On Chebyshev interpolation of analytic functions

Laurent Demanet Department of Mathematics Massachusetts Institute of Technology Lexing Ying Department of Mathematics University of Texas at Austin

March 2010

Abstract

This paper reviews the notion of interpolation of a smooth function by means of Chebyshev polynomials, and the well-known associated results of spectral accuracy when the function is analytic. The rate of decay of the error is proportional to ρ^{-N} , where ρ is a bound on the elliptical radius of the ellipse in which the function has a holomorphic extension. An additional theorem is provided to cover the situation when only bounds on the derivatives of the function are known.

1 Review of Chebyshev interpolation

The Chebyshev interpolant of a function f on [-1,1] is a superposition of Chebyshev polynomials $T_n(x)$,

$$p(x) = \sum_{n=0}^{N} c_n T_n(x),$$

which interpolates f in the sense that $p(x_j) = f(x_j)$ on the Chebyshev grid $x_j = \cos(j\pi/N)$ for $j = 0, \ldots, N$.

The rationale for this choice of grid is that under the change of variable $x = \cos \theta$, the Chebyshev points become the equispaced samples $\theta_j = j\pi/N$. Unlike f, the function $g(\theta) = f(\cos \theta)$ is now 2π -periodic. Note that $g(\theta)$ inherits the smoothness of f(x). The samples $g(\theta_j)$ can be made to cover the whole interval $[0, 2\pi]$ if we extend the range of j to be $0 \le j \le 2N - 1$ (this corresponds to a mirror extension of the original samples.) The rationale for choosing Chebyshev polynomials is that $T_n(\cos \theta) = \cos(n\theta)$, so that Chebyshev interpolation of f from $f(x_j)$, with $0 \le j \le N - 1$, is nothing but interpolation by trigonometric polynomials of g from $g(\theta_j)$, with $0 \le j \le 2N - 1$.

This interpolant is built as follows. Start by submitting the 2N samples $g(\theta_j)$ to the discrete Fourier transform and back; this gives

$$g(\theta_j) = \sum_{n=-N}^{N-1} e^{in\theta_j} \tilde{g}_n.$$

The spectral interpolant $q(\theta)$ is built from these DFT coefficients as

$$q(\theta) = \sum_{n=-N}^{N''} e^{in\theta} \tilde{g}_n, \tag{1}$$

where the double prime next to the sum indicates that the first and last terms are halved. This precaution is important to ensure that the interpolant of a real-valued function is real-valued.

The sum (1) reduces to the inverse discrete Fourier transform when $\theta = \theta_j$, so that $q(\theta_j) = g(\theta_j)$. Notice that g is even, so only the cosines are needed in this expansion:

$$q(\theta) = 2\sum_{n=0}^{N} \cos(n\theta)\tilde{g}_n.$$

The Chebyshev interpolant of f(x) is then simply $p(x) = q(\arccos x)$. The coefficients are given explicitly as $c_n = 2\tilde{g}_n$ for $1 \le n \le N - 1$, or $c_n = \tilde{g}_n$ for n = 0, N.

Spectral and Chebyshev interpolation methods are not only attractive because the FFT can be used to speed up computations, but because they have remarkable accuracy properties.

2 Spectral accuracy of Chebyshev interpolation

The first result concerns the algebraic decay of the interpolation error when f can be differentiated a finite number of times, or super-algebraic decay when f is infinitely differentiable. We consider the native inner product for Chebyshev polynomials,

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)\frac{dx}{\sqrt{1-x^2}},$$

with respect to which they are orthogonal. The associated weighted L_w^2 norm

$$||f|| = \left(\int_{-1}^{1} |f(x)|^2 \frac{dx}{\sqrt{1-x^2}}\right)^{1/2}$$

is used throughout this paper to measure the error. (The corresponding measure in $\theta = \arccos x$ is Lebesgue.) The related Sobolev spaces are

$$W_w^s = \{ f \in L_w^2 : \|f\|_s^2 = \sum_{k=0}^s \|f^{(k)}\|^2 < \infty \}.$$

The following result is elementary. The ideas can be traced back at least to [4]. A proof of the result as stated is in [6].

