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Abstract. In spite of an extensive literature on fast algorithms for synthetic aperture radar (SAR) imaging,
it is not currently known if it is possible to accurately form an image from N data points in provable
near-linear time complexity. This paper seeks to close this gap by proposing an algorithm which runs in
complexity O(N log N log(1/ǫ)) without making the far-field approximation or imposing the beampattern
approximation required by time-domain backprojection, with ǫ the desired pixelwise accuracy. It is based
on the butterfly scheme, which unlike the FFT works for vastly more general oscillatory integrals than
the discrete Fourier transform. A complete error analysis is provided: the rigorous complexity bound has
additional powers of log N and log(1/ǫ) that are not observed in practice.
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1 Introduction

1.1 Setup

Synthetic-aperture radar (SAR) is an imaging modality that produces images of a scene from measurements
of scattered electromagnetic waves. Pulses of microwaves are sent from an antenna aboard an airplane or a
satellite, scattered by objects on the surface of the Earth, and recorded by the same (or a different) antenna.
The imaging problem consists in recovering a reflectivity profile that explains the recorded pulse-echo data.

• Image space is indexed by x = (x, y) ∈ R2, the horizontal coordinates. The scatterers are assumed
to be at a known elevation z = h(x, y), so we have the embedding xT = ((x, y), h(x, y)) ∈ R3. The
reflectivity profile is a function m(x) whose magnitude indicates the strength of the reflection by the
object at xT , as an impedance contrast for instance.

• Data space is indexed by ω, the frequency of the recorded signal, and s, a parameter that defines the
position of the antenna through a function γ(s) ∈ R3. Data are given by a function d(ω, s), whose value
is the result of a measurement of the strength of the recorded signal at angular frequency ω = 2πf ,
when the antenna is at γ(s).
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Under very general and widely accepted assumptions1, this imaging map is an oscillatory integral. We make
three additional but unessential assumptions that can easily be removed: 1) monostatic SAR in which the
transmitter antenna is also the receiver, 2) no consideration of the orientation of the plane, and 3) the
phase-center approximation, in which the antenna is far enough from the targets that it is considered as a
point. Imaging is then done by some “generalized” filtered backprojection:

m(x) =

∫

Ω

e−2iω|γ(s)−xT |/cB(ω, s,x)d(ω, s) dsdω, (1)

where B(ω, s,x) is an amplitude function, and xT = (x1, x2, h(x1, x2)) is the target point. We will comment
later on the backprojection interpretation. See [14] for the justification of this formula. The figure below
illustrates some of the notations.

Figure 1: The SAR imaging setup

Here Ω is the acquisition manifold, normally a rectangle [ωmin, ωmax]×[s1, s2]. The amplitude factor B(ω, s, x)
is chosen so that the formula above is a good approximate inverse to the forward/modeling/reprojection
operator

d(ω, s) =

∫
e2iω|γ(s)−xT |/cA(ω, s, x)m(x) dx1dx2. (2)

In this integral, the amplitude factor A(ω, s, x) is

A(ω, s, x) = −ω2P (ω)
J(ω, ̂xT − γ(s))W (ω, ̂xT − γ(s))

(4π|xT − γ(s)|2) ,

where P (ω) is the transfer function of the pulse, and J and W are the respective antenna beam patterns at
transmission and reception. The hat over a vector denotes unit length normalization. The corresponding
amplitude B for imaging is cumbersome to write precisely without introducing the so-called Stolt change of
variables; suffice it to say that

B =
χ

AdB
,

where A is the amplitude above, dB is the so-called Beylkin determinant, and χ is an ad-hoc cutoff that
prevents division by zero. The details are in [14], but they do not matter at this level of exposition.

It is difficult to form a large image by the integral (1) in real-time with a single instruction thread, hence
the need for fast algorithms. That is the price to pay for opening up the beam and leveraging synthetic
aperture in order to get a good resolution. Contrast this situation to phased-array transducer systems with
narrow beams used in low-resolution medical ultrasound imaging, where imaging at 20 frames per second is
commonplace, but where no such mathematical transform as (1) is needed.

The contribution of this paper is to propose a fast and accurate way of evaluating oscillatory integrals such
as (1). We start by reviewing the existing algorithms and their range of applicability.

1Single scattering in the Born approximation, scalar wavefields, no dispersion, no attempt at addressing three-dimensional
effects such as shadowing and layover, start-stop setup, no attempt at estimating target motion. This is the setup in [14].
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1.2 Existing algorithms

Denote by ∆ω = ωmax − ωmin the bandwidth of the measurements. For simplicity, we will assume that the
bandwidth is on the same order of magnitude as the representative “carrier” frequency ω0 ≃ (ωmin+ωmax)/2,
so we have broadband measurements.

The Nyquist-Shannon sampling rate should be respected both in image space and in data space.

• In image space, we expect variations on the order of the wavelength c/ω0 in both directions2, and the
scene to be imaged has sidelength L, so the total number of pixels is proportional to L2ω2

0/c2.

• In data space, a frequency grid spacing of O(c/L) is called for to access distances on the order of L,
so we need O(ω0L/c) samples. The distance between pulses should be on the order of the wavelength
O(c/ω0) to attain the same wavelength resolution on the ground, so we need O(ω0L/c) samples in slow
time as well. So the total number of data points is proportional to L2ω2

0/c2.

The complexity of specifying either a dataset, called N , is therefore proportional to the complexity of
specifying an image, and increases quadratically in the frequency ω0:

N = O(L2ω2
0/c2).

It is the scaling of the complexity of the imaging algorithm as a function of this parameter N which is of
interest. The “naive algorithm” consists in performing the direct summation from a quadrature of (1). It
has complexity O(N2).

Traditionally, it is only in contexts where the problem formulation is simplified that designing faster algo-
rithms is possible. Two levels of simplification are popular in the literature:

1. The separability assumption B(ω, s, x) = P (ω)Q(s, x). This assumption only makes sense if the
antenna beam patterns are independent of frequency. In this setting, we may evaluate equation (1) by
the following sequence of steps: for each s, multiply the data by 1/P (ω), perform a Fourier transform in
ω evaluated at 2|γ(s)−xT |/c, and multiply by Q(s, x). Iterate and sum over s. This procedure results
in an algorithm of complexity O(N3/2). It is called filtered backprojection (proper), because it can be

seen as integration along curves of equal range when expressed as acting on data d̂(t, s) of time t. One
would also speak of a generalized Radon transform [4]. The computation of the remaining sum over s
can be further simplified by an ingenious trick of multiscale (computational) beamforming in certain
settings. The resulting class of algorithms has come to be known as “fast backprojection” (FBP). It
includes work by Nilsson and Andersson [27] and Yegulalp [37] on computation of circular averages
(monostatic SAR), and by Ding and Munson on computation of elliptical averages (bistatic SAR) [18].
A subsequent contribution by Ulander, Hellsten, and Stenström [35] covered a more general imaging
setting, but still within the limitation of an omnidirectional antenna, flat topography, and perturbative
deviations from a linear track. Most of these papers operate in the O(N log N) complexity regime yet
still seem to suffer from accuracy concerns. It is unclear at this point whether a pointwise or mean-
square error estimate would hold for any variant of fast backprojection.

2. The far-field assumption ‖γ(s)− xT ‖ ≃ ‖γ(s)‖− x̂T · γ(s). This further simplification makes sense
if the target is so far from the antenna that the circles of equal distance can be treated as straight
lines, like in spotlight SAR. In this setting equation (1) becomes a 2D Fourier transform, albeit not on
a uniform grid [26]. In the time domain, we would speak of a Radon transform instead of a generalized
Radon transform. The USFFT method of Dutt and Rokhlin [19] and its variants [5, 10] apply to this
problem and yield algorithms of complexity O(N log N). The Polar Format Algorithm (PFA) [36],
which interpolates the data from polar raster onto a rectilinear grid, is also a reasonable approach. A
comparison between PFA, USFFT, and NUFFT techniques for SAR is given in Andersson et al [1].
Fast backprojection algorithms were originally developed for the Radon transform in the tomographic
setting by Basu and Bresler [3] and Boag, Bresler, and Michielssen [2], and then adapted to monostatic
SAR in the far field regime by Xiao, Munson, Basu, and Bresler [40]. (As discussed earlier, this line of
work on FBP continued without the far-field approxmation at least in [18, 35].)

2This can be refined by considering range direction and cross-range direction, in the case of narrowband measurements.
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It should be noted that ultrasound tomography (a.k.a. diffraction tomography) is algorithmically similar
to SAR in the far-field regime. Tomographic data can be interpreted as unequally-spaced samples in the
Fourier domain via the projection-slide theorem, both in diffraction tomography and in far-field SAR [26].
Fast algorithms for ultrasound tomography fall into the same two categories as above, namely FFT-based
reconstruction [9] and fast backprojection [17].

In contrast, this paper presents a fast “butterfly” algorithm good for much more general radar setups. None
of the assumptions above are made; only minimal smoothness properties of the functions γ(s) and B(ω, s, x)
are required. In fact, the butterfly scheme is intrinsically robust and we anticipate that it would easily
accommodate refinements such as multistatic SAR (several sources and antennas), or taking into account
the orientation of the antenna via the pitch, roll and yaw angles as measured by the Inertial Navigation
System (INS).

The main idea behind the butterfly scheme is that of low-rank interaction. This idea conveys a very important
and general principle of quantification of the “information content” in high-frequency scattering.

1.3 Low-rank interactions

The phase center of an antenna is the point γ(s) introduced earlier, about which the antenna beam patterns
are constructed as functions of angular frequency ω direction x̂ − γ. It draws its name from the fact that a
more accurate representation of the radiation field from an antenna Γ is (we drop the s dependence of γ for
the time being.)

u(x, ω) =

∫

Γ

eik|x−y|

4π|x − y|j(y, ω) dSy,

≃ eik|x−γ|

4π|x − γ|

∫

Γ

e−ik(x̂−γ)·yj(y, ω) dSy,

=:
eik|x−γ|

4π|x − γ|J(ω, x̂ − γ) (ω = kc),

hence γ should be chosen as a good “center” for the approximately circular phase lines of u(x, ω). Here
j(y, ω) is a scalar counterpart of the current density on the antenna3. To pass to the second line the well-
known far-field approximation |x − γ| ≫ |y − γ| was used. While the full surface integral over the antenna
is impractical for radar imaging, this phase center reduction has the advantage of presenting the antenna
beam patterns as functions on the sphere of outgoing directions. (A similar argument can be made for the
receiving antenna.)

Another way of reducing the complexity of the integral, without making the far-field approximation, consists
in finding several equivalent sources γi, with weights Ji; as well as several regions A such that

u(x, ω) =
∑

i

eik|x−γi|

4π|x − γi|
Ji + O(ǫ), x ∈ A.

