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Abstract

This paper discusses some questions that arise when a linear inverse problem involving
Ax = b is reformulated in the interferometric framework, where quadratic combinations of b are
considered as data in place of b.

First, we show a deterministic recovery result for vectors x from measurements of the form
(Ax)i(Ax)j for some left-invertible A. Recovery is exact, or stable in the noisy case, when the
couples (i, j) are chosen as edges of a well-connected graph. One possible way of obtaining the
solution is as a feasible point of a simple semidefinite program. Furthermore, we show how the
proportionality constant in the error estimate depends on the spectral gap of a data-weighted
graph Laplacian.

Second, we present a new application of this formulation to interferometric waveform inver-
sion, where products of the form (Ax)i(Ax)j in frequency encode generalized cross-correlations
in time. In the Born regime, we present numerical evidence that interferometric inversion does
not suffer from the loss of resolution generally associated with interferometric imaging, and can
provide added robustness with respect to a specific kind of kinematic uncertainty in the forward
model A. In the non-Born regime, we show that interferometric inversion can successfully be
used as a substitute for the classical adjoint-state model updates.

Acknowledgments. The authors would like to thank Amit Singer, George Papanicolaou, and
Liliana Borcea for interesting discussions. Some of the results in this paper were reported in the
conference proceedings of the 2013 SEG annual meeting [14].

1 Introduction

Throughout this paper, we consider complex quadratic measurements of x ∈ Cn of the form

Bij = (Ax)i(Ax)j , (i, j) ∈ E, (1)

for certain well-chosen couples of indices (i, j), a scenario that we qualify as “interferometric”. This
combination is special in that it is symmetric in x, and of rank 1 with respect to the indices i and
j.

The regime that interests us is when the number m of measurements, i.e., of couples (i, j)
in E, is comparable to the number n of unknowns. While phaseless measurements bi = |(Ax)i|2
only admit recovery when A has very special structure – such as, being a tall random matrix with
Gaussian i.i.d. entries [5, 9] – products (Ax)i(Ax)j for i 6= j correspond to the idea of phase
differences, hence encode much more information. As a consequence, stable recovery occurs under
very general conditions: left-invertibility of A and “connectedness” of set E of couples (i, j). These
conditions suffices to allow for m to be on the order of n. Various algorithms return x accurately
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up to a global phase; we mosty discuss variants of lifting with semidefinite relaxation in this paper.
In contrast to other recovery results in matrix completion [19, 6], no randomness is needed in the
data model, and our proof technique involves elementary spectral graph theory rather than dual
certification or uncertainty principles.

The mathematical content of this paper is the formulation of a quadratic analogue of the well-
known relative error bound

‖x− x0‖
‖x0‖

≤ κ(A)
‖e‖
‖b‖

(2)

for the least-squares solution of the overdetermined linear system Ax = b with b = Ax0 + e, and
where κ(A) is the condition number of A. Our result is that an inequality of the form (2) still
holds in the quadratic case, but with the square root of the spectral gap of a data-weighted graph
Laplacian in place of ‖b‖ in the right-hand side. This spectral gap quantifies the connectedness of
E, and has the proper homogeneity with respect to b.

The numerical results mostly concern the case when A is a forward model that involves solving
a linearized fixed-frequency wave equation, as in seismic or radar imaging. In that case x is a
reflectivity, Ax is the wavefield that results from an incoming wave being scattered by x, and
(Ax)i(Ax)j has a special meaning that can be understood in the context of interferometry.

1.1 Interferometry

In optical imaging, an interference fringe of two (possibly complex-valued) wavefields f(t) and g(t),
where t is either a time or a space variable, is any combination of the form |f(t) + g(t + t′)|2.
The sum is a result of the linearity of amplitudes in the fundamental equations of physics (such as
Maxwell or Schrödinger), while the modulus squared is simply the result of a detector measuring
intensities. The cross term 2<(f(t)g(t+ t′)) in the expansion of the squared modulus manifestly
carries the information of destructive vs. constructive interference, hence is a continuous version
of what we referred to earlier as an “interferometric measurement”.

In particular, when the two signals are sinusoidal at the same frequency, the interferometric
combination highlights a phase difference. In astronomical interferometry, the delay t′ is for instance
chosen so that the two signals interfere constructively, yielding better resolution. Interferometric
synthetic aperture radar (InSAR) is a remote sensing technique that uses the fringe from two
datasets taken at different times to infer small displacements. In X-ray ptychograhy [20], imaging is
done by undoing the interferometric combinations that the diffracted X-rays undergo from encoding
masks. These are but three examples in a long list of applications.

