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Abstract—This paper discusses some questions that arise
when a linear inverse problem involving Ax = b is refor-
mulated in the interferometric framework, where quadratic
combinations of b are considered as data in place of b.

First, we show a deterministic recovery result for vectors
x from measurements of the form (Ax)i(Ax)j for some
left-invertible A. Recovery is exact, or stable in the noisy
case, when the couples (i, j) are chosen as edges of a
well-connected graph. One possible way of obtaining the
solution is as a feasible point of a simple semidefinite
program. Furthermore, we show how the proportionality
constant in the error estimate depends on the spectral gap
of a data-weighted graph Laplacian.

Second, we present a new application of this formulation
to interferometric waveform inversion, where products of
the form (Ax)i(Ax)j in frequency encode generalized
cross-correlations in time. We present numerical evidence
that interferometric inversion does not suffer from the
loss of resolution generally associated with interferometric
imaging, and can provide added robustness with respect
to specific kinds of kinematic uncertainties in the forward
model A.
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I. INTRODUCTION

Throughout this paper, we consider complex quadratic
measurements of x ∈ Cn of the form

Bij = (Ax)i(Ax)j , (i, j) ∈ E, (1)

for certain well-chosen couples of indices (i, j), a sce-
nario that we qualify as “interferometric”. This combi-
nation is special in that it is symmetric in x, and of rank
1 with respect to the indices i and j.

The regime that interests us is when the number m of
measurements, i.e., of couples (i, j) in E, is comparable
to the number n of unknowns. While phaseless mea-
surements bi = |(Ax)i|2 only admit recovery when A

has very special structure – such as, being a tall random
matrix with Gaussian i.i.d. entries [7], [11] – products
(Ax)i(Ax)j for i 6= j correspond to the idea of phase
differences, hence encode much more information. As a
consequence, stable recovery occurs under very general
conditions: left-invertibility of A and “connectedness” of
set E of couples (i, j). These conditions suffices to allow
for m to be on the order of n. Various algorithms return
x accurately up to a global phase; we mosty discuss
variants of lifting with semidefinite relaxation in this
paper. In contrast to other recovery results in matrix
completion [8], [24], no randomness is needed in the
data model, and our proof technique involves elementary
spectral graph theory rather than dual certification or
uncertainty principles.

The mathematical content of this paper is the formu-
lation of a quadratic analogue of the well-known relative
error bound

‖x− x0‖
‖x0‖

≤ κ(A)
‖e‖
‖b‖

(2)

for the least-squares solution of the overdetermined
linear system Ax = b with b = Ax0 + e, and where
κ(A) is the condition number of A. Our result is that an
inequality of the form (2) still holds in the quadratic case,
but with the square root of the spectral gap of a data-
weighted graph Laplacian in place of ‖b‖ in the right-
hand side. This spectral gap quantifies the connectedness
of E, and has the proper homogeneity with respect to b.

The numerical results mostly concern the case when
A is a forward model that involves solving a linearized
fixed-frequency wave equation, as in seismic or radar
imaging. In case x is a reflectivity, Ax is the wavefield
that results from an incoming wave being scattered by
x, and (Ax)i(Ax)j has a meaning in the context of
interferometry, as we explain in the next section. Our
claims are that
• Stable recovery holds, and the choice of measure-

ment set E for which this is the case matches the
theory in this paper;

• Interferometric inversion yields no apparent loss
of resolution when compared against the classical
imaging methods; and
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• Some degree of robustness to specific model inac-
curacies is observed in practice, although it is not
explained by the theory in this paper.

A. Physical context: interferometry

In optical imaging, an interference fringe of two (pos-
sibly complex-valued) wavefields f(t) and g(t), where t
is either a time or a space variable, is any combination
of the form |f(t) + g(t + t′)|2. The sum is a result of
the linearity of amplitudes in the fundamental equations
of physics (such as Maxwell or Schrödinger), while
the modulus squared is simply the result of a detector
measuring intensities. The cross term 2<(f(t)g(t+ t′))
in the expansion of the squared modulus manifestly
carries the information of destructive vs. constructive
interference, hence is a continuous version of what we
referred to earlier as an “interferometric measurement”.

In particular, when the two signals are sinusoidal at the
same frequency, the interferometric combination high-
lights a phase difference. In astronomical interferometry,
the delay t′ is for instance chosen so that the two signals
interfere constructively, yielding better resolution. Inter-
ferometric synthetic aperture radar (InSAR) is a remote
sensing technique that uses the fringe from two datasets
taken at different times to infer small displacements. In
X-ray ptychograhy [25], imaging is done by undoing
the interferometric combinations that the diffracted X-
rays undergo from encoding masks. These are but three
examples in a long list of applications.

Interferometry is also playing an increasingly im-
portant role in geophysical imaging, i.e., inversion of
the elastic parameters of the portions of the Earth’s
upper crust from scattered seismic waves. In this context
however, the signals are more often impulsive than
monochromatic, and interferometry is done as part of
the computational processing rather than the physical
measurements1. An interesting combination of two seis-
mogram traces f and g at nearby receivers is then
f̂(ω)ĝ(ω), i.e., the Fourier transform of their cross-
correlation. It highlights a time lag in the case when f
and g are impulses. More generally, it will be important
to also consider the cross-ambiguities f̂(ω)ĝ(ω′) where
ω′ ' ω.

Cross-correlations have been shown to play an impor-
tant role in geophysical imaging, mostly because of their
stability to statistical fluctuations of a scattering medium
[3] or an incoherent source [14], [20]. Though seismic
interferometry is a vast research area, both in the explo-
ration and global contexts [4], [13], [16], [28], [29], [32],
[35], explicit inversion of reflectivity parameters from
interferometric data has to our knowledge only been

1Time reversal is an important exception not considered in this paper,
where interferometry stems from experimental acquisition rather than
processing.

considered in [12], [18]. Interferometric inversion offers
great promise for model-robust imaging, i.e., recovery
of reflectivity maps in a less-sensitive way on specific
kinds of errors in the forward model.

Finally, interferometric measurements also play an
important role in quantum optical imaging. See [27]
for a nice solution to the inverse problem of recovering
a scattering dielectric susceptibility from measurements
of two-point correlation functions relative to two-photon
entangled states.

As we revise this paper, we also note the recent suc-
cess of interferometric inversion for passive synthetic-
aperture radar (SAR) imaging, under the name low-rank
matrix recovery [23].

B. Mathematical context and related work

The setting of this paper is discrete, hence we let i
and j in place of either a time of frequency variable.
We also specialize to f = g, and we let f = Ax to
possibly allow an explanation of the signal f by a linear
forward model2 A.

