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ABSTRACT

Least-squares acoustic waveform inversion often suffers from a very narrow basin of attrac-

tion near the global minimum. In order to mitigate this problem, this paper introduces

an iterative inversion scheme where the notion of proximity of two traces is not the usual

least-squares distance, but instead involves registration as in image processing. Observed

data are matched to predicted waveforms via piecewise-polynomial warpings, obtained by

solving a nonconvex optimization problem in a multiscale fashion from low to high frequen-

cies. This multiscale process requires defining low-frequency augmented signals in order to

seed the frequency sweep at zero frequency. Custom adjoint sources are then defined from

the warped waveforms. The new method, referred to as Registration-guided least-squares,

is successfully applied to a few scenarios of model velocity estimation in the transmission

setting. We show that the new method can converge to the correct model in situations

where conventional least-squares inversion suffers from cycle-skipping and converges to a
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spurious model.
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INTRODUCTION

Waveform inversion via non-linear least-squares (LS) minimization (Tarantola and Valette,

1982) is effective when the starting model is accurate (Virieux and Operto, 2009), but

otherwise suffers from stalled convergence to spurious local minima due to the oscillatory

nature of the data and nonlinearity. The presence of local minima in seismic inversion

was clearly demonstrated with the so-called Camembert example (Gauthier et al., 1986).

In order to prevent convergence to a local minimum, frequency sweeps in full waveform

inversion (FWI) were proposed by many authors including Bunks et al. (1995) and Pratt

(1999), and consist in fitting data from low to high frequencies. However, the lack of low-

frequency data, or their corruption by noise, often hinders this frequency sweep approach.

Accurate initial models are typically found using traveltime tomography (Bregman et al.,

1989; Pratt and Goulty, 1991; Prieux et al., 2013), which are then improved upon by

waveform inversion. Instead of taking two separate steps for inversion, there have also been

efforts to combine traveltime tomography and waveform inversion to exploit the advantages

of both methods: convexity of traveltime tomography and high resolution of waveform

inversion (Luo and Schuster, 1991). Gee and Jordan also took advantage of robust traveltime

information rather than sensitive amplitude in the seismogram (Gee and Jordan, 1992).

Fichtner et al. (2008) proposed an objective functional which minimizes envelope and phase

misfits using the time-frequency representation of traces with the flexibility of emphasizing

phase first and then envelope misfits later. Bozdağ et al. (2011) showed that FWI using

misfits defined with instantaneous phase and envelope reduces the non-linearity of waveform

modeling. In the same line of research, an objective functional defined by the energy in the

crosscorrelation of observed and predicted data was proposed and studied by Van Leeuwen

and Mulder (2010), though an analysis of their method was provided in Baek and Demanet
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(2013).

In this paper, we propose a method which implicitly extracts phase information by

solving auxiliary seismogram registration sub-problems. The resulting method recovers

the velocity model in some transmission scenarios, without traveltime picking, and even

when the data only contain high frequencies. We formulate the registration problem with

piecewise polynomials that can be found from the comparison of non-linearly transformed

waveforms such as envelopes.

A way to incorporate this new kinematic information into waveform inversion is to

replace the adjoint source that appears in the model update, normally the difference u− d

between the predicted data u and observed data d, by a geometrically meaningful quantity

that does not suffer from cycle-skipping. The motivation for correcting the adjoint source is

that the phases of d are in general off by more than one wave period in comparison to those

of u. In contrast, we define fractionally warped data d̃ so that their phases match those of

the prediction u to within a small fraction of a period. This concept will of course be given

a precise definition in the sequel. We demonstrate through numerical inversion examples

that least-squares misfit optimization with the warped data can have a much enlarged basin

of attraction. We refer to our method as registration-guided least-squares (RGLS) inversion.

The necessity of extracting shifts or warping in many applications has given rise to many

schemes under different names. For example, ideas related to registration include traveltime

delay based on crosscorrelations (Luo and Schuster, 1991), image registration using opti-

mal transport (Haker and Tannenbaum, 2001), curve registration (Ramsay and Li, 1998),

registration using local similarities (Fomel and Jin, 2009; Fomel and van der Baan, 2010),

and dynamic time warping for speech pattern matching (Sakoe and Chiba, 1978). Finding
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traveltime discrepancies between two traces is not a trivial problem, especially for multiple

waves with different traveltime discrepancies. Maggi et al. (2009), for example, developed

an automated algorithm to select time windows to extract time shifts from isolated waves

with iterative tomographic inversion in mind. Liner and Clapp (2004) pointed that trace

alignment is not a mere translation but a time warping, and used a global optimization al-

gorithm used in amino acid alignment for seismic trace processing and interpretation. Hale

(2013) further improved a different dynamic programming method developed for speech

recognition with proper constraints, recovering time shifts which are a few times larger

than a period/wavelength in a stable and robust manner. Kennett and Fichtner (2012)

defined a generalized mapping between traces, introducing transfer operators which map

seismograms in a similar way to our piecewise polynomial mapping.

