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Abstract

This paper reviews the notion of interpolation of a smooth function by means of Chebyshev
polynomials, and the well-known associated results of spectral accuracy when the function is
analytic. The rate of decay of the error is proportional to ρ−N , where ρ is a bound on the
elliptical radius of the ellipse in which the function has a holomorphic extension. An additional
theorem is provided to cover the situation when only bounds on the derivatives of the function
are known.

1 Review of Chebyshev interpolation

The Chebyshev interpolant of a function f on [−1, 1] is a superposition of Chebyshev polynomials
Tn(x),

p(x) =
N∑
n=0

cnTn(x),

which interpolates f in the sense that p(xj) = f(xj) on the Chebyshev grid xj = cos(jπ/N) for
j = 0, . . . , N .

The rationale for this choice of grid is that under the change of variable x = cos θ, the Chebyshev
points become the equispaced samples θj = jπ/N . Unlike f , the function g(θ) = f(cos θ) is now
2π-periodic. Note that g(θ) inherits the smoothness of f(x). The samples g(θj) can be made to
cover the whole interval [0, 2π] if we extend the range of j to be 0 ≤ j ≤ 2N − 1 (this corresponds
to a mirror extension of the original samples.) The rationale for choosing Chebyshev polynomials
is that Tn(cos θ) = cos(nθ), so that Chebyshev interpolation of f from f(xj), with 0 ≤ j ≤ N − 1,
is nothing but interpolation by trigonometric polynomials of g from g(θj), with 0 ≤ j ≤ 2N − 1.

This interpolant is built as follows. Start by submitting the 2N samples g(θj) to the discrete Fourier
transform and back; this gives

g(θj) =
N−1∑
n=−N

einθj g̃n.

The spectral interpolant q(θ) is built from these DFT coefficients as

q(θ) =
N∑′′

n=−N
einθg̃n, (1)

where the double prime next to the sum indicates that the first and last terms are halved. This
precaution is important to ensure that the interpolant of a real-valued function is real-valued.
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The sum (1) reduces to the inverse discrete Fourier transform when θ = θj , so that q(θj) = g(θj).
Notice that g is even, so only the cosines are needed in this expansion:

q(θ) = 2
N∑′′

n=0

cos (nθ)g̃n.

The Chebyshev interpolant of f(x) is then simply p(x) = q(arccosx). The coefficients are given
explicitly as cn = 2g̃n for 1 ≤ n ≤ N − 1, or cn = g̃n for n = 0, N .
Spectral and Chebyshev interpolation methods are not only attractive because the FFT can be
used to speed up computations, but because they have remarkable accuracy properties.

2 Spectral accuracy of Chebyshev interpolation

The first result concerns the algebraic decay of the interpolation error when f can be differentiated
a finite number of times, or super-algebraic decay when f is infinitely differentiable.
We consider the native inner product for Chebyshev polynomials,

〈f, g〉 =
∫ 1

−1
f(x)g(x)

dx√
1− x2

,

with respect to which they are orthogonal. The associated weighted L2
w norm

‖f‖ =
(∫ 1

−1
|f(x)|2 dx√

1− x2

)1/2

is used throughout this paper to measure the error. (The corresponding measure in θ = arccosx is
Lebesgue.) The related Sobolev spaces are

W s
w = {f ∈ L2

w : ‖f‖2s =
s∑

k=0

‖f (k)‖2 <∞}.

The following result is elementary. The ideas can be traced back at least to [4]. A proof of the
result as stated is in [6].

Theorem 1. Let f ∈W s
w. Denote by p the N -point Chebyshev interpolant of f on [−1, 1]. Then

‖f − p‖ ≤ Cs ‖f‖s N−s.

In [6], Tadmor pushed the analysis further to obtain exponential decay in the case when f is real-
analytic. A convenient setting is to assume that f extends analytically in the complex plane, in
the “Bernstein” ellipse Eρ with foci ±1, center z = 0, and semi-axes

aρ =
ρ+ ρ−1

2
, bρ =

ρ− ρ−1

2
,

for some parameter ρ > 1 called the elliptical radius. Note that aρ + bρ = ρ. This ellipse has
Cartesian equation

Eρ = {z :
(Re z)2

a2
ρ

+
(Im z)2

b2ρ
= 1},

and parametric equation

Eρ = {z =
ρeiθ + ρ−1e−iθ

2
: θ ∈ [0, 2π)}.
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Theorem 2 (Tadmor [6]). Let f have an analytic extension in the open Bernstein ellipse Eρ0 with
elliptical radius ρ0 > 1. For each 1 < ρ < ρ0, let

M(ρ) = max
z∈Eρ

|f(z)|.

