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Abstract

We introduce a general purpose algorithm for rapidly computing certain types of
oscillatory integrals which frequently arise in problems connected to wave propagation,
general hyperbolic equations, and curvilinear tomography. The problem is to evaluate
numerically a so-called Fourier integral operator (FIO) of the form

∫
e2πiΦ(x,ξ)a(x, ξ) f̂(ξ)dξ

at points given on a Cartesian grid. Here, ξ is a frequency variable, f̂(ξ) is the Fourier
transform of the input f , a(x, ξ) is an amplitude and Φ(x, ξ) is a phase function, which
is typically as large as |ξ|; hence the integral is highly oscillatory at high frequencies.
Because an FIO is a dense matrix, a naive matrix vector product with an input given
on a Cartesian grid of size N by N would require O(N4) operations.

This paper develops a new numerical algorithm which requires O(N2.5 log N) oper-
ations, and as low as O(

√
N) in storage space (the constants in front of these estimates

are small). It operates by localizing the integral over polar wedges with small angular
aperture in the frequency plane. On each wedge, the algorithm factorizes the kernel
e2πiΦ(x,ξ)a(x, ξ) into two components: 1) a diffeomorphism which is handled by means
of a nonuniform FFT and 2) a residual factor which is handled by numerical separation
of the spatial and frequency variables. The key to the complexity and accuracy esti-
mates is the fact that the separation rank of the residual kernel is provably independent
of the problem size. Several numerical examples demonstrate the numerical accuracy
and low computational complexity of the proposed methodology. We also discuss the
potential of our ideas for various applications such as reflection seismology.

Keywords. Fourier integral operators, generalized Radon transform, separated repre-
sentation, nonuniform fast Fourier transform, matrix approximation, operator compression,
randomized algorithms, reflection seismology.

Acknowledgments. E. C. is partially supported by an NSF grant CCF-0515362 and
a DOE grant DE-FG03-02ER25529. L. D. and L. Y. are supported by the same NSF
and DOE grants. We are thankful to William Symes for stimulating discussions about
Kirchhoff migration and related topics, to Mark Tygert for pointing our attention to the
pseudoskeleton approximation, and to the referees for their scrutiny.

1 Introduction

This paper introduces a general-purpose algorithm to compute the action of linear operators
which are frequently encountered in analysis and scientific computing. These operators take
the form

(Lf)(x) =
∫

Rd

a(x, ξ)e2πiΦ(x,ξ)f̂(ξ) dξ, (1.1)
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where Φ(x, ξ) is a phase function that is smooth in (x, ξ) for ξ 6= 0 and obeys the homo-
geneity relation Φ(x, λξ) = λΦ(x, ξ) for λ positive, and a(x, ξ) is a smooth amplitude term.
As is standard, f̂ is the Fourier transform of f defined by

f̂(ξ) =
∫

Rd

f(x)e−2πixξ dx. (1.2)

With the proper regularity assumptions on the amplitude and the phase1, equation (1.1)
defines a class of oscillatory integrals known as Fourier integral operators (FIOs). FIOs
are the subject of considerable study for many of the operators encountered in physics and
other fields are of this form. For instance, most differential and pseudodifferential operators
are FIOs. Convolutions and multiplications by smooth functions are FIOs. Some “principal
value” integrals are FIOs. And the list goes on.

An especially important example of FIO is the solution operator to the free-space wave
equation in Rd, d > 1,

∂2u

∂t2
(x, t) = c2∆u(x, t), (1.3)

with initial conditions u(x, 0) = u0(x) and ∂u
∂t (x, 0) = 0, say. Everyone knows that for

constant speeds, the Fourier transform decouples the different frequency components of
u. Each Fourier component obeys an ordinary differential equation which can be solved
explicitly. The solution u(x, t) is the superposition of these Fourier modes and is given by

u(x, t) =
1
2

(∫
e2πi(x·ξ+c|ξ|t)û0(ξ)dξ +

∫
e2πi(x·ξ−c|ξ|t)û0(ξ)dξ

)
. (1.4)

The connection is now clear: the solution operator is the sum of two Fourier integral
operators with phase functions

Φ±(x, ξ) = x · ξ ± c|ξ|t.

For variable but reasonably smooth sound speeds c(x), the solution operator is for small
times a sum of two FIOs with more complicated phases and amplitudes. In particular, the
phase can be constructed from the optical traveltime in a medium with index of refraction
1/c(x), see [11] for details.

An important property of FIO is that they displace wavefront sets and singular sup-
ports (where the solution is singular), which is the favored mathematical way of formulating
propagation of singularities along characteristic manifolds for hyperbolic equations [19]. For
this reason, the solution operators for heat equations or Schrödinger equations is not an
FIO, because these equations diffuse or disperse wavefronts. More precisely, their solu-
tion operators could potentially be put in the form (1.1), but the homogeneity relation
Φ(x, λξ) = λΦ(x, ξ) would be lost.

In short, it is useful to think of FIOs as proxies for the solution operator to large classes
of hyperbolic differential equations.

1The amplitude should be C∞ and obey equation (2.3). The phase should be C∞ except at ξ = 0. In

general, we do not require the nondegeneracy condition det
“

∂2Φ
∂xi∂ξj

”
6= 0 if the only goal is to apply the

FIO (note that such FIO may not be invertible). On the other hand, we can only handle canonical relations
that are locally the graph of a function, i.e., non-multivalued phases.
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1.1 FIO computations

Numerical simulation of free wave propagation with constant sound speed is straightforward.
As long as the solution u(x, t) is sufficiently well localized both in space and frequency, it
can be computed accurately and rapidly by applying the sequence of steps below.

