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Abstract—This note considers the problem of blind identifi-
cation of a linear, time-invariant (LTI) system when the input
signals are unknown, but belong to sufficiently diverse, known
subspaces. This problem can be recast as the recovery of a rank-
1 matrix, and is effectively relaxed using a semidefinite program
(SDP). We show that exact recovery of both the unknown
impulse response, and the unknown inputs, occurs when the
following conditions are met: (1) the impulse response function
is spread in the Fourier domain, and (2) the N input vectors
belong to generic, known subspaces of dimension K in RL.
Recent results in the well-understood area of low-rank recovery
from underdetermined linear measurements can be adapted to
show that exact recovery occurs with high probablility (on the
genericity of the subspaces) provided that K,L, and N obey the
information-theoretic scalings, namely L & K and N & 1 up to
log factors.

I. INTRODUCTION

We observe the circular convolutions yn = h∗xn of N in-
puts {xn}n with the system impulse response h. Assume that
each input xn respectively lives in a known K-dimensional
subspace of RL, i.e.,

xn = Cnmn, n ∈ [N ],

for some L × K basis matrices {Cn}n∈[N ]. Given the basis
matrices, all we need to know are the expansion coefficients
mn to discover the inputs xn for each n. To express diver-
sity, or genericity, we assume that the elements of Cn are
independent N (0, 1) random variables.

This model applies, for instance, in blind channel estima-
tion using random codes. A sequence of length-K messages
m1, . . . ,mN are respectively coded using tall L×K coding
matrices C1, . . . ,CN . The protected coded messages xn =
Cnmn are then transmitted one after the other over a channel
with unknown impulse response h ∈ RL. The receiver obtains
overlapped copies with different delays of each of the N
transmitted signals, which can be modeled as the convolutions
of the coded messages with the channel response. We are
assuming here that the channel’s impulse response is fixed over
the duration of the transmission of these N coded messages,
which justifies the use of a same h in each of the convolutions.
Assuming the knowledge of the coding matrices, the task of
the decoder is to discover both the channel response and the
messages.

The solution proposed in this paper follows a long line
of recent work on convex relaxation of nonlinear problems,

including matrix completion and phase retrieval. See for
example [1], [2], [3], [4], [5], [6], [7]. The idea is to lift
the original problem into a problem with linear constraints in
a higher-dimensional space, and relax any rank condition with
a convex substitute.

To follow this prescription for the problem at hand, let
mH = [mH

1 , . . . ,m
H
N ], and write the measurements as

yn(`) = 〈A`,n,hm
H〉F = tr(A`,nmh

H).

A short calculation shows that A`,n = f`φ
H
`,n, where

• fH
` is the `th row of the L×L orthonormal DFT matrix
F ,

• φ`,n is a length KN vector of zeros except for a length K
vector c`,n placed in the position indexed by (n−1)K <
k ≤ nK (or k ∼K n for short), and

• c̄`,n =
√
LCH

n f`.
In the sequel, we also write A(X) for the collection
〈A`,n,X〉F indexed by ` and n.

The problem of recovering hmH from yn is thus equiva-
lently written as

minimize rank(X)

subject to {yn} = A(X).
(1)

The unique solution of this program is hmH, which has rank
1. From the knowledge of hmH, observe that h and mH can
only be known up to an inconsequential multiplicative scalar,
i.e., the singular vectors of hmH may be αh and mH/α for
some α 6= 0.

Since rank minimization under linear constraints is NP hard
in general, we consider the usual relaxation

minimize ‖X‖∗
subject to {yn} = A(X),

(2)

where ‖X‖∗ denotes the nuclear norm of X (the sum of its
singular values.) We arrive at a convex program; section IV
adapts a well-known algorithm from semidefinite program-
ming for solving it in a scalable way.

Success of recovery of hmH as the unique minimizer of
(2) hinges on the following two quantities (coherences) being
small:

µ2
h := L · ‖Fh‖

2
∞

‖h‖22
, µ2

m := N ·max
n

‖mn‖22
‖m‖22

. (3)



Note that 1 ≤ µ2
h ≤ L and 1 ≤ µ2

m ≤ N . The impulse
response coherence µh is small when h is for instance a
sparse train of Diracs. This example is particularly relevant:
it corresponds to the case when h realizes a small number
of unknown delays (multipath arrivals) in the blind channel
estimation application. The message coherence µm is small
when the N message signals have comparable transmitter
energy.

Notice that the framework in this paper differs from that in
[5] in that the impulse response h is arbitrary, rather than a
member of a known subspace. It is the “diversity” afforded by
the presence of a small number of random inputs, in contrast to
a single random input, that enables us to consider an arbitrary
h.

II. MAIN RESULT

Our main result states that recovery of both h and mH

is possible as soon as the matrices Cn are taller than wide,
and for a number of inputs that depends very weakly on the
length L of each signal. The scalings degrade gracefully as
the coherence parameters grow.