The link between products of the form f g and squared
measurements |f +g|2 goes both ways, as shown by the
polarization identity

fi fj =
1

4

4∑
k=1

e−iπk/2|fi + eiπk/2fj |2.

Hence any result of robust recovery of f , or x, from
couples fi fj , implies the same result for recovery from
phaseless measurements of the form |fi + eiπk/2fj |2.
This latter setting was precisely considerered by Candès
et al. in [7], where an application to X-ray diffraction
imaging with a specific choice of masks is discussed. In
[1], Alexeev et al. use the same polarization identity to
design good measurements for phase retrieval, such that
recovery is possible with m = O(n).

Recovery of fi from fifj for some (i, j) when
|fi| = 1 (interferometric phase retrieval) can be seen
a special case of the problem of angular synchronization
considered by Singer [30]. There, rotation matrices Ri
are to be recovered (up to a global rotation) from
measurements of relative rotations RiR

−1
j for some

(i, j). This problem has an important application to cryo-
electron microscopy, where the measurements of relative
rotations are further corrupted in an a priori unknown
fashion (i.e., the set E is to be recovered as well). An
impressive recovery result under a Bernoulli model of
gross corruption, with a characterization of the critical
probability, were recently obtained by Wang and Singer
[33]. The spectrum of an adapted graph Laplacian plays

2Such as scattering from a reflectivity profile x in the Born approx-
imation, for which A is a wave equation Green’s function. Section III
covers the description of A in this context.
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an important role in their analysis [2], much as it does
in this paper. Singer and Cucuringu also considered the
angular synchronization problem from the viewpoint of
rigidity theory [31]. For the similar problem of recovery
of positions from relative distance, with applications to
sensor network localization, see for instance [17].

The algorithmic approach considered in this paper for
solving interferometric inversion problems is to formu-
late them via lifting and semidefinite relaxation. This
idea was considered by many groups in recent years [7],
[9], [17], [30], [34], and finds its origin in theoretical
computer science [15].

II. MATHEMATICAL RESULTS

A. Recovery of unknown phases

Let us start by describing the simpler problem of
interferometric phase recovery, when A = I and we
furthermore assume |xi| = 1. Given a vector x0 ∈ Cn
such that |(x0)i| = 1, a set E of pairs (i, j), and noisy
interferometric data Bij = (x0)i(x0)j+εij , find a vector
x such that

|xi| = 1,
∑

(i,j)∈E

|xixj −Bij | ≤ σ, (3)

for some σ > 0. Here and below, if no heuristic is pro-
vided for σ, we may cast the problem as a minimization
problem for the misfit and obtain σ a posteriori.

The choice of the elementwise `1 norm over E is
arbitrary, but convenient for the analysis in the sequel3.
We aim to find situations in which this problem has a
solution x close to x0, up to a global phase. Notice that
x0 is feasible for (3), hence a solution exists, as soon as
σ ≥

∑
i,j∈E |εij |.

The relaxation by lifting of this problem is to find X
(a proxy for xx∗) such that

Xii = 1,
∑

(i,j)∈E

|Xij −Bij | ≤ σ, X � 0,

then let x be the top eigenvector of X with ‖x‖2 = n.
(4)

The notation X � 0 means that X is symmetric and
positive semi-definite. Again, the feasibility problem (4)
has at least one solution (X0 = x0x

∗
0) as soon as σ ≥∑

i,j∈E |εij |.
The set E generates edges of a graph G = (V,E),

where the nodes in V are indexed by i. Without loss of
generality, we consider E to be symmetric. By conven-
tion, G does not contain loops, i.e., the diagonal j = i
is not part of E. (Measurements on the diagonal are
not informative for the phase recovery problem, since
|(x0)i|2 = 1.)

3The choice of `1 norm as “least unsquared deviation” is central in
[33] for the type of outlier-robust recovery behavior documented there.

The graph Laplacian on G is

Lij =

 di if i = j;
−1 if (i, j) ∈ E;
0 otherwise,

where di is the node degree di =
∑
j:(i,j)∈E 1. Observe

that L is symmetric and L � 0 by Gershgorin. Denote
by λ1 ≤ λ2 ≤ . . . ≤ λn the eigenvalues of L sorted
in increasing order. Then λ1 = 0 with the constant
eigenvector v1 = 1√

n
. The second eigenvalue is zero if

and only if G has two or more disconnected components.
When λ2 > 0, its value is a measure of connectedness
of the graph. Note that λn ≤ 2d by Gershgorin again,
where d = maxi di is the maximum degree.

Since λ1 = 0, the second eigenvalue λ2 is called
the spectral gap. It is a central quantity in the study of
expander graphs: it relates to

• the edge expansion (Cheeger constant, large if λ2
is large);

• the degree of separation between any two nodes
(small if λ2 is large); and

• the speed of mixing of a random walk on the graph
(fast if λ2 is large).

More information about spectral graph theory can be
found, e.g., in the lecture notes by Lovasz [21]. It is
easy to show with interlacing theorems that adding an
edge to E, or removing a node from V , both increase λ2.
The spectral gap plays an important role in the following
stability result.

In the sequel, we denote the componentwise `1 norm
on the set E by ‖ · ‖1.

Theorem 1. Assume ‖ε‖1 + σ ≤ nλ2, where λ2 is the
second eigenvalue of the graph Laplacian L on G. Any
solution x of (3) or (4) obeys

‖x− eiαx0‖ ≤ 4

√
‖ε‖1 + σ

λ2
,

for some α ∈ [0, 2π).

The proof is in the appendix. Manifestly, recovery is
exact (up to the global phase ambiguity encoded by the
parameter α, because the algorithm could return another
vector multiplied by some eiα over which there is no
control.) as soon as ε = 0 and σ = 0, provided λ2 6=
0, i.e., the graph G is connected. The easiest way to
construct expander graphs (graphs with large λ2) is to
set up a probabilistic model with a Bernoulli distribution
for each edge in an i.i.d. fashion, a model known as the
Erdős-Rényi random graph. It can be shown that such
graphs have a spectral gap bounded away from zero,
independently of n and with high probability, with m =
O(n log n) edges.
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A stronger result is available when the noise ε origi-
nates at the level of x0, i.e., B = x0x

∗
0 + ε has the form

(x0 + e)(x0 + e)∗.

Corollary 2. Assume ε = (x0 + e)(x0 + e)∗ − x0x
∗
0

and σ ≤ nλ2, where λ2 is the second eigenvalue of the
graph Laplacian L on G. Any solution x of (3) or (4)
obeys

‖x− eiαx0‖ ≤ 4

√
σ

λ2
+ ‖e‖,

for some α ∈ [0, 2π).