1. Compute the Fast Fourier Transform (FFT) of u0.

2. Multiply the result by e±2πic|ξ|t, and sum as in (1.4).

3. Compute the inverse FFT.

Of course, this only works in the very special case where the amplitude a is independent of x,
and where the phase is of the form x ·ξ plus a function of ξ alone. Expressed differently, this
works when the FIO is shift-invariant so that it is diagonal in the Fourier basis. Note that
there is in general no formula for the eigenfunctions when Φ or a depend on x. Computing
these eigenfunctions on the fly is out of the question when the objective is merely to compute
the action of the operator. (Note that even if the spectral decomposition of the operator
were available, it is not clear how one would use it to speed up computations.)

The object of this paper is to find an algorithm that is considerably faster than eval-
uating (1.1) by direct quadratures, and is yet suited to handle large classes of phases
and amplitudes. Most of the existing fast summation techniques rely on either the non-
oscillatory behavior (such as wavelet based techniques [8]) or the existence of a low rank
approximation (fast multipole methods [25], hierarchical matrices [26], pseudodifferential
separation [4]). The difficulty here is that the kernel e2πiΦ(x,ξ) is highly oscillatory and does
not have a low rank separated approximation. Therefore, all the modern techniques are
not directly applicable.

The main claim of this paper, however, is that there is a way to decompose the operator
into a sum of components for which the oscillations are well-understood and low-rank
representations are available. In addition, the number of such components is reasonably
small which paves the way to faster algorithms. Before expanding on this idea, we first
explain the discretization of the operator (1.1).

1.2 Discretization

For simplicity, we restrict our attention in this paper to the two dimensional case d = 2. The
main ideas apply readily to the higher dimensions, though the analysis and implementation
would be more involved.

Just as the discrete Fourier transform is the digital analogue of the continuous Fourier
transform, one can also introduce discrete Fourier integral operators. Given a function f
defined on a Cartesian grid X = {x = (n1

N , n2
N ), 0 ≤ n1, n2 < N and n1, n2 ∈ Z}, we simply

define the discrete Fourier integral operator by

(Lf)(x) :=
1
N

∑
ξ∈Ω

a(x, ξ)e2πiΦ(x,ξ)f̂(ξ) (1.5)

for every x ∈ X. (We are sorry for overloading the symbol L to denote both the discrete
and continuous object but there will be no confusion in the sequel.) The summation above
is taken over all Ω = {ξ = (n1, n2),−N

2 ≤ n1, n2 < N
2 and n1, n2 ∈ Z} and throughout this
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paper, we will assume that N is an even integer. Here and below, f̂ is the discrete Fourier
transform (DFT) of f and is defined as

f̂(ξ) =
1
N

∑
x∈X

e−2πix·ξf(x). (1.6)

The normalizing constant 1
N in (1.5) (resp. (1.6)) ensures that L (resp. the DFT) is a

discrete isometry in the case where Φ(x, ξ) = x · ξ.
The formula (1.5) turns out to be an accurate discretization of (1.1) as soon as f obeys

standard localization estimates both in space and frequency. A justification of this fact
would however go beyond the scope of this paper, and is omitted. In the remainder of the
paper, we will take (1.5) as the quantity we wish to compute once we are given a phase and
an amplitude function.

The parameter N measures the size and difficulty of the computational problem. In
a nutshell, it corresponds to the number of points which are needed in each direction to
accurately sample the continuous object f(x). This is the reason why N will be a central
quantity throughout the rest of paper.

As mentioned earlier, the straightforward method for computing (1.5) simply evaluates
the summation independently for each x. Since each sum takes O(N2) operations and there
are N2 grid points in X, this strategy requires O(N4) operations. When N is moderately
large, this can be prohibitive. This paper describes a novel algorithm which computes all
the values of Lf(x) for x ∈ X with high accuracy in O(N2.5 log N) operations. The only
requirement is that the amplitude and the phase obey mild smoothness conditions, which
are in fact standard. As a matter of fact, our algorithm can be applied even to the cases
where the nondegeneracy condition det

(
∂2Φ

∂xi∂ξj

)
6= 0 does not hold.

1.3 Separation within angular wedges

This section outlines the main idea of the paper. Let arg ξ be the angle between ξ and the
horizontal vector (1, 0), and partition the frequency domain into a family of angular wedges
{W`} defined by

W` = {ξ : (2`− 1)π/
√

N ≤ arg ξ < (2` + 1)π/
√

N}

for 0 ≤ ` <
√

N (assume
√

N is an integer). An important property of these wedges is that
each W` satisfies the parabolic relationship

length ' width2, (1.7)

up to multiplicative constants independent of N . There are O(
√

N) such wedges, as illus-
trated in Figure 1.

For each wedge W`, we let χ` be the indicator function of W`. Similarly, we denote by
ξ̂` the unit vector pointing to the center direction of W`

ξ̂` =
(

cos
2`π√

N
, sin

2`π√
N

)
.