Here, the error is under control and denoted ǫ. In other words, if we are willing to restrict ourselves to a
certain region A of space, how many “phase centers” γi indexed by i are really needed to synthesize the
radiation field to prescribed accuracy? A simple numerical experiment shown in the Figure below recovers
the radiation field created by a Y-shaped antenna, observed in the box in the lower-right corner, for any
possible current distribution, using only 9 equivalent points on the antenna. They are the red dots, and their
choice guarantees an accuracy of 1 percent.

3We apologize in passing to the engineers who are used to j =
√

−1.
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Figure 2: Radiation field from an antenna. The interactions between the antenna and the box surrounded
by a dashed line is low. Caveat: for clarity of the display the radiation field is based on the kernel eik|x−y|,
instead of the fundamental solution eik|x−y|/(4π|x − y|).

This numerical experiment is a simple exercise in linear algebra, solved by QR with pivoting, or more generally
with an interpolative interpolation [23]. Ultimately, the numerical experiment is successful because of the
low-rank factorization property of the Green’s function when y is restricted to the antenna and x is restricted
to the box A. The underlying fundamental property of Green’s functions is that factorization is guaranteed
to work, with a low rank independent of ω, if the following adimensional number is low,

F =
diam(Γ) × diam(A)

λ × d(Γ,A)
.

We may call F an “algorithmic Fresnel number” in analogy with the discussion of Fraunhofer vs. Fresnel
diffraction in physics textbooks. Its value should be comparable to 1 or lower for the low-rank property to
hold. Here diam(Γ) is the antenna diameter, diam(A) is the largest diagonal of the box A, λ = 2π/ω is the
wavelength, and d(Γ,A) is the distance between the antenna and the box. Similar ideas appear in work of
Michielssen and Boag [25], Engquist and Ying [20], Candès, Demanet, and Ying [12], Rokhlin [29], Brandt
[7], and likely many others.
Note that if an expansion is valid in a box A, it is also valid in a large truncated cone in the shadow of this
box, as seen from Γ. Martinsson and Rokhlin studied the weak dependence of the length of this truncated
cone on the desired accuracy [24].

1.4 The butterfly algorithm

The butterfly algorithm is a systematic way of leveraging low-rank interactions in the scope of a fast algorithm
for oscillatory integrals. The pulse-echo data now replaces the antenna as a virtual “source” of radiation, so
the physical problem is different from that presented in the previous section, but the ideas remain the same.

The butterfly algorithm originates from work of Michielssen and Boag [25], and has recently been popularized
in a string of papers by Rokhlin and O’Neil [28], Ying [38], Candès, Demanet and Ying [12] and Tygert
[34]. Note that the algorithmic variant presented in our earlier work [12] is particularly well suited for the
application to SAR imaging: unlike [28] it does not have a precomputation step. The butterfly is a natural
descendant of, or variant of, the fast multipole method [22, 29] for high-frequency scattering, in the sense
that low-rank interactions are adequate “summaries” that serve as a substitute for multipole expansions [39].

If we let y = (ω′, s), with ω′ = ω/ω0 a rescaled frequency variable, then we may succinctly write any
quadrature for (1) as

m(x) =
∑

y

K(x, y)d(y), (3)
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with K(x, y) the oscillatory kernel, and d(y) the data samples multiplied by the quadrature weights. We
refer to the direct summation in (3) as the “naive algorithm”. Low-rank interactions come into play through
the problem of finding a good approximation

m(x) =

r∑

j=1

K(x, yj)δj + O(ǫ), (4)

where (yj , δj) are equivalent sources. In order for the number r of terms to be independent of the carrier
frequency ω0 (or N ∼ ω2

0), it suffices to take x ∈ A, and to restrict the sum to y ∈ B, in such a way that
the “algorithmic Fresnel number” is small, i.e.

diam(A) × diam(B) ≤ H

ω0
, (5)

for some constant H that has the dimension of a length, with value comparable to the altitude of the antenna.
This property of r was established in earlier work of two of the authors, in the more general setting of Fourier
integral operators [12]. It holds for SAR imaging if the trajectory γ(s) is smooth, i.e., a C∞ function of s.

If B would cover the whole data space, we would be in presence of the full sum. In that case the range of
validity of a formula like (4) would be restricted to very small boxes A – of diameter O(1/ω0) – and to each
such small box A would correspond a given set of equivalent sources (yj , δj). If the information of the (yj , δj)
were available for each small box A, then we would be in presence of a very fast algorithm: a superposition
of r = O(1) terms for each of the O(ω2

0) = O(N) boxes in A would suffice for imaging. This is unfortunately
not the case.

The butterfly scheme is a way of computing these equivalent sources by playing on the sizes of A and B
in a multiscale manner. It is possible to tile model and data space with boxes that satisfy the scaling (5),
and consider the low-rank interactions between any pair of such boxes. It is advantageous to generate such
tilings by means of quadtree partitions of model and data space. See Figure 3, where data space (y) is on
the right, and model space (x) on the left.

Figure 3: The two quadtrees of the butterfly scheme.

For instance,

• The fine boxes at the leaves (bottom) of the tree on the right can be paired with a large box at the
root (top) of the tree on the left. The pairing corresponds to the dashed line labeled “1”. If the boxes
B are small enough (1/ω0 by 1/ω0), then the scaling (5) is respected. This choice of tiling corresponds
to sums (4) restricted to only a few terms: it is straightforward to compute directly, without the δj .
But it is not very useful since we want the whole sum.

• On the other hand, the large box B at the root of the tree can be paired with small boxes A at the
leaves. This pairing goes by the number “4”. It corresponds to a low-rank view of the whole sum (3),
only valid in certain very small sets A on the x-side. It is exactly what we are interested in, but the
δj in the expansion are unknown to us.
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The core of the butterfly algorithm is the ability to update low-rank interactions in a multiscale fashion,
down the left tree and up the right tree, by respectively grouping and subdividing boxes. In the picture this
allows to iteratively obtain the δj at all scales, from the pairing “1” to the pairing “4”.

The details of the butterfly scheme concern the choice of yj in (4), how to realize the low-rank expansion as
an interpolation problem, and how to update the δj weights from one scale to the next. These details are
presented in section 2 for completeness, and follow from our previous work in [12]. Let us mention that it
is the “Chebyshev interpolation” version of the butterfly algorithm which is used in this paper; it is unclear
that the other variants would be equally well suited for SAR imaging.

We now switch to the rigorous performance guarantee enjoyed by the butterfly algorithm, which was missing
in our previous work [12].

1.5 Accuracy and complexity bounds

In this paper, like in [11, 12], we choose the radius of convergence of Taylor expansions as a measure of
smoothness of real-analytic functions. In one spatial dimension, a function f(x) is (Q, R)-analytic if it is
infinitely differentiable and its derivatives obey

|f (n)(x)| ≤ Q n! R−n.

The number R is simply a lower bound on the radius of convergence of Taylor expansions of f , uniform over
all points where f is considered. We say that a function f(x) of x ∈ R2 is (Q, R)-analytic if its directional
derivative along any line obeys the same estimate: for any unit-length d,

|(d · ∇)nf(x)| ≤ Q n! R−n.

Our main assumption on the kernel K(x, y) is that it can be written in Fourier integral form as a(x, y)eiMφ(x,y),
with the amplitude a and the phase φ both analytic in x and y separately. (For convenience we use the same
values of the constants Q and R in the following two equations.)

|(d1 · ∇x)n1(d2 · ∇y)n2a(x, y)| ≤ Q n1! n2!R
−n1R−n2 ,

|(d1 · ∇x)n1(d2 · ∇y)n2φ(x, y)| ≤ Q n1! n2!R
−n1R−n2 .

Manifestly, the SAR kernel of equation (1) is of the form aeiMφ with M = ω0 = O(
√

N).

The following complexity result depends on N and ǫ. The dependence on Q and R will not be kept track of.

Theorem 1. Assume that the flight path γ(s) and the amplitude B(ω, x, s) are both real-analytic functions
of their arguments. Write y = (ω/ω0, s), and

K(x, y) = a(x, y)eiMΦ(x,y).

Then the variant of the butterfly method presented in this paper, which uses Chebyshev interpolation, provides
an approximation m̃(x) =

∑
y K̃(x, y)d(y) to m(x) =

∑
y K(x, y)d(y) obeying

‖m̃ − m‖∞ ≤ ǫ
∑

y

|d(y)|,

in exact arithmetic, and in (sequential) algorithmic complexity

C(Q, R) × max{log4(
1

ǫ
), (log4 N) log4(C log N)} × N log N.

The proof is in Section 4. Recall that d(y) are data samples normalized with the proper quadrature weights,
such that sums over y approximate integrals. Hence

∑
y |d(y)| is a quantity upper-bounded uniformly over

N . It is also independent of ǫ since the choice of discretization of the integral has nothing to do with the
truncation inherent to fast summation. Let us also note that the above theorem contains no statement about
the discretization error; only the ℓ∞ discrepancy between the result of naive summation (3) and the result
of the fast algorithm is controlled.
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2 The butterfly algorithm for oscillatory integrals

Let us denote by X the set of all x (positions) indexing model space, and by Y the set of of all y (normalized
frequencies and slow times) indexing data space. From the discussion above, it is clear that both |X | and
|Y | are on the order of N = O(M2). By rescaling the geometry if necessary, we can assume that X and
Y are both supported in the unit square [0, 1]2. In this section, unlike in the numerical code, we do not
worry about the values of numerical constants: for brevety only the asymptotic behavior in terms of M is
accounted for. The computational problem is then to approximate m(x) defined by

m(x) =
∑

y∈Y

a(x, y)eiMΦ(x,y)d(y).

We now give a brief discussion of the butterfly algorithm for computing this oscillatory summation. The
presentation follows closely to the one of [12] and the new contribution is an easy way to address the
amplitude function a(x, y). It is useful to keep an eye on Figure 3 while following the description of the
algorithm.

Suppose that A and B are two square boxes in [0, 1]2, while A is considered to be a box in the X domain
and B in the Y domain. We denote their centers, respectively, by x0(A) and y0(B); and the length of their
diagonals, respectively, by diam(A) and diam(B). The most important component of the butterfly algorithm
is the existence of a low-rank approximation for the kernel

∣∣∣∣∣a(x, y)eiMΦ(x,y) −
rǫ∑

t=1

αAB
t (x)βAB

t (y)

∣∣∣∣∣ ≤ ǫ (6)

for x ∈ A and y ∈ B when diam(A)diam(B) . 1/M . The quantities αAB
t (x) and βAB

t (y) will be defined
below in equations (9, 11). Define mB(x) to be the partial sum restricted to, or “potential generated by”,
y ∈ B. The benefit of the low-rank approximation is that it gives rise to a compact representation for mB(x)
when restricted to x ∈ A:

mB(x) ≃
rǫ∑

t=1

αAB
t (x)




∑

y∈B

βAB
t (y)d(y)



 ∀x ∈ A.

