lm—mol| k(F) %.




Implications

Proof: concentration of a convex combination.
Alternatively, L is a dual certificate (L1 =0, L3> 0onl"t)

Phase retrieval from |(Fmo); + e*?™/3(Fmo);|?> + €;, k = 1,2, 3.
Depending on how G is chosen, the recovery is

e minimally robust with 3N measurements (1/v/A2 ~ N);

@ robust with 3d—2GN measurements (dg = node degree)

(see PhaseLift, Candés et al. 2011)
Erdos-Renyi graph: expected A2 > ¢ > 0 with degree O(log ).

Related: Singer et al. 2011



Use a nonsmooth iterative method

Practical numerical aspects:

o Keep M separated throughout: let M = RRT with
rank(R) = 2 (Burer-Monteiro 2003). Quasi-Newton: LBFGS.

@ Convergence: slowdown vs. LS of a factor 10-100.



2. Why is interferometric inversion interesting

New way of handling model errors (errors in F)



Radar / seismic / ultrasound
forward scattering map
F:m — d.

o m: reflectivity map, m = 1/c2.
e d: wavefield data d, s ..

@ F: solve a wave equation and sample at receivers. Linearized
as F = 0F/dm. Explicitly:
d=Fm
=

(moatt - A) Us = _mattU0,57 dr,s,w = ﬁs(xryw)



Interferometric inversion

mintr(M) st M0, > |did; = (FMF*)? < 0.

(ij)eE
Choice of E: random, sparse pairs of moderately close r, s, w.
(E should not be the identity i = j. It should not be the complete graph either.)

Choice of o: above some threshold in order to get robustness in F. J




Linear vs. interferometric inversion

Classic least squares optimization

Exact mp =1 (exact F)



Linear vs. interferometric inversion

Classic least squares optimization Optimization over quadratic data

Inexact mg = 1.06  (approximate F)



Linear vs. interferometric inversion

Classic least squares optimization Optimization over quadratic data

Inexact mg = 1.11  (approximate F)



Local minima in unrelaxed quartic formulation

Reconstructed Born scatterer from rank-1 quartic optimization

Exact mgp =1 (exact F)



Robustness to mg: explanation

With mg = 1/c2, let

o F.F: full-aperture Born modeling operators in velocity c, ¢,
frequency w, receiver radius R.

Theorem (D., Jugnon, 2014)

Let c c .
rﬁ(x)::m(ix>, M=m®m
C C

Then ~

|Fm — Fral|2 2 ||Fm||2
and )

- o~ o~ di

IFMF* — ERIE*|)1 < “W I|FMF*|1

= m compatible with interferometric measurements.



Robustness to sensor location

Full aperture, MIMO, uniform medium mg = 1,

but wrong sensor locations.

E: spacing between correlated r or s < decoherence angle.



3. Not-so-special quadratic systems

Toward the convex relaxation of inverse wave scattering



Inverse scattering

Inverse scattering: determine m from
mattu —Au= f,
Su=d.
Hard because m — d = F(m) is very nonlinear (high frequencies).
No convincing algorithmic progress in 30+ years

Basis for two major seismic imaging conferences each year.



Relaxation of inverse scattering

Inverse scattering: determine m from

m@ttu—Au: f,
Su=d

Quadratic system in the entries of v = (1, m, u) .

Lift to X, a proxy for v ® v*, and get the equivalent rank-1 matrix
recovery problem

D2diagXoz — AXi3 = f,
SX13=d,

X1 =1,

rank(X) = 1.



Relaxation of inverse scattering

e First-order relaxation L1: drop rank(X) =1, add X = 0.
(add minTr.)

Exact for some problems (e.g. phase retrieval) but not for

inverse scattering. Manifestation: ill-posedness.

@ Second-order relaxation L2: drop rank(X) = 1, but encode
determinant conditions Xj; Xy, — Xy Xj, = 0 via a lifting proxy
X for X®X. Add X = 0and X > 0.

@ Increasingly tighter Lk: hierarchy of moment / sum of squares
relaxation of Lasserre (2001) for polynomial optimization.

No large-scale implementation to date for Lk, k > 2.



Relaxation of inverse scattering

e First-order relaxation L1-Rk: relax rank(X) =1 into
rank(X) < k (nonconvex!), with X = 0, and use your favorite
descent method.

Still ill-posed for inverse scattering.

@ Adjoint-state constraints: pick an underdetermined subset of
constraints A(X) = b. Solve it in the ULS sense: new
constraint: X = A*\. Project out the resulting variable A by
the adjoint-state method, for speed.

Well-posed, enlarged attraction basin.
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Relaxation methods in imaging

Conclusions:
@ A systematic way of reducing quadratic/algebraic systems to
rank-1 matrix recovery problems.

@ Implications for model-robust imaging from interferometric
data: errors in F, not in d.

@ Toward convex SDP relaxation of inverse scattering: Lasserre
hierarchy / sum of squares.



What is InSAR?

@ Interferometric SAR: two recorded waveforms di(w), da(w)

SN ke, Form
3_;\:\ \\Rz dy (w)dg(w) ~ e2le1/cef2le2/c
o e

e . Then relate ¢ = 2k(R1 — Rz)/c to h.

Credit:
Bamler, Hartl
ESA




Physical content of interferometry

Example: correlograms

Waveform

Traveltime

Absolute

d(r,s,w)

7(r,x)

Relative | d(r,s,w)d(r,s,w)

A

7(r1,x) — 7(r2, x)



Example: focal spot / diffraction point

Correlations are also robust to background velocity mg = 1/c§.

Image of a point scatterer: exact ¢g = 1.

Backprojection Interferometric imaging

M mig(x) Mint (X)



Example: focal spot / diffraction point

Correlations are also robust to background velocity mg = 1/c§.

Image of a point scatterer: inexact ¢g = 0.9.

Backprojection Interferometric imaging

M mig(x) Mint (X)



Robust imaging with correlations

Usual imaging: backprojection/migration (F*d)(x) ~

mm|g Z/ iw(T(s,x +T><r))d(r S w)dw

Interferometric imaging (Borcea et al., 2002, '03, '05):
7(s,x) + 7(x, 1) = 7(s,x) — 7(x, r2)
and “backproject the correlations”
Mint(x Z / iw(rCen)=rtomd(n, s, w)d(r, s, w) dw
rn,rn,s

(4+ windowing tricks)



Use a nonsmooth iterative method

Practical numerical aspects:

@ Douglas-Rachford splitting (or other nonsmooth primal-dual method)
min f(M)+g(M),  Jr = (I4+70f)"Y,  Jg = (I+40g)*
Re = 2J5 — 1, Ry =2Jg — I
k1 LiReR, 1 1) yk
y =S IReRg 1y
M = Jg(y")

o Keep M separated throughout. Low-rank heuristics for Ppso.

@ Convergence: slowdown vs. LS of a factor 10-100.