It follows from the identify
∑

` χ`(ξ) = 1 that one can decompose the operator L as
∑

` L`,
where

(L`f)(x) =
1
N

∑
ξ

a(x, ξ)e2πiΦ(x,ξ)χ`(ξ)f̂(ξ).
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Within each wedge W`, we can perform a Taylor expansion of Φ(x, ξ) in the second variable,
around the point ξ̂`|ξ|. There is a point ξ? which belongs to the line segment [ξ̂`|ξ|, ξ] such
that

Φ(x, ξ) = Φ(x, ξ̂`|ξ|) +∇ξΦ(x, ξ̂`|ξ|) · (ξ − ξ̂`|ξ|) +
1
2
(ξ − ξ̂`|ξ|)T∇ξξΦ(x, ξ?)(ξ − ξ̂`|ξ|).

By homogeneity of the phase (Φ(x, λξ) = λΦ(x, ξ) for λ > 0), it holds that Φ(x, ξ) =
ξ · ∇ξΦ(x, ξ) and ∇ξΦ(x, ξ) = ∇ξΦ(x, ξ̂). The first and third terms in the above expression
cancel and thus

Φ(x, ξ) = ∇ξΦ(x, ξ̂`) · ξ +
1
2
(ξ − ξ̂`|ξ|)T∇ξξΦ(x, ξ?)(ξ − ξ̂`|ξ|).

The first term ∇ξΦ(x, ξ̂`) · ξ, which is linear in ξ, is called the linearized phase and poses
no problem as we will see later on. The rest, denoted as Φ`(x, ξ) = Φ(x, ξ)−∇ξΦ(x, ξ̂`) · ξ
and called the residual phase, is of order O(1) for ξ ∈ W`, independently of N . This follows
from

∇ξξΦ(x, ξ?) = O(|ξ?|−1) = O(|ξ|−1),

since Φ(x, ξ) is homogeneous of degree 1 in ξ, together with

|ξ − ξ̂`|ξ||2 = O(|ξ|2/N) = O(|ξ|)

for all |ξ| ≤ N , which uses the fact that the shape of W` obeys the parabolic relationship
(1.7).

W1

W0

W2

Figure 1: The frequency domain is partitioned into
√

N equiangular wedges.

Because the residual phase Φ`(x, ξ) is of order O(1) independently of N , we say that the
function e2πiΦ`(x,ξ) is nonoscillatory. Under mild assumptions, this observation guarantees
the existence of a low rank separated representation which decouples the variables x and
ξ and approximates the complex exponential very well. Define the ε-separation rank of
a function f(x, y) of two variables as the smallest integer rε for which there exists cn(x),
dn(y) such that

|f(x, y)−
rε−1∑
n=0

cn(x)dn(y)| ≤ ε.

Then we prove the following theorem in Section 2.
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Theorem. For all 0 < ε ≤ 1, there exist N∗ > 0 and C > 0 such that for all N ≥ N∗,
the ε-separation rank of e2πiΦ`(x,ξ) for x ∈ [0, 1]2 and ξ ∈ W` obeys

rε ≤ log2(Cε−1). (1.8)

In Section 2 we make explicit the values of the constants N∗ and C by relating them, among
other things, to the smoothness of Φ and the angular span of W`. We will also provide
results in the case where N ≤ N∗, and explain why the separation rank for the amplitude
is also under control.

The point of the theorem is that the bound on the ε-rank does not grow as a function of
N—in fact, the threshold condition on N indicates that the ε-rank decays as N grows. The
logarithmic dependence on ε is the signature of what is usually called spectral accuracy.

Note that the decomposition into frequency wedges obeying the parabolic scaling has a
long history in mathematics. A multiscale version of this partitioning, the second dyadic
decomposition, was introduced by Fefferman in 1973 for the study of Bochner-Riesz multi-
pliers [21], and used by Seeger, Sogge and Stein in 1991 to prove a sharp Lp-boundedness
result for FIO [34]. More recently, it also served as the basis for the construction of curvelets,
with applications to sparsity of FIOs and related results for wave equations [35, 10, 11].

1.4 Outline of the algorithm

The low-rank separated representation provided by the theorem above offers us a way to
compute (1.5) efficiently with high accuracy. Each term in the decomposition Lf =

∑
` L`f

can be further simplified as follows:

(L`f)(x) =
1
N

∑
ξ

a(x, ξ)e2πiΦ(x,ξ)χ`(ξ)f̂(ξ)

=
1
N

∑
ξ

e2πi∇ξΦ(x,ξ̂`)·ξ a(x, ξ)e2πiΦ`(x,ξ) χ`(ξ)f̂(ξ)

=
1
N

∑
ξ

e2πi∇ξΦ(x,ξ̂`)·ξ
∞∑

t=1

γx
`t(x)γξ

`t(ξ) χ`(ξ)f̂(ξ)

=
1
N

∞∑
t=1

γx
`t(x)

∑
ξ

e2πi∇ξΦ(x,ξ̂`)·ξ
[
γξ

`t(ξ)χ`(ξ)f̂(ξ)
]
. (1.9)

Our analysis guarantees that the sum over t can be truncated to a fixed, hopefully small
number of terms without significant loss of precision.

In order to carry out the final summation over t, we first need to construct the functions
γx

`t(x) and γξ
`t(ξ). Sections 3.1 and 3.2 discuss two different methods to find these functions.

In Section 3.1 we present an elementary deterministic approach, while in Section 3.2 we
present a randomized approach that offers better efficiency both timewise and storagewise.
Assuming that γx

`t(x) and γξ
`t(ξ) are available for all values of ` and t, the computation of

(Lf) for a given f consists of the following 4 steps:

1. Fourier transform f by means of the FFT to get f̂ .

2. Choose a bound q greater than the ε-rank rε. For each ` and t ≤ q, form f̂`t(ξ) :=
γξ

`t(ξ)χ`(ξ)f̂(ξ).
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3. For each ` and t ≤ q, compute g`t(x) :=
∑

ξ e2πi∇ξΦ(x,ξ̂`)·ξ f̂`t(ξ) by means of a nonuni-
form FFT algorithm.