Denote by p the N -point Chebyshev interpolant of f on [−1, 1]. Then for all 0 < ρ < ρ0,

‖f − p‖ ≤ C M(ρ)
ρ− ρ−1

ρ−N .

For the next result, which is possibly original, it is assumed instead that f is (Q,R) analytic, i.e.,
is real-analytic and obeys the smoothness condition

|f (n)(x)| ≤ Q n! R−n. (2)

As noted in [5], p. 378, f obeys (2) for x ∈ R if and only if it can be analytically extended in the
strip |Im z| ≤ R. This property holds because R is a lower bound on the convergence radius of the
Taylor expansion of f at any point x. As a result it is a very natural class of analytic functions;
Rudin denotes it by C{n!}.
We will only assume that f obeys (2) for x ∈ [−1, 1], which results in a stadium-shaped analyticity
region, as in Figure 1. Note that (Q,R) analyticity has already been used by the authors in [3, 2].
The main result is the following.

Theorem 3. Let f be (Q,R)-analytic on [−1, 1]. Denote by p the N -point Chebyshev interpolant
of f on [−1, 1]. Assume N ≥ 1/(2R). Then

‖f − p‖ ≤ C Q N

[
1 +

1
R2

]1/4 [
R+

√
R2 + 1

]−N
, (3)

for some numerical constant C > 0.

A fortiori, the same bound holds for the weaker L2 norm. The proof gives the value 5
2

√
45e
2 for

the numerical constant C; no attempt is made in this paper to find its sharp value. Note that[
R+
√
R2 + 1

]−N
corresponds to Tadmor’s ρ−N .

The error bound obeys the following asymptotic behaviors.

• As R→ 0, and if N less than or on the order of 1/R, then the error bound is large.

• As R→ 0, and if N � 1/R, then the error bound is roughly proportional to NR−1/2e−RN .

• As R→∞, then the error bound is roughly proportional to N(2R)−N .

3 Proof of Theorem 3

As mentioned in Section 1, f and p are respectively obtained from g and q through the change of
variables x = cos θ. The factor 1/(

√
1− x2) is precisely the Jacobian of this change of variables.

Hence it suffices to prove that ‖g − q‖2 obeys the bound (3).

We start by listing the consequences of the smoothness condition (2). As is well-known, f has a
unique analytic continuation as the Taylor series

f(z) =
∑
n=0∞

f (n)(x)
n!

(z − x)n,
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Figure 1: The stadium (dashed line) is the region of analyticity of f . The ellipse (blue, solid line)
is the largest inscribed “Bernstein” ellipse with foci at ±1.

which by (2) is manifestly convergent as soon as |z − x| ≤ R. Since x ∈ [−1, 1], the domain of
analyticity is the “stadium” illustrated in Figure 1, without its boundary. This shape is a subset
of the strip |Im z| < R.
Furthermore, for all x ∈ [−1, 1] we have the bound

|f(z)| ≤ Q
∞∑
n=0

(
|z − x|
R

)n
,

≤ Q

1− |z − x|R−1
,

which results in

|f(z)| ≤


Q

1−|z+1|R−1 if Re z < −1;
− Q

1−|Imz|R−1
if −1 ≤ Re z ≤ 1;

Q
1−|z−1|R−1 if Re z > 1

(4)

The periodic function g(θ) = f(cos θ) also admits an analytic extension, best expressed through
the function h(z) such that h(eiθ) = g(θ). The result is the following lemma.

Lemma 1. Let h(eiθ) = f(cos θ), and assume that f is (Q,R)-analytic. Then h has a unique
analytic continuation in the open annulus |z| < R+

√
R2 + 1 < |z|−1, and obeys the bound

|h(z)| ≤ Q

1− ||z|−|z|
−1|

2 R−1
. (5)

Proof of Lemma 1. The analytic extension h(z) of h(eiθ) is related to f(z) by the transformation

h(z) = f

(
z + z−1

2

)
. (6)

Indeed, h(eiθ) = f(cos θ), so the two expressions match when |z| = 1. There exists a neighborhood
of |z| = 1 in which the right-hand side is obviously analytic, hence equal to h(z) by uniqueness.
The rationale for this formula is the fact that cos θ = cos(i log eiθ), and (z + z−1)/2 is just another
expression for cos(i log z).
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More can be said about the range of analyticity of h(z). The map z 7→ ζ = (z+ z−1)/2 is a change
from polar to elliptical coordinates [1]. It maps each circle Cρ = {ρeiθ : θ ∈ [0, 2π)} onto the ellipse
Eρ of parametric equation {(ρeiθ+ρ−1e−iθ)/2 : θ ∈ [0, 2π)} introduced earlier. Notice that |z| = ρ0

and |z| = ρ−1
0 are mapped onto the same ellipse.