Theorem 1. There exist constants for the O(·) and & nota-
tions, such that for any β > 0, if

L & βµ2
hK log6 L, (4)

N & βµ2
m log6 L, (5)

then hmH is the unique solution to (2) with probability 1 −
O(L−β).

III. MATHEMATICAL ARGUMENT

The proof of Theorem 1 relies on the notion of dual
certificate. Let us first introduce the subspace T as

T = {hxH + ymH| x ∈ RLK , y ∈ RL}, (6)

together with the associated projector

PT (X) = hhHX +XmmH − hhHXmmH. (7)

The projection onto the orthogonal complement of T is given
by PT⊥ = I − PT (X).

It was established in [5] (see [2], [8] for important back-
ground material) that hmH is the unique minimizer of (2)
when there exists a (dual certificate) Y such that

‖PT (Y )− hmH‖F ≤
1

2
√

2γ
, (8)

‖PT⊥(Y )‖ < 1

2
, (9)

where γ is any bound on the operator norm ‖A‖. To compute
the latter, we observe that

‖A‖2 ≤ max
`,n
‖φ`,n‖22,

which is a maximum over LN independent chi-squared ran-
dom variables with K degrees of freedom. Hence

P
(
‖A‖2 > λ

)
≤ 1.2LNe

−λ
8K

In particular, taking λ = O(K(log(LN) + β logL)) we
have ‖A‖2 . K(log(LN) + β log(L)), with probability 1 −
L−β . Thus, we let γ = C

√
K(log(LN) + β log(L)) for some

adequately large C > 0.
To build a certificate Y satisfying equations (8) and (9),

we use the golfing scheme introduced in [8]. Let Γ be the set
of all (`, n) indexing the measurements Y`,n. For 1 ≤ P ≤
LN , we introduce the partition {Γp}Pp=1 obtained by randomly
choosing elements from Γ without replacement and grouping
them into sets Γ1, . . . ,ΓP of equal cardinality. (The condition
that

⋃
p Γp covers Γ can be relaxed when P is not a divisor

of LN .) The particular value of P that makes the argument
below work will be determined later.

The golfing scheme then iteratively defines the certificate as

Yp+1 = Yp +
|Γ|
|Γp|
AH
pAp(hmH − PT (Yp)), (10)

where Ap is the restriction of A to indices in Γp.
In order to show that YP obtained by golfing satisfies the

conditions (8) and (9), we need two auxiliary lemmas. Their
proofs will appear in the long version of this note, and are
inspired by similar developments in [5].

Lemma 1. Consider the partitioning {Γp}p as above. Then,
with probability 1−O(L−β) ,

max
p=1,...,P

‖ |Γ|
|Γp|

∑
(`,n)∈Γp

PTAH
`,nA`,nPT − PT ‖ ≤

1

2
,

provided L & βµ2
hK log3 L, N & βµ2

m log3 L.

To state the second lemma, we first need to introduce the
following extensions to (3). For any matrix B ∈ CL×NK with
column wise Fourier transform denoted by B̂ = FB,

µ2
h(B) =

L

‖B‖2F
max
`∈[L]

∑
n∈[N ]

∑
k∼Kn

B̂2[`, k],

µ2
m(B) =

N

‖B‖2F
max
n∈[L]

∑
`∈[L]

∑
k∼Kn

B̂2[`, k].

(11)

We consider the special case when B = Wp, with

Wp = PT (Yp)− hmH,

so that

µ2
hp := µ2

h(Wp), µ2
mp := µ2

m(Wp). (12)

It is possible to show (see [5], lemma 4) that µ2
hp
≤ µ2

h and
µ2
mp ≤ µ

2
m with high probability.

Lemma 2. Consider the partitioning {Γp}p as above. Let
B be deterministic, or random independent from A`,n for
(`, n) ∈ Γp. Then for β > 1, with probability at least
1−O(L−β),

‖ |Γ|
|Γp|

∑
(`,n)∈Γp

〈B,A`,n〉A`,n −B‖ ≤
1

2p+1
,

when L & βµ2
h(B)K log6(L) and N & βµ2

m(B) log6(L).



We apply this lemma to B = Wp−1, which is manifestly
independent fromA`,n for (`, n) ∈ Γp since the subsets {Γp}p
are disjoint. Hence we obtain

‖ |Γ|
|Γp|

∑
(`,n)∈Γp

〈Wp−1,A`,n〉A`,n −Wp−1‖ ≤
1

2p+1
(13)

with high probability, under the same conditions on L and N
as in theorem 1.

The proofs of lemma 1 and lemma 2 (not given here)
involve a careful treatment of different variants of sampling
for Γp, such as Bernoulli sampling and uniform sampling with
replacement. The proofs hinge on the fact that these variants
are more adequate in some contexts, yet provide a sufficiently
similar degree of randomness to uniform sampling without
replacement.