4. Compute (Lf)(x) ≈ 1
N

∑
`

∑q
t=1 γx

`t(x)g`t(x).

The only step that require further discussion is the computation of g`,t. We defer the details
to Section 3.4.

It is instructive to understand why linearizing the phase is so important. If we disregard
the error introduced by the discretization in ξ, we observe that g`,t(x) is simply

g`,t(x) = f`,t(∇ξΦ(x, ξ̂`)).

The interpretation of an oscillatory integral in the Fourier domain as a diffeomorphism
is only possible when the phase is linear in ξ. For each ` and t, the computation of g`,t

which is an interpolation problem, is therefore much simpler problem than applying the
original operator. Admittedly, diffeomorphisms do not provide accurate approximations
to FIOs over angular wedges, but the content of our analysis in Section 2 shows that the
computational budget to make up for the residual is safely under control.

1.5 Significance

Applying nontrivial FIOs repeatedly has proved to be the computational bottleneck in
various inverse problems. There is serious scientific as well as industrial interest in speeding
up FIO computations, and accordingly a lot of resources have been invested over the past
decades in engineering better codes.

We believe that the ideas introduced in this paper provide new directions. To explain
and illustrate this contrast, let us consider an important example from the field of reflection
seismology: Kirchhoff migration. The problem is to produce an image of the discontinuities
in the Earth’s upper crust from seismograms, i.e., wave measurements fs(t, xr) parame-
terized by time t, receiver coordinate xr, and source coordinate xs. The core of Kirchhoff
migration is a generalized Radon transform (GRT) which, (in its shot-gather version,) con-
sists in integrating several different functions fs(t, xr) indexed by s over a fixed set of curves,
determined as the level lines of a traveltime function τ(x, xr) + τ(x, xs), and modulated by
an amplitude a(t, xr, xs):

gs(x) =
∫

δ(t− τ(x, xr)− τ(x, xs))a(t, xr, xs)fs(t, xr) dt dxr. (1.10)

The functions gs(x) determine the model: a stack operation over the s index then allows
to recover the adequate physical parameters of the Earth, like speed of sound. When xr is
one-dimensional, it is useful to think of the traveltime level curves as distorted hyperbolas
in the (t, xr) plane. A standard notation for Kirchhoff migration is gs(x) = (F ∗fs)(x),
where F ∗ is called the imaging operator.

Equation (1.10) is in fact a backprojection strategy for approximately inverting a for-
ward generalized Radon transform—F in the above notation—which in turn comes from
a linearization for the physical parameters about small perturbations, combined with a
leading-order high-frequency approximation of the wave equation’s Green’s function. This
view of migration as a generalized Radon transform is now authoritative in the field of
seismic imaging, and was pioneered in work by Beylkin, and also Miller, Tarantola, Lailly,
and Rakesh. The original papers by Beylkin and collaborators are [6, 7, 31]. For more
references, see the review article [37] and references therein.
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A generalized Radon transform like (1.10), with a proper cutoff amplitude, can be put
in an FIO form suitable for our algorithm. For convenience, the Appendix explains why
integration along ellipses—a simple GRT—is a sum of two FIOs.

The standard algorithm for applying the imaging operator as in equation (1.10) is a
simple quadrature of f(t, xr), interpolated and integrated along each curve t = τ(x, xr) +
τ(x, xs) (parameterized by x.) Assume again that xr is one-dimensional for simplicity.
If the data f(t, xr) oscillates at a wavelength comparable to the grid spacing 1/N , then
an accurate quadrature on a smooth curve requires O(N) points. Since x takes on O(N2)
values, the curve integration results in a total complexity of O(N3) for applying the imaging
operator (which is of course better than the O(N4) complexity of the naive summation.)

The first claim of this paper is that a potentially more attractive computational strategy
for computing (1.10) is to transform it into an oscillatory integral, by considering the data
fs(t, xr) in the frequency domain (in both variables t and xr). The asymptotic complexity
is then reduced to O(N2.5 log N) for the algorithm presented in this paper.

The second claim is that, since our algorithm is based on FIO and not just GRT, it
can potentially handle more general migration and imaging operators. For instance, the
true imaging operator F ∗ is almost never a GRT like (1.10). If more terms are kept in the
geometric optics approximation leading to (1.10), then the resulting migration operator is
not a GRT anymore. On the other hand, it is still an FIO under quite general assumptions;
see [36] for a detailed exposition. This observation is akin to the fact that the retarded
propagator of the wave equation in 2D is not a distribution strictly supported on the
boundary of the light cone—only its singular support is the boundary of the cone.

The advantages of the proposed algorithm should now be clear: quite general FIOs
can be handled with an asymptotic computational complexity which is lower than that
required for GRT summation, i.e. (O(N2.5 log N) vs. O(N3)), and this without making
any curvilinear approximation. In addition, we will show that the storage overhead (on top
of storing the phase and amplitude) is negligible and scales like O(

√
N).

We only discussed applications to reflection seismology, but there are many other areas
where nontrivial FIOs are computed routinely, e.g. as part of solving an inverse problem.
Examples in radar imaging, ultrasound imaging, and electron microscopy all come to mind.
Some Hough transforms for feature detection in image processing can also be formulated as
FIOs. In short, the ideas presented in this paper may enable the speed up of fundamental
computations in a variety of problem areas.