In order to find the best warping between an observed trace d and the corresponding

predicted trace u, we formulate and solve an optimization problem which, not unlike FWI, is

itself nonconvex. The highly oscillatory nature of the traces is also what makes seismogram

registration nontrivial. We show that the nonconvexity of the matching problem is tractable

and can be handled by a continuation strategy, where the match is realized scale-by-scale in

a careful, iterative fashion. The traces d and u usually do not contain useful low frequencies

in exploration seismology, so the seeding problem of this multiscale iteration is as much an

issue here as in classical FWI. We propose to solve this problem by introducing nonlinearly

transformed signals which, by construction, contain low-frequency components. We refer to

these convenient, nonphysical nonlinearly-transformed signals as low-frequency augmented

(LFA) signals. The LFA transformation can be thought of as an ad-hoc pre-processing of

the traces so as to create low frequencies, yet maintain much of the information at high

frequencies. Subsequently, seismogram registration is realized through the match of the
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LFA of d to the LFA of u by a warping function of limited complexity, such as a piecewise

polynomial.

This paper is part of the community’s broad effort to enlarge the basin of attraction

of FWI by replacing least-squares by other objective functions, or by directly modifying

the adjoint source, as in Luo and Schuster (1991); Gee and Jordan (1992); Fichtner et al.

(2008); Van Leeuwen and Mulder (2010); Shah et al. (2010). To the best of our knowledge,

however, no studies have yet proposed to modify the adjoint source by replacing observed

data with time-warped predicted data for this purpose. Moreover, we illustrate the benefits

of considering piecewise polynomials (as an alternative to dynamic warping, for instance) to

define mappings between different images or traces. Finally, the idea of transforming traces

to generate low frequencies (including 0 - 5 Hz) seems to have been mostly overlooked by

the community. The work of Shin and Ha (2008) and Shin and Cha (2009) is an important

exception, where the LFA is realized by a decaying exponential, but we are unaware that

the type of nonlinearity that we consider in this paper had been previously used for the

purpose of frequency augmentation.

The paper is organized as follows. We start by explaining the motivation behind mod-

ifying the adjoint source to the adjoint state equation. We then detail trace a registration

method. Seismogram registration at the trace level is demonstrated with synthetic noisy

and noiseless data. The RGLS inversion method is then tested in several transmission cases,

with Gaussian high/low velocity models and a smoothed Marmousi model. We show that

the LS and RGLS methods behave significantly differently. We finish by discussing the lim-

its of the proposed method as well as comparisons with other similar methods for inversion

and registration. In a nutshell, seismogram registration requires comparable traces, which

explains why we consider transmission rather than reflection examples in this paper.
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GUIDED LEAST-SQUARES WITH A MODIFIED ADJOINT SOURCE

Full waveform inversion (FWI), in its standard form, tries to minimize the least-squares

misfit

J [m] =
1

2

∑
s,r

∫
|Ss,rus(x, t)− ds(xr, t)|2dt, (1)

where m(x) denotes the squared slowness and Ss,r is a sampling operator; predicted and ob-

served data at a shot s and at a receiver xr are denoted by us = Fs[m], and ds, respectively.

For notational simplicity, the subscripts s and r are omitted whenever it does not cause

confusion. Moreover, the sampling operator Ss,r is omitted when the predicted data Ss,rus

is compared with the corresponding observed data ds; the residual Ss,rus(x, t) − ds(xr, t)

may be written as u−d. In this paper the forward operator Fs[m] maps a squared slowness

m to data us(xr, t) through the acoustic wave equation,

m
∂2us
∂t2

= ∆us + fs(x, t), (2)

where fs(x, t) is a source term. The adjoint-state method generates the gradient of J [m]

δJ

δm
[m] = −

∑
s

∫
qs(x, t)

∂2us
∂t2

(x, t)dt, (3)

where the adjoint field qs is propagated backward in time from the receiver positions in the

medium m using the data residual as right-hand side (Plessix, 2006).

It is well known that the nonconvexity of J [m] is particularly pronounced when the data

are oscillatory. More specifically, when the time difference between corresponding arrivals

in Ss,rus and ds is larger than a half period, the steepest descent direction of the data misfit

may result in increasing those time differences, consequently increasing the model error but

still decreasing the misfit error. In order to guide the iterations in a better direction, we

propose to change the residual Ss,rus − ds in the adjoint wave equation by replacing ds
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by a version of Ss,rus transported “part of the way” toward ds. We denote these virtual,

transported data by d̃s and refer to them as fractionally warped data. The rationale behind

d̃s is that its arrivals can now be less than a half period apart from those in Ss,rus.

In order to generate a good candidate of fractionally warped data, we propose to find

piecewise cubic polynomials p(t) andA(t) so as to have a good match ds(t) ≈ A(t)Ss,rus(p(t)),

then define fractionally warped data as

d̃s(t) = [A(t)]α Ss,rus((1− α)t+ αp(t)) (4)

with some very small 0 < α � 1. When the parameter α is close to 1, d̃s(t) are located

near the observed data ds(t); such d̃s, which are far away from the predicted data Ss,rus(t),

result in cycle-skipping. Hence, a small α close to 0 is used to define d̃(t). A generic way

to find a proper α seems to be αTd <
1
2Tp, i.e., α <

Tp
2Td

, where Td and Tp are the largest

traveltime discrepancy in a shot and the wave period, respectively.