Proof. Apply theorem 1 with ε = 0, x0 + e in place of
x0, then use the triangle inequality.

In the setting of the corollary, problem (3) always has
x = x0 + e as a solution, hence is feasible even when
σ = 0.

Let us briefly review the eigenvector method for
interferometric recovery. In [30], Singer proposed to use
the first eigenvector of the (noisy) data-weighted graph
Laplacian as an estimator of the vector of phases. A
similar idea appears in the work of Montanari et al. as
the first step of their OptSpace algorithm [19], and in
the work of Chatterjee on universal thresholding [10].
In our setting, this means defining

(L̃ )ij =

 di if i = j;
−Bij if (i, j) ∈ E;
0 otherwise,

and letting x = ṽ1
√
n where v1 is the unit-norm

eigenvector of L̃ with smallest eigenvalue. Denote by
λ̃1 ≤ λ̃2 ≤ . . . the eigenvalues of L̃. The following result
is known from [2], but we provide an elementary proof
(in the appendix) for completeness of the exposition.

Theorem 3. Assume ‖ε‖ ≤ λ̃2/2. Then the result x of
the eigenvector method obeys

‖x− eiαx0‖ ≤
√

2n
‖ε‖
λ̃2

,

for some α ∈ [0, 2π).

Alternatively, we may express the inequality in terms
of λ2, the spectral gap of the noise-free Laplacian L
defined earlier, by noticing4 that λ̃2 ≥ λ2 − ‖ε‖. Both
λ2 and λ̃2 are computationally accessible. In the case
when |Bij | = 1, we have λ̃1 ≥ 0, hence λ̃2 is (slightly)
greater than the spectral gap λ̃2− λ̃1 of L̃. Note that the
1/λ̃2 scaling appears to be sharp in view of the numerical
experiments reported in section III. The inverse square
root scaling of theorem 1 is stronger in the presence of
small spectral gaps, but the noise scaling is weaker in
theorem 1 than in theorem 3.

4This owes to ‖L − L̃‖ ≤ ‖ε‖, with L = ΛLΛ∗ the noise-free
Laplacian with phases introduced at the beginning of section 2.1.

B. Interferometric recovery

The more general version of the interferometric recov-
ery problem is to consider a left-invertible tall matrix
A, linear measurements b = Ax0 for some vector x0
(without condition on the modulus of either bi or (x0)i),
noisy interferometric measurements Bij = bibj +εij for
(i, j) in some set E, and find x subject to∑

(i,j)∈E∪D

|(Ax)i(Ax)j −Bij | ≤ σ. (5)

Notice that we now take the union of the diagonal D =
{(i, i)} with E. Without loss of generality we assume
that εij = εji, which can be achieved by symmetrizing
the measurements, i.e., substituting Bij+Bji

2 for Bij .
Since we no longer have a unit-modulus condition,

the relevant notion of graph Laplacian is now data-
dependent. It reads

(
L|b|
)
ij

=


∑
k:(i,k)∈E |bk|2 if i = j;

−|bi||bj | if (i, j) ∈ E;
0 otherwise.

The connectedness properties of the underlying graph
now depend on the size of |bi|: the edge (i, j) carries
valuable information if and only if both |bi| and |bj | are
large.

A few different recovery formulations arise naturally
in the context of lifting and semidefinite relaxation.
• The basic lifted formulation is to find some X such

that ∑
(i,j)∈E∪D

|(AXA∗)ij −Bij | ≤ σ, X � 0,

then let x = x1
√
η1, where (η1, x1) is the

top eigen-pair of X . (6)

Our main result is as follows, see the appendix for
the proof.
Theorem 4. Assume ‖ε‖1 +σ ≤ λ2/2, where λ2 is
the second eigenvalue of the data-weighted graph
Laplacian L|b|. Any solution x of (6) obeys

‖x− eiαx0‖
‖x0‖

≤ 15 κ(A)2

√
‖ε‖1 + σ

λ2
,

for some α ∈ [0, 2π), and where κ(A) is the
condition number of A.
The quadratic dependence on κ(A) is necessary5. In
section III, we numerically verify the inverse square
root scaling in terms of λ2.

5The following example shows why that is the case. For any X0

and invertible A, the solution to AXA∗ = AX0A∗ + ε is X =
X0 + A+ε(A∗)+. Let X0 = e1eT1 , ε = δe1e∗1 for some small δ,
and A+ = I +Ne1eT1 . Then X = (1 + δN2)e1eT1 , and the square
root of its leading eigenvalue is

√
η1 ' 1 + 1

2
δN2. As a result, x is

perturbation of x0 by a quantity of magnitude O(δ‖A+‖2).
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If the noise originates from b+e rather than bb∗+ε,
the error bound is again improved to

‖x− eiαx0‖
‖x0‖

≤ 15 κ(A)2
√

σ

λ2
+ κ(A)

‖e‖
‖b‖

,

for the same reason as earlier.
• An alternative, two-step lifting formulation is to

find x through Y such that∑
(i,j)∈E∪D

|Yij −Bij | ≤ σ, Y � 0,

then let x = A+y1
√
η1, where (η1, y1) is the

top eigen-pair of Y . (7)

The dependence on the condition number of A is
more favorable than for the basic lifting formula-
tion.
Theorem 5. Assume ‖ε‖1 +σ ≤ λ2/2, where λ2 is
the second eigenvalue of the data-weighted graph
Laplacian L|b|. Any solution x of (5) or (7) obeys

‖x− eiαx0‖
‖x0‖

≤ 15 κ(A)

√
‖ε‖1 + σ

λ2
,

for some α ∈ [0, 2π).
However, this formulation may be more computa-
tionally expensive than the one-step variant if data
(b) space is much larger than model (x) space.

The quantity λ2 is not computationally accessible in
general, but it can be related to the second eigenvalue
λ̃2 of the noisy data-weighted Laplacian,

(
L̃B
)
ij

=


∑
k:(i,k)∈E Bkk if i = j;

−Bij if (i, j) ∈ E;
0 otherwise.

It is straightforward to show that λ2 ≥ λ̃2 −
[ (d+ 1)‖ε‖∞ + ‖ε‖ ], where ‖ · ‖∞ is the elementwise
maximum on E ∪D, ‖ · ‖ is the spectral norm, and d is
the maximum node degree.

C. Influence of the spectral gap

In this section, we numerically confirm the tightness
of the error bound for phase recovery given by theorem
1 on toy examples (n = 27), with respect to the spectral
gap. We perform the corresponding experiment for the
situation of theorem 3. In order to span a wide range of
spectral gaps, three types of graphs are considered:
• the cycle graph Pn which is proven to be the

connected graph with the smallest spectral gap6;
• graphs obtained by adding randomly K edges to
Pn with K ranging from 1 to 50;

6As justified by the decreasing property of λ2 under edge removal,
mentioned earlier.