1.6 Related work

In the case where Φ(x, ξ) = x·ξ, the operator is said to be pseudodifferential. In this simpler
setting, it is known that separated variables expansions of the symbol a(x, ξ) are good
strategies for reducing complexity. For instance, Bao and Symes [4] propose an O(N2 log N)
numerical method based on a Fourier series expansion of the symbol in the angular variable
arg ξ, and a polyhomogeneous expansion in |ξ|, which is a particularly effective example of
separation of variables.

Another popular approach for compressing operators is to decompose them in a well-
chosen, possibly adaptive basis of L2. Once a sparse representation is achieved, evaluation
simply consists of applying a sparse matrix in the transformed domain. In the case of 1D
oscillatory integrals, this program was advocated and carried out by Bradie et al. [9] and
Averbuch et al. [3]. In spite of these successes, the generalization to multiple dimensions
has so far remained an open problem. We will come back to this question in Section 5,
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and in particular discuss the relationship with modern multiscale transformations such as
curvelets [10, 11] and wave atoms [14, 15].

We would also like to acknowledge the line of research related to Filon-type quadratures
for oscillatory integrals [28]. When the integrand is of the form g(x)eikx with g smooth
and k large, it is not always necessary to sample the integrand at the Nyquist rate. For
instance, integration of a polynomial interpolant of g (Filon quadrature) provides an ac-
curate approximation to

∫
g(x)eikx dx using fewer and fewer evaluations of the function g

as k → ∞. While these ideas are important, they are not directly applicable in the case
of FIOs. The reasons are threefold. First, we make no notable assumption on the support
of the function to which the operator is applied, meaning that the oscillations of f̂(ξ) may
be on the same scale as those of the exponential e2πiΦ(x,ξ). Second the phase does not
in general have a simple formula that would lend itself to precomputations. And third,
Filon-type quadratures do not address the problem of simplifying computations of several
such oscillatory integrals at once (i.e. computing a family of integrals indexed by x in the
case of FIOs).

Finally, we remark that FIOs are also interesting when the canonical relation is nontrivial—
that is, multivalued phase—because they allow to study propagation of singularities of hy-
perbolic equations in regimes of multipathing and caustics [27, 19]. To mathematicians
taking this specialized viewpoint, the focus of this paper may appear restrictive. Our out-
look and ambition are different. We find FIOs to be interesting mathematical objects even
when the canonical relation is a graph and degenerates to the gradient of a phase. Our
concern is to understand their structure from an operational standpoint and exploit it to
design efficient numerical algorithms. In fact, we expect this paper to be the first of a
projected series which will eventually deal with more complex setups.

1.7 Contents

The rest of the paper is organized as follows. Section 2 proves all the analytical estimates
which support our methodology. In Section 3, we describe algorithms for constructing the
low rank separated approximation, evaluating (Lf)(x), as well as for evaluating its adjoint,
namely, computing (L∗f)(x). Numerical examples in Section 4 illustrate the properties of
our algorithms. Finally, Section 5 discusses some related work and potential alternatives.

2 Analytical Estimates

In this section, we return to a description of the problem in continuous variables x and ξ
to prove estimates on the separation rank of e2πiΦ`(x,ξ), where Φ`(x, ξ) is the residual phase
after linearization about ξ̂`.

2.1 Background

We begin with a lemma which concerns the separation of the exponential function and
whose variations play a central role in modern numerical analysis.

Lemma 1. Consider the domain defined by x ∈ [−A,A] for some A > 0, and y ∈ [−1, 1].
For all ε > 0 the ε-rank rε of eixy on [−A,A]× [−1, 1] obeys the bound rε ≤ r∗ε , where

r∗ε = 1 + max{2eA , log2(2ε−1)}. (2.1)
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Furthermore, if A ≤ 1
2e then the stronger bound

r∗ε = 1 +
log(2ε−1)

log 1
eA

(2.2)

holds as well. In both cases, the corresponding separated representation is the expansion

|eixy −
r∗ε−1∑
n=0

in

n!
xnyn| ≤ ε.

Proof. The proof is very simple. We start with∣∣∣∣∣eixy −
r−1∑
n=0

(ixy)n

n!

∣∣∣∣∣ ≤∑
n≥r

An

n!
≤
∑
n≥r

(
eA

n

)n

≤
∑
n≥r

(
eA

r

)n

=
(

eA

r

)r 1
1− eA

r

.

If eA ≤ 1/2, then a fortiori eA/r ≤ 1/2, and the condition r ≥ log (2ε−1)/log 1
eA allows to

bound (
eA

r

)r 1
1− eA

r

≤ 2 · (eA)r ≤ ε.

On the other hand, if eA ≥ 1/2, then we have to impose eA/r ≤ 1/2 by hand, as one of the
alternatives of the max in equation (2.1). Then the extra condition r ≥ log2(2ε−1) allows
to bound (

eA

r

)r 1
1− eA

r

≤ 2 · 2−r ≤ ε.

Since the ε-rank rε is integer-valued, the estimate on r may need to be rounded up to the
next integer, hence the precaution of incrementing the bounds in (2.1) and (2.2) by one.