Therefore, any coefficients {δAB
t }t obeying

δAB
t ≃

∑

y∈B

βAB
t (y)d(y), (7)

offer a good approximation to mB(x) for x ∈ A.

In order to find a low-rank approximation, we introduce the residual phase associated with the pair (A, B),

RAB(x, y) := Φ(x, y) − Φ(x0(A), y) − Φ(x, y0(B)) + Φ(x0(A), y0(B)). (8)

Under the condition that Φ(x, y) is real-analytic both in x and in y, and diam(A)diam(B) . 1/M , it is easy
to show that RAB(x, y) = O(1/M) for x ∈ A and y ∈ B. As a result, it was shown in [12], in the case
a(x, y) = 1, that rǫ in equation (6) can be bounded by a constant times log4(1/ǫ). This bound can be further
refined to a constant times log2(1/ǫ), and made valid for arbitrary analytic a(x, y), using the proof methods
presented in Section 4. The point is that those bounds on rǫ are independent of M , and only depend weakly
on the desired accuracy.
One way to realize such low values of rǫ, as explained in [12], is to use polynomial interpolation in x
when diam(A) . 1/

√
M and in y when diam(B) . 1/

√
M . The interpolation points are placed on tensor

Chebyshev grids for efficiency. For some small positive integer q, the Chebyshev grid of order q on the
centered unit interval [−1/2, 1/2] is defined by

{
zj =

1

2
cos

(
jπ

q − 1

)}

0≤j≤q−1

.
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The Lagrange basis polynomials Li(z) of this grid are given by

Lj(z) :=
∏

0≤k≤q−1,k 6=j

z − zk

zj − zk
.

By taking tensor products, we can define the two dimensional Chebyshev grid {(zt1 , zt2)} for the centered
unit square and its Chebyshev basis functions

Lt(z1, z2) := Lt1(z1) · Lt2(z2), for t = (t1, t2).

For a general square box B in the Y domain, its Chebyshev grid can be defined similarly by appropriate
scaling and shifting. We denote this grid by {yB

t } and its Lagrange basis functions for its Chebyshev
grid by {LB

t }. When diam(B) . 1/
√

M , Lagrange interpolation on the grid adapted to B provides the
approximation

a(x, y)eiMRAB (x,y) ≃
∑

t

a(x, yB
t )eiMRAB(x,yB

t ) LB
t (y).

Similarly, for a box A in the X domain, its Chebyshev grid and Lagrange basis functions are denoted by
{xA

t } and {LA
t }, respectively. When diam(A) . 1/

√
M , Lagrange interpolation on the grid adapted to A

provides the approximation

a(x, y)eiMRAB (x,y) ≃
∑

t

LA
t (x)a(xA

t , y)eiMRAB(xA
t ,y)

It will be shown in Section 4 that the number q of Chebyshev points grows logarithmically in the error level
ǫ, resulting in rǫ = q2 = O(log2 1/ǫ) as announced earlier. Alternatively, one could generalize Theorem 3.3
in [12] to the case of a non-constant amplitude a(x, y). In practice, it is advantageous to take q with values
ranging from 5 to 10 in order to obtain “a few” to “several” digits of accuracy. The section on numerical
experiments contains more details on the choice of q vs. accuracy.

To pass from low-rank approximations of a(x, y)eiMRAB(x,y) to those for the true kernel a(x, y)eiMΦ(x,y), we
restore the other factors in (8). When diam(B) . 1/

√
M , this gives

a(x, y)eiMΦ(x,y) ≃
∑

t

(
a(x, yB

t )eiMΦ(x,yB
t )
)(

e−iMΦ(x0(A),yB
t )LB

t (y)eiMΦ(x0(A),y)
)

In terms of the earlier notations,

αAB
t (x) = a(x, yB

t )eiMΦ(x,yB
t ), βAB

t (y) = e−iMΦ(x0(A),yB
t )LB

t (y)eiMΦ(x0(A),y), (9)

and the expansion coefficients {δAB
t }t for the potential should obey the condition

δAB
t ≃

∑

y∈B

βAB
t (y)f(y) = e−iMΦ(x0(A),yB

t )
∑

y∈B

(
LB

t (y)eiMΦ(x0(A),y)d(y)
)

. (10)

Similarly when diam(A) . 1/
√

M , we have

a(x, y)eiMΦ(x,y) ≃
∑

t

(
eiMΦ(x,y0(B))LA

t (x)e−iMΦ(xA
t ,y0(B))

)(
a(xA

t , y)eiMΦ(xA
t ,y)

)

In terms of the earlier notations,

αAB
t (x) = eiMΦ(x,y0(B))LA

t (x)e−iMΦ(xA
t ,y0(B)), βAB

t (y) = a(xA
t , y)eiMΦ(xA

t ,y), (11)

and the expansion coefficients {δAB
t } should obey

δAB
t ≃

∑

y∈B

βAB
t (y)d(y) =

∑

y∈B

a(xA
t , y)eiMΦ(xA

t ,y)d(y) = mB(xA
t ). (12)

Combining these expansions with the general structure of the butterfly scheme, we arrive at the following
algorithm. It is a slight modification of the one proposed in [12].
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1. Preliminaries. Construct two quadtrees TX and TY for X and Y . Each leaf node of TX and TY is of
size (a constant times) 1/M × 1/M . We denote the number of levels of TX and TY by L.

2. Initialization. Set A to be the root of TX . For each leaf box B ∈ TY , construct the expansion
coefficients {δAB

t , 1 ≤ t ≤ rǫ} from (10) by setting

δAB
t = e−iMΦ(x0(A),yB

t )
∑

y∈B

(
LB

t (y)eiMΦ(x0(A),y)d(y)
)

. (13)

3. Recursion. For each ℓ = 1, 2, . . . , L/2, construct the coefficients {δAB
t , 1 ≤ t ≤ rǫ} for each pair

(A, B) with A at level ℓ and B at the complementary level L − ℓ as follows: let Ap be A’s parent
and {Bc, c = 1, 2, 3, 4} be B’s children. For each child, we have available from the previous level an
approximation of the form

mBc(x) ≃
∑

t′

eiMΦ(x,yBc
t′

)δ
ApBc

t′ , ∀x ∈ Ap.

Summing over all children gives

mB(x) ≃
∑

c

∑

t′

eiMΦ(x,yBc
t′

)δ
ApBc

t′ , ∀x ∈ Ap.

Since A ⊂ Ap, this is also true for any x ∈ A. This means that we can treat {δApBc

t′ } as equivalent
sources in B. As explained below, we then set the coefficients {δAB

t }t as

δAB
t = e−iMΦ(x0(A),yB

t )
∑

c

∑

t′

LB
t (yBc

t′ )eiMΦ(x0(A),yBc
t′

) δ
ApBc

t′ . (14)

4. Switch. The interpolant in p may be used as the low-rank approximation as long as ℓ ≤ L/2 whereas
the interpolant in x is a valid low-rank approximation as soon as ℓ ≥ L/2. Therefore, at ℓ = L/2, we
need to switch representation. Recall that for ℓ ≤ L/2 the expansion coefficients {δAB

t , 1 ≤ t ≤ rǫ}
may be regarded as equivalent sources while for ℓ ≥ L/2, they approximate the values of the potential
mB(x) on the Chebyshev grid {xA

t , 1 ≤ t ≤ rǫ}. Hence, for any pair (A, B) with A at level L/2 (and
likewise for B), we have δAB

t ≃ mB(xA
t ) from (12) so that we may set

δAB
t =

∑

s

a(xA
t , yB

s )eiMΦ(xA
t ,yB

s ) δAB
s (15)

(we abuse notations here since {δAB
t } denotes the new set of coefficients and {δAB

s } the older set).

5. Recursion (end). The rest of the recursion is analogous. For ℓ = L/2 + 1, . . . , L, construct the
coefficients {δAB

t , 1 ≤ t ≤ rǫ} as follows. With {αAB
t } and {βAB

t } given by (11), we have

mB(x) =
∑

c

mBc(x) ≃
∑

t′,c

α
ApBc

t′ (x)
∑

p∈Bc

β
ApBc

t′ (y)d(y) ≃
∑

t′,c

α
ApBc

t′ (x)δ
ApBc

t′ .

Hence, since δAB
t should approximate mB(xA

t ) by (12), we simply set

δAB
t =

∑

t′,c

α
ApBc

t′ (xA
t )δ

ApBc

t′ .

Substituing αAB
t with its value gives the update

δAB
t =

∑

c

eiMΦ(xA
t ,y0(Bc))

∑

t′

(
L

Ap

t′ (xA
t )e−iMΦ(x

Ap

t′
,y0(Bc))δ

ApBc

t′

)
. (16)
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6. Termination. Finally, we reach ℓ = L and set B to be the root box of TP . For each leaf box A of TX ,
we have

mB(x) ≃
∑

t

αAB
t (x)δAB

t , x ∈ A,

where {αAB
t } is given by (11). Hence, for each x ∈ A, we set

m(x) = eiMΦ(x,y0(B))
∑

t

(
LA

t (x)e−iMΦ(xA
t ,y0(B))δAB

t

)
. (17)

Most of the computation is in (14) and (16). Because of the tensor product structures, the computations in
(14) and (16) can be accelerated by performing Chebyshev interpolation one dimension at a time, reducing
the number operations from O(q4) to O(q3), where q is the size of the Chebyshev grid in each dimension.
As there are at most O(M2 log M) pairs of boxes (A, B), the recursion steps take at most O(q3M2 log M)
operations. The cost of (15) is of order O(q4M2) operations since for each pair (A, B) on the middle
level a q2 × q2 linear transformation is required. Hence, the overall complexity estimate of this algorithm
O(q3M2 log M + q4M2) = O(q3N log N + q4N). For brevety we bound this further as O(q4N log N). The
value of q will be determined in Section 4. For the purpose of the rigorous error estimate it depends on M
and 1/ǫ logarithmically.

3 Numerical results

We present numerical experiments for two standard setups of synthetic aperture radar imaging: Stripmap
SAR, where the plane goes along a straight line, and Spotlight SAR, where the plane goes around in a circle.

3.1 Stripmap SAR, synthetic data

Assume that the electromagnetic pulse is P (ω) = 1, i.e., that no deconvolution is necessary. Let the
acquisition manifold be

Ω = [−ω2,−ω1] ∪ [ω1, ω2] × [s1, s2], with s1 = 0, s2 = 1.

For the trajectory we let
γ(s) = (s, 0, H) ⇒ γ̇(s) = (1, 0, 0).