Theorem 1. Let $f \in W_w^s$. Denote by p the N-point Chebyshev interpolant of f on [-1,1]. Then

$$||f - p|| \le C_s ||f||_s N^{-s}.$$

In [6], Tadmor pushed the analysis further to obtain exponential decay in the case when f is realanalytic. A convenient setting is to assume that f extends analytically in the complex plane, in the "Bernstein" ellipse E_{ρ} with foci ± 1 , center z = 0, and semi-axes

$$a_{\rho} = \frac{\rho + \rho^{-1}}{2}, \qquad b_{\rho} = \frac{\rho - \rho^{-1}}{2},$$

for some parameter $\rho > 1$ called the elliptical radius. Note that $a_{\rho} + b_{\rho} = \rho$. This ellipse has Cartesian equation

$$E_{\rho} = \{ z : \frac{(\operatorname{Re} z)^2}{a_{\rho}^2} + \frac{(\operatorname{Im} z)^2}{b_{\rho}^2} = 1 \},\$$

and parametric equation

$$E_{\rho} = \{ z = \frac{\rho e^{i\theta} + \rho^{-1} e^{-i\theta}}{2} : \theta \in [0, 2\pi) \}.$$

Theorem 2 (Tadmor [6]). Let f have an analytic extension in the open Bernstein ellipse E_{ρ_0} with elliptical radius $\rho_0 > 1$. For each $1 < \rho < \rho_0$, let

$$M(\rho) = \max_{z \in E_{\rho}} |f(z)|.$$

Denote by p the N-point Chebyshev interpolant of f on [-1,1]. Then for all $0 < \rho < \rho_0$,

$$||f - p|| \le C \frac{M(\rho)}{\rho - \rho^{-1}} \rho^{-N}$$

For the next result, which is possibly original, it is assumed instead that f is (Q, R) analytic, i.e., is real-analytic and obeys the smoothness condition

$$|f^{(n)}(x)| \le Q \ n! \ R^{-n}.$$
 (2)

As noted in [5], p. 378, f obeys (2) for $x \in \mathbb{R}$ if and only if it can be analytically extended in the strip $|\text{Im } z| \leq R$. This property holds because R is a lower bound on the convergence radius of the Taylor expansion of f at any point x. As a result it is a very natural class of analytic functions; Rudin denotes it by $C\{n!\}$.

We will only assume that f obeys (2) for $x \in [-1, 1]$, which results in a stadium-shaped analyticity region, as in Figure 1. Note that (Q, R) analyticity has already been used by the authors in [3, 2]. The main result is the following.

Theorem 3. Let f be (Q, R)-analytic on [-1, 1]. Denote by p the N-point Chebyshev interpolant of f on [-1, 1]. Assume $N \ge 1/(2R)$. Then

$$||f - p|| \le C Q N \left[1 + \frac{1}{R^2}\right]^{1/4} \left[R + \sqrt{R^2 + 1}\right]^{-N},$$
(3)

for some numerical constant C > 0.

A fortiori, the same bound holds for the weaker L^2 norm. The proof gives the value $\frac{5}{2}\sqrt{\frac{45e}{2}}$ for the numerical constant C; no attempt is made in this paper to find its sharp value. Note that $\left[R + \sqrt{R^2 + 1}\right]^{-N}$ corresponds to Tadmor's ρ^{-N} .

The error bound obeys the following asymptotic behaviors.

- As $R \to 0$, and if N less than or on the order of 1/R, then the error bound is large.
- As $R \to 0$, and if $N \gg 1/R$, then the error bound is roughly proportional to $NR^{-1/2}e^{-RN}$.
- As $R \to \infty$, then the error bound is roughly proportional to $N(2R)^{-N}$.