Let us remark that it is the prediction which is transported toward the observed data,

and not the other way around. A definition of d̃s in place of Ss,rus and a large α ' 1

is also possible, but we believe that this choice would be inferior. The substitution of ds

by d̃s is illustrated in Figure 1. The underlying assumption of our proposed method is

that the observed data ds are a warped version of the corresponding predicted data Ss,rus.

However, we are aware that there are cases in which such an assumption does not hold;

different background velocity models result in not only warping waves in time but also

the appearance or the disappearance of waves. The limitations are commented on in the

discussion section.

We can now write the registration-guided least-squares method (RGLS) as the following

2-level local optimization problem: assume mk−1 is known from the previous iteration, then
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obtain mk from one gradient step for the least-squares misfit

Jk[m] =
1

2

∑
s,r

∫
|Ss,rus(x, t;m)− d̃s(xr, t;mk−1)|2dt, (5)

where

d̃s(xr, t;mk−1) := Aα(t)Ss,rus(x, (1− α)t+ αp(t);mk−1), (6)

and the warping parameters are optimal in the sense that

(p(t), A(t)) = argminWLFA[p,A], (7)

where the objective function WLFA is defined in the next section. The expression of WLFA

only involves mk−1, not m, hence Jk[m] only depends on m via us(x, t;m). The gradient of

Jk[m] is obtained in a standard fashion via the adjoint-state method, as mentioned earlier,

as the migration operator applied to the adjoint source Ss,rus − d̃s.

Notice that our update consisting of the migrated image of Ss,rus− d̃s can be interpreted

either as a modified gradient for the objective functional 1, or as the gradient for the modified

objective functional 5. In either case, it is clear that these updates are not expected to be

gradients of any single objective function – hence the term local optimization.

The introduction of fractionally warped data and a modified adjoint source changes

a conventional LS inversion algorithm slightly by adding a registration step before the

backward modeling step. The registration step is highly parallelizable and can be sped

up exploiting data redundancy; a detailed cost analysis is given in the discussion section.

The overall computational cost for the RGLS method is slightly higher than that of the

LS method, by a few percentage in our parallelized implementation. An RGLS inversion

algorithm is presented in the next section after we state the sub-problem of RGLS inversion,

i.e., the seismogram registration problem.
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SEISMOGRAM REGISTRATION

The warping p(t), the amplitude A(t), and the value of α are chosen so that fractionally

warped data d̃(t) have a similar shape to that of the prediction u(t) but phase discrepancies

smaller than a half of a wave period. In order to find p(t) and A(t), we propose a non-convex

optimization scheme similar to image registration (Glasbey and Mardia, 1988; Zitová and

Flusser, 2003). The proposed FWI method therefore transfers a part of non-convexity,

which results from the large traveltime discrepancies, to the registration problem at the

trace level.

Statement of the optimization problem

In order to find A(t) and p(t) we propose to solve the following least-squares minimization

problem for each trace: find p(t) and A(t) piecewise cubics that minimize

W [p,A] =
1

2

∫
|d(t)−A(t)u(p(t))|2dt+

λ

2

∫
|p(t)− t|2dt, (8)

where λ is a weighting parameter for a regularization term which enforces p(t) to stay as

an one-to-one mapping. The letter W stands for “warping”.

This registration problem is non-convex and suffers from the same cycle-skipping phe-

nomenon as conventional least-squares FWI does, due to the oscillatory nature of the pre-

dicted and observed data. Simulated annealing (Kirkpatrick, 1984) or other Monte Carlo

methods (Wenzel and Hamacher, 1999) for global optimization could be performed but they

are not tried in this paper. Instead, the minimization is carried out in a multiscale fashion

by restricting the data d(t) and its prediction A(t)u(p(t)) to a slowly growing subset of fre-

quencies, from the zero frequency to successively higher frequencies, as in frequency domain

FWI (Plessix, 2009). However, the observed data d usually have small energy in the low fre-
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quency band and may be corrupted by noise. In order to start the sweep at zero frequency,

we use modified traces D(t) and U(t), manufactured to contain low frequencies, instead of

d(t) and u(t). We call D(t) and U(t) low-frequency augmented (LFA) signals. Hence, the

optimization problem 8 becomes: find p(t) and A(t) piecewise cubics that minimize

WLFA[p,A] =
1

2

∫
|D(t)−A(t)U(p(t))|2dt+

λ

2

∫
|p(t)− t|2dt. (9)

We point out that registration with the observed and predicted data u(t), d(t) instead

of their LFA versions U(t), D(t) fails to recover the correct time shifts. Frequency sweeping

from low frequencies around 0 Hz using appropriate LFA transformations seems to be crucial

for successful registration and inversion. Here are four reasonable possibilities for defining

an LFA signal, U(t), from a band-limited signal u(t):

Uh = u(t) + |u(t) + i(Hu)(t)|, (10a)

Us = u2(t), (10b)

Ua = |u(t)|, (10c)

where i is
√
−1 andH is the Hilbert transform, defined in the frequency domain as Ĥu(ω) =

−i sgn(ω)û(ω) (Benedetto, 1997), where sgn(·) is the sign function.