With this choice, the range is R = ‖γ(s)− xT ‖ =
√

(s − x1)2 + x2
2 + H2. For the reference of the interested

specialist, in the notations of [14] the Stolt variables are

ξ =
2k

R

(
s − x1

−x2

)
,

and it is easily calculated that the Beylkin determinant is
∣∣∣∣

∂ξ

∂(ω, s)

∣∣∣∣ =
4k|x2|

R2
.

After properly taking into account all these contributions in the amplitude, the oscillatory integral becomes

m̃(x) = 64π2|x2|
∫

Ω

e−2i ω
c

√
(s−x1)2+x2

2
+H2

d(ω, s) dωds.

This is a straight backprojection formula, without any filtering. The only slight subtlety is the domain of
integration, a rectangle in (ω, s) space. Imaging artifacts will be reduced if an additional smooth indicator
χ(ω, s) equal to zero outside of Ω multiplies the integrand – as was done in the numerical experiment.

The results show that the complexity is consistently that of about a thousand 2D FFT (for an operation
more complicated than a Fourier transform, of course), and the relative ℓ2 error is consistently on the order
of 2e-3. The table below was obtained using q = 5 Chebyshev points per dimension, in each square in which
interpolation is performed.
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Figure 4: Left: synthetic 2D reflectivity model. Right: result of imaging from data limited by bandwidth
and aperture. The linear flight track runs alongside the bottom side of the model, at an altitude equal to
the maximal horizontal range of the reflectivity model.

√
N Time (s) Speedup Error

64 .5 5 2e-3
128 2.7 17 2e-3
256 14 61 2e-3
512 68 220 2e-3
1024 320 760 2e-3
2048 1500 2500 2e-3

Table 1. Comparisons are made against direct summation. Note that
√

N = M . Other error levels can be
reached: runtimes are directly proportional to the desired number of correct digits.

3.2 Spotlight SAR, the Gotcha dataset

In this section we demonstrate the technique on the Air Force Research Laboratory’s publicly-released “Vol-
umetric SAR Data Set, Version 1.0” [13]. The pulsed Circular SAR (CSAR) collection system used a 9.6
GHz center-frequency (X-band) Linearly Frequency Modulated (LFM) waveform with 640 MHz bandwidth,
corresponding to a range resolution of 0.234 meters. The received data underwent the standard I/Q demodu-
lation, digitization, and match-filtering processes described in [36]. A wideband horn antenna was used, thus
the 3-dB antenna beampattern approximately satisfied the frequency-independence assumption discussed in
Section 1.2. The antenna beampattern covered more than a one-kilometer radius of Wright-Patterson Air
Force Base, but the phase history data were spatially lowpass filtered and downsampled [31] to include only
a 100m × 100m region containing calibration targets and carefully-placed civilian vehicles. Given the small
size of the scene relative to the half-peak-power beampattern, spatial variation of the antenna beampattern
within the scene can be neglected for these data.

The imaging operator we applied is as follows,

I(i1, i2) =
∑

(j1,j2)∈J

ei Φ(i1,i2,j1,j2) A(i1, i2, j1, j2)D(j1, j2), (i1, i2) ∈ I, (18)

where

• I, J are two subsets of [0, 1]2,

• D is the phase history data, D(j1, j2) = d(ω(j1), γ(j2)),

• the phase Φ(i1, i2, j1, j2) = 2
cω(j1) (||γ(j2) − x(i1, i2)|| − r0(j2)), and

• the amplitude A(i1, i2, j1, j2) = ||γ(j2) − x(i1, i2)||2w1(j1)w2(j2),
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• γ the flight path in R3,

• ω spans the angular frequency range of the LFM chirp (in radians per second),

• r0 the range to scene center from the antenna location (its presence is only due to some preprocessing
that needs to be undone),

• and with w1, w2 numerical weights allowing for irregularly sampled data.

The butterfly algorithm needs to evaluate A, D and Φ at arbitrary points (j1, j2) in between sample points,
so we interpolate the data d, γ, r0, ω; in these experiments we made use of the cubic spline interpolants of the
GNU Scientific Library. The scene is defined by {x(i1, i2) : (i1, i2) ∈ [0, 1]2}, and may be a general surface
in R3 parameterized by i1, i2; here we chose x(i1, i2) = ((b1−a1)i1 +a1, (b2−a2)i2 +a2, 0), with a1, b1, a2, b2

defining the boundary of the scene.

Figure 5: SAR images formed from the Gotcha data set, using the butterfly algorithm with
√

N = 210, and
4 degrees of azimuthal range, starting at 0 degrees, rendered on a logarithmic scale. Left images are of an
exact summation, the center images are from the butterfly algorithm with q = 4 on top, and q = 12 on the
bottom, and the right images are the differences between the two. All images are divided by the maximum
norm of the exact image to set the scale.
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Figure 6: Zoom on features in the scene, here the azimuthal range is from 280 to 284 degrees, and
√

N = 28.
The left images are the exact summation, center are the images from the butterfly algorithm, with q = 7,
and the right images are the difference computed as before. Clearly, visual interpretation is not hampered
by choosing q = 7 in these examples.

The total number of available frequency samples is Mω = 426. In the spotlight configuration, the position
γ(s) of the aircraft is indexed by the “azimuthal range” s. The latter is an angle: it is first partitioned
into 360 1-degree angular sectors, and within each sector by 118 angular samples. All the images above
are obtained by using only 4 contiguous sectors4. We let Mγ the total number of angular samples; in the
example above, Mγ = 472. Note also that the Gotcha dataset contains data at 8 different altitudes and 4
different polarizations (HH, HV, VH, VV). Only one altitude and one polarization (HH) have been used for
the tests in this paper, but it is clear that the technique can be extended to process the full dataset.

In accordance with the previous sections, the letter M is reserved for the fixed (large) quantity ω0. In units
where the observed time span has length 1, M is (proportional to) a lower bound on the number of samples
required for sampling the signal accurately. This suggest that Mω and Mγ be at least of the same order of
magnitude as M .

The current version of the butterfly algorithm handles square domains and boxes. A rectangular data space

4The quality of the image increases with more angular sectors. The speedup and relative RMS figures for the algorithm are
essentially independent of the azimuthal range.
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Y or image space X can easily be accommodated by stretching and resampling the dataset in the direction
of least number of samples. This results in a total number of samples given by

N = (max{Mω, Mγ})2 .

The two tuning parameters are q, the number of Chebyshev points per dimension per square, and L the
depth of the tree. The slight oversampling mentioned above — when Mω, Mγ are larger than M — alleviates
the need for considering values of q greater than 10 or 15 in practice. L should be chosen in such a way that
each leaf box in the data domain Y contains fewer than q2 points, and such that the size of the leaf boxes
in image space X matches the desired level of resolution. In our tests, we chose L = 1

2 log2(N) − 6.

Figure 7: Left: plot of the relative max-norm-error as a function of q, the number of Chebyshev interpolation
points per dimension in each butterfly box, at various values of N . Right: plot of the speedup as a function
of the relative max-norm-error, speedup relative to exact sum. Each circle / diamond / square / triangle
corresponds to a choice of q and N as earlier. The error bars arise from the fact that several images were
computed, corresponding to different intervals in azimuthal angles, in the range (0, 4, 8, ... 356) for (N
= 128,256,512), and (0,30,60, ..., 330) for N = 1024. The error bars were obtained from the minimum
and maximum values in each case. It should be noted that these experiments were conducted on shared
computational resources, thus we expect some variability in actual run time, and hence, speedup, depending
on the variability of system load during the experiment.

Fast algorithms based on the FFT would make the far-field approximation. While we did not compare
the butterfly directly to the unequally-spaced FFT in terms of speed, in the figure below we compute the
error which would accompany the far-field approximation. This error is predicted to grow with the angular
aperture. While the far-field image looks acceptable, the pointwise relative error is orders of magnitude larger
than that of butterfly truncation, even when only 4 degrees of azimuthal range are used. Further numerical
errors could come from the delicate spectral interpolation step in FFT-based processing.
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Figure 8: Left: image obtained by exact full summation, in log scale. Middle: full sum with the far-field
approximation, i.e, that ‖γ(j2)− x(i1, i2)‖ ≈ ‖γ(j2)‖ − x(i1, i2) · γ(j2)/‖γ(j2)‖ (relative to the scene center,
which is 0,) again in log scale. Right: absolute value of the difference of the moduli of the two images,
in log scale, normalized with respect to the maximum of the exact image. The relative error in maximum
norm between the left and middle images is 26.92 percent. The modulus was taken before subtracting the
images because the phase errors would be even larger than the modulus errors from taking the far-field
approximation. Note the error drops to zero in the center, where the ratio ‖x‖/‖γ‖ goes to zero. See the
next figure for a quantitative analysis.

Figure 9: Histograms of pixel values in the two difference images, butterfly algorithm on the left, far-field
approximation on the right. By“difference”, we mean difference of the moduli as in the previous figure.
We can see that the relative max-norm of the far-field difference image is very high, 0.2692 (admittedly an
outlier.) We also compute the median errors as 6.31e − 4 for the far-field approximation, and 6.31e − 5 for
the butterfly algorithm, with q = 4.

4 Proof of the error bound

In this section we prove Theorem 1. Although this may not be stated explicitly, the letter C refers to
constants that may depend on unessential parameters (clear from context), and which may change form line
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to line.

4.1 Preliminaries on analyticity and interpolation

The analyticity assumption on the amplitude and phase functions translates into fast converging Chebyshev
interpolation. The following result will not surprise specialists, but we were unable to find in the literature;
its proof is in the appendix. Throughout this paper we use the notation

‖f‖2 =

∫ 1

−1

|f(x)|2 dx√
1 − x2

.

Theorem 2. Let f be (Q, R)-analytic on [−1, 1]:

|f (n)(x)| ≤ Q n! R−n.

Denote by p the N -point Chebyshev interpolant of f on [−1, 1]. Assume N ≥ 1/(2R). Then

‖f − p‖ ≤ C Q N

[
1 +

1

R2

]1/4 [
R +

√
R2 + 1

]−N

, (19)

for some numerical constant C > 0.

A fortiori, the result is also true for the weaker L2 norm ‖f‖2 = (
∫
|f(x)|2dx)1/2. The proof involves

analytic continuation of f in the complex plane, and contour deformation to bound (i) the coefficients of
the Chebyshev expansion of f , and (ii) the difference between those coefficients and the approximate ones
obtained from the function samples. The following corollary treats the case of the uniform norm.

Corollary 3. In the setting of Theorem 2,

‖f − p‖∞ ≤ C Q N2

[
1 +

1

R2

]1/4 [
R +

√
R2 + 1

]−N

, (20)

where the constant C is possibly different from that of Theorem 2.