Interferometry is also playing an increasingly important role in geophysical imaging, i.e., in-
version of the elastic parameters of the portions of the Earth’s upper crust from scattered seismic
waves. In this context however, the signals are often impulsive rather than monochromatic. As a
result, it is more common to perform quadratic combinations of the Fourier transform of seismo-
grams at different receivers, such as |f̂(ω) + ĝ(ω)|2. The cross-term involves f̂(ω)ĝ(ω), the Fourier
transform of the cross-correlation of f and g. It highlights a time lag in the case when f and g are
impulses.

Cross-correlations have been shown to play an important role in imaging, mostly because of
their stability to statistical fluctuations of a scattering medium [3] or an incoherent source [16,
11]. Though seismic interferometry is a vast research area [4, 23, 28, 22], explicit inversion of
reflectivity parameters from interferometric data has to our knowledge only been considered in
[10, 14]. Interferometric inversion offers great promise for model-robust imaging, i.e., recovery of
reflectivity maps in a less-sensitive way on specific kinds of errors in the forward model.
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Finally, interferometric measurements also play an important role in quantum optical imaging.
See [21] for a nice solution to the inverse problem of recovering a scattering dielectric susceptibility
from measurements of two-point correlation functions relative to two-photon entangled states.

1.2 Broader context and related work

The setting of this paper is discrete, hence we let i and j in place of either a time of frequency
variable. We also specialize to f = g, and we let f = Ax to possibly allow an explanation of the
signal f by a linear forward model1 A.

The link between products of the form f g and squared measurements |f + g|2 goes both ways,
as shown by the polarization identity

fi fj =
1

4

4∑
k=1

e−iπk/2|fi + eiπk/2fj |2.

Hence any result of robust recovery of f , or x, from couples fi fj , implies the same result for
recovery from phaseless measurements of the form |fi + eiπk/2fj |2. This latter setting was precisely
considerered by Candès et al. in [5], where an application to X-ray diffraction imaging with a
specific choice of masks is discussed. In [1], Alexeev et al. use the same polarization identity to
design good measurements for phase retrieval, such that recovery is possible with m = O(n).

Recovery of fi from fifj for some (i, j) when |fi| = 1 (interferometric phase retrieval) can be seen
a special case of the problem of angular synchronization considered by Singer [24]. There, rotation
matrices Ri are to be recovered (up to a global rotation) from measurements of relative rotations
RiR

−1
j for some (i, j). This problem has an important application to cryo-electron microscopy,

where the measurements of relative rotations are further corrupted in an a priori unknown fashion
(i.e., the set E is to be recovered as well). An impressive recovery result under a Bernoulli model
of gross corruption, with a characterization of the critical probability, were recently obtained by
Wang and Singer [26]. The spectrum of an adapted graph Laplacian plays an important role in
their analysis [2], much as it does in this paper. Singer and Cucuringu also considered the angular
synchronization problem from the viewpoint of rigidity theory [25]. For the similar problem of
recovery of positions from relative distance, with applications to sensor network localization, see
for instance [13].

The algorithmic approach considered in this paper for solving interferometric inversion problems
is to formulate them via lifting and semidefinite relaxation. This idea was considered by many
groups in recent years [7, 5, 13, 24, 27], and finds its origin in theoretical computer science [12]. As
we revise this paper, we also note the recent success of interferometric inversion for passive SAR
imaging, under the name low-rank matrix recovery [18].

1.3 Recovery of unknown phases

Let us start by describing the simpler problem of interferometric phase recovery, when A = I and
we furthermore assume |xi| = 1. Given a vector x0 ∈ Cn such that |(x0)i| = 1, a set E of pairs
(i, j), and noisy interferometric data Bij = (x0)i(x0)j + εij , find a vector x such that

|xi| = 1,
∑

(i,j)∈E

|xixj −Bij | ≤ σ, (3)

1Such as scattering from a reflectivity profile x in the Born approximation, for which A is a wave equation Green’s
function.
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for some σ > 0. Here and below, if no heuristic is provided for σ, we may cast the problem as a
minimization problem for the misfit and obtain σ a posteriori.

The choice of the elementwise `1 norm over E is arbitrary, but convenient for the analysis in
the sequel2. We aim to find situations in which this problem has a solution x close to x0, up to a
global phase. Notice that x0 is feasible for (3), hence a solution exists, as soon as σ ≥

∑
i,j∈E |εij |.

The relaxation by lifting of this problem is to find X (a proxy for xx∗) such that

Xii = 1,
∑

(i,j)∈E

|Xij −Bij | ≤ σ, X � 0,

then let x be the top eigenvector of X with ‖x‖2 = n. (4)

The notation X � 0 means that X is symmetric and positive semi-definite. Again, the feasibility
problem (4) has at least one solution (X0 = x0x

∗
0) as soon as σ ≥

∑
i,j∈E |εij |.

The set E generates edges of a graph G = (V,E), where the nodes in V are indexed by i.
Without loss of generality, we consider E to be symmetric. By convention, G does not contain
loops, i.e., the diagonal j = i is not part of E. (Measurements on the diagonal are not informative
for the phase recovery problem, since |(x0)i|2 = 1.)