The Hilbert transform completes any real signal with an imaginary part, so that u+iHu

is an “analytic” signal in the sense of having no negative frequency component. The ampli-

tude
√
u2(t) + (Hu(t))2 has the interpretation of an envelope for the signal u + iHu. The

Hilbert transform is a classical tool in signal processing; it is typically used for demodulation

in seismic inversion (Bozdağ et al., 2011).

All three LFA transformations generate strong low-frequency signals as shown in Figure

2, enabling the frequency sweep from zero frequency. Our comparison of three LFA trans-
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formations shows that Uh is a particularly good LFA transformation in terms of frequency

content, convergence of frequency sweeping, and registration errors.

The piecewise cubic polynomials p(t) and A(t) can be written as

p(t) =
n∑
k=1

ρkφk(t) = [φ1(t) φ2(t)...φn(t)][ρ1 ρ2 ... ρn]T (11)

and

A(t) =

n∑
k=1

θkφk(t) = [φ1(t) φ2(t)...φn(t)][θ1 θ2 ... θn]T , (12)

respectively. The superscript T denotes the transposed. Global basis functions with compact

support in multiple subintervals are denoted by φk(t), k = 1, 2, 3, ..., n, while both p(t) and

A(t) are represented in each subinterval as a cubic. The errors in the approximation of

smooth functions with the piecewise cubic polynomials are proportional to O(h4), while

those of linear interpolations are O(h2), where h is the length of a subinterval. The number

of global basis functions is proportional to the recording length of traces and the complexity

of mapping functions. This paper does not address the problem where the spline nodes could

also be determined by optimization. The column vectors [ρ1, ρ2, ..., ρn]T and [θ1, θ2, ..., θn]T

are denoted by ρ and θ, respectively. Their components are the 2n parameters to be

determined per trace.

The gradient and the Hessian matrix of WLFA in problem 9 with respect to ρ and θ can

be found analytically, e.g.,

∂WLFA

∂ρi
=

∫
[D −AU(p)][−AU ′(p)φi] + λ(p− t)φidt, (13)

(Hρ)ij =
∂2WLFA

∂ρi∂ρj
=

∫ [
[AU ′(p)]2 − [D −AU(p)][AU ′′(p)] + λ

]
φiφjdt, (14)

where U ′() and U ′′() are the first and second order derivatives of U . Similar expressions

can be derived for the gradient and Hessian with respect to the coefficients of A(t). The

integrals are computed approximately using the trapezoidal rule as a quadrature.
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Optimization strategy and algorithm for seismogram registration

We detail a way to resolve the non-convexity issue of the optimization problem in expression

8 or 9 for seismogram registration in Algorithm 1.

The collection of discrete frequencies from 0 to ωi is denoted by Ωi = [0, ωi]. We create

M such sets, Ω1,Ω2, ...,ΩM , where Ω1 ⊂ Ω2 ⊂ ... ⊂ ΩM and ω1 < ω2 < ... < ωM . Below,

LPFk(·) denotes the application of a low-pass filter with passband Ωk = [0, ωk]. At the kth

outer iteration step, both LFA traces D and U are low-pass filtered to the frequency range

ω ∈ Ωk, resulting in the LF signals Dk and Uk. We let WLFA,k for the expression of WLFA

with Dk and Uk in place of D and U . The maximum frequency ωM in the outer loop is set

to a frequency below the central frequency of the source signature used to generate data.

Algorithm 1 Seismogram registration.

Input: traces u(t) and d(t)

Initialize: p(t) = t, A(t) = 1

LFA: D(t)← LFA(d(t)), U(t)← LFA(u(t))

for k = 1, 2, ...,M do

Filter: Dk(t)← LPFk(D(t)), Uk(t)← LPFk(U(t))

while not converged do

Compute:
∂WLFA,k

∂ρ ,
∂WLFA,k

∂θ , and the Hessians Hρ, Hθ of the functional WLFA,k.

Newton step: ρ← ρ−H−1ρ

∂WLFA,k
∂ρ , θ ← θ −H−1θ

∂WLFA,k
∂θ

end while

end for

Output: p(t), A(t)
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Computational aspect of registration and modification to LS inversion

Registering every trace can be time-consuming because the computational cost is propor-

tional to the number of shots, of receivers, and of samples per trace. A more detailed cost

analysis of seismogram registration is found below in the discussion section. The problem

being highly parallelizable, traces in shots can be registered independently; our implemen-

tation of the registration step is parallelized over shots. As the grid size of a computational

domain gets larger, the extra computational cost for the registration step gets smaller com-

pared to that of forward/backward modeling steps. Moreover, the registration step can be

sped up by tuning the parameters in the registration algorithm, exploiting data redundancy.

For example, skipping registrations in some traces and interpolating piecewise polynomials

can be done and the frequency sweeping range can be customized. Hence, the seismogram

registration step in our implementation takes less time than a forward/backward modeling

step.