Using lemmas 1 and 2, we now show that the certificate
given by golfing in (10) satisfies the conditions (8) and (9)
required to prove the recovery.

First, using the recursion (10), we relate Wp to Wp−1 via

Wp =PT (Yp)− hmH

=PT (Yp−1)− |Γ|
|Γp|
PTAH

pApPT (PT (Yp−1 − hmH))

− hmH

=

(
PT −

|Γ|
|Γp|
PTAH

pApPT
)
Wp−1.

By using lemma 1 recursively on this last equality, we get

‖PT (Yp)− hmH‖ = ‖Wp‖ ≤ 2−p, p = 1, . . . , P. (14)

Hence with P = (|Γ|/|Γp|) ≥ log2(2
√

2γ), we satisfy the first
condition, equation (8).

Second, we easily compute that

YP = −
P∑
p=1

|Γ|
|Γp|
AH
pApWp−1. (15)

By noting thatWp−1 belongs to T , (so that PT⊥(Wp−1) = 0,)
and because ‖PT⊥X‖ ≤ ‖X‖, we get

‖PT⊥(Yp)‖ ≤
P∑
p=1

|Γ|
|Γp|

∥∥∥∥AH
pApWp−1 −

|Γp|
|Γ|

Wp−1

∥∥∥∥ . (16)

After applying lemma 2, this last inequality can be shown to
satisfy the condition of equation (9), namely ‖PT⊥(Yp)‖ < 1

2 .

IV. NUMERICAL SIMULATIONS

In this section we conduct numerical experiments and
study the resulting phase diagrams in order to quantify the
probability of success for the formulation (2).

To conduct the numerical experiments, we first write prob-
lem (2) as a trace minimization problem (see [9]),

min Tr(V11) + Tr(V22)

s.t A(V12) = {yn}, V � 0.
(17)

Here V =

(
V11 V12

V21 V22

)
is introduced as a proxy for

the rank-1 matrix V0 =

(
hhH hmH

mhH mmH

)
. To handle

reasonably large instances of (17), we follow the approach
in [10] and consider a low rank factorization for the matrix

V as V =

(
R1

R2

)(
RH

1 RH
2

)
, where R1 ∈ CL×r,

R2 ∈ CKN×r for some rank r � L + KN . We fix r = 4
for convenience. We then minimize the augmented Lagrangian

L(R) associated to (17) with respect to R =

[
R1

R2

]
, where

L(R) =
1

2
‖R1‖2F +

1

2
‖R2‖2F +

∑
`,n

(〈A`,n,R1R
H
2 〉 − yn(`))

+
∑
`,n

σ

2
(〈A`,n,R1R

H
2 〉 − yn(`))2. (18)

The success rates for different values of the parameters L,
N and K are shown in Fig. 1. The first set of numerical
experiments shows the rate of success as a function of both the
size of the input subspace K and the size of the data space L,
N being fixed to 40. For each of the values of the pairs (K,L),
100 experiments were run by taking gaussian i.i.d sensing
matrices Cn with Cn(`, k) ∼ N (0, 1), as well as gaussian i.i.d
vectors h and m. For each of the 100 experiments, we ran
40 iterations of LBFGS on the augmented Lagrangian (18).
An experiment was classified as a success (1) as opposed
to failure (0) whenever the relative difference between the
obtained matrix X and the optimal solution X0 = hmH was
less than 2%. In other words,

‖X − hmH‖F
‖hmH‖F

< .02 (19)

The second diagram of Figure 1 shows the rate of success as
a function of K and N for the same experimental framework.
Here L is fixed to 800.

Finally the third diagram shows the rate of success for
various values of L and N for a fixed K = 40.

V. CONCLUSION

In this note, we consider a version of the blind deconvolu-
tion problem where the tradeoff is moved towards an arbitrary
transfer function, at the expense of requiring a small number
of sufficiently different input signals to guarantee the recovery.
Theory shows that whenever the dimensions of the problem
N,L and K satisfy L & βKµ2

h log6 L and N & βµ2
m log6 L,

both the impulse response function as well as the unknown
signals can be recovered up to a scaling factor from pro-
gram (2). Finally, together with a computationally tractable
implementation for (2), we provide numerical evidence of the
recovery by means of phase diagrams.
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Fig. 1. Recovery of h and m from nuclear norm minimization for (top)
various values of K and L, (middle) various values of K and N , and (bottom)
various values of L and N . White indicates success while black indicates
failure. From the top figure, the empirical recovery rate is seen to increase
when L increases and when K decreases, with an expected phase transition
when L is a multiple of K. From the middle and bottom figures, we see that a
minimum (small) value of N is needed for recovery, but past this threshold, K
and L are the only parameters affecting recovery. All these phase transitions
can be explained by noting that the number of unknowns in the original
problem is given by KN +L whether the number of measurements is given
by LN .
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