The graph Laplacian on G is

Lij =


di if i = j;
−1 if (i, j) ∈ E;
0 otherwise,

where di is the node degree di =
∑

j:(i,j)∈E 1. Observe that L is symmetric and L � 0 by Gershgorin.
Denote by λ1 ≤ λ2 ≤ . . . ≤ λn the eigenvalues of L sorted in increasing order. Then λ1 = 0 with
the constant eigenvector v1 = 1√

n
. The second eigenvalue is zero if and only if G has two or more

disconnected components. When λ2 > 0, its value is a measure of connectedness of the graph. Note
that λn ≤ 2d by Gershgorin again, where d = maxi di is the maximum degree.

Since λ1 = 0, the second eigenvalue λ2 is called the spectral gap. It is a central quantity in the
study of expander graphs: it relates to

• the edge expansion (Cheeger constant, large if λ2 is large);

• the degree of separation between any two nodes (small if λ2 is large); and

• the speed of mixing of a random walk on the graph (fast if λ2 is large).

More information about spectral graph theory can be found, e.g., in the lecture notes by Lovasz
[17]. It is easy to show with interlacing theorems that adding an edge to E, or removing a node
from V , both increase λ2. The spectral gap plays an important role in the following stability result.

In the sequel, we denote the componentwise `1 norm on the set E by ‖ · ‖1.

Theorem 1. Assume ‖ε‖1 + σ ≤ nλ2, where λ2 is the second eigenvalue of the graph Laplacian L
on G. Any solution x of (3) or (4) obeys

‖x− eiαx0‖ ≤ 4

√
‖ε‖1 + σ

λ2
,

for some α ∈ [0, 2π).

2The choice of `1 norm as “least unsquared deviation” is central in [26] for the type of outlier-robust recovery
behavior documented there.
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Manifestly, recovery is exact (up to the global phase ambiguity) as soon as ε = 0 and σ = 0,
provided λ2 6= 0, i.e., the graph G is connected. The easiest way to construct expander graphs
(graphs with large λ2) is to set up a probabilistic model with a Bernoulli distribution for each edge
in an i.i.d. fashion, a model known as the Erdős-Rényi random graph. It can be shown that such
graphs have a spectral gap bounded away from zero independently of n with m = O(n log n) edges.

A stronger result is available when the noise ε originates at the level of x0, i.e., B = x0x
∗
0 + ε

has the form (x0 + e)(x0 + e)∗.

Corollary 2. Assume ε = (x0 + e)(x0 + e)∗−x0x∗0 and σ ≤ nλ2, where λ2 is the second eigenvalue
of the graph Laplacian L on G. Any solution x of (3) or (4) obeys

‖x− eiαx0‖ ≤ 4

√
σ

λ2
+ ‖e‖,

for some α ∈ [0, 2π).

Proof. Apply theorem 1 with ε = 0, x0 + e in place of x0, then use the triangle inequality.

In the setting of the corollary, problem (3) always has x = x0 + e as a solution, hence is feasible
even when σ = 0.

Let us briefly review the eigenvector method for interferometric recovery. In [24], Singer pro-
posed to use the first eigenvector of the (noisy) data-weighted graph Laplacian as an estimator of
the vector of phases. A similar idea appears in the work of Montanari et al. as the first step of
their OptSpace algorithm [15], and in the work of Chatterjee on universal thresholding [8]. In our
setting, this means defining

(L̃ )ij =


di if i = j;
−Bij if (i, j) ∈ E;
0 otherwise,

and letting x = ṽ1
√
n where v1 is the unit-norm eigenvector of L̃ with smallest eigenvalue. Denote

by λ̃1 ≤ λ̃2 ≤ . . . the eigenvalues of L̃. The following result is known from [2], but we provide an
elementary proof for completeness of the exposition.

Theorem 3. Assume ‖ε‖ ≤ λ̃2/2. Then the result x of the eigenvector method obeys

‖x− eiαx0‖ ≤
√

2n
‖ε‖
λ̃2

,

for some α ∈ [0, 2π).

Alternatively, we may express the inequality in terms of λ2, the spectral gap of the noise-free
Laplacian L defined earlier, by noticing3 that λ̃2 ≥ λ2 − ‖ε‖. Both λ2 and λ̃2 are computationally
accessible. In the case when |Bij | = 1, we have λ̃1 ≥ 0, hence λ̃2 is (slightly) greater than the

spectral gap λ̃2− λ̃1 of L̃. Note that the 1/λ̃2 scaling appears to be sharp in view of the numerical
experiments reported in section 3. The inverse square root scaling of theorem 1 is stronger in the
presence of small spectral gaps, but the noise scaling is weaker in theorem 1 than in theorem 3.