• Erdős-Rényi random graphs with probability rang-
ing from 0.03 to 0.05, conditioned on connectedness
(positive specrtal gap).

A realization of the two latter types of graphs is given
in figure 1.

Fig. 1. Pn + random edges (top), Erdős-Rényi random graph (bottom)

To study the eigenvector method, we draw one realiza-
tion of a symmetric error matrix ε with εij ∼ CN (0, η2),
with η = 10−8. The spectral norm of the noise (used in
theorem 3) is ||ε|| ∼ 2× 10−7.
For different realizations of the aforementioned graphs,
we estimate the solution with the eigenvector method
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and plot the `2 recovery error as a function of λ̃2. See
figure 2.
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Fig. 2. Recovery error for the eigenvector method as a function of λ̃2

To study the feasibility method, we consider the case
of an approximate fit (σ = 10−4) in the noiseless case
(ε = 0). The feasibility problem (4) is solved using the
Matlab toolbox cvx which calls the toolbox SeDuMi. An
interior point algorithm (centering predictor-corrector) is
used. The recovery error as a function of the spectral gap
λ2 is illustrated in figure 3. The square root scaling of
the theorem seems to be a good match for the numerical
experiments.
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Fig. 3. Recovery error for the feasibility method as a function of λ2

III. NUMERICAL RESULTS: INTERFEROMETRIC
INVERSE SCATTERING

A. Setup and context
An important application of interferometric inversion

is seismic imaging, where the (simplest) question is to
recover of a medium’s wave velocity map from record-
ings of waves scattered by that medium. Linear inverse
problems often arise in this context. For instance, in-
verse source problems arise when locating microseismic
events, and linear inverse scattering in the Born regime
yield model updates for subsurface imaging. These linear
problems all take the form

Fm = d, (8)

where F is the forward or modeling operator, describing
the wave propagation and the acquisition, m is the

reflectivity model, and d are the observed data. (We make
this choice of notation from now on; it is standard and
more handy than Ax = b for what follows.) The classical
approach is to use the data (seismograms) directly, to
produce an image either
• by migrating the data (Reverse-time migration,

RTM),
IRTM = F̃ ∗d

where F̃ is the simulation forward operator and ∗

stands for the adjoint ;
• or by finding a model that best fits the data,

in a least-squares sense (Least-squares migration,
LSRTM),

mLSM = arg min
m

1

2
||F̃m− d||22. (9)

It is important to note that the physical forward operator
F and the one used in simulation F̃ can be different
due to modeling errors or uncertainty. Such errors can
happen at different levels:

1) background velocity,
2) sources and receivers positions,
3) sources time profiles.

This list is non-exhaustive and these modeling errors
have a very different effect from additive Gaussian
white noise, in the sense that they induce a coherent
perturbation in the data. As a result, the classical ap-
proaches (RTM, LSM) may fail in the presence of such
uncertainties.

The idea of using interferometry (i.e. products of
pairs of data) to make migration robust to modeling
uncertainties has already been proposed in the literature
[4], [26], [29], producing remarkable results. In their
2005 paper [4], Borcea et al. developed a comprehensive
framework for interferometric migration, in which they
proposed the Coherent INTerfermetic imaging functional
(CINT), which can be recast in our notation as

ICINT = diag{F̃ ∗(E ◦ [dd∗])F̃},

where dd∗ is the matrix of all data pairs products,
E is a selector, that is, a sparse matrix with ones
for the considered pairs and zeros elsewhere, ◦ is the
entrywise (Hadamard) product, and diag is the opera-
tion of extracting the diagonal of a matrix. The CINT
functional involves F̃ ∗, F̃ and F , F ∗ (implicitly through
dd∗), so cancellation of model errors can still occur,
even when F and F̃ are different. Through a careful
analysis of wave propagation in the particular case where
the uncertainty consists of random fluctuations of the
background velocity, Borcea et al. derive conditions on
E under which CINT will be robust.

The previous sections of this paper do not inform the
robustness mentioned above, but they explain how the
power of interferometry can be extended to inversion. In
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a noiseless setting, the proposal is to perform inversion
using selected data pair products,

find m s.t. E ◦ (F̃mm∗F̃ ∗) = E ◦ [dd∗], (10)

i.e., we look for a model m that explains the data pair
products did̄j selected by (i, j) ∈ E. (The notation E
has not changed from the previous sections.) Here, i
and j are meta-indices in data space. For example, in
an inverse source problem in the frequency domain, i ≡
(ri, ωi) and j ≡ (rj , ωj), and for inverse Born scattering,
i ≡ (ri, si, ωi) and j ≡ (rj , sj , ωj).

A straightforward and noise-aware version of this idea
is to fit products in a least-squares sense,

m̂LS,pairs = arg min
m
||E ◦ (F̃mm∗F̃ ∗ − dd∗)||2F . (11)

While the problem in (10) is quadratic, the least-squares
cost in (11) is quartic and nonconvex. The introduction
of local minima is a highly undesired feature, and
numerical experiments show that gradient descent can
indeed converge to a completely wrong local minimizer.

A particular instance of the interferometric inversion
problem is inversion from cross-correlograms. In that
case,

Ei,j = 1 ⇔ ωi = ωj .

This means that E considers data pairs from different
sources and receivers at the same frequency,

didj = d(ri, si, ω)d(rj , sj , ω),

where the overline stands for the complex conjugation.
This expression is the Fourier transform at frequency ω
of the cross-correlogram between trace (ri.si) and trace
(rj , sj).

The choice of selector E is an important concern.
As explained earlier, it should describe a connected
graph for inversion to be possible. In the extreme case
where E is the identity matrix, the problem reduces
to estimating the model from intensity-only (phaseless)
measurements, which does not in general have a unique
solution for the kind of F we consider. The same
problem plagues inversion from cross-correlograms only:
E does not correspond to a connected graph in that
case either, and numerical inversion typically fails. On
the other hand, it is undesirable to consider too many
pairs, both from a computational point of view and for
robustness to model errors. For instance, in the limit
when E is the complete graph of all pairs (i, j), it is
easy to see that the quartic cost function reduces to the
square of the least-squares cost function. Hence, there
is a trade-off between robustness to uncertainties and
quantity of information available to ensure invertibility.
It is important to stress that theorem 4 gives sufficient
conditions on E for recovery to be possible and stable
to additive noise ε, but not to modeling error (in the

theorem, F = F̃ ). It does not provide an explanation
of the robust behavior of interferometric inversion; see
however the numerical experiments.