The introduction of fractionally warped data for a modified adjoint source requires to

solve a nonconvex optimization problem every iteration. It may give an impression that

RGLS inversion including seismogram registration is unwieldy. However, Algorithm 2 is a

minor modification of the conventional LS inversion algorithm from the point of view of

complexity. The new steps for the RGLS method are marked with underlines; the steps

are highly parallelizable and unexpensive compared to the forward/backward modeling

steps. As a result, our implementation of the RGLS method takes slightly longer than the

conventional LS method.
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Algorithm 2 RGLS inversion algorithm.

Input: initial model m0 and observed data d(xr, t)

for i = 0, 1, 2, ..., N − 1 do

Forward modeling: obtain u(x, t;mi) for the velocity model mi

Seismogram registration: find A(t), p(t) from u(xr, t;mi) and d(xr, t)

by minimizing the objective functional 9.

Fractionally warped data: d̃← [A(t)]αu((1− α)t+ αp(t))

Backward modeling: obtain q(x, t) by backpropagating u(xr, t;mi)− d̃

Imaging condition: δm = −
∫
q(x, t)

∂2u

∂t2
(x, t;mi)dt

Model updating: mi+1 = mi − βδm
end for

Output: mN

Examples of registration of synthetic traces

Here, we demonstrate the registration capability of non-convex optimization using the non-

linear formulation 10a.

The underlying assumption of the registration idea is that two traces can be mapped

via piecewise cubic polynomials. The mapping function p(t) is also enforced to remain

one-to-one thanks to the penalty term ‖p(t) − t‖2 in objective functional 8. If a true

mapping does not satisfy these conditions, the solution is not guaranteed. However, the

following numerical examples show that our registration method is robust and works well,

even when some of the conditions are not met. Our first example demonstrates the capability

of registration when the mapping is smooth and can be well-approximated by piecewise

cubic polynomials. The second example shows that the frequency sweeping scheme makes
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registration insensitive to random noise in the data. The third example is more challenging

in that the waveforms are quite different and one of them is not a transported version of

one trace contrary to our assumption.

Our first example shows the registration of two noiseless synthetic traces containing

many reflected waves. One of the two traces is obtained from a numerical experiment with

the Marmousi velocity model. The other trace is the result of applying a warping map

p : t 7→ t+ 0.15 exp
(
−8 (t/Tc − 1)2

)
, where Tc is half the recording time. Unless otherwise

stated, registration is performed from zero frequency with the LFA signal Uh in equation

10a. Figure 3(b) shows a good registration match.

For the second example, we test seismogram registration with noisy synthetic data. A

synthetic trace is obtained from a numerical experiment with the Marmousi model and is

used as reference data. The trace is then transported using the same function as used in

example 1 in order to generate predicted data. Two independent realizations of Gaussian

white noise with mean 0. and standard deviation 0.05 are respectively added to the two

traces. This noise level is about 35 % of the original traces in the root-mean-square sense

(rms). Figure 4 shows excellent registration results in the presence of strong noise.

The third example uses two traces obtained from numerical experiments with two dis-

tinct velocity models. An observed trace is obtained from the Marmousi velocity model

VMarmousi(x, z) while we use a different velocity model Vpred(x, z) = VMarmousi(x, z)−0.15z

for the predicted trace. Due to the reduction in velocity, the predicted data lag behind the

observed data up to a few wave periods in the coda. A good, though not perfect agreement

is observed between the observed trace and the transported trace as shown in Figure 5.

For the three numerical examples above, sweeping up to half of the central (dominant)
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frequency suffices for convergence. Most kinematic discrepancies between the observed data

and the predicted data are fixed after sweeping up to 5 Hz, where central frequencies of the

traces are above 15 Hz. The signals in the above examples have a recording time of about

4 s with the sampling period about 1 ms, resulting in about 4000 samples per trace. For

signals of such length, 4 subintervals are enough for the piecewise polynomials p(t) and A(t)

in equations 11-12.

Although above three examples demonstrate robust registration with reasonable accu-

racy in the presence of strong random noise and in the case of different waveforms, there are

cases where registration gives wrong results, i.e., shifting waveforms in the wrong direction.

This scenario often happens when the number of waves differs in the two traces. Another

case would be strong noise with energy in the sweeping frequency band.

NUMERICAL EXAMPLES OF FULL WAVEFORM INVERSION

In this section, we demonstrate the potential of registration-guided least-squares (RGLS)

optimization for waveform inversion in transmission settings with synthetic velocity models.

Specifically, we compare convergence of the RGLS method quantitatively with that of the LS

method through examples 1 to 3 in Table 1. We point out that both RGLS and LS inversion

are done in the time domain without a frequency sweeping. The frequency sweepings from

zero frequency are performed in seismogram registration as explained in the previous section.

The first two examples involve models with a Gaussian lens, while the third example involves

a smoothed Marmousi model. We plot 1) true vs. converged velocity models, 2) data misfit

vs. iteration count for both LS and RGLS, and 3) rms values of VT −Vk for some examples,

where VT is the true velocity model and Vk is the kth step velocity model. By data misfit,

we simply mean the least-squares misfit in expression 1.
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The acoustic wave equation is discretized with a 4th order accuracy finite difference

scheme in space. For the time discretization, the explicit 2nd order leap-frog scheme is used.

Perfectly matched layers (PML) surround the computational domain (Berenger, 1994).