3 Proof of Theorem 3

As mentioned in Section 1, f and p are respectively obtained from g and q through the change of variables $x = \cos \theta$. The factor $1/(\sqrt{1-x^2})$ is precisely the Jacobian of this change of variables. Hence it suffices to prove that $||g - q||_2$ obeys the bound (3).

We start by listing the consequences of the smoothness condition (2). As is well-known, f has a unique analytic continuation as the Taylor series

$$f(z) = \sum_{n=0^{\infty}} \frac{f^{(n)}(x)}{n!} (z-x)^n,$$

Figure 1: The stadium (dashed line) is the region of analyticity of f. The ellipse (blue, solid line) is the largest inscribed "Bernstein" ellipse with foci at ± 1 .

which by (2) is manifestly convergent as soon as $|z - x| \leq R$. Since $x \in [-1, 1]$, the domain of analyticity is the "stadium" illustrated in Figure 1, without its boundary. This shape is a subset of the strip |Im z| < R.

Furthermore, for all $x \in [-1, 1]$ we have the bound

$$\begin{split} |f(z)| &\leq Q \sum_{n=0}^{\infty} \left(\frac{|z-x|}{R} \right)^n, \\ &\leq \frac{Q}{1-|z-x|R^{-1}}, \end{split}$$

which results in

$$|f(z)| \leq \begin{cases} \frac{Q}{1-|z+1|R^{-1}} & \text{if Re } z < -1; \\ -\frac{Q}{1-|\overline{I}\operatorname{Im} z|R^{-1}} & \text{if } -1 \leq \operatorname{Re} z \leq 1; \\ \frac{Q}{1-|z-1|R^{-1}} & \text{if Re } z > 1 \end{cases}$$
(4)

The periodic function $g(\theta) = f(\cos \theta)$ also admits an analytic extension, best expressed through the function h(z) such that $h(e^{i\theta}) = g(\theta)$. The result is the following lemma.

Lemma 1. Let $h(e^{i\theta}) = f(\cos \theta)$, and assume that f is (Q, R)-analytic. Then h has a unique analytic continuation in the open annulus $|z| < R + \sqrt{R^2 + 1} < |z|^{-1}$, and obeys the bound

$$|h(z)| \le \frac{Q}{1 - \frac{||z| - |z|^{-1}|}{2}R^{-1}}.$$
(5)

Proof of Lemma 1. The analytic extension h(z) of $h(e^{i\theta})$ is related to f(z) by the transformation

$$h(z) = f\left(\frac{z+z^{-1}}{2}\right). \tag{6}$$

Indeed, $h(e^{i\theta}) = f(\cos\theta)$, so the two expressions match when |z| = 1. There exists a neighborhood of |z| = 1 in which the right-hand side is obviously analytic, hence equal to h(z) by uniqueness. The rationale for this formula is the fact that $\cos\theta = \cos(i\log e^{i\theta})$, and $(z + z^{-1})/2$ is just another expression for $\cos(i\log z)$.

More can be said about the range of analyticity of h(z). The map $z \mapsto \zeta = (z + z^{-1})/2$ is a change from polar to elliptical coordinates [1]. It maps each circle $C_{\rho} = \{\rho e^{i\theta} : \theta \in [0, 2\pi)\}$ onto the ellipse E_{ρ} of parametric equation $\{(\rho e^{i\theta} + \rho^{-1}e^{-i\theta})/2 : \theta \in [0, 2\pi)\}$ introduced earlier. Notice that $|z| = \rho_0$ and $|z| = \rho_0^{-1}$ are mapped onto the same ellipse.

Figure 1 shows the open stadium of height 2R in which f is analytic, as well as the largest ellipse E_{ρ} inscribed in that stadium. Its parameter ρ obeys

$$|\rho - \rho^{-1}|/2 = R$$

corresponding to the case $\theta = \pm \pi/2$. Solving for ρ , we get

$$\rho = R + \sqrt{R^2 + 1}$$
 or $\rho = \frac{1}{R + \sqrt{R^2 + 1}}$

As a result, any z obeying $|z| < R + \sqrt{R^2 + 1} < |z|^{-1}$ corresponds to a point of analyticity of $f\left(\frac{z+z^{-1}}{2}\right)$, hence of h(z).