In the next section we will make use of Lemma 1 to prove that the nonoscillatory factor
e2πiΦ`(x,ξ) has a separation rank which is independent of N . The other factor in the kernel
a(x, ξ)e2πiΦ`(x,ξ), namely, the amplitude a(x, ξ) is in general a simpler object to study. The
standard assumption in the literature, and also in applications, is to assume that a(x, ξ) is
a smooth symbol of order zero and type (1, 0), meaning that for each pair of integers (α, β),
there is a positive constant Cαβ obeying

|∂α
ξ ∂β

xa(x, ξ)| ≤ Cαβ(1 + |ξ|2)−|α|/2. (2.3)

For simplicity, we will also assume that a(x, ξ) is compactly supported in x2. The nice
separation properties of a are simple consequences of its assumed smoothness.

Lemma 2. Assume a(x, ξ) is a symbol of order zero. Then for all M > 0 there exists
CM > 0 such that for all ε > 0, the ε-rank for the separation of x and ξ in a(x, ξ) obeys

rε ≤ CM ε−1/M .

Proof. Perform a Fourier transform of the C∞, compactly supported function a(·, ξ). It
suffices to keep O(ε−1/M ) Fourier modes to approximate a(·, ξ) to accuracy ε on its compact
support. Each Fourier mode is of the form â(ω, ξ)eiωx, hence separated.

It goes without saying that the ε-rank of the product a(x, ξ)e2πiΦ`(x,ξ) is bounded by a
constant times the product of the individual ε-ranks, and we now focus on the real object
of interest, the factor e2πiΦ` .

2This assumption is equivalent to assuming that functions in the range of L are themselves compactly
supported in situations of interest, which ought to be the case for accurate numerical computations.
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2.2 Large N asymptotics

In this section we assume that the phase Φ(x, ξ) is C3 in ξ, only measurable in x, and define

Ck = 2π sup
x∈[0,1]2

sup
ξ:|ξ|=1

|∂k
θ Φ(x, ξ)| for 0 ≤ k ≤ 3,

where θ = arg ξ. These constants will enter our estimates only through the following
combinations:

D2 = C0 + C2, and D3 = C1 + C3.

As before, we also require homogeneity of order one in ξ. Finally, we let the general angular
opening of the cone W` to be 2α√

N
radians, for some constant α (the introduction section

proposed α = π).
The result below is a more precise version of the theorem we introduced in Section 1.

Theorem 1. For all 0 < ε ≤ 1, and N ≥ α6D2
3

18ε2
, the ε-separation rank of e2πiΦ`(x,ξ) for

x ∈ [0, 1]2 and ξ ∈ W` obeys

rε ≤ 1 + max{e
√

2
2

α2D2 , log2(4ε−1)}. (2.4)

Furthermore, if α is admissible in the sense that α ≤
√ √

2
eD2

, then

rε ≤ 1 +
log(4ε−1)

log 2
√

2
eα2D2

. (2.5)

Proof. Put r = |ξ| and θ as the angle measured from the vector ξ`. The phase Φ can
be rewritten as Φ(x, ξ) = rφ(x, θ). Let ξ1 be the frequency coordinate along ξ` and ξ2

orthogonal to ξ1, so that we can switch between polar and Cartesian coordinates using

∂Φ
∂ξ1

(x, ξ`) = φ(x, 0), and
∂Φ
∂ξ2

(x, ξ`) = φ′(x, 0),

where the derivative of φ is taken in θ. The residual phase is

Φ`(x, ξ) = Φ(x, ξ)−∇ξΦ(x, ξ`) · ξ
= r

(
φ(x, θ)− cos θφ(x, 0)− sin θφ′(x, 0)

)
.

We can now expand φ(x, θ), cos θ and sin θ in a Maclaurin series (around θ = 0) to obtain

Φ`(x, ξ) =
rθ2

2
(
φ(x, 0) + φ′′(x, 0)

)
+

rθ3

6

[
φ′′′(x, θ)− cos(θ̃)φ′(x, 0)

]
, (2.6)

for some θ̃ and θ between 0 and θ (with θ depending on x.)
The x and ξ variables are separated in the first term of equation (2.6), so we write

f(x)g(ξ) ≡ 2π
(
φ(x, 0) + φ′′(x, 0)

) rθ2

2
.

The term with square brackets is the remainder, and we write

R(x, ξ) = 2π
rθ3

6

[
φ′′′(x, θ)− cos(θ̃)φ′(x, 0)

]
.

11



Our strategy will be to choose N large enough so that R(x, ξ) becomes negligible, hence
only the exponential of the first term needs to be separated.

Recall that in 2D the frequency domain is the square [−N
2 , N

2 − 1]2. Since |θ| ≤ α√
N

in

the wedge W`, and r ≤
√

2
2 N , we have the following bounds for the two terms in equation

(2.6):

|f(x)g(ξ)| ≤
√

2
4

α2D2, |R(x, ξ)| ≤
√

2
12

α3

√
N

D3.

It is instructive to notice that the bound on |fg| is independent of N . That is the reason
why we chose the angular opening of the cone W` proportional to N−1/2 (parabolic scaling).

The first contribution to the separation remainder is given by

|ei(fg+R) − eifg| = |eiR − 1|

≤ |R| ≤
√

2
12

α3

√
N

D3.

The condition on N ensures precisely that this remainder be dominated by ε/2.
The second contribution to the total error is due to the separation of eifg itself, and

needs to be made smaller than ε/2 as well. We invoke Lemma 1 with f(x) × sup |g(ξ)|
in place of x, g(ξ)/ sup |g(ξ)| in place of y, and ε/2 in place of ε. With these choices, A

becomes
√

2
4 α2D2, and we obtain the desired result.