3This owes to ‖L − L̃‖ ≤ ‖ε‖, with L = ΛLΛ∗ the noise-free Laplacian with phases introduced at the beginning
of section 2.1.
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1.4 Interferometric recovery

The more general version of the interferometric recovery problem is to consider a left-invertible tall
matrix A, linear measurements b = Ax0 for some vector x0 (without condition on the modulus of
either bi or (x0)i), noisy interferometric measurements Bij = bibj + εij for (i, j) in some set E, and
find x subject to ∑

(i,j)∈E∪D

|(Ax)i(Ax)j −Bij | ≤ σ. (5)

Notice that we now take the union of the diagonal D = {(i, i)} with E. Without loss of generality we
assume that εij = εji, which can be achieved by symmetrizing the measurements, i.e., substituting
Bij+Bji

2 for Bij .
Since we no longer have a unit-modulus condition, the relevant notion of graph Laplacian is

now data-dependent. It reads

(
L|b|
)
ij

=


∑

k:(i,k)∈E |bk|2 if i = j;

−|bi||bj | if (i, j) ∈ E;
0 otherwise.

The connectedness properties of the underlying graph now depend on the size of |bi|: the edge (i, j)
carries valuable information if and only if both |bi| and |bj | are large.

A few different recovery formulations arise naturally in the context of lifting and semidefinite
relaxation.

• The basic lifted formulation is to find some X such that∑
(i,j)∈E∪D

|(AXA∗)ij −Bij | ≤ σ, X � 0,

then let x = x1
√
η1, where (η1, x1) is the top eigen-pair of X. (6)

Our main result is as follows.

Theorem 4. Assume ‖ε‖1+σ ≤ λ2/2, where λ2 is the second eigenvalue of the data-weighted
graph Laplacian L|b|. Any solution x of (6) obeys

‖x− eiαx0‖
‖x0‖

≤ 15 κ(A)2

√
‖ε‖1 + σ

λ2
,

for some α ∈ [0, 2π), and where κ(A) is the condition number of A.

The quadratic dependence on κ(A) is necessary4. In section 3, we numerically verify the
inverse square root scaling in terms of λ2.

If the noise originates from b+ e rather than bb∗ + ε, the error bound is again improved to

‖x− eiαx0‖
‖x0‖

≤ 15 κ(A)2
√

σ

λ2
+ κ(A)

‖e‖
‖b‖

,

for the same reason as earlier.
4The following example shows why that is the case. For any X0 and invertible A, the solution to AXA∗ =

AX0A
∗ + ε is X = X0 + A+ε(A∗)+. Let X0 = e1e

T
1 , ε = δe1e

∗
1 for some small δ, and A+ = I + Ne1e

T
1 . Then

X = (1 + δN2)e1e
T
1 , and the square root of its leading eigenvalue is

√
η1 ' 1 + 1

2
δN2. As a result, x is perturbation

of x0 by a quantity of magnitude O(δ‖A+‖2).
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• An alternative, two-step lifting formulation is to find x through Y such that∑
(i,j)∈E∪D

|Yij −Bij | ≤ σ, Y � 0,

then let x = A+y1
√
η1, where (η1, y1) is the top eigen-pair of Y . (7)

The dependence on the condition number of A is more favorable than for the basic lifting
formulation.

Theorem 5. Assume ‖ε‖1+σ ≤ λ2/2, where λ2 is the second eigenvalue of the data-weighted
graph Laplacian L|b|. Any solution x of (5) or (7) obeys

‖x− eiαx0‖
‖x0‖

≤ 15 κ(A)

√
‖ε‖1 + σ

λ2
,

for some α ∈ [0, 2π).

However, this formulation may be more computationally expensive than the one-step variant
if data (b) space is much larger than model (x) space.

The quantity λ2 is not computationally accessible in general, but it can be related to the second
eigenvalue λ̃2 of the noisy data-weighted Laplacian,

(
L̃B
)
ij

=


∑

k:(i,k)∈E Bkk if i = j;

−Bij if (i, j) ∈ E;
0 otherwise.

It is straightforward to show that λ2 ≥ λ̃2 − [ (d+ 1)‖ε‖∞ + ‖ε‖ ], where ‖ · ‖∞ is the elementwise
maximum on E ∪D, ‖ · ‖ is the spectral norm, and d is the maximum node degree.

2 Proofs

2.1 Proof of theorem 1.

Observe that if x is feasible for (3), then xx∗ is feasible for (4), and has eiαx as leading eigenvector.
Hence we focus without loss of generality on (4).

As in [24], consider the Laplacian matrix weighted with the unknown phases,

L = ΛLΛ∗,

with Λ = diag(x0). In other words Lij = (X0)ijLij with X0 = x0x
∗
0. We still have L � 0 and

λ1 = 0, but now v1 = 1√
n
x0. Here and below, λ and v refer to L, and v has unit `2 norm.