Figure 1 shows the open stadium of height 2R in which f is analytic, as well as the largest ellipse
Eρ inscribed in that stadium. Its parameter ρ obeys

|ρ− ρ−1|/2 = R,

corresponding to the case θ = ±π/2. Solving for ρ, we get

ρ = R+
√
R2 + 1 or ρ =

1
R+
√
R2 + 1

.

As a result, any z obeying |z| < R +
√
R2 + 1 < |z|−1 corresponds to a point of analyticity of

f
(
z+z−1

2

)
, hence of h(z).

To see why the bound (5) holds, substitute ζ = (z+ z−1)/2 for z in the right-hand-side of (4). The
vertical lines Re ζ = ±1 in the ζ plane become cubic curves with equations (ρ+ ρ−1) cos θ = ±2 in
the z-plane, where z = ρeiθ. Two regimes must be contrasted:

• In the region |Re ζ| ≤ 1, we write

|Im(z + z−1)| = |ρ sin θ − ρ−1 sin θ| ≤ |ρ− ρ−1|,

which leads to the bound (5) for h.

• Treating the region Re ζ > 1 is only slightly more involved. It corresponds to the region
(ρ+ ρ−1) cos θ > 2 in the z plane; we use this expression in the algebra below. We get

|z + z−1 − 2| =
[(

(ρ+ ρ−1) cos θ − 2
)2 + (ρ− ρ−1)2sin2θ

]1/2
≤
[(

(ρ+ ρ−1) cos θ − 2 cos θ
)2 + (ρ− ρ−1)2sin2θ

]1/2
.

In order to conclude that (5) holds, this quantity should be less than or equal to |ρ − ρ−1|.
To this end, it suffices to show that

(ρ+ ρ−1 − 2)2 ≤ (ρ− ρ−1)2, ∀ρ > 0.

Expanding the squares shows that the expression above reduces to ρ + ρ−1 ≥ 2, which is
obviously true.

• The region Re ζ < −1 is treated in a very analogous manner, and also yields (5).

The accuracy of trigonometric interpolation is now a standard consequence of the decay of Fourier
series coefficient of g. The result below uses the particular smoothness estimate obtained in Lemma
1. The proof technique is essentially borrowed from [6].
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Lemma 2. Let g be a real-analytic, 2π-periodic function of θ ∈ R. Define the function h of
z ∈ {z : |z| = 1} by h(eiθ) = g(θ), and assume that it extends analytically in the complex plane
in the manner described by Lemma 1. Consider the trigonometric interpolant q(θ) of g(θ) from
samples at θj = jπ/N , with j = 0, . . . , 2N − 1. Assume N ≥ 1/(2R). Then

‖g − q‖2 ≤ C Q N

[
1 +

1
R2

]1/4 [
R+

√
R2 + 1

]−N
, (7)

for some number C > 0.

Proof of Lemma 2. Write the Fourier series expansion of g(θ) as

g(θ) =
∑
n∈Z

einθĝn. (8)

A comparison of formulas (8) and (1) shows that two sources of error must be dealt with:

• the truncation error, because the sum over n is finite in (1); and

• the aliasing error, because g̃n 6= ĝn.

It is well-known that g̃n is a periodization of ĝn, in the sense that

g̃n =
∑
m∈Z

ĝn+2mN .

This equation is (a variant of) the Poisson summation formula. As a result,

‖g − q‖22 =
∑′′

|n|≤N

|
∑
m6=0

ĝn+2mN |2 +
∑′′

|n|≥N

|ĝn|2. (9)

The decay of ĝn is quantified by considering that the Fourier series expansion of g(θ) is the restriction
to z = eiθ of the Laurent series

h(z) =
∑
n∈Z

ĝnz
n,

whereby the coefficients ĝn are also given by the complex contour integrals

ĝn =
1

2πi

∮
|z|=ρ

h(z)
zn+1

dz. (10)

This formulation offers the freedom of choosing the radius ρ of the circle over which the integral is
carried out, as long as this circle is in the region of analyticity of h(z).
Let us first consider the aliasing error – the first term in the right-hand side of (9). We follow [6]
in writing ∑

m>0

ĝn+2mN =
∑
m>0

1
2πi

∮
|z|=ρ

h(z)
zn+1+2mN

dz,

=
1

2πi

∮
|z|=ρ

h(z)
zn+1(z2N − 1)

dz.