Proof. Use the fundamental theorem of calculus and the Cauchy-Schwarz inequality to write the elementary
relation

|f(x) − f(x∗)|2 ≤
[∫ 1

−1

dx√
1 − x2

] ∫ 1

−1

|f ′(x)|2
√

1 − x2 dx,

valid for all x, x∗ ∈ [−1, 1]. The factor in bracket has value π.
Denote by ε2(N ; Q, R) the right-hand side of (19). It is easily established (for instance by contradiction)
that there exists x∗ ∈ [−1, 1] for which |f(x∗) − p(x∗)| ≤ ε2(N ; Q, R), where p is the N -term Chebyshev
interpolant of f . For any other x ∈ [−1, 1], we have

|f(x) − p(x)| ≤ |f(x∗) − p(x∗)| + π

∫ 1

−1

|f ′(x) − p′(x)|2
√

1 − x2 dx.

A reasoning entirely parallel to that of the proof of Theorem 2 can be made to show that the integral term
is no bigger than CNε2(N ; Q, R), which proves the claim. Indeed,

∫ 1

−1

|f ′(x) − p′(x)|2
√

1 − x2 dx =

∫ π

0

| d

dθ
(f(cos θ) − p(cos θ))|2dθ,

and differentiation in the θ domain amounts to multiplication by in of the n-th Fourier series coefficient.
This extra factor plays a role in equation (38) for the aliasing error, where the sum over n now takes the
form ∑′′

|n|≤N

n2ρ2n,
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which leads to an extra N2 in the bound. As for the truncation error, it now reads

∑

|n|>N

n2ρ−2n =
ρ

4

d

dρ
ρ

d

dρ

ρ−2N

1 − ρ−2
,

where the two differentiations also lead to an extra factor N2. A square root is later taken to turn these N2

factors into N .

The following simple lemmas record the behavior of analytic functions under exponentiation, multiplication,
and subtraction respectively.

Lemma 1. Let f(x) be (Q, R)-analytic on some domain Ω. Then, on Ω, g(x) = eiMf(x) obeys

|g(n)(x)| ≤





3
√

nMn
(

eQ
R

)n

if 1 ≤ n < MQ√
2

;

e
√

2NQ n!
(√

2
R

)n

if n ≥ NQ√
2
.

Proof. Since f is (Q, R)-analytic, it extends holomorphically into the strip Ω × (−R, R) ⊂ C. We seek to
bound the holomorphic extension of g in the same strip. To this end, notice that

|g(z)| = exp (−M Imf(z)),

so it suffices to consider the imaginary part of f(z). For any z = x + iy we have the Taylor series

f(z) =
∑

n≥0

f (n)(x)

n!
(iy)n,

so that

Imf(z) =
∑

n≥0

f (2n+1)(x)

(2n + 1)!
(−1)ny2n+1.

We may use (Q, R)-analyticity of f to bound

|Imf(z)| ≤ Q
∑

n≥0

(−1)n
( y

R

)2n+1

=
Qy

R

1

1 − y2

R2

.

It results that, for z = x + iy ∈ Ω × (−R, R),

|g(z)| ≤ exp

(
MQy

R

1

1 − y2

R2

)
.

We now apply Cauchy’s criterion in the region Ω × (−y, y), with y as yet unspecified, to obtain

|g(n)(x)| ≤ max
|Imz|≤y

|g(z)|n! y−n.

As long as y < R/
√

2, a good choice is y = nR
MQ . In terms of n this choice is valid provided n < MQ/

√
2.

Then the bound simplifies to

|g(n)(x)| ≤ e2n n!

(
nR

MQ

)−n

.

In view of the Stirling bound n! ≤ 3
√

n nne−n for n ≥ 1, we get

|g(n)(x)| ≤ 3
√

n Mn

(
eQ

R

)n

.

If on the other hand n ≥ MQ/
√

2, we use y = R/
√

2 and check that the required bound holds.
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Lemma 2. Let f(x) be (Q, R)-analytic on some domain, and g be essentially bandlimited in the sense that

|g(n)(x)| ≤ ABn nm.

Then fg is (Q′, R)-analytic, with
Q′ = AQ (RB)m eRB.

Proof. It suffices to apply the high-order Leibniz rule,

(fg)(n) =

n∑

k=0

(
n
k

)
f (n−k)g(k),

to get

|(fg)(n)| ≤
n∑

k=0

(
n
k

)
Q (n − k)! R−(n−k) ABk km,

= QAn! R−n
n∑

k=0

(RB)k

k!
km

≤ QA(RB)meRB n! R−n.

This latter bound is rather coarse, particularly if R is large. However Q′ is as good a constant as Q for
expressing large-n asymptotics.

Lemma 3. Assume φ(x, y) is (Q, R1)-analytic in x, and (Q, R2)-analytic in y: for all unit-length d1, d2,

|(d1 · ∇x)n1(d2 · ∇y)n2φ(x, y)| ≤ Q n1! n2! R
−n1

1 R−n2

2 .

Then φ(x0, y) − φ(x1, y) is (Q′, R2)-analytic in the y variable, with

Q′ = Q
|x0 − x1|/R1

1 − |x0 − x1|/R1
. (21)

Proof. Perform a Taylor expansion along the line joining x0 and x1. Let d1 = x̂0 − x1.

|(d2 · ∇y)n2(φ(x0, y) − φ(x1, y))| = |
∑

n1≥1

(d1 · (x0 − x1))
m

m!
(d1 · ∇x)n1(d2 · ∇y)n2φ(x1, y)|

≤
∑

n1≥1

|x0 − x1|n1 Q n2! R
−n1

1 R−n2

2

≤ Q n2! R
−n2

2

|x0 − x1|/R1

1 − |x0 − x1|/R1
.

4.2 Recursive dyadic interpolation

In this section we show how the butterfly algorithm in effect performs repeated interpolation of the kernel
K(x, y) at different scales.
In the version of the butterfly algorithm presented here, a “switch” occurs midway through the tree traversals.
A subscript m will be used to denote any of the boxes Am or Bm at this midlevel. A couple of boxes (A, B)
is said to be located before the switch if there exist midlevel boxes Am, Bm such that A ⊃ Am and B ⊂ Bm.
Conversely, (A, B) is said to be located after the switch if there exist midlevel boxes Am, Bm such that
A ⊂ Am and B ⊃ Bm. Exactly at the switch, a couple (Am, Bm) is said to occur either before or after
the switch depending on whether the δAB

t have already been subjected to the switch transformation or not.

19



When referring to the “midlevel box B that contains the point y”, we will write Bm(y). Analogous definition
for Am(x).
Boxes at the leaves of the A or B trees will be denoted Aℓ, Bℓ respectively. When referring to the “leaf level
box B that contains the point y”, we will write Bℓ(y). Analogous definition for Aℓ(x). Similarly, the index
r denotes root boxes. And as previously, we also use the indices c to denote a child box, and p to denote a
parent box.
Fix a couple of boxes (A, B). It was explained earlier that the box B carries an interpolation structure over
points yB

t with basis functions βAB
t , that we denote

KB(x, y) =
∑

t

K(x, yB
t )βAB

t (y), x ∈ A, y ∈ B.

Similarly, interpolation can be performed in the x variable and leads to

KA(x, y) =
∑

t

αAB
t (x)K(xA

t , y), x ∈ A, y ∈ B.

If interpolation is performed both in the x and y variables, we use the notation KA
B (x, y).

The recursive dyadic interpolant of K from some box B down to some descendant box b results from
repeatedly interpolating K in the boxes B, Bc, Bcc . . . , b along the tree from B down to b. It is denoted

(KBցb) (x, y) =
∑

tn

. . .

[
∑

t2

[
∑

t1

K(x, yB
t1)β

AB
t1 (yBc

t2 )

]
β

ApBc

t2 (yBcc

t3 )

]
. . . βab

tn
(y), x ∈ A,

where a is the (unique) parent of A at a level compatible with b. Analogously,

(
KAցa

)
(x, y) =

∑

tn

. . .

[
∑

t2

[
∑

t1

K(xA
t1 , y)αAB

t1 (xAc

t2 )

]
α

AcBp

t2 (xAcc

t3 )

]
. . . αab

tn
(x), x ∈ A,

where b is the (unique) parent of B at a level compatible with a. If recursive interpolation is done in both
x and y from (A, B) down to (a, b), we use the notation

(
KAցa

Bցb

)
(x, y).

(Note that a and b are not necessarily compatible in this last equation.) If B = b we simply have KBցB =

KB, similarly KAցA = KA and KAցA
BցB = KA

B . If on the other hand b ( B or a ( A, by convention no
interpolation takes place.

The following lemma quantifies how the low-rank partial sum ũB(x) obtained form the butterfly algorithm
deviates from the true partial sum mB(x) =

∑
yj∈B K(x, yj)dj .

Lemma 4. Consider a couple of boxes (A, B) and the corresponding butterfly data δAB
t .

If (A, B) is located before the switch, define

m̃B(x) =
∑

t

K(x, yB
t )δAB

t , x ∈ A.

It holds that
m̃B(x) =

∑

yj∈B

(
KBցBℓ(yj)

)
(x, yj)dj , x ∈ A. (22)

If (A, B) is located after the switch, define instead

m̃B(x) =
∑

t

αAB
t (x)δAB

t , x ∈ A.

It holds that
m̃B(x) =

∑

yj∈B

(
K

Am(x)ցA
Bm(yj)ցBℓ(yj)

)
(x, yj)dj , x ∈ A. (23)
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Proof. The proof is split into three cases: before, at, and after the switch.

• Fix a couple (A, B) located before the switch. Consider B as the root of its subtree, consisting of all
its descendants b. Index these descendants by level k = ℓ(b) from k = 0 (the level of B) to k = n (the
leaf level). We wish to prove by induction on k increasing from 0 to n the claim that

m̃B(x) =
∑

b:ℓ(b)=k

∑

t

KBցbp
(x, yb

t )δ
ab
t , (24)

for x ∈ A, and a is the (unique) parent of A at a level compatible with b such that ℓ(b) = k. For k = 0
no interpolation takes place and the claim is obviously true by definition of ũB(x). Assume now that
the claim is true at level k. For each b with ℓ(b) = k have

δab
t =

∑

c

∑

t′

βab
t (ybc

t′ )δ
apbc

t′ .

So, for all x ∈ A,

m̃B(x) =
∑

b:ℓ(b)=k

∑

t

KBցbp
(x, yb

t )

[
∑

c

∑

t′

βab
t (ybc

t′ )δ
apbc

t′

]

=
∑

b:ℓ(b)=k

∑

c

∑

t′

[
∑

t

KBցbp
(x, yb

t )β
ab
t (ybc

t′ )

]
δ

apbc

t′ .