The idea of the proof is to compare X with the rank-1 spectral projectors vjv
∗
j of L. Let

〈A,B〉 = tr(AB∗) be the Frobenius inner product. Any X obeying (3) can be written as X = X0+ε̃
with ‖ε̃‖1 ≤ ‖ε‖1 + σ. We have

〈X,L〉 = 〈X0,L〉+ 〈ε̃,L〉
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A short computation shows that

〈X0,L〉 =
∑
i

(X0)iiLii +
∑

(i,j)∈E

(X0)ijLij

= −
∑
i

di +
∑

(i,j)∈E

(x0)i(x0)j (x0)i(x0)j

=
∑
i

−di +
∑

j:(i,j)∈E

1


= 0.

Since |Lij | = 1 on E, the error term is simply bounded as

|〈ε̃,L〉| ≤ ‖ε̃‖1

On the other hand the Laplacian expands as

L =
∑
j

vjλjv
∗
j ,

so we can introduce a convenient normalization factor 1/n and write

〈X
n
,L〉 =

∑
j

cjλj , (8)

with

cj = 〈X
n
, vjv

∗
j 〉 =

v∗jXvj

n
.

Notice that cj ≥ 0 since we require X � 0. Their sum is∑
j

cj = 〈X
n
,
∑
j

vjv
∗
j 〉 = 〈X

n
, I〉 =

tr(X)

n
= 1.

Hence (8) is a convex combination of the eigenvalues of L, bounded by ‖ε̃‖1/n. The smaller this
bound, the more lopsided the convex combination toward λ1, i.e., the larger c1. The following
lemma makes this observation precise.

Lemma 1. Let µ =
∑

j cjλj with cj ≥ 0,
∑

j cj = 1, and λ1 = 0. If µ ≤ λ2, then

c1 ≥ 1− µ

λ2
.

Proof of lemma 1.

µ =
∑
i≥2

cjλj ≥ λ2
∑
j≥2

cj = λ2(1− c1),

then isolate c1.

Assuming ‖ε̃‖1 ≤ nλ2, we now have

〈X
n
, v1v

∗
1〉 ≥ 1− ‖ε̃‖1

nλ2
.
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We can further bound

‖X
n
− v1v∗1‖2F = tr

[(
X

n
− v1v∗1

)2
]

= tr((v1v
∗
1)2) +

tr(X2)

n2
− 2 tr

(
X

n
v1v
∗
1

)
.

The first term is 1. The second term is less than 1, since tr(X2) ≤ tr(X)2 for positive semidefinite
matrices. Therefore,

‖X
n
− v1v∗1‖2F ≤ 2− 2 tr

(
X

n
v1v
∗
1

)
≤ 2‖ε̃‖1

nλ2
.

We can now control the departure of the top eigenvector of X/n from v1 by the following lemma.
It is analogous to the sin theta theorem of Davis-Kahan, except for the choice of normalization of
the vectors. (It is also a generalization of a lemma used by one of us in [9] (section 4.2).) The proof
is only given for completeness.

Lemma 2. Consider any Hermitian X ∈ Cn×n, and any v ∈ Cn, such that ‖X − vv∗‖ < ‖v‖2
2 .

Let η1 be the leading eigenvalue of X, and x1 the corresponding unit-norm eigenvector. Let x be
defined either as (a) x1‖v‖, or as (b) x1

√
η1. Then

‖ x‖x‖ − eiαv‖v‖ ‖ ≤ 2
√

2 ‖X − vv∗‖,

for some α ∈ [0, 2π).

Proof of Lemma 2. Let δ = ‖X − vv∗‖. Notice that ‖vv∗‖ = ‖v‖2. Decompose X =
∑n

j=1 xjηjx
∗
j

with eigenvalues ηj sorted in decreasing order. By perturbation theory for symmetric matrices
(Weyl’s inequalities),

max{|‖v‖2 − η1|, |η2|, . . . , |ηn|} ≤ δ, (9)

so it is clear that η1 > 0, and that the eigenspace of η1 is one-dimensional, as soon as δ < ‖v‖2
2 .

Let us deal first with the case (a) when x = x1‖v‖. Consider

vv∗ − xx∗ = vv∗ −X + Y,

where

Y = x1(‖v‖2 − η1)x∗1 +

n∑
j=2

xjηjx
∗
j .

From (9), it is clear that ‖Y ‖ ≤ δ. Let v1 = v/‖v‖. We get

‖vv∗ − xx∗‖ ≤ ‖vv∗ −X‖+ ‖Y ‖ ≤ 2δ.

Pick α so that |v∗x| = e−iαv∗x. Then

‖ v‖v‖ − e−iαx‖x‖ ‖2 = ‖v‖4 + ‖x‖4 − 2 ‖v‖ ‖x‖< e−iαv∗x
= ‖v‖4 + ‖x‖4 − 2 ‖v‖ ‖x‖ |v∗x| by definition of α

≤ ‖v‖4 + ‖x‖4 − 2 |v∗x|2 by Cauchy-Schwarz

= ‖vv∗ − xx∗‖2F
≤ 2‖vv∗ − xx∗‖2 because vv∗ − xx∗ has rank 2

≤ 8δ2.
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The case (b) when x = x1
√
η1 is treated analogously. The only difference is now that

Y =
n∑
j=2

xjηjx
∗
j .