In the previous section, we showed that lifting con-
vexifies problems such as (10) and (11) in a useful way.
In the context of wave-based imaging, this idea was first
proposed in [9] for intensity-only measurements. In this
section’s notations, we replace the optimization variable
m by the symmetric matrix M = mm∗, for which the
data match becomes a linear constraint. Incorporating
the knowledge we have on the solution, the problem
becomes

find M s. t.
E ◦ [F̃MF̃ ∗] = E ◦ [dd∗],

M � 0,
rank(M) = 1.

The first two constraints (data fit and positive semi-
definiteness) are convex, but the rank constraint is not
and would in principle lead to a combinatorially hard
problem. However, as the theoretical results of this paper
make clear, the rank constraint can often be dropped. We
also relax the data pairs fit – an exact fit is ill-advised
because of noise and modeling errors – to obtain the
following feasibility problem equivalent to (6),

find M s. t. ,
||F̃MF̃ ∗ − dd∗||`1(E) ≤ σ,

M � 0.

(12)

The approximate fit is expressed in an entry-wise `1
sense. This feasibility problem is a convex program, for
which there exist simple converging iterative methods.
Once M is solved for, we have already seen that
a model estimate can be obtained by extracting the
leading eigenvector of M .

B. A practical algorithm

The convex formulation in (12) is too costly to solve
at the scale of even toy problems. Let N be the total
number of degrees of freedom of the unknown model
m ; then the variable M of (12) is a N × N matrix,
on which we want to impose positive semi-definiteness
and approximate fit. To our knowledge, there is no time-
efficient and memory-efficient algorithm to solve this
type of semi-definite program when N ranges from 104

to 106.
We consider instead a non-convex relaxation of the

feasibility problem (12), in which we limit the numerical
rank of M to K, as in [6]. We may then write M = RR∗

where R is N×K and K � N . We replace the approx-
imate `1 fit by Frobenius minimization. Regularization
is also added to handle noise and uncertainty, yielding

R̂ = arg min
R
||E◦(F̃RR∗F̃ ∗−dd∗)||2F +λ||R||2F . (13)
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An estimate of m is obtained from R̂ by extracting the
leading eigenvector of R̂R̂∗. Note that the Frobenius
regularization on R is equivalent to a trace regularization
on M = RR∗, which is known to promote the low-rank
character of the matrix. The rank-K relaxation (13) can
be seen as a generalization of the straightforward least-
squares formulation (11). The two formulations coincide
in the limit case K = 1. The strength of (13) is that the
optimization variable is in a slightly bigger space than
formulation (11).

The rank-K relaxation (13) is still nonconvex, but in
practice, no local minimum has been observed even for
K = 2, whereas the issue often arises for the least-
squares approach (11). It should also be noted that the
success of inversion is simple to test a posteriori, by
comparing the sizes of the largest and second largest
eigenvalues of M .

In practice, the memory requirement of rank-K re-
laxation is simply K times than that of non-lifted least-
squares. The runtime per iteration is typically lower than
K times that of a least-squares step however, because the
bottleneck in the computation of F̃ and F̃ ∗ is usually the
LU factorization of a Helmholtz operator, which needs to
be done only once per iteration. Empirically, the number
of iterations needed for convergence does not vary much
as a function of K.

C. Examples

Our examples fall into three categories.
1) Linear inverse source problem. Here we consider

a set of receiver locations xr, and a constant
density acoustics inverse source problem, which
reads in the Fourier domain

−(∆ + ω2m0(x))ûs(x, ω) = ŵ(ω)m(x)

Fm = d(xr, ω) = ûs(xr, ω)

m0(x) =
1

c0(x)2
(squared slowness)

Waves are propagating from a source term with
known time signature w. The problem is to
reconstruct the spatial distribution m.

2) Linearized inverse scattering problem. Here we
consider a set of receivers xr, waves generated by
sources xs, and a constant density acoustic inverse
problem for the reflectivity perturbation m1,

−(∆ + ω2m0(x))û0,s(x, ω) = ŵ(ω)δ(x− xs)
−(∆ + ω2m0(x))û1,s(x, ω) = ω2û0,s(x, ω)m1(x)

Fm1 = d(xr, xs, ω) = û1,s(xr, ω).

The isolation of the Born scattered wavefield
(primary reflections) u1,s from the full scattered

field, although a very difficult task in practice, is
assumed to be performed perfectly in this paper.

3) Full waveform inversion (FWI). We again con-
sider a set of receivers xr, waves generated by
sources xs, and a constant density acoustic inverse
problem for the reflectivity m, with

−(∆ + ω2m(x))ûs(x, ω) = ŵ(ω)δ(x− xs)

F(m) = d(xr, xs, ω) = ûs(xr, ω).

In a first numerical experiment (Figure 4), we consider
a linearized inverse scattering problem where c = 1/

√
m

is the Marmousi2 p-wave velocity model [22], m0 is a
smoothed version of m, and m1 = m−m0 is the model
perturbation used to generated data in the linearized
forward model. The sources and receivers are placed
at the top of the image in an equispaced fashion, with
30 sources and 300 receivers. The frequency sampling
is uniform between 3 and 10 Hz, with 10 frequency
samples. The Helmholtz equation is discretized with
fourth-order finite differences at about 20 points per
wavelength for data modeling, while the simulations for
the inversion are with second-order finite differences.
The noise model is taken to be Gaussian,

d̃i = di + ηi ηi ∼ CN (0, σ2)

where σ = 0.1
||b||2√

2n
, so that

||η||2
||b||2

= 0.1 (10% additive

noise). Figure 4 shows stable recovery of m1 from
noisy d, both by least-squares and by interferometric
inversion. In this case the graph E is taken to be an

Erdős-Rényi random graph with p = 1.5
log(N)

N
to

ensure connectedness. (Instabilities occur if p is smaller;
larger values of p do not substantially help.) Note that
if E were chosen as a disconnected graph that only
forms cross-correlations (same ω for the data indices
i and j), then interferometric inversion is not well-
posed and does not result in good images (not shown).
The optimization method for interferometric inversion
is the rank-2 relaxation scheme mentioned earlier. The
message of this numerical example is twofold: it shows
that stable recovery is possible in the interferometric
regime, when E is properly chosen; and a comparison of
Figures 4 bottom and middle shows that it does not come
with the loss of resolution that would be expected from
CINT [4]. This observation was also a key conclusion
in the recent paper by Mason et al. [23].