We are in presence of the interpolant of KBցbp
in the box b, which by definition is called KBցb. Hence

m̃B(x) =
∑

b:ℓ(b)=k

∑

c

∑

t′

KBցb(x, ybc

t′ )δ
apbc

t′ .

Relabeling b → bp, bc → b, and noticing that
∑

b:ℓ(b)=k

∑
c →∑

b:ℓ(b)=k+1, we obtain the claim (24).

As k = n, the interaction coefficients are

δArBℓ

t =
∑

yj∈Bℓ

βArBℓ(yj)dj ,

so equation (24) becomes

m̃B(x) =
∑

Bℓ

∑

t

KBցBℓ,p
(x, yBℓ

t )




∑

yj∈Bℓ

βArBℓ(yj)dj



 ,

=
∑

Bℓ

∑

yj∈Bℓ

KBցBℓ
(x, yj)dj .

The latter equation is exactly (22).

• Notations change at this point: the pre-switch δ coefficients are now denoted δ̃AB
t , and the post-switch

coefficients simply δAB
t . They are related by

δAB
t =

∑

t′

K(xA
t , yB

t′ )δ̃
AB
t′ .

This allows to write

ũB(x) =
∑

t

αAB
t (x)

[
∑

t′

K(xA
t , yB

t′ )δ̃
AB
t′

]

=
∑

t′

KA(x, yB
t′ )δ̃

AB
t′ .
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Except for interpolation in the x variable, we are in presence of the pre-switch formula for ũB. Invoking
(22), we get

m̃B(x) =
∑

yj∈B

(
KA

BցBℓ(yj)

)
(x, yj)dj , x ∈ A.

• It now remains to check that (23) holds by induction down the rest of the A tree. We have just shown
that it holds immediately after the switch. The formula for the δ updates after the switch is

δAB
t =

∑

c

∑

t′

α
ApBc

t′ (xA
t )δ

ApBc

t′ .

The induction assumption can be used directly in this formula: we use (23) for the pair (Ap, Bc), and
evaluated at x = xA

t :

δAB
t =

∑

c

∑

yj∈Bc

(
K

Am(x)ցAp

Bm(yj)ցBℓ(yj)

)
(xA

t , yj)dj .

Of course
∑

c

∑
yj∈Bc

is just
∑

yj∈B, so

m̃B(x) =
∑

t

αAB
t (x)




∑

yj∈B

(
K

Am(x)ցAp

Bm(yj)ցBℓ(yj)

)
(xA

t , yj)dj





=
∑

yj∈B

[
∑

t

αAB
t (x)

(
K

Am(x)ցAp

Bm(yj)ցBℓ(yj)

)
(xA

t , yj)

]
dj

In the last line, the quantity in square brackets is the interpolant of K
Am(x)ցAp

Bm(yj)ցBℓ(yj)
on the grid xA

t of

the box A. By definition this is just K
Am(x)ցA
Bm(yj)ցBℓ(yj)

. We deduce (23), as desired.

Notice that all the interpolations are done from the top down, both on the A and B sides, even though the
traversals are respectively top-down and bottom-up. This fact is significant because only top-down recursive
interpolation is numerically stable.

Figure 10: This is a color picture. In red (hollow arrows), direction of traversal of the quadtrees. In blue
(solid arrows), direction in which recursive interpolation is implicitly performed by the butterfly algorithm.
The blue squares indicate the middle level (level 2), where the switch from interpolation in the y variable to
interpolation in the x variable is performed.

If a straight polynomial interpolant were used in the butterfly scheme, recursive interpolation would be error-
free since the degree-n polynomial interpolant of a degree-n polynomial is itself. Because oscillations are
factored in the interpolant, this is however not the case and a full error propagation analysis must be carried
out.
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4.3 Error propagation analysis

In this section we finish the proof of Theorem 1. The analysis of the previous section is very general in
the sense that it holds for arbitrary interpolation kernels αAB

t and βAB
t . Here we specialize K(x, y) =

a(x, y)eiMΦ(x,y) and choose the interpolation kernels as in Section 2:

βAB
t (y) = e−iMΦ(x0(A),yB

t )LB
t (y)eiMΦ(x0(A),y), pre-switch,

αAB
t (y) = eiMΦ(x,y0(B))LA

t (x)e−iMΦ(xA
t ,y0(B)), post-switch.

Here LA
t and LB

t are the respective elementary Lagrange interpolation polynomials in the boxes A and B.
In each box A or B, the polynomial interpolation takes place over q2 tensor-Chebyshev points.

Corollary (3) will later be applied; let us for now denote the right-hand side of equation (20) as

ε∞(N ; Q, R) = C Q N2

[
1 +

1

R2

]1/4 [
R +

√
R2 + 1

]−N

, (25)

where C > 0 is adequately large (and N is here any positive integer).

Consider a box B below the switch, and one of its descendants b located k levels lower than B. Let us prove
by induction on k from k = 0 (b = B) to k = n (b = Bℓ), that there exists some C > 0 such that

‖KBցb(x, ·) − K(x, ·)‖∞ ≤ 2 ε∞(q; Q′′, R) · (C log q)k, x ∈ A, y ∈ B, (26)

where A is compatible with B, where ε∞ was defined in (25), and where Q′′ is some function of Q and R.

• As b = B, we get

KB(x, y) = eiMΦ(x0(A),y)
∑

t

LB
t (y)e−iMΦ(x0(A),yB

t )K(x, yB
t )

= eiMΦ(x0(A),y)
∑

t

LB
t (y)a(x, yB

t )eiM(Φ(x,yB
t )−Φ(x0(A),yB

t )).

The difference |KB−K| is therefore controlled by the error in interpolating the function a(x, y)eiM(Φ(x,y)−Φ(x0(A),y))

over y ∈ B, while keeping x ∈ A. All the tools are in place:

– First, remember that both a(x, y) and Φ(x, y) are (Q, R)-analytic in the y variable. The interpo-
lation takes place in a square of sidelength diam(B)/

√
2 in y, so we may rescale the problem to

[−1, 1]2 by assuming that R is replaced by R′ = 2
√

2R/diamB.

– Second, remember that Φ(x, y) is also (Q, R)-analytic in the x variable. Assume for a moment
that diam(A) ≤ R: this implies that the denominator in equation (21) is greater than 1/2, so
we can invoke Lemma 3. We obtain that the difference Φ(x, y) − Φ(x0(A), y) is (Q′, R′)-analytic
in the y variable, with the same R′ as Φ(x, y) but a potentially smaller Q′ ≤ 2Q diam(A)/R.
If on the other hand diam(A) > R, we may use the trivial bound Q′ ≤ 2Q, hence a fortiori
Q′ ≤ 2Q diam(A)/R as well.

– Third, Lemma 1 asserts that taking the exponential of an analytic function results in an essentially
bandlimited function. Putting together the expressions of Q′ and R′ obtained so far, we find the
bound

|(d · ∇y)neiM(Φ(x,y)−Φ(x0(A),y))| ≤ 3
√

nMn [cQ,R diam(A) diam(B)]
n

,

where cQ,R is some function of Q and R – constant with respect to M , diam(A) and diam(B) –
and n is not extremely large, n < MQ/

√
2. For n ≥ MQ/

√
2 the bound reverts to a factorial:

we leave to the reader the easy but tedious task of checking that this detail does not change the
conclusions of the argument. The important point is that the essential band limit is a constant
times M × diam(A) × diam(B). The crux of the proof is that this latter quantity is precisely the
algorithmic Fresnel number, assumed to be less than 1.
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– Fourth, we can now invoke Lemma 2 to handle the multiplication of the oscillatory factor with
the amplitude. We may disregard the fact that R has been rescaled to R′, and simply assume
that a(x, ·) is (Q, R)-analytic. In a rescaled variable y ∈ [−1, 1]2, we obtain the final estimate

|∂n
y a(x, y)eiM(Φ(x,y)−Φ(x0(A),y))| ≤ Q′′n!R−n, (27)

with Q′′ = 3Q(RcQ,R) eRcQ,R .

Equation (27) provides the smoothness estimate necessary to invoke Corollary 3. It is applied first in
the y1 variable, then in the y2 variable. Passing from one dimension to two dimensions doubles the error
bound but squares the number of coefficients. With q2 bivariate Chebyshev polynomials, therefore,
Corollary 3 guarantees that the function a(x, y)eiM(Φ(x,y)−Φ(x0(A),y)) is interpolated in y with an error

2 ε∞(q; Q′′, R),

in the uniform norm, where ε∞(q; Q′′, R) comes from equation (25). This settles the base case k = 0.

• For the general case of the induction, let a be compatible with b. We have

KBցb(x, y) = eiMΦ(x0(a),y)
∑

t

Lb
t(y)e−iMΦ(x0(a),yb

t )KBցbp
(x, yb

t ) (28)

In the right-hand side, split KBցbp
(x, y) = K(x, y)−

(
K(x, y) − KBցbp

(x, y)
)
. Subtract K(x, y) from

the whole equation, and consider two contributions.

– First, if K takes the place of KBցbp
in (28), then the latter reduces to

Kb(x, y) = eiMΦ(x0(a),y)
∑

t

Lb
t(y)e−iMΦ(x0(a),yb

t )K(x, yb
t ).

Upon subtracting K(x, y) we are left to consider Kb(x, y) − K(x, y), which we have already
encountered earlier. Independently of b in the range considered,

‖Kb(x, ·) − K(x, ·)‖∞ ≤ 2 ε∞(q; Q′′, R).

– Second, we are led to consider

eiMΦ(x0(a),y)
∑

t

Lb
t(y)e−iMΦ(x0(a),yb

t )
[
K(x, yb

t ) − KBցbp
(x, yb

t )
]
.

By assumption the term in square brackets is bounded by 2 ε∞(q; Q′′, R)(C log q)k−1. The os-

cillatory factor e−iMΦ(x0(a),yb
t ) does not change the modulus of this quantity. The interpolation

operation may increase the ℓ∞ norm by a factor C log q, as is well-known for Chebyshev interpo-
lation [6, 12, 32]. Finally, the oscillatory factor eiMΦ(x0(a),y) does not change the modulus of the
result. We are left with

‖K(x, ·) − KBցb(x, ·)‖∞ ≤ C log q · ‖K(x, ·) − KBցbp
(x, ·)‖∞ ≤ 2 ε∞(q; Q′′, R)(C log q)k.

This concludes the induction argument for interpolation in the y variable, and proves equation (26).