A fortiori, ‖Y ‖ ≤ δ as well.

Part (a) of lemma 2 is applied with X/n in place of X, and v1 in place of v. In that case,
‖v1‖ = 1. We conclude the proof by noticing that v1 = x0√

n
, and that the output x of the lifting

method is normalized so that x1 = x√
n

.

2.2 Proof of theorem 3

The proof is a simple argument of perturbation of eigenvectors. We either assume εij = εji or

enforce it by symmetrizing the measurements. Define L as previously, and notice that ‖L − L̃‖ ≤
‖ε‖. Consider the eigen-decompositions

Lvj = λjvj , L̃ṽj = λ̃j ṽj ,

with λ1 = 0. Form
L̃vj = λjvj + rj ,

with ‖rj‖ ≤ ‖ε‖. Take the dot product of the equation above with ṽk to obtain

〈ṽk, rj〉 = (λ̃k − λj)〈ṽk, vj〉.

Let j = 1, and use λ1 = 0. We get

∑
k≥2
|〈ṽk, v1〉|2 ≤

∑
k≥2 |〈ṽk, r1〉|2

maxk≥2 |λ̃k|2
≤ ‖ε‖

2

λ̃22
.

As a result,

|〈ṽ1, v1〉|2 ≥ 1− ‖ε‖
2

λ̃22
.

Choose α so that 〈eiαṽ1, v1〉 = |〈ṽ1, v1〉|. Then

‖v1 − eiαṽ1‖2 = 2− 2<〈eiαṽ1, v1〉
= 2− 2|〈ṽ1, v1〉|
≤ 2− 2|〈ṽ1, v1〉|2

≤ 2
‖ε‖2

λ̃22
.

Conclude by multiplying through by n and taking a square root.
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2.3 Proof of theorem 4.

The proof follows the argument in section 2.1; we mostly highlight the modifications.
Let bi = |bi|eiφi . The Laplacian with phases is Lb = ΛφL|b|Λ

∗
φ, with Λφ = diag(eiφi). Explicitly,

(Lb)ij =


∑

k:(i,k)∈E |bk|2 if i = j;

−bibj if (i, j) ∈ E;
0 otherwise,

The matrix Y = AXA∗ is compared to the rank-1 spectral projectors of Lb. We can write it as
Y = bb∗ + ε̃ with ‖ε̃‖1 ≤ ‖ε‖1 + σ. The computation of 〈bb∗,Lb〉 is now

〈bb∗,Lb〉 =
∑
i

bibiLii +
∑

(i,j)∈E

bibj Lij

= −
∑
i

|bi|2
∑

k:(i,k)∈E

|bk|2 +
∑

(i,j)∈E

bibj bibj

=
∑
i

|bi|2
− ∑

j:(i,j)∈E

|bj |2 +
∑

j:(i,j)∈E

|bj |2


= 0.

The error term is now bounded (in a rather crude fashion) as

|〈ε̃,Lb〉| ≤ ‖Lb‖∞‖ε̃‖1 ≤

max
i

∑
j:(i,j)∈E

|bj |2
 ‖ε̃‖1 ≤ ‖b‖2‖ε̃‖1.

Upon normalizing Y to unit trace, we get

|〈 Y

tr(Y )
,Lb〉| ≤

‖b‖2‖ε̃‖1
‖b‖2 + tr(ε̃)

≤ 2‖ε̃‖1,

where the last inequality follows from

|tr(ε̃)| ≤ ‖ε̃‖1
≤ ‖ε‖1 + σ

≤ λ2/2 (assumption of the theorem)

≤ ‖b‖2/2 (by Gershgorin).

On the other hand, we expand

〈 Y

tr(Y )
,Lb〉 =

∑
j

cjλj ,

and use X � 0⇒ Y � 0 to get cj ≥ 0,
∑

j cj = 1. Since 2‖ε̃‖1 ≤ λ2, we conclude as in section 2.1
that

〈 Y

tr(Y )
, v1v

∗
1〉 ≥ 1− 2‖ε̃‖1

λ2
,

hence

‖ Y

tr(Y )
− v1v∗1‖2F ≤ 4

‖ε̃‖1
λ2

. (10)
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For X = A+Y (A∗)+, we get

‖ X

tr(Y )
− (A+v1)(A

+v1)
∗‖2F ≤ 4‖A+‖4 ‖ε̃‖1

λ2
.