In a second numerical experiment (Figure 5), we
consider full waveform inversion where c = 1/

√
m is

the Marmousi2 p-wave velocity model, and the initial
model is the same m0 as used in the previous example.
The setup for the acquisition, the Helmholtz equation,
the noise, and the mask E are the same as before. Figure
5 shows the result of quasi-Newton (LBFGS) iterations
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with a frequency sweep, and the corresponding interfero-
metric inversion result. To produce this latter result, we
simply replace the classical adjoint-state gradient step
by interferometric inversion applied to the data residual.
In all the numerical experiments so far (Figures 4 and
5), the values of the model misfits are not meaningfully
different in the least-squares and interferometric cases.
The message of this numerical example is that there
seems to be no loss of resolution in the full waveform
case either, when comparing Figure 5 (bottom) to its
least-squares counterpart (second from bottom).

Possible limitations of the interferometric approach
are the slightly higher computational and memory cost
(as discussed in the previous section); the need to prop-
erly choose the data mask E; and the fact that the data
match is now quartic rather than quadratic in the original
data d. Quartic objective functions can be problematic in
the presence of outliers, such as when the noise is heavy-
tailed, because they increase the relative importance of
those corrupted measurements. We did not attempt to
deal with heavy-tailed noise in this paper.

It is also worth noting that “backprojecting the cross-
correlations” (or the more general quadratic combina-
tions we consider here) can be shown to be related to the
first iteration of gradient descent in the lifted semidefinite
formulation of interferometric inversion.

So far, our numerical experiments merely confirm the
theoretical prediction that interferometric inversion can
be accurate and stable under minimal assumptions on the
mask/graph E of data pair products. In the next section,
we show that there is also an important rationale for
switching to the interferometric formulation: its results
display robustness vis-a-vis some uncertainties in the
forward model F .

D. Model robustness

In this section we continue to consider wave-based
imaging scenarios, but more constrained in the sense
that the receivers and/or sources completely surround
the object to be imaged, i.e., provide a full aperture.
The robustness claims below are only for this case. On
the other hand, we now relax the requirement that the
forward model F̃ used for inversion be identical or very
close to the forward map F used for data modeling.
The interferometric mask E is also different, and more
physically meaningful than in the previous section: it
indicates a small band around the diagonal i = j, i.e., it
selects nearby receiver positions and frequencies, as in
[4]. The parameters of this selector were tuned for best
results; they physically correspond to the idea that two
data points di and dj should only be compared if they are
within one cycle of one another for the most oscillatory
phase in d. In all our experiments with model errors,
it is crucial that the data misfit parameter σ be positive
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Fig. 4. Top: true, unknown reflectivity profile m1 used to generate
data. Middle: least-squares solution. Bottom: result of interferometric
inversion. This example shows that interferometric inversion is stable
when the mask E is connected, as in the theory, and shows no apparent
loss of resolution vs. least squares.

nonzero – it would be a mistake to try and explain the
data perfectly with a wrong model.

In the next numerical experiment (Figure 6), we con-
sider the inverse source problem, where the source distri-
bution m is the Shepp-Logan phantom. This community
model is of interest in ultrasound medical imaging,
where it represents a horizontal cross-section of different
organs in the torso. The receivers densely surround the
phantom and are depicted as white crosses. Equispaced
frequencies are considered on the bandwidth of w. A
small modeling error is assumed to have been made on
the background velocity: in the experiment, the waves
propagated with unit speed c0(x) = 1, but in the simu-
lation, the waves propagate more slowly, c̃0(x) = 0.95.
As shown in Figure 6 (middle), least-squares inversion
does not properly handle this type of uncertainty and
produces a defocused image. (Least-squares inversion
is regularized with the `2 norm of the model, a.k.a.
Tykhonov. A large range of values of the regularization
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Fig. 5. Top: true, unknown map of the squared slowness m used
to generate data. Second: initial guess for either inversion scheme.
Third: nonlinear least-squares solution, a.k.a. full waveform inversion.
Bottom: result of interferometric inversion. This example shows that
the stability and resolution properties of interferometric inversion carry
over to the case of full waveform inversion.

parameter was tested, and the best empirical results
are reported here.) In contrast, interferometric inversion,
shown in Figure 6 (bottom), enjoys a better resolution.
The price to pay for focusing is positioning: although
we do not have a mathematical proof of this fact, the
interferometric reconstruction is near a shrunk version
of the true source distribution.

In the last numerical experiment (Figure 7), we con-
sider the linearized inverse scattering problem, where

the phantom is now the reflectivity perturbation m1.
As the figure shows, sources and receivers surround
the phantom, with a denser sampling for the receivers
than for the sources. The wave speed profile is uni-
form (c = 1). In this example, the modeling error is
assumed to be on the receiver positions: they have a
smooth random deviation from a circle, as shown in
Figure 7 (top). Again, least-squares inversion produces
a poor result regardless of the Tykhonov regularization
parameter (Figure 7, middle), where the features of the
phantom are not clearly reconstructed, and the strong
outer layer is affected by a significant oscillatory error.
Interferometric inversion produces a somewhat more
focused reconstruction (Figure 7, bottom), where more
features of the phantom are recovered and the outer layer
is well-resolved.

Model robustness is heuristically plausible in the
scenario when data are of the form di ∼ eiωτi for
some traveltimes τi which are themselves function of
a velocity c through τi = δi/c. In that case, the
combination didj ∼ eiω(τi−τj) has a phase that encodes
the idea of a traveltime difference. When i is near j
in data space (because they correspond, say, to nearby
receivers), it is clear that τi − τj depends in a milder
fashion on errors in c, or on correlated errors in δi,
than the individual traveltimes themselves. This results
in some degree of stability of selected didj with respect
to those types of errors, which in turn results in more
focused imaging. This phenomenon is not unlike the
celebrated statistical stability of didj under some models
of randomness on either the velocity or the sources. For
random media, this behavior was leveraged in the context
of coherent interferometric imaging (CINT) in the 2011
work of Borcea et al. [5]

IV. DISCUSSION

This paper explores a recent optimization idea, convex
relaxation by lifting, for dealing with the quadratic data
combinations that occur in the context of interferometry.
The role of the mask E that selects the quadratic mea-
surements is explained: it is shown that it should encode
a well-connected graph for robustness of the recovery.
The recovery theorems do not assume a random model
on this graph; instead, they involve the Laplacian’s
spectral gap.

Numerical experiments in the context of imaging
are shown to confirm that recovery is stable when the
assumptions of the theorem are obeyed. Developing
methods to solve the lifted problem at interesting scales
is a difficult problem that we circumvent via an ad-hoc
rank-2 relaxation scheme. It is observed empirically that
there is no noticeable loss of resolution from switching
to an interferometric optimization formulation. It is also
observed that interferometric inversion for imaging can
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display a puzzling degree of robustness to very specific
model uncertainties.