Inversion example 1: Gaussian lens

Example 1 compares the performance of RGLS and LS optimization using the velocity model

VH and VL plotted in Figure 6(a,d). The initial models are homogeneous at Vinit(x, z) =

5100, 6000 m/s, i.e., without any a priori knowledge about the true models. These true and

initial velocity models are chosen to result in traveltime discrepancies which are as large as

3.4 (4.5) wave periods in rays starting from the center of the left boundary to the opposite

side, passing through the center of model VH(VL), respectively.

The computational domain is 2500 m x 2500 m; the grid size is 501 by 501 with a

distance of 5 m between grid points along both directions. The total number of shots used

for computing the update is 196 with the distance between sources 50 m. For any source

on one of four sides, we consider a fine sampling of 750 receivers with spacing 10 m on the

other three sides as marked with magenta triangles in Figure 6(a). A Ricker wavelet with

center frequency 50 Hz is used as an acoustic source.

High-velocity Gaussian lens: The RGLS method correctly updates the model

velocity by increasing it near the center. The updates of the RGLS method (100 iterations)

are free of artifacts and the velocity models look very close to the true models. See Figure

6(b). However, the LS method converges to a wrong model as shown in Figure 6(c). In

particular, the velocity at the center of the converged model is around 3500 m/s, which is

much lower than the initial velocity 5100 m/s and the true velocity 6200 m/s. However,
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notice that the four corners seem to be updated properly. There is no cycle-skipping there:

predicted data with short travel times are within a half of a period from corresponding

observed data around the corners.

The changes in data misfit and model rms error over iteration are compared in Figures

7(a-b). The RGLS method temporarily increases the data misfit, but decreases the model

rms error, as the predicted data correctly move towards the observed data during the first

20 to 30 iterations. For the LS method, however, the data misfit decreases but the model

velocity error increases gradually, as shown in Figure 7(b).

Low-velocity Gaussian lens: As in the high-velocity Gaussian lens case, the RGLS

recovers the true model much better than the LS method as shown in Figures 6(e-f). The

LS method updates parts of the domain near the boundary correctly as well as the corners,

as shown in Figure 6(f). Interestingly, a hundred more iterations result in a much better

velocity model with large errors only at the center. The area of the error zone at the

center gets smaller as the iterations proceed. Quantitatively, both data and model errors

are reduced by both the RGLS and LS methods as shown Figures 7(c-d). However, RGLS

is much faster; LS updates the model in a slow, piecemeal way from the boundary inwards.

Inversion example 2: Noisy Gaussian lens

We test the RGLS method with a more complicated true velocity model shown in Figure

8(a). The true velocity model in this example contains noise generated by convolution

of a Gaussian kernel with an array of normally distributed random numbers as well as

the high-velocity Gaussian lens. Other configurations are the same as in the high-velocity

Gaussian lens of the previous example: the initial model, the source and receiver locations,

19



the acoustic source, and the grid size.

The medium-scale details of the model are successfully recovered by RGLS optimization

as shown in Figure 8(b). The data misfit and model rms error are shown in Figure Figure

9. RGLS optimization stalls the data misfit after 63 iterations: the inversion then switches

from RGLS to LS. Note that the LS method is close to the special case α = 1 in the

construction of fractionally warped data, hence the late-game switch to LS is more of a

parameter adjustment than an ad-hoc fix. Switching to LS is safe because observed data

are now within a fraction of a wavelength of predicted data. Using a velocity model with

stronger randomness would make the RGLS method fail, because the observed data would

contain many refracted waves that the predicted data do not contain.

Inversion example 3: Smoothed Marmousi

A more realistic velocity model is used to demonstrate the RGLS method: a smoothed

Marmousi model. The physical dimension of the velocity model is 9096 m x 2976 m which

is discretized into 380 x 125 grid points with spacing 24 m in both directions. The simulation

consists of 75 shots with 120 m spacing between the sources; the positions of some sources

are marked with white asterisks in Figure 10(b). The number of receivers is 616 receivers

in total per shot with 24 m spacing and some of them are marked with magenta triangles in

Figure 10(b); 376 receivers at z = 2952 m and 120 receivers at x = 48 and 9072 m each. The

data are sampled at the receivers for 6 s with a time step size 1 ms. The Ricker wavelet with

peak frequency 10 Hz is used as a source. The initial model has linearly increasing velocity

from 1500 m/s near the surface to 3000 m/s at the bottom. A smoothed Marmousi model

shown in Figure 10(a) is used to generate observed data. Initial traveltime discrepancies at
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the bottom receivers are around 2.7-5.3 wave periods.

A converged velocity model using the RGLS method is plotted in Figure 10(c), showing

recovered features of the true model. As inversion switches from RGLS to LS in the previous

example 2, LS inversion followed 96 RGLS iterations. For the RGLS method, both the model

rms error and data misfit decrease by an order and two orders of magnitude, respectively.

A hump is also observed in the data misfit plot of the RGLS method as in the previous

examples. The LS method, however, could not recover the background velocity model, not

to mention most reflectors of the true model as shown in Figure 10(d).