2.3 Small ε asymptotics

Theorem 1 is a special asymptotic result in the case of large N (problem size) — or alter-
natively small α (cone’s angular opening). This regime may not be attained in practice so
we need another result, without restrictions on N , and informative for arbitrarily small ε.

To this effect, we need stronger (yet still realistic) smoothness assumptions on the phase
Φ: for each x, we require that Φ(x, ξ) be a real-analytic function of ξ. This condition implies
the bound

2π sup
|ξ|=1

|∂k
θ Φ(x, ξ)| ≤ Qk!R−k,

for some constants Q and R. For example, R can be taken as any number smaller than the
uniform radius of convergence in θ, in which case Q will in general depend on R. Let us
term such phases, or functions, (Q,R)-analytic. As before, we also require homogeneity in
ξ.

Theorem 2. Assume Φ`(x, ξ) is measurable in x, and (Q,R)-analytic in ξ, for some con-
stants Q and R. Assume that α is admissible in the sense that

α < min{ R
√

N

2
,

R√√
2Q

}.

Then for all 0 < ε ≤ 1, the ε-separation rank of e2πiΦ`(x,ξ) for x ∈ [0, 1]2 and ξ ∈ W` obeys

rε ≤ Cp ε−p, ∀p : p >
2

log2

(
R
√

N
α

) .

12



Proof. Throughout the proof, x ∈ [0, 1]2 and ξ ∈ W`. Using the smoothness assumption on
Φ`, we can repeat the reasoning of the proof of Theorem 1 and obtain the convergent series

2πΦ`(x, ξ) =
∞∑

k=0

fk(x)gk(ξ),

where fk(x) = 2πφ(k)(x, 0) (the differentiations are in θ) and

g0(ξ) = r(1− cos θ), g1(ξ) = r(θ − sin θ), gk(ξ) =
rθk

k!
.

We denote the bound |fk(x)gk(ξ)| ≤ Ak, with

A0 =
√

2
4

Qα2, A1 =
√

2
12

Q
α3

R
√

N
, Ak =

√
2

2
QN

(
α

R
√

N

)k

for k > 2.

Our strategy will be to call upon Lemma 1 for the first few factors eifkgk , in order to
obtain a separation rank rk and an error εk for each of them:∣∣∣∣∣ eifkgk −

rk−1∑
n=0

in

n!
fn

k (x)gn
k (ξ)

∣∣∣∣∣ ≤ εk. (2.7)

We will perform this operation for each k < K, with K large enough, to be determined.
Once the separation of each factor is available, we can write

ei
PK−1

k=0 fkgk =
K−1∏
k=0

eifkgk ,

and obtain the bound on the overall separation rank as the product
∏K−1

k=0 rk.
There are two sources of errors we must contend with:

• Truncation in k. The factors eifkgk for k ≥ K, will be deemed negligible if their
combined contribution results in an overall error smaller than ε/2, meaning

|e2πiΦ` − ei
PK−1

k=0 fkgk | ≤ ε

2
. (2.8)

The left hand side is bounded by |
∑∞

K fkgk|. Using the bound we stated earlier on
Ak, and the admissibility condition on α, a bit of algebra shows that (2.8) is satisfied
for

K = d
log
(
2
√

2QNε−1
)

log
(

R
√

N
α

) e (2.9)

(meaning the smallest integer greater than the quotient inside the brackets). This
quantity in turn obeys K ≤ log2(16ε−1).

• Truncation in n. The truncation errors from (2.7) must be made sufficiently small
so that their combined contribution also results in an overall error smaller than ε/2,
meaning ∣∣∣∣∣

K−1∏
k=0

eifkgk −
K−1∏
k=0

rk−1∑
n=0

in

n!
fn

k (x)gn
k (ξ)

∣∣∣∣∣ ≤ ε

2
. (2.10)

13



Easy manipulations3 show that (2.10) follows from the bound

εk =
ε

3K
.

(Recall that K is comparable to log(Cε−1).)

Such a bound holds if, in turn, we take rk large enough. The admissibility condition
on α ensures, among others, that we can invoke the strong version of Lemma 1,
namely equation (2.2), and obtain

rk ≤ 1 +
log(2ε−1

k )
log 1

eAk

. (2.11)

It now remains to estimate
∏K−1

k=0 rk, where rk is given by equation (2.11) and K by
equation (2.9). We treat the first two factors independently. It follows from the bounds on
A0, A1 and K, and the fact that α and Q are constant in ε and N , that

r0 ≤ 1 +
log(6Kε−1)
log 4

e
√

2Qα2

≤ C log(6Kε−1)

≤ C log(3 log(16ε−1)) + C log(2ε−1) ≤ C log(2ε−1),

(the constant C changes from expression to expression), and similarly

r1 ≤ C log(2ε−1).