Call the right-hand side δ2. Recall that v1 = b/‖b‖ hence A+v1 = x0/‖b‖. Using tr(Y ) = ‖b‖2 +
tr(ε̃), we get

‖X − x0x∗0‖ ≤ δ tr(Y ) +
‖x0‖2

‖b‖2
|tr(ε̃)|. (11)

Elementary calculations based on the bound ‖ε̃‖1 ≤ λ2/2 ≤ ‖b‖2/2 allow to further bound the

above quantity by (6+
√
2)

4 δ‖b‖2 . We can now call upon lemma 2, part (b), to obtain

‖x‖x‖ − eiαx0‖x0‖‖ ≤ 2
√

2
(6 +

√
2)

4
δ‖b‖2,

where x = x1
√
λ1(X) is the leading eigenvector of X normalized so that ‖x‖2 = λ1(X) is the

leading eigenvalue of X. We use (11) one more time to bound

|λ1(X)− ‖x0‖2| ≤
(6 +

√
2)

4
δ‖b‖2,

hence

‖x0‖ ‖x− eiαx0‖ ≤ ‖x‖x‖ − eiαx0‖x0‖+ ‖x‖ |‖x‖ − ‖x0‖|

≤ 2
√

2
(6 +

√
2)

4
δ‖b‖2 +

‖x‖
‖x‖+ ‖x0‖

|‖x‖2 − ‖x0‖2|

≤ (2
√

2 + 1)
(6 +

√
2)

4
δ‖b‖2.

Use ‖b‖ ≤ ‖A‖ ‖x0‖ and the formula for δ to conclude that

‖x− eiαx0‖ ≤ C ‖x0‖κ(A)2

√
‖ε̃‖1
λ2

,

with C = 2(2
√

2 + 1) (6+
√
2)

4 ≤ 15.

2.4 Proof of theorem 5.

The proof proceeds as in the previous section, up to equation (10). The rest of the reasoning is a
close mirror of the one in the previous section, with Y in place of X, y in place of x, b in place of
x0, and δ re-set to 2

√
‖ε̃‖1/λ2. We obtain

‖y − eiαb‖ ≤ 15 ‖b‖

√
‖ε̃‖1
λ2

.

We conclude by letting x = A+y, x0 = A+b, and using ‖b‖ ≤ ‖A‖‖x0‖.
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3 Numerical illustrations

3.1 Influence of the spectral gap

We investigate the scalings of the bounds for phase recovery given by theorems 1 and 3 on toy
examples (n = 27), with respect to the spectral gap. This is achieved by considering three types of
graphs :

• the path Pn which is proven to be the connected graph with the smallest spectral gap5;

• graphs obtained by adding randomly K edges to Pn with K ranging from 1 to 50;

• Erdős-Rényi random graphs with probability ranging from 0.03 to 0.05, conditioned on con-
nectedness (positive specrtal gap).

A realization of the two latter types of graphs is given in figure 1.

Figure 1: Pn + random edges (left), Erdős-Rényi random graph (right)

To study the eigenvector method, we draw one realization of a symmetric error matrix ε with
εij ∼ CN (0, η2), with η = 10−8. The spectral norm of the noise (used in theorem 3) is ||ε|| ∼
2× 10−7.
For different realizations of the aforementioned graphs, we estimate the solution with the eigenvector
method and plot the `2 recovery error as a function of λ̃2. See figure 2.

5As justified by the decreasing property of λ2 under edge removal, mentioned earlier.
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Figure 2: Recovery error for the eigenvector method as a function of λ̃2

To study the feasibility method, we consider the case of an approximate fit (σ = 10−4) in the
noiseless case (ε = 0). The feasibility problem (4) is solved using the Matlab toolbox cvx which
calls the toolbox SeDuMi. An interior point algorithm (centering predictor-corrector) is used. The
recovery error as a function of the spectral gap λ2 is illustrated in figure 3.
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Figure 3: Recovery error for the feasibility method as a function of λ2

3.2 Interferometric inverse scattering

An important application of interferometric ideas is to the inversion of a medium’s index of refrac-
tion from recordings of waves scattered by that medium, as in seismic imaging.

In a first numerical experiment, we let b = Ax where x is a reflectivity profile in a rectangle
(perturbation of the index of refraction), and A is an acoustic time-harmonic wave equation that
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maps this reflectivity profile in a linearized way to the solution wavefield b sampled at receivers
placed at the top edge of the rectangle (surface). The sources in the wave equation are pointwise,
and also placed at the surface. The wave equation is discretized via finite differences, with schemes
of different orders for the data modeling step and for the inversion step. The data index i runs over
receiver locations xr, frequencies ω, and source positions xs (which define different wave equations
with different righ-hand sides.) Figure 4 shows robust recovery of x from noisy b, both by least-
squares and by interferometric inversion. Here the noise model is taken to be Gaussian,

b̃i = bi + ηi ηi ∼ CN (0, σ2)

where σ = 0.1
||b||2√

2n
, so that

||η||2
||b||2

= 0.1 (10% additive noise).