DISCUSSION

Our registration method is similar to Hale’s dynamic warping with strain constraints (Hale,

2013; Ma and Hale, 2013) in that both solve the least-squares misfit nonconvex optimization

problem for the warpings. Both methods assume that one of two corresponding traces can

be mapped with a smooth warping function. One advantage of our method over Hale’s is

that it handles amplitude changes as well as time shifts. A second advantage is that thanks

to the frequency sweeping, smoothing traces or shifts is not necessary in the presence of

random noise. Our method, however, seems to be more expensive due to the frequency

sweeping and the Hilbert transform. The computational complexity of the seismogram

registration per trace is O(nk(Nt logNt + ni n
2 Nt)) for the number of samples Nt, where

nk, n, and ni are the number of frequency sweeping steps, global basis functions and Newton

iterations, respectively. The number of frequency sweeping steps is nk =
fpTf
m , where fp,

Tf , m are the peak frequency, final recording time, and increment in frequency index.

Since most cases have a larger ni n
2 than logNt, the complexity per shot can be simplified

further to O(nk ni n
2 nrNt), where nr is the number of receivers. For a fixed number
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of receivers, nr, the computational cost for forward/backward modeling with an explicit

finite difference method, O(NxNzNt), gets more expensive than that of the registration,

O(nk ni n
2 nrNt), as the grid size, NxNz, gets larger. Although our warping algorithm has

not yet been extended to 2D or 3D sections of the dataset, it is a reasonable direction for

future research.

We compare our RGLS method with three related methods: correlation-based traveltime

tomography (TT) (Luo and Schuster, 1991; Tromp et al., 2005), waveform inversion (WI)

(Tarantola and Valette, 1982; Bunks et al., 1995), phase/envelope (PE) misfit inversion

(Fichtner et al., 2008; Bozdağ et al., 2011). For a more complete treatment of each method,

we refer the reader to these references. Comprehensive comparisons among three methods,

i.e. TT, WI, and PE, are well documented in Bozdağ et al. (2011). The RGLS method does

not need phase isolation as in the TT method since the whole waveform is used to implicitly

determine traveltime discrepancies or phase difference. Thanks to the frequency sweeping

in seismogram registration, traveltime differences larger than a half period can be recovered

and cycle-skipping can be overcome as in TT. WI and PE do not need phase isolation

either, but suffer from cycle-skipping problems which can be avoided by inversion of long-

period waves first, followed by short-period waves. In our study, successful registration of

data with Gaussian random noise is demonstrated and we expect that the updates are only

moderately affected by noise in the data because the adjoint sources, u − d̃, are made of

only synthetic noise-free data, u and d̃.

A drawback of our RGLS method is that observed and synthetic data must be com-

parable, i.e., can be paired; this assumption can be broken even in both the transmission

and the reflection settings. This assumption is shared by both TT and PE, but not by WI.

We found that adapting registration ideas to waveform inversion in the reflection setting is
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particularly challenging. Modeled data are closer to matching observed data kinematically

in the reflection case than in the transmission case, because the LS gradient updates pro-

duce ad-hoc reflectors in the wrong locations to balance the wrong medium. As a result,

traveltime discrepancies no longer seem to be the dominant effect to correct. We attempted

to use the alternating update methods proposed by Clément et al. (2001) and Xu et al.

(2012) to deal with reflection data, but without much success.

It seems natural to extend the idea of LFA to waveform inversion:

JLFA[m] =
1

2

∑
s,r

∫
|Ss,rLFA{us}(x, t)− LFA{ds}(xr, t)|2dt. (15)

Since LFA{us}(x, t) has low frequency components near zero, the frequency sweeping can

be done with the following equivalent form in the frequency domain:

JLFA[m] =
1

2

∑
s,r

∫ ω′

0
|Ss,rLFA{us}(x, ω)− LFA{ds}(xr, ω)|2dω, (16)

where ω′ can be much smaller than frequencies available at the data ds. A study of this

new objective function is under way.

Lastly, we point out that the “fractional” character of the warping used to generate the

adjoint source in this paper is in the same spirit as a solution proposed in Sava and Biondi

(2004), where image perturbations in the image domain are replaced by their linearized

version to mitigate lack-of-convexity issues beyond the Born approximation. Similar sug-

gestions of updates are also proposed in recent work by Fei and Williamson (2010) and

Albertin (2011). Those updates are generated from residuals, which are obtained by taking

differences between an image and its infinitesimally modified version for the same reason

we take the modified adjoint source instead of the conventional one.
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CONCLUSIONS

We present registration guided least-squares (RGLS) as a way to mitigate the cycle-skipping

problem in FWI, thereby extending the basin of attraction to the global minimizer. The

successful application of the RGLS method to seismic inversion problems is demonstrated

in the transmission setting, where the conventional LS method often converges to a wrong

model. The proposed method substitutes a transported version of the prediction, referred

to as fractionally warped data, for the observed data in the conventional least-squares misfit

residual. In order to generate transported data, mappings in the form of piecewise poly-

nomials are found through a non-convex optimization formulation. The non-convex opti-

mization problem is tackled in a multiscale manner similar to frequency sweep/continuation

in frequency domain FWI. In order to create the low frequencies which may be absent in

data, low-frequency augmented (LFA) signals are proposed and demonstrated to provide

a satisfying alternative to the raw seismograms for the registration step. A method using

the envelope property of the Hilbert transform is proposed for this LFA transformation.