The interpolation problem is completely symmetrical in the x variable: the argument can be repeated and
yields an error of the same order of magnitude. Since there are n = C log2 N levels between the midlevel
nodes and the leaf nodes, for some (very small) constant C, we get an overall error of

‖
(
KAmցAℓ

BmցBℓ

)
− K‖∞ ≤ 4 ε∞(q; Q′′, R)(C log q)C log N ,

where Aℓ is any descendent of Am, and Bℓ is any descendent of Bm. If we let ρ = R +
√

R2 + 1, and use
(25), the right-hand side takes the form

C(Q, R) q2 (C log q)C log Nρ−q.
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Let us now fix ǫ > 0, and find conditions on q such that the quantity above is less than ǫ. We require
C(Q, R)q2 < ρq/3, which gives rise to a first condition that q is greater than some other (overloaded)
constant C(Q, R). We also require (C log q)C log N < ρq/3, which implies

q ≥ C (log N) log(C log N).

(where again C is overloaded.) Finally, we need ρ−q/3 ≤ ǫ, which implies

q ≥ 3 logρ(
1

ǫ
).

In conclusion, we can make the uniform norm of recursive interpolation less than ǫ provided q2 points are
used on each tensor Chebyshev grid, with

q ≥ C(Q, R)max{log(
1

ǫ
), (log N) log(C log N)}.

As was discussed earlier, the overall complexity of the butterfly scheme is O(q4N log N). This finishes the
proof of Theorem 1.

4.4 Refinement

The radius of analyticity R of the amplitude is here assumed to be identical to that of the phase Φ, but the
proof shows that we may relax this condition and let R be as small as a multiple 1/

√
M . This corresponds

to spatial variations that occur on a length scale proportional to the diameter of boxes at the midlevel in
the X and Y domains.

5 Conclusion

We have presented a butterfly scheme for frequency-domain fast backprojection imaging from SAR data. The
performance bounds in this paper provide direct user control of the reconstruction error, which may be useful
for subsequent image-processing tasks. Unlike fast time-domain methods, our approach is amenable to real-
time SAR systems which use “stretch” processing to accomplish I/Q demodulation and matched filtering [36].
Stretch processing has frequency-domain outputs which can easily be distributed amongst processors, making
our algorithm especially attractive for extremely large scale imaging problems. Specifically, the pulse-wise
range-frequency FFTs required to arrive at time-domain SAR backprojection algorithm can be prohibitively
expensive due to data-throughput requirements. Thus in some SAR settings a frequency-domain approach
such as the one presented here may be mandatory.

The ideas of the butterfly scheme are reminiscent but distinct from the fast multipole method (FMM) [22, 29].
The authors believe that the butterfly algorithm is the proper way to generalize FMM in an all-purpose way
to settings where high-frequency oscillatory integrals are present. “All-purpose” means robustness, and
applicability to many problems, such as SAR in the presence of curved flight paths, topography, complicated
antenna beam patterns, etc. But it also means that other numerical methods may be faster for certain
problems with structure, such as computerized (X-ray) tomography or ultrasound tomography in medical
imaging. Adjoint-state seismic migration in heterogeneous media, on the other hand, may be too complicated
to be accurately represented by an oscillatory (Kirchhoff) integral, so it is as yet unclear that the butterfly
algorithm may be helpful there.

The fast Fourier transform and the USFFT [19] are examples of algorithms which are faster than the
butterfly, but which only work for bilinear phases. The table below summarizes ballpark complexity figures
and ranges of applicability for the FFT (i.e., slant-plane range-Doppler imaging), the PFA, the USFFT of
Dutt and Rokhlin, and the Chebyshev butterfly (B-Cheb) algorithm presented here. The figures are for
the one-dimensional transforms, so the complexity multiplier should be squared for the two-dimensional
transforms.
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Kernel Algorithm Complexity vs. FFT

eixk FFT 1

eixk1(m)k2(n) PFA 2

eixjkn USFFT 6

a(x, k)eiφ(x,k), B-Cheb 30
φ(x, αk) = αφ(x, k)

The variable k is supposed to take on large values, on the order of N , in all cases. By xjkn, it is meant
xk sampled unevenly, whereas xk1(m)k2(n) refers to data samples on a polar raster with k1(m) indexing
frequency and k2(n) indexing pulse number. The relation φ(x, αk) = αφ(x, k) (for α > 0) is a homogeneity
condition that the butterfly requires, or very nearly so, for operating at the N log N complexity level. It is
ubiquitous in applications to wave propagation.

A On Chebyshev interpolation of analytic functions

The goals of this appendix go beyond the application to radar imaging, so the notations may depart slightly
from those in the main text. For instance N here stands for the number of Chebyshev points – what we
called q earlier.

The Chebyshev interpolant of a function f on [−1, 1] is a superposition of Chebyshev polynomials Tn(x),

p(x) =

N∑

n=0

cnTn(x),

which interpolates f in the sense that p(xj) = f(xj) on the Chebyshev grid xj = cos(jπ/N) for j = 0, . . . , N .

The rationale for this choice of grid is that under the change of variable x = cos θ, the Chebyshev points
become the equispaced samples θj = jπ/N . Unlike f , the function g(θ) = f(cos θ) is now 2π-periodic. Note
that g(θ) inherits the smoothness of f(x). The samples g(θj) can be made to cover the whole interval [0, 2π]
if we extend the range of j to be 0 ≤ j ≤ 2N − 1 (this corresponds to a mirror extension of the original
samples.) The rationale for choosing Chebyshev polynomials is that Tn(cos θ) = cos(nθ), so that Chebyshev
interpolation of f from f(xj), with 0 ≤ j ≤ N −1, is nothing but interpolation by trigonometric polynomials
of g from g(θj), with 0 ≤ j ≤ 2N − 1.

This interpolant is built as follows. Start by submitting the 2N samples g(θj) to the discrete Fourier
transform and back; this gives

g(θj) =

N−1∑

n=−N

einθj g̃n.

The spectral interpolant q(θ) is built from these DFT coefficients as

q(θ) =

N∑′′

n=−N

einθ g̃n, (29)

where the double prime next to the sum indicates that the first and last terms are halved. This precaution
is important to ensure that the interpolant of a real-valued function is real-valued.
The sum (29) reduces to the inverse discrete Fourier transform when θ = θj , so that q(θj) = g(θj). Notice
that g is even, so only the cosines are needed in this expansion:

q(θ) = 2

N∑′′

n=0

cos (nθ)g̃n.
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The Chebyshev interpolant of f(x) is then simply p(x) = q(arccosx). The coefficients are given explicitly as
cn = 2g̃n for 1 ≤ n ≤ N − 1, or cn = g̃n for n = 0, N .
Spectral and Chebyshev interpolation methods are not only attractive because the FFT can be used to speed
up computations, but because they have remarkable accuracy properties.

A.1 Spectral accuracy of Chebyshev interpolation

The first result concerns the algebraic decay of the interpolation error when f can be differentiated a finite
number of times, or super-algebraic decay when f is infinitely differentiable.
We consider the native inner product for Chebyshev polynomials,

〈f, g〉 =

∫ 1

−1

f(x)g(x)
dx√

1 − x2
,

with respect to which they are orthogonal. The associated weighted L2
w norm

‖f‖ =

(∫ 1

−1

|f(x)|2 dx√
1 − x2

)1/2

is used throughout this paper to measure the error. (The corresponding measure in θ = arccosx is Lebesgue.)
The related Sobolev spaces are

W s
w = {f ∈ L2

w : ‖f‖2
s =

s∑

k=0

‖f (k)‖2 < ∞}.

The following result is elementary. The ideas can be traced back at least to [21]. A proof of the result as
stated is in [32].

Theorem 4. Let f ∈ W s
w. Denote by p the N -point Chebyshev interpolant of f on [−1, 1]. Then

‖f − p‖ ≤ Cs ‖f‖s N−s.

In [32], Tadmor pushed the analysis further to obtain exponential decay in the case when f is real-analytic.
A convenient setting is to assume that f extends analytically in the complex plane, in the “Bernstein” ellipse
Eρ with foci ±1, center z = 0, and semi-axes

aρ =
ρ + ρ−1

2
, bρ =

ρ − ρ−1

2
,

for some parameter ρ > 1 called the elliptical radius. Note that aρ + bρ = ρ. This ellipse has Cartesian
equation

Eρ = {z :
(Re z)2

a2
ρ

+
(Im z)2

b2
ρ

= 1},

and parametric equation

Eρ = {z =
ρeiθ + ρ−1e−iθ

2
: θ ∈ [0, 2π)}.

Theorem 5 (Tadmor [32]). Let f have an analytic extension in the open Bernstein ellipse Eρ0
with elliptical

radius ρ0 > 1. For each 1 < ρ < ρ0, let
M(ρ) = max

z∈Eρ

|f(z)|.

Denote by p the N -point Chebyshev interpolant of f on [−1, 1]. Then for all 0 < ρ < ρ0,

‖f − p‖ ≤ C
M(ρ)

ρ − ρ−1
ρ−N .
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Figure 11: The stadium (dashed line) is the region of analyticity of f . The ellipse (blue, solid line) is the
largest inscribed “Bernstein” ellipse with foci at ±1.

The next result, which is possibly original, is Theorem 2 presented in Section 4. For this result it is assumed
instead that f is (Q, R) analytic, i.e., is real-analytic and obeys the smoothness condition

|f (n)(x)| ≤ Q n! R−n. (30)

As noted in [30], p. 378, f obeys (30) for x ∈ R if and only if it can be analytically extended in the
strip |Im z| ≤ R. This property holds because R is a lower bound on the convergence radius of the Taylor
expansion of f at any point x. As a result it is a very natural class of analytic functions; Rudin denotes it
by C{n!}. We only assume that f obeys (30) for x ∈ [−1, 1], which results in a stadium-shaped analyticity
region, as in Figure 11. Note that (Q, R) analyticity has already been used by the authors in [12, 11].
A fortiori, the bound (19) in Theorem 2 also holds for the weaker L2 norm. The proof gives the value
5
2

√
45e
2 for the numerical constant C; no attempt is made in this paper to find its sharp value. Note that

[
R +

√
R2 + 1

]−N
corresponds to Tadmor’s ρ−N .

The error bound (19) obeys the following asymptotic behaviors.

• As R → 0, and if N less than or on the order of 1/R, then the error bound is large.

• As R → 0, and if N ≫ 1/R, then the error bound is roughly proportional to NR−1/2e−RN .

• As R → ∞, then the error bound is roughly proportional to N(2R)−N .

A.2 Proof of Theorem 2

As mentioned earlier, f and p are respectively obtained from g and q through the change of variables
x = cos θ. The factor 1/(

√
1 − x2) is precisely the Jacobian of this change of variables. Hence it suffices to

prove that ‖g − q‖2 obeys the bound (19).