We leave numerous important questions unanswered,
such as how to optimize the choice of the selector
E when there is a trade-off between connectivity and
robustness to model uncertainties; how to select the data
misfit parameter σ > 0 and whether there is a phase
transition in σ for model robustness vs. lack thereof; how
to justify the gain in focusing in some reconstructions;
and whether this gain in focusing is part of a tradeoff
with the geometric faithfulness of the recovered image.

APPENDIX

A. Proof of theorem 1.

Observe that if x is feasible for (3), then xx∗ is
feasible for (4), and has eiαx as leading eigenvector.
Hence we focus without loss of generality on (4).

As in [30], consider the Laplacian matrix weighted
with the unknown phases,

L = ΛLΛ∗,

with Λ = diag(x0). In other words Lij = (X0)ijLij
with X0 = x0x

∗
0. We still have L � 0 and λ1 = 0, but

now v1 = 1√
n
x0. Here and below, λ and v refer to L,

and v has unit `2 norm.
The idea of the proof is to compare X with the rank-1

spectral projectors vjv∗j of L. Let 〈A,B〉 = tr(AB∗) be
the Frobenius inner product. Any X obeying (3) can be
written as X = X0 + ε̃ with ‖ε̃‖1 ≤ ‖ε‖1 + σ. We have

〈X,L〉 = 〈X0,L〉+ 〈ε̃,L〉

A short computation shows that

〈X0,L〉 =
∑
i

(X0)iiLii +
∑

(i,j)∈E

(X0)ijLij

= −
∑
i

di +
∑

(i,j)∈E

(x0)i(x0)j (x0)i(x0)j

=
∑
i

−di +
∑

j:(i,j)∈E

1


= 0.

Since |Lij | = 1 on E, the error term is simply bounded
as

|〈ε̃,L〉| ≤ ‖ε̃‖1
On the other hand the Laplacian expands as

L =
∑
j

vjλjv
∗
j ,

so we can introduce a convenient normalization factor
1/n and write

〈X
n
,L〉 =

∑
j

cjλj , (14)

with

cj = 〈X
n
, vjv

∗
j 〉 =

v∗jXvj

n
.

Notice that cj ≥ 0 since we require X � 0. Their sum
is ∑

j

cj = 〈X
n
,
∑
j

vjv
∗
j 〉 = 〈X

n
, I〉 =

tr(X)

n
= 1.

Hence (14) is a convex combination of the eigenvalues of
L, bounded by ‖ε̃‖1/n. The smaller this bound, the more
lopsided the convex combination toward λ1, i.e., the
larger c1. The following lemma makes this observation
precise.

Lemma 1. Let µ =
∑
j cjλj with cj ≥ 0,

∑
j cj = 1,

and λ1 = 0. If µ ≤ λ2, then

c1 ≥ 1− µ

λ2
.

Proof of lemma 1..

µ =
∑
i≥2

cjλj ≥ λ2
∑
j≥2

cj = λ2(1− c1),

then isolate c1.

Assuming ‖ε̃‖1 ≤ nλ2, we now have

〈X
n
, v1v

∗
1〉 ≥ 1− ‖ε̃‖1

nλ2
.

We can further bound

‖X
n
− v1v∗1‖2F = tr

[(
X

n
− v1v∗1

)2
]

= tr((v1v∗1)2) +
tr(X2)

n2
− 2 tr

(
X

n
v1v
∗
1

)
.

The first term is 1. The second term is less than 1,
since tr(X2) ≤ tr(X)2 for positive semidefinite matrices.
Therefore,

‖X
n
− v1v∗1‖2F ≤ 2− 2 tr

(
X

n
v1v
∗
1

)
≤ 2‖ε̃‖1

nλ2
.

We can now control the departure of the top eigen-
vector of X/n from v1 by the following lemma. It
is analogous to the sin theta theorem of Davis-Kahan,
except for the choice of normalization of the vectors.
(It is also a generalization of a lemma used by one of
us in [11] (section 4.2).) The proof is only given for
completeness.

Lemma 2. Consider any Hermitian X ∈ Cn×n, and
any v ∈ Cn, such that ‖X− vv∗‖ < ‖v‖2

2 . Let η1 be the
leading eigenvalue of X , and x1 the corresponding unit-
norm eigenvector. Let x be defined either as (a) x1‖v‖,
or as (b) x1

√
η1. Then

‖ x‖x‖ − eiαv‖v‖ ‖ ≤ 2
√

2 ‖X − vv∗‖,
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for some α ∈ [0, 2π).

Proof of Lemma 2. Let δ = ‖X − vv∗‖. Notice that
‖vv∗‖ = ‖v‖2. Decompose X =

∑n
j=1 xjηjx

∗
j with

eigenvalues ηj sorted in decreasing order. By perturba-
tion theory for symmetric matrices (Weyl’s inequalities),

max{|‖v‖2 − η1|, |η2|, . . . , |ηn|} ≤ δ, (15)

so it is clear that η1 > 0, and that the eigenspace of η1
is one-dimensional, as soon as δ < ‖v‖2

2 .
Let us deal first with the case (a) when x = x1‖v‖.

Consider
vv∗ − xx∗ = vv∗ −X + Y,

where

Y = x1(‖v‖2 − η1)x∗1 +

n∑
j=2

xjηjx
∗
j .

From (15), it is clear that ‖Y ‖ ≤ δ. Let v1 = v/‖v‖.
We get

‖vv∗ − xx∗‖ ≤ ‖vv∗ −X‖+ ‖Y ‖ ≤ 2δ.

Pick α so that |v∗x| = e−iαv∗x. Then

‖ v‖v‖ − e−iαx‖x‖ ‖2

= ‖v‖4 + ‖x‖4 − 2 ‖v‖ ‖x‖< e−iαv∗x
= ‖v‖4 + ‖x‖4 − 2 ‖v‖ ‖x‖ |v∗x| by def. of α

≤ ‖v‖4 + ‖x‖4 − 2 |v∗x|2 by Cauchy-Schwarz

= ‖vv∗ − xx∗‖2F
≤ 2‖vv∗ − xx∗‖2 since vv∗ − xx∗ has rank 2

≤ 8δ2.

The case (b) when x = x1
√
η1 is treated analogously.

The only difference is now that

Y =

n∑
j=2

xjηjx
∗
j .

A fortiori, ‖Y ‖ ≤ δ as well.

Part (a) of lemma 2 is applied with X/n in place of
X , and v1 in place of v. In that case, ‖v1‖ = 1. We
conclude the proof by noticing that v1 = x0√

n
, and that

the output x of the lifting method is normalized so that
x1 = x√

n
.