For the last step, it suffices to take ρ > 1 to ensure convergence of the Neumann series. As a result,

|
∑
m>0

ĝn+2mN | ≤ ρ−n
1

ρ2N − 1
max
|z|=ρ

|h(z)|, ρ > 1.
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The exact same bound holds for the sum over m < 0 if we integrate over |z| = ρ−1 < 1 instead.
Notice that the bound (5) on h(z) is identical for ρ and ρ−1.
Upon using (5) and summing over n, we obtain

∑′′

|n|≤N

|
∑
m 6=0

ĝn+2mN |2 ≤

∑′′

|n|≤N

ρ2n

 4
(ρ2N − 1)2

[
Q

1− ρ−ρ−1

2 R−1

]2

. (11)

It is easy to show that the sum over n is majorized by ρ2N ρ+ρ−1

ρ−ρ−1 .

According to Lemma 1, the bound holds as long as 1 < ρ < R +
√
R2 + 1. The right-hand side in

(11) will be minimized for a choice of ρ very close to the upper bound; a good approximation to
the argument of the minimum is

ρ = R̃+
√
R̃

2
+ 1, R̃ =

2N
2N + 1

R,

for which
1

1− ρ−ρ−1

2 R−1
= 2N + 1.

The right-hand side in (11) is therefore bounded by

4Q2(2N + 1)
1

(ρN − ρ−N )2
ρ+ ρ−1

ρ− ρ−1
.

This expression can be further simplified by noticing that

ρN − ρ−N ≥ 1
2
ρN

holds when N is sufficiently large, namely N ≥ 1/(2 log2 ρ). Observe that

log2 ρ =
ln
(
R̃+

√
R̃

2
+ 1
)

ln 2

=
1

ln 2
arcsinh(R̃) =

1
ln 2

arcsinh
(

2N
2N + 1

R

)
,

so the large-N condition can be rephrased as

R ≥ 2N + 1
2N

sinh
(

ln 2
2N

)
.

It is easy to check (for instance numerically) that the right hand-side in this expression is always
less than 1/(2N) as long as N ≥ 2. Hence it is a stronger requirement on N and R to impose
R ≥ 1/(2N), i.e., N ≥ 1/(2R), as in the wording of the lemma.
The resulting factor 4ρ−2N can be further bounded in terms of R as follows:

ρ = R̃+
√
R̃

2
+ 1 ≥

(
2N + 1

2N

)
[R+

√
R2 + 1],
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so

ρ−N ≤
(

2N + 1
2N

)−N
[R+

√
R2 + 1]−N

≤
(

exp
1

2N

)−N
[R+

√
R2 + 1]−N

=
√
e [R+

√
R2 + 1]−N .

We also bound the factor ρ+ρ−1

ρ−ρ−1 – the eccentricity of the ellipse – in terms of R by following a
similar sequence of steps:

ρ+ ρ−1

ρ− ρ−1
=

2
√
R̃

2
+ 1

2R̃

≤ 2N + 1
2N

√
1 +

1
R2

≤ 5
4

√
1 +

1
R2

.

After gathering the different factors, the bound (11) becomes

∑′′

|n|≤N

|
∑
m 6=0

ĝn+2mN |2 ≤ 20 e Q2 (2N + 1)2
√

1 +
1
R2

[
R+

√
R2 + 1

]−2N
. (12)

We now switch to the analysis of the truncation error, i.e., the second term in (9). By the same
type of argument as previously, individual coefficients are bounded as

|ĝn| ≤
[
max(ρ, ρ−1)

]−n Q

1− ρ−ρ−1

2 R−1
.

The sum over n is decomposed into two contributions, for n ≥ N and n ≤ −N . Both give rise to
the same value, ∑

n≥N
ρ−2n =

ρ−2N

1− ρ−2
.

We let ρ take on the same value as previously. Consequently, Q

1− ρ−ρ−1

2
R−1

= 2N + 1, and, as

previously,
ρ−2N ≤ e [R+

√
R2 + 1]−2N .

We also obtain
1

1− ρ−2
≤ ρ+ ρ−1

ρ− ρ−1
≤ 5

4

√
1 +

1
R2

.

As a result, the overall bound is

∑
|n|≥N

|ĝn|2 ≤
5
2
e Q2 (2N + 1)2

√
1 +

1
R2

[
R+

√
R2 + 1

]−2N
. (13)

We obtain (7) upon summing (12) and (13), and using 2N + 1 ≤ 5N/2.
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