In this case the graph E is taken to be an Erdős-Rényi random graph with p = 1.5
log(N)

N
to ensure connectedness. The computational method used for handling this example is a scalable
rank-2 relaxation scheme, which is not new and is explained in the companion note [14]. The details
concerning the time-harmonic wave equation can also be found in this note.

In a second numerical experiment, we show that interferometric inversion is still accurate and
stable, even when the forward model b = A(x) is the full wave equation that maps the index of
refraction x to the wavefield b nonlinearly (no Born approximation.) Again, 10% Gaussian noise
is added. Figure 5 shows the result of nonlinear least-squares inversion, and the corresponding
interferometric inversion result. To produce this latter result, we simply replace the classical adjoint-
state (preconditioned) gradient step by interferometric inversion applied to the data residual.

Perhaps surprisingly, there is no apparent loss of resolution in either of Figure 4 (bottom) or
Figure 5 (bottom), compared to their least-squares counterparts. This behavior is due to the pre-
caution to invert from interferometric measurements, rather than just image with a backprojection
operator as in [4]. This observation was also a key conclusion in the recent paper by Mason et
al. [18]. Note that “backprojecting the cross-correlations” can be shown to be related to the first
iteration of gradient descent in the lifted semidefinite formulation of interferometric inversion.

So far, our numerical experiments merely show that interferometric inversion can be accurate
and stable under minimal assumptions on the graph E of data pair products. In the next section,
we show that there is also an important rationale for switching to the interferometric formulation:
its results display robustness vis-a-vis some uncertainties in the forward model A.
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Figure 4: Top: true, unknown reflectivity profile x used to generate data. Middle: least-squares
solution. Bottom: result of interferometric inversion.
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Figure 5: Top: true, unknown map of the index of refraction x used to generate data. Second: initial
guess for either inversion scheme. Third: nonlinear least-squares solution, a.k.a. full waveform
inversion. Bottom: result of interferometric inversion.
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3.3 Model robustness

In this section we continue to consider wave-based imaging scenarios, but more constrained in the
sense that the sources and receivers completely surround the object to be imaged, i.e., provide a
full aperture. However, we now change some of the parameters in the forward map, so that the A
map used for data modeling is not the same as the Ã map used for inversion. The interferometrix
mask E is also different, and more physically meaningful than in the previous section: it indicates
a small band around the diagonal i = j, i.e., it selects nearby receiver positions and frequencies, as
in [4]. In all our experiments with model errors, it is crucial that the data misfit parameter σ be
positive nonzero – it would be a mistake to try and explain the data perfectly with a wrong model.

Figure 6 illustrates the behavior of interferometric vs. classical least-squares inversion, on two
different imaging examples with the Shepp-Logan phantom. We only report on the high-level
conclusions; all the details about optimization schemes and wave equations can be found in the
companion note [14].

• In a first (passive) scenario, called inverse source, A maps the right-hand-side of a time-
harmonic wave equation to its solution. The wave speed profile is uniform, but different for
the data generation and inversion stages. In the former case, c = 1, while in the latter case,
c̃ = 0.95.

As shown in Figure 6 (middle left), least-squares inversion does not properly handle this
type of uncertainty and produces a defocused image. In contrast, interferometric inversion,
shown in Figure 6 (bottom left), enjoys a better resolution. The price to pay for focusing is
positioning: although we do not have a mathematical proof of this fact, the interferometric
reconstruction is near a shrunk version of the true source distribution.

• In a second (active) scenario, called inverse scattering, A maps a reflectivity profile, which
appears multiplied by an incident field in the righ-hand-side of a time-harmonic wave equation,
to the solution of this latter equation. The wave speed profile is uniform (c = 1). In this
example, the modeling error is assumed to be on the receiver positions: they have a smooth
random deviation from a circle, as shown in Figure 6 (top right).

Again, least-squares inversion produces a poor result (Figure 6 (middle right)), where the
features of the phantom are not clearly reconstructed, and the strong outer layer is affected
by a significant oscillatory error. Interferometric inversion produces a somewhat more focused
reconstruction (Figure 6 (bottom right)), where more features of the phantom are recovered
and the outer layer is well-resolved.

We leave numerous important questions unanswered, such as how to optimize the choice of the
selector E in the presence of model uncertainties; how to select the data misfit parameter σ > 0
and whether there is a phase transition in σ for model robustness vs. lack thereof; how to justify
the gain in focusing in some reconstructions; and whether this gain in focusing is part of a tradeoff
with the geometric faithfulness of the recovered image.
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Figure 6: Top: Setting of the inverse source experiment (left), and setting of the inverse scatter-
ing experiment (right). Middle: least-squares reconstruction for inverse source (left) and inverse
scattering (right). Bottom: interferometric reconstruction for inverse source (left) and inverse
scattering (right).
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