To see why the bound (5) holds, substitute $\zeta = (z + z^{-1})/2$ for z in the right-hand-side of (4). The vertical lines Re $\zeta = \pm 1$ in the ζ plane become cubic curves with equations $(\rho + \rho^{-1}) \cos \theta = \pm 2$ in the z-plane, where $z = \rho e^{i\theta}$. Two regimes must be contrasted:

• In the region $|\text{Re } \zeta| \leq 1$, we write

$$|\text{Im}(z+z^{-1})| = |\rho \sin \theta - \rho^{-1} \sin \theta| \le |\rho - \rho^{-1}|,$$

which leads to the bound (5) for h.

• Treating the region Re $\zeta > 1$ is only slightly more involved. It corresponds to the region $(\rho + \rho^{-1}) \cos \theta > 2$ in the z plane; we use this expression in the algebra below. We get

$$|z + z^{-1} - 2| = \left[\left((\rho + \rho^{-1}) \cos \theta - 2 \right)^2 + (\rho - \rho^{-1})^2 \sin^2 \theta \right]^{1/2} \\ \leq \left[\left((\rho + \rho^{-1}) \cos \theta - 2 \cos \theta \right)^2 + (\rho - \rho^{-1})^2 \sin^2 \theta \right]^{1/2}.$$

In order to conclude that (5) holds, this quantity should be less than or equal to $|\rho - \rho^{-1}|$. To this end, it suffices to show that

$$(\rho + \rho^{-1} - 2)^2 \le (\rho - \rho^{-1})^2, \quad \forall \rho > 0.$$

Expanding the squares shows that the expression above reduces to $\rho + \rho^{-1} \ge 2$, which is obviously true.

• The region Re $\zeta < -1$ is treated in a very analogous manner, and also yields (5).

The accuracy of trigonometric interpolation is now a standard consequence of the decay of Fourier series coefficient of g. The result below uses the particular smoothness estimate obtained in Lemma 1. The proof technique is essentially borrowed from [6].

Lemma 2. Let g be a real-analytic, 2π -periodic function of $\theta \in \mathbb{R}$. Define the function h of $z \in \{z : |z| = 1\}$ by $h(e^{i\theta}) = g(\theta)$, and assume that it extends analytically in the complex plane in the manner described by Lemma 1. Consider the trigonometric interpolant $q(\theta)$ of $g(\theta)$ from samples at $\theta_j = j\pi/N$, with j = 0, ..., 2N - 1. Assume $N \ge 1/(2R)$. Then

$$\|g - q\|_2 \le C Q N \left[1 + \frac{1}{R^2}\right]^{1/4} \left[R + \sqrt{R^2 + 1}\right]^{-N},\tag{7}$$

for some number C > 0.

Proof of Lemma 2. Write the Fourier series expansion of $g(\theta)$ as

$$g(\theta) = \sum_{n \in \mathbb{Z}} e^{in\theta} \hat{g}_n.$$
 (8)

A comparison of formulas (8) and (1) shows that two sources of error must be dealt with:

- the truncation error, because the sum over n is finite in (1); and
- the aliasing error, because $\tilde{g}_n \neq \hat{g}_n$.

It is well-known that \tilde{g}_n is a periodization of \hat{g}_n , in the sense that

$$\tilde{g}_n = \sum_{m \in \mathbb{Z}} \hat{g}_{n+2mN}.$$

This equation is (a variant of) the Poisson summation formula. As a result,

$$||g - q||_2^2 = \sum_{|n| \le N} ||\sum_{m \ne 0} \hat{g}_{n+2mN}||^2 + \sum_{|n| \ge N} ||\hat{g}_n||^2.$$
(9)

The decay of \hat{g}_n is quantified by considering that the Fourier series expansion of $g(\theta)$ is the restriction to $z = e^{i\theta}$ of the Laurent series

$$h(z) = \sum_{n \in \mathbb{Z}} \hat{g}_n z^n,$$

whereby the coefficients \hat{g}_n are also given by the complex contour integrals

$$\hat{g}_n = \frac{1}{2\pi i} \oint_{|z|=\rho} \frac{h(z)}{z^{n+1}} \, dz.$$
(10)

This formulation offers the freedom of choosing the radius ρ of the circle over which the integral is carried out, as long as this circle is in the region of analyticity of h(z).