B. Proof of theorem 3

The proof is a simple argument of perturbation of
eigenvectors. We either assume εij = εji or enforce it by
symmetrizing the measurements. Define L as previously,
and notice that ‖L − L̃‖ ≤ ‖ε‖. Consider the eigen-
decompositions

Lvj = λjvj , L̃ṽj = λ̃j ṽj ,

with λ1 = 0. Form

L̃vj = λjvj + rj ,

with ‖rj‖ ≤ ‖ε‖. Take the dot product of the equation
above with ṽk to obtain

〈ṽk, rj〉 = (λ̃k − λj)〈ṽk, vj〉.

Let j = 1, and use λ1 = 0. We get

∑
k≥2

|〈ṽk, v1〉|2 ≤
∑
k≥2 |〈ṽk, r1〉|2

maxk≥2 |λ̃k|2
≤ ‖ε‖

2

λ̃22
.

As a result,

|〈ṽ1, v1〉|2 ≥ 1− ‖ε‖
2

λ̃22
.

Choose α so that 〈eiαṽ1, v1〉 = |〈ṽ1, v1〉|. Then

‖v1 − eiαṽ1‖2 = 2− 2<〈eiαṽ1, v1〉
= 2− 2|〈ṽ1, v1〉|
≤ 2− 2|〈ṽ1, v1〉|2

≤ 2
‖ε‖2

λ̃22
.

Conclude by multiplying through by n and taking a
square root.

C. Proof of theorem 4.

The proof follows the argument in section A; we
mostly highlight the modifications.

Let bi = |bi|eiφi . The Laplacian with phases is Lb =
ΛφL|b|Λ

∗
φ, with Λφ = diag(eiφi). Explicitly,

(Lb)ij =


∑
k:(i,k)∈E |bk|2 if i = j;

−bibj if (i, j) ∈ E;
0 otherwise,

The matrix Y = AXA∗ is compared to the rank-1
spectral projectors of Lb. We can write it as Y = bb∗+ ε̃
with ‖ε̃‖1 ≤ ‖ε‖1 + σ. The computation of 〈bb∗,Lb〉 is
now

〈bb∗,Lb〉 =
∑
i

bibiLii +
∑

(i,j)∈E

bibj Lij

= −
∑
i

|bi|2
∑

k:(i,k)∈E

|bk|2 +
∑

(i,j)∈E

bibj bibj

=
∑
i

|bi|2
− ∑

j:(i,j)∈E

|bj |2 +
∑

j:(i,j)∈E

|bj |2


= 0.
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The error term is now bounded (in a rather crude fashion)
as

|〈ε̃,Lb〉| ≤ ‖Lb‖∞‖ε̃‖1

≤

max
i

∑
j:(i,j)∈E

|bj |2
 ‖ε̃‖1 ≤ ‖b‖2‖ε̃‖1.

Upon normalizing Y to unit trace, we get

|〈 Y

tr(Y )
,Lb〉| ≤

‖b‖2‖ε̃‖1
‖b‖2 + tr(ε̃)

≤ 2‖ε̃‖1,

where the last inequality follows from

|tr(ε̃)| ≤ ‖ε̃‖1
≤ ‖ε‖1 + σ

≤ λ2/2 (assumption of the theorem)

≤ ‖b‖2/2 (by Gershgorin).

On the other hand, we expand

〈 Y

tr(Y )
,Lb〉 =

∑
j

cjλj ,

and use X � 0 ⇒ Y � 0 to get cj ≥ 0,
∑
j cj = 1.

Since 2‖ε̃‖1 ≤ λ2, we conclude as in section A that

〈 Y

tr(Y )
, v1v

∗
1〉 ≥ 1− 2‖ε̃‖1

λ2
,

hence

‖ Y

tr(Y )
− v1v∗1‖2F ≤ 4

‖ε̃‖1
λ2

. (16)

For X = A+Y (A∗)+, we get

‖ X

tr(Y )
− (A+v1)(A+v1)∗‖2F ≤ 4‖A+‖4 ‖ε̃‖1

λ2
.

Call the right-hand side δ2. Recall that v1 = b/‖b‖ hence
A+v1 = x0/‖b‖. Using tr(Y ) = ‖b‖2 + tr(ε̃), we get

‖X − x0x∗0‖ ≤ δ tr(Y ) +
‖x0‖2

‖b‖2
|tr(ε̃)|. (17)

Elementary calculations based on the bound ‖ε̃‖1 ≤
λ2/2 ≤ ‖b‖2/2 allow to further bound the above
quantity by (6+

√
2)

4 δ‖b‖2 . We can now call upon lemma
2, part (b), to obtain

‖x‖x‖ − eiαx0‖x0‖‖ ≤ 2
√

2
(6 +

√
2)

4
δ‖b‖2,

where x = x1
√
λ1(X) is the leading eigenvector of

X normalized so that ‖x‖2 = λ1(X) is the leading
eigenvalue of X . We use (17) one more time to bound

|λ1(X)− ‖x0‖2| ≤
(6 +

√
2)

4
δ‖b‖2,

hence

‖x0‖ ‖x− eiαx0‖
≤ ‖x‖x‖ − eiαx0‖x0‖+ ‖x‖ |‖x‖ − ‖x0‖|

≤ 2
√

2
(6 +

√
2)

4
δ‖b‖2 +

‖x‖
‖x‖+ ‖x0‖

|‖x‖2 − ‖x0‖2|

≤ (2
√

2 + 1)
(6 +

√
2)

4
δ‖b‖2.

Use ‖b‖ ≤ ‖A‖ ‖x0‖ and the formula for δ to conclude
that

‖x− eiαx0‖ ≤ C ‖x0‖κ(A)2

√
‖ε̃‖1
λ2

,

with C = 2(2
√

2 + 1) (6+
√
2)

4 ≤ 15.

D. Proof of theorem 5.

The proof proceeds as in the previous section, up to
equation (16). The rest of the reasoning is a close mirror
of the one in the previous section, with Y in place of
X , y in place of x, b in place of x0, and δ re-set to
2
√
‖ε̃‖1/λ2. We obtain

‖y − eiαb‖ ≤ 15 ‖b‖

√
‖ε̃‖1
λ2

.

We conclude by letting x = A+y, x0 = A+b, and using
‖b‖ ≤ ‖A‖‖x0‖.
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Fig. 6. Top: Setting of the inverse source experiment. Middle: least-
squares reconstruction. Bottom: interferometric reconstruction. This
example shows model robustness for focused imaging, in the specific
case of full aperture, when the underlying constant wave speed is
slightly wrong in the forward model.
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Fig. 7. Top: Setting of the inverse scattering experiment. Middle: least-
squares reconstruction. Bottom: interferometric reconstruction. This
example shows model robustness for focused imaging, in the specific
case of full aperture, when the receiver locations are slightly wrong in
the forward model.