We start by listing the consequences of the smoothness condition (30). As is well-known, f has a unique
analytic continuation as the Taylor series

f(z) =

∞∑

n=0

f (n)(x)

n!
(z − x)n,

which by (30) is manifestly convergent as soon as |z − x| ≤ R. Since x ∈ [−1, 1], the domain of analyticity is
the “stadium” illustrated in Figure 11, without its boundary. This shape is a subset of the strip |Im z| < R.
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Furthermore, for all x ∈ [−1, 1] we have the bound

|f(z)| ≤ Q
∞∑

n=0

( |z − x|
R

)n

,

≤ Q

1 − |z − x|R−1
,

which results in

|f(z)| ≤






Q
1−|z+1|R−1 if Re z < −1;

Q
1−|Imz|R−1 if −1 ≤ Re z ≤ 1;

Q
1−|z−1|R−1 if Re z > 1

(31)

The periodic function g(θ) = f(cos θ) also admits an analytic extension, best expressed through the function
h(z) such that h(eiθ) = g(θ). The result is the following lemma.

Lemma 5. Let h(eiθ) = f(cos θ), and assume that f is (Q, R)-analytic. Then h has a unique analytic
continuation in the open annulus |z| < R +

√
R2 + 1 < |z|−1, and obeys the bound

|h(z)| ≤ Q

1 − ||z|−|z|−1|
2 R−1

. (32)

Proof of Lemma 5. The analytic extension h(z) of h(eiθ) is related to f(z) by the transformation

h(z) = f

(
z + z−1

2

)
. (33)

Indeed, h(eiθ) = f(cos θ), so the two expressions match when |z| = 1. There exists a neighborhood of |z| = 1
in which the right-hand side is obviously analytic, hence equal to h(z) by uniqueness. The rationale for this
formula is the fact that cos θ = cos(i log eiθ), and (z + z−1)/2 is just another expression for cos(i log z).
More can be said about the range of analyticity of h(z). The map z 7→ ζ = (z+z−1)/2 is a change from polar
to elliptical coordinates [6]. It maps each circle Cρ = {ρeiθ : θ ∈ [0, 2π)} onto the ellipse Eρ of parametric
equation {(ρeiθ +ρ−1e−iθ)/2 : θ ∈ [0, 2π)} introduced earlier. Notice that |z| = ρ0 and |z| = ρ−1

0 are mapped
onto the same ellipse.
Figure 11 shows the open stadium of height 2R in which f is analytic, as well as the largest ellipse Eρ

inscribed in that stadium. Its parameter ρ obeys

|ρ − ρ−1|/2 = R,

corresponding to the case θ = ±π/2. Solving for ρ, we get

ρ = R +
√

R2 + 1 or ρ =
1

R +
√

R2 + 1
.

As a result, any z obeying |z| < R +
√

R2 + 1 < |z|−1 corresponds to a point of analyticity of f
(

z+z−1

2

)
,

hence of h(z).
To see why the bound (32) holds, substitute ζ = (z+z−1)/2 for z in the right-hand-side of (31). The vertical
lines Re ζ = ±1 in the ζ plane become cubic curves with equations (ρ + ρ−1) cos θ = ±2 in the z-plane,
where z = ρeiθ. Two regimes must be contrasted:

• In the region |Re ζ| ≤ 1, we write

|Im(z + z−1)| = |ρ sin θ − ρ−1 sin θ| ≤ |ρ − ρ−1|,

which leads to the bound (32) for h.
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• Treating the region Re ζ > 1 is only slightly more involved. It corresponds to the region (ρ+ρ−1) cos θ >
2 in the z plane; we use this expression in the algebra below. We get

|z + z−1 − 2| =
[(

(ρ + ρ−1) cos θ − 2
)2

+ (ρ − ρ−1)2sin2θ
]1/2

≤
[(

(ρ + ρ−1) cos θ − 2 cos θ
)2

+ (ρ − ρ−1)2sin2θ
]1/2

.

In order to conclude that (32) holds, this quantity should be less than or equal to |ρ − ρ−1|. To this
end, it suffices to show that

(ρ + ρ−1 − 2)2 ≤ (ρ − ρ−1)2, ∀ρ > 0.

Expanding the squares shows that the expression above reduces to ρ + ρ−1 ≥ 2, which is obviously
true.

• The region Re ζ < −1 is treated in a very analogous manner, and also yields (32).

The accuracy of trigonometric interpolation is now a standard consequence of the decay of Fourier series
coefficient of g. The result below uses the particular smoothness estimate obtained in Lemma 5. The proof
technique is essentially borrowed from [32].

Lemma 6. Let g be a real-analytic, 2π-periodic function of θ ∈ R. Define the function h of z ∈ {z : |z| = 1}
by h(eiθ) = g(θ), and assume that it extends analytically in the complex plane in the manner described
by Lemma 5. Consider the trigonometric interpolant q(θ) of g(θ) from samples at θj = jπ/N , with j =
0, . . . , 2N − 1. Assume N ≥ 1/(2R). Then

‖g − q‖2 ≤ C Q N

[
1 +

1

R2

]1/4 [
R +

√
R2 + 1

]−N

, (34)

for some number C > 0.

Proof of Lemma 6. Write the Fourier series expansion of g(θ) as

g(θ) =
∑

n∈Z

einθ ĝn. (35)

A comparison of formulas (35) and (29) shows that two sources of error must be dealt with:

• the truncation error, because the sum over n is finite in (29); and

• the aliasing error, because g̃n 6= ĝn.

It is well-known that g̃n is a periodization of ĝn, in the sense that

g̃n =
∑

m∈Z

ĝn+2mN .

This equation is (a variant of) the Poisson summation formula. As a result,

‖g − q‖2
2 =

∑′′

|n|≤N

|
∑

m 6=0

ĝn+2mN |2 +
∑′′

|n|≥N

|ĝn|2. (36)

The decay of ĝn is quantified by considering that the Fourier series expansion of g(θ) is the restriction to
z = eiθ of the Laurent series

h(z) =
∑

n∈Z

ĝnzn,
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whereby the coefficients ĝn are also given by the complex contour integrals

ĝn =
1

2πi

∮

|z|=ρ

h(z)

zn+1
dz. (37)

This formulation offers the freedom of choosing the radius ρ of the circle over which the integral is carried
out, as long as this circle is in the region of analyticity of h(z).
Let us first consider the aliasing error – the first term in the right-hand side of (36). We follow [32] in writing

∑

m>0

ĝn+2mN =
∑

m>0

1

2πi

∮

|z|=ρ

h(z)

zn+1+2mN
dz,

=
1

2πi

∮

|z|=ρ

h(z)

zn+1(z2N − 1)
dz.

For the last step, it suffices to take ρ > 1 to ensure convergence of the Neumann series. As a result,

|
∑

m>0

ĝn+2mN | ≤ ρ−n 1

ρ2N − 1
max
|z|=ρ

|h(z)|, ρ > 1.

The exact same bound holds for the sum over m < 0 if we integrate over |z| = ρ−1 < 1 instead. Notice that
the bound (32) on h(z) is identical for ρ and ρ−1.
Upon using (32) and summing over n, we obtain

∑′′

|n|≤N

|
∑

m 6=0

ĝn+2mN |2 ≤




∑′′

|n|≤N

ρ2n



 4

(ρ2N − 1)2

[
Q

1 − ρ−ρ−1

2 R−1

]2

. (38)

It is easy to show that the sum over n is majorized by ρ2N ρ+ρ−1

ρ−ρ−1 .

According to Lemma 5, the bound holds as long as 1 < ρ < R +
√

R2 + 1. The right-hand side in (38) will
be minimized for a choice of ρ very close to the upper bound; a good approximation to the argument of the
minimum is

ρ = R̃ +

√
R̃

2
+ 1, R̃ =

2N

2N + 1
R,

for which
1

1 − ρ−ρ−1

2 R−1
= 2N + 1.

The right-hand side in (38) is therefore bounded by

4Q2(2N + 1)
1

(ρN − ρ−N )2
ρ + ρ−1

ρ − ρ−1
.

This expression can be further simplified by noticing that

ρN − ρ−N ≥ 1

2
ρN

holds when N is sufficiently large, namely N ≥ 1/(2 log2 ρ). Observe that

log2 ρ =

ln

(
R̃ +

√
R̃

2
+ 1

)

ln 2

=
1

ln 2
arcsinh(R̃) =

1

ln 2
arcsinh

(
2N

2N + 1
R

)
,

so the large-N condition can be rephrased as

R ≥ 2N + 1

2N
sinh

(
ln 2

2N

)
.
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It is easy to check (for instance numerically) that the right hand-side in this expression is always less than
1/(2N) as long as N ≥ 2. Hence it is a stronger requirement on N and R to impose R ≥ 1/(2N), i.e.,
N ≥ 1/(2R), as in the wording of the lemma.
The resulting factor 4ρ−2N can be further bounded in terms of R as follows:

ρ = R̃ +

√
R̃

2
+ 1 ≥

(
2N + 1

2N

)
[R +

√
R2 + 1],

so

ρ−N ≤
(

2N + 1

2N

)−N

[R +
√

R2 + 1]−N

≤
(

exp
1

2N

)−N

[R +
√

R2 + 1]−N

=
√

e [R +
√

R2 + 1]−N .

We also bound the factor ρ+ρ−1

ρ−ρ−1 – the eccentricity of the ellipse – in terms of R by following a similar sequence
of steps:

ρ + ρ−1

ρ − ρ−1
=

2

√
R̃

2
+ 1

2R̃

≤ 2N + 1

2N

√
1 +

1

R2

≤ 5

4

√
1 +

1

R2
.

After gathering the different factors, the bound (38) becomes

∑′′

|n|≤N

|
∑

m 6=0

ĝn+2mN |2 ≤ 20 e Q2 (2N + 1)2
√

1 +
1

R2

[
R +

√
R2 + 1

]−2N

. (39)

We now switch to the analysis of the truncation error, i.e., the second term in (36). By the same type of
argument as previously, individual coefficients are bounded as

|ĝn| ≤
[
max(ρ, ρ−1)

]−n Q

1 − ρ−ρ−1

2 R−1
.

The sum over n is decomposed into two contributions, for n ≥ N and n ≤ −N . Both give rise to the same
value,

∑

n≥N

ρ−2n =
ρ−2N

1 − ρ−2
.

We let ρ take on the same value as previously. Consequently, Q

1− ρ−ρ−1

2
R−1

= 2N + 1, and, as previously,

ρ−2N ≤ e [R +
√

R2 + 1]−2N .

We also obtain
1

1 − ρ−2
≤ ρ + ρ−1

ρ − ρ−1
≤ 5

4

√
1 +

1

R2
.

As a result, the overall bound is

∑

|n|≥N

|ĝn|2 ≤ 5

2
e Q2 (2N + 1)2

√
1 +

1

R2

[
R +

√
R2 + 1

]−2N

. (40)

We obtain (34) upon summing (39) and (40), and using 2N + 1 ≤ 5N/2.
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