Three inversion examples using seismogram registration and the RGLS method show that

the proposed method decreases model errors monotonically while it allows the data misfit

to increase temporarily prior to eventual convergence.
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LIST OF TABLES

1 Velocity models and data types for inversion examples. Reference velocity models

VH , VL and VR are VH(x, z) = 5200 + 900 exp(−|(x, z)− (1250, 1250)|2/106) and VL(x, z) =

5500 − 900 exp(−|(x, z) − (1250, 1250)|2/106), and VR(x, z) = 5000 + 900 exp(−|(x, z) −

(1250, 1250)|2/106), respectively.
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Figure 1: Replacement of observed data with fractionally warped data. (a) Fractionally

warped trace which is a mapped (transported slightly) version of the given predicted data

towards the observed data. We call the new traces fractionally warped data. (b) Comparison

of observed and predicted traces. (c) Comparison of fractionally warped and predicted

traces.
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Figure 2: Spectra of signals transformed via LFA transformations 10(a-c). (a) u(t) and its

envelope Ue(t) = |u(t) + iH(u)(t)|, (b) Comparison of a wavelet u(t) and its LFA trans-

formation Uh(t) obtained using the Hilbert transform in equation 10a, (c) Comparison of

spectra of the wavelet u(t) and of the envelope signal Ue(t), (d) Comparison of spectra of

the wavelet u(t) and of the LFA signal Uh(t), (e) Comparison of spectra of the wavelet u(t)

and of the LFA signal Us(t) = u2(t), (f) Comparison of spectra of the wavelet u(t) and

of the LFA signal Ua(t) = |u(t)|. The blue solid (red dashed) lines in (c)-(f) respectively

correspond to spectra of the wavelet u(t) (of the LFA signals).
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Figure 3: Registration example 1: (a) Observed (blue) and predicted (red) traces before

registration. A synthetic trace is generated using the Marmousi velocity model and the other

trace is created by warping with a known mapping. The black arrows indicate corresponding

waves. (b) Two traces after registration. The predicted trace (red) is mapped to the

observed trace (blue).
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Figure 4: Registration example 2: matching noisy synthetic traces. (a) Observed (blue) and

predicted (red) traces before mapping. A synthetic trace is generated using the Marmousi

velocity model and the other trace is created by applying a known mapping. The black

arrows in the top figure connect corresponding peaks. (b) Two traces after the predicted

trace (red) is mapped to the observed trace (blue).
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Figure 5: Registration example 3: matching traces with different amplitudes and phases

from the Marmousi model and a modified Marmousi model. (a) Observed (blue) and pre-

dicted (red) trace. The black arrows indicate corresponding waves. (b) Two traces after

registration. The predicted (red) trace is transported towards the observed (blue) trace and

its amplitude is decreased.
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Figure 6: Inversion example 1: plots of velocity models: (a) true model with sources and

receivers marked in white and maganta, respectively, (b) converged model of RGLS op-

timization, (c) converged model of LS optimization. The white asterisks and magenta

triangles in (a) mark the location of a few sources and receivers, respectively. Inversion

example 2: plots of velocity models: (d) true model, (e) converged model of RGLS opti-

mization, (f) converged model of LS optimization.
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Figure 7: Inversion example 1: convergence of model (velocity) rms error Vk−Vtrue (a) and

data misfit J (b). Inversion example 2: convergence of model (velocity) rms error Vk−Vtrue

(c) and data misfit J (d).
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Figure 8: Inversion example 2: Plots of velocity models of (a) true model, (b) of converged

model of RGLS optimization, and (c) of converged model of LS optimization.

Baek, Calandra, & Demanet –

39



0 20 40 60 80
10

1

10
2

10
3

Iteration

M
o

d
e

l 
rm

s
 e

rr
o

r

 

 

RGLS

LS

(a)

20 40 60 80
10

0

10
1

10
2

10
3

Iteration

D
a

ta
 m

is
fi
t

 

 

RGLS

LS

(b)

Figure 9: Inversion example 2: convergence of model (velocity) rms error Vk−Vtrue (a) and

data misfit J (b).
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(a) (b)

(c) (d)

Figure 10: Inversion example 3: Plots of velocity models of (a) true model,(b) of initial

model with sources and receivers marked in white and magenta, (c) of converged model of

RGLS optimization, and (d) of converged model of LS optimization. The white asterisks

and magenta inverted triangles in (b) indicate sources on the top and receivers at three

sides, respectively.
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Example Reference model Initial model

Example 1
VH 5100 m/s

VL 6000 m/s

Example 2 VR + Noise 5100 m/s

Example 3 Marmousi Vinit = 1500 + 0.5z m/s

Table 1: Velocity models and data types for inversion examples. Reference velocity models

VH , VL and VR are VH(x, z) = 5200 + 900 exp(−|(x, z)− (1250, 1250)|2/106) and VL(x, z) =

5500 − 900 exp(−|(x, z) − (1250, 1250)|2/106), and VR(x, z) = 5000 + 900 exp(−|(x, z) −

(1250, 1250)|2/106), respectively.
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