Let us first consider the aliasing error – the first term in the right-hand side of (9). We follow [6] in writing

$$\sum_{m>0} \hat{g}_{n+2mN} = \sum_{m>0} \frac{1}{2\pi i} \oint_{|z|=\rho} \frac{h(z)}{z^{n+1+2mN}} dz,$$
$$= \frac{1}{2\pi i} \oint_{|z|=\rho} \frac{h(z)}{z^{n+1}(z^{2N}-1)} dz.$$

For the last step, it suffices to take $\rho > 1$ to ensure convergence of the Neumann series. As a result,

$$\left|\sum_{m>0} \hat{g}_{n+2mN}\right| \le \rho^{-n} \frac{1}{\rho^{2N} - 1} \max_{|z| = \rho} |h(z)|, \qquad \rho > 1.$$

The exact same bound holds for the sum over m < 0 if we integrate over $|z| = \rho^{-1} < 1$ instead. Notice that the bound (5) on h(z) is identical for ρ and ρ^{-1} .

Upon using (5) and summing over n, we obtain

$$\sum_{|n|\leq N}^{"} |\sum_{m\neq 0} \hat{g}_{n+2mN}|^2 \leq \left(\sum_{|n|\leq N}^{"} \rho^{2n}\right) \frac{4}{(\rho^{2N}-1)^2} \left[\frac{Q}{1-\frac{\rho-\rho^{-1}}{2}R^{-1}}\right]^2.$$
(11)

It is easy to show that the sum over n is majorized by $\rho^{2N} \frac{\rho + \rho^{-1}}{\rho - \rho^{-1}}$.

According to Lemma 1, the bound holds as long as $1 < \rho < R + \sqrt{R^2 + 1}$. The right-hand side in (11) will be minimized for a choice of ρ very close to the upper bound; a good approximation to the argument of the minimum is

$$\rho = \tilde{R} + \sqrt{\tilde{R}^2 + 1}, \qquad \tilde{R} = \frac{2N}{2N+1}R,$$

for which

$$\frac{1}{1-\frac{\rho-\rho^{-1}}{2}R^{-1}}=2N+1.$$

The right-hand side in (11) is therefore bounded by

$$4Q^2(2N+1) \frac{1}{(\rho^N - \rho^{-N})^2} \frac{\rho + \rho^{-1}}{\rho - \rho^{-1}}.$$

This expression can be further simplified by noticing that

$$\rho^N-\rho^{-N}\geq \frac{1}{2}\rho^N$$

holds when N is sufficiently large, namely $N \ge 1/(2\log_2 \rho)$. Observe that

$$\begin{split} \log_2 \rho &= \frac{\ln \left(\tilde{R} + \sqrt{\tilde{R}^2 + 1}\right)}{\ln 2} \\ &= \frac{1}{\ln 2} \operatorname{arcsinh}(\tilde{R}) = \frac{1}{\ln 2} \operatorname{arcsinh}\left(\frac{2N}{2N+1}R\right), \end{split}$$

so the large-N condition can be rephrased as

$$R \ge \frac{2N+1}{2N} \sinh\left(\frac{\ln 2}{2N}\right).$$

It is easy to check (for instance numerically) that the right hand-side in this expression is always less than 1/(2N) as long as $N \ge 2$. Hence it is a stronger requirement on N and R to impose $R \ge 1/(2N)$, i.e., $N \ge 1/(2R)$, as in the wording of the lemma.

The resulting factor $4\rho^{-2N}$ can be further bounded in terms of R as follows:

$$\rho = \tilde{R} + \sqrt{\tilde{R}^2 + 1} \ge \left(\frac{2N+1}{2N}\right) [R + \sqrt{R^2 + 1}],$$

 \mathbf{SO}

$$\begin{split} \rho^{-N} &\leq \left(\frac{2N+1}{2N}\right)^{-N} [R + \sqrt{R^2 + 1}]^{-N} \\ &\leq \left(\exp\frac{1}{2N}\right)^{-N} [R + \sqrt{R^2 + 1}]^{-N} \\ &= \sqrt{e} \left[R + \sqrt{R^2 + 1}\right]^{-N}. \end{split}$$

We also bound the factor $\frac{\rho+\rho^{-1}}{\rho-\rho^{-1}}$ – the eccentricity of the ellipse – in terms of R by following a similar sequence of steps:

$$\frac{\rho + \rho^{-1}}{\rho - \rho^{-1}} = \frac{2\sqrt{\tilde{R}^2 + 1}}{2\tilde{R}}$$
$$\leq \frac{2N + 1}{2N}\sqrt{1 + \frac{1}{R^2}}$$
$$\leq \frac{5}{4}\sqrt{1 + \frac{1}{R^2}}.$$

After gathering the different factors, the bound (11) becomes

$$\sum_{|n| \le N} |\sum_{m \ne 0} \hat{g}_{n+2mN}|^2 \le 20 \ e \ Q^2 \ (2N+1)^2 \ \sqrt{1 + \frac{1}{R^2}} \ \left[R + \sqrt{R^2 + 1} \right]^{-2N}.$$
(12)

We now switch to the analysis of the truncation error, i.e., the second term in (9). By the same type of argument as previously, individual coefficients are bounded as

$$|\hat{g}_n| \le \left[\max(\rho, \rho^{-1})\right]^{-n} \frac{Q}{1 - \frac{\rho - \rho^{-1}}{2}R^{-1}}.$$

The sum over n is decomposed into two contributions, for $n \ge N$ and $n \le -N$. Both give rise to the same value,

$$\sum_{n \ge N} \rho^{-2n} = \frac{\rho^{-2N}}{1 - \rho - 2}$$

We let ρ take on the same value as previously. Consequently, $\frac{Q}{1-\frac{\rho-\rho^{-1}}{2}R^{-1}} = 2N+1$, and, as previously,

$$\rho^{-2N} \le e \, [R + \sqrt{R^2 + 1}]^{-2N}.$$

We also obtain

$$\frac{1}{1-\rho^{-2}} \le \frac{\rho+\rho^{-1}}{\rho-\rho^{-1}} \le \frac{5}{4}\sqrt{1+\frac{1}{R^2}}.$$

As a result, the overall bound is

$$\sum_{|n|\geq N} |\hat{g}_n|^2 \leq \frac{5}{2} e \ Q^2 \ (2N+1)^2 \ \sqrt{1+\frac{1}{R^2}} \ \left[R+\sqrt{R^2+1}\right]^{-2N}.$$
(13)

We obtain (7) upon summing (12) and (13), and using $2N + 1 \le 5N/2$.

References

- [1] J. Boyd, Chebyshev and Fourier spectral methods Dover Publications, Mineola, 2001.
- [2] E. Candès, L. Demanet, L. Ying, Fast Computation of Fourier Integral Operators SIAM J. Sci. Comput. 29:6 (2007) 2464–2493.
- [3] E. Candès, L. Demanet, L. Ying, A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators SIAM Multiscale Model. Simul. 7:4 (2009) 1727–1750
- [4] L. Fox and I. B. Parker, *Chebyshev polynomials in numerical analysis* Oxford University Press, Oxford, UK, 1968.
- [5] W. Rudin, Real and Complex analysis, 3rd ed. McGraw-Hill ed., Singapore, 1987.
- [6] E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods SIAM J. Num. Analysis, 23:1 (1986) 1–10
- [7] N. Trefethen, Spectral methods in Matlab SIAM ed., Philadelphia, 2000.