The same logarithmic bound holds for rk in the case k ≥ 2, but will not suffice for our
purpose. Instead, we write

rk ≤ 1 +
log(6Kε−1)

log
[ √

2
QN

(
R
√

N
α

)k
]

≤
log(Cε−1 log(2ε−1)) + k log

(
R
√

N
α

)
log(C) + k log

(
R
√

N
α

)
≡ A + k

B + k
. (k ≥ 2)

We only simplified notations in the last line. Notice that A > B, and that B + k ≥ 1 when
k ≥ 2. We will assume without loss of generality that A and B are integers.The value of the

3To justify this step, put Ek(x, ξ) = eifk(x)gk(ξ) and start from the identity

K−1Y
k=0

(Ek + εk)−
K−1Y
k=0

Ek =
X

j

εj

Y
k 6=j

(Ek + τjkεk)

=
X

j

εjE
−1
j

K−1Y
k=0

(Ek + τjkεk)

where τjk = 0 if j ≤ k, and τjk = 1 if j > k. Then make use of the bound (1 + ε
3K

)K < eε/3 ≤ e1/3 < 3/2.
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product
∏

rk can only increase if we replace the initial bound 0 ≤ k < K, by the condition
that the bound on rk be greater than 2. So we certainly have

rε ≤
∏

k≥2:rk≥2

rk ≤
A + 2
B + 2

A + 3
B + 3

. . .
A + A

B + A

=
(2A)!/(A + 1)!

(B + A)!/(B + 1)!
.

We can now make use of the two-sided Stirling bound
√

2π nn+1/2e−n+ 12
n+1 ≤ n! ≤

√
2π nn+1/2e−n+ 12

n

to obtain

rε ≤ C
(2A)2A(A + 1)−(A+1)

(A + B)A+B(B + 1)−(B+1)

≤ C 22A A2A

(A + 1)(A+1)(A + B)A−1

(B + 1)(B+1)

(A + B)B+1

≤ C 22A.

In turn,

22A ≤
(
Cε−1 log(2ε−1)

) 2

log2

„
R
√

N
α

«
,

which concludes the proof.

The lower the fractional exponent of ε−1 the faster the convergence of separated expan-
sions. Theorem 2 shows exactly which factors can make this exponent arbitrarily small:

• large grid size N , or

• small angular opening constant α, or

• large radius of analyticity R of the phase in arg ξ (uniformly in x).

Observe that the rank bound decreases as N increases.
Theorem 2 assumes that the residual phase function Φ`(x, ξ) is (Q,R)-analytic in ξ.

The variation below follows the same path of reasoning, and is useful when Φ`(x, ξ) is only
C∞ in ξ for ξ 6= 0.

Theorem 3. Assume Φ`(x, ξ) is C∞ in ξ for ξ 6= 0. For any p > 0, there exists two
constants Cp and C ′

p such that for any N , the ε-separation rank with ε = Cp N−p is bounded
by C ′

p log N .

Proof. The structure of the proof is similar to that of Theorem 2. One only needs to keep
the first 2p + 2 term of the series

2πΦ`(x, ξ) =
∞∑

k=0

fk(x)gk(ξ).

in order to have ε = Cp N−p for some constant Cp which depends only on p and Φ`. The
product

∏2p+1
k=0 rk upper bounds the overall separation rank, and is less than C ′

p log N for
some constant C ′

p which only depends on p.

In many computational problems, the mesh size N−1 is linked directly to the desired
accuracy ε, usually in the form of a power law, e.g. ε = O(N−p) for some constant p.
Therefore, Theorem 3 is interesting for practical reasons.
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3 Algorithm

For notational convenience, we assume in this section that the amplitude is identically equal
to one; that is, we focus on the so-called (discretized) Egorov operator

(Lf)(x) =
1
N

∑
ξ∈Ω

e2πiΦ(x,ξ)f̂(ξ). (3.1)

Both in practice (Section 4) and in theory (Section 2), one can easily take care of general
amplitude terms.

The algorithm for computing (3.1) has two main components:

• Preprocessing step. Given the residual phase Φ`(x, ξ) ≡ Φ(x, ξ) −∇ξΦ(x, ξ̂`) · ξ, this
step constructs, for each wedge W`, a low rank separated approximation∣∣∣∣∣ e2πiΦ`(x,ξ) −

q∑
t=1

γx
`t(x)γξ

`t(ξ)

∣∣∣∣∣ ≤ ε.

The functions {γx
`t(x)} and {γξ

`t(ξ)}, or their compressed versions, are then stored for
use in the next step.

• Evaluation step. Given a function f , this step computes (Lf)(x) approximately by

(Lf)(x) ≈ 1
N

∑
`

∑
t

γx
`t(x)

∑
ξ

e2πi∇ξΦ(x,ξ̂`)·ξ
[
γξ

`t(ξ)χ`(ξ)f̂(ξ)
]
.

The preprocessing step is performed only once for a fixed phase function Φ(x, ξ). The
family of functions {γx

`t(x)} and {γξ
`t(ξ)} should of course be used again and again to

compute (Lf)(x) for different inputs f .
In Sections 3.1 and 3.2, we propose two different approaches for constructing the families

{γx
`t(x)} and {γξ

`t(ξ)}. Section 3.4 describes the details of the evaluation step. Finally,
Section 3.5 outlines the algorithm for rapidly applying the adjoint operator. In this section,
we calculate time and storage complexity under the assumption of large grids, i.e. that of
Theorem 2. For other kinds of asymptotics, one may need to adjust these estimates with a
multiplicative log N factor, which is typically negligible.

3.1 Preprocessing step: deterministic approach

We first describe a deterministic approach for constructing the low rank separated expan-
sion, based on a Taylor expansion, exactly as in the proof of Lemma 1. For each wedge W`,
the strategy consists of the following sequence of steps:

• First, construct a low rank separated approximation of Φ`(x, ξ). This is done by
truncating the polar coordinates Taylor expansion to the (2p + 1)st term

Φ`(x, ξ) ≈ |ξ|
2p+1∑
k=1

c`k(x)(θ − θ`)k.

Here p is a constant that determines the level of accuracy.
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• Second, for each k construct a separated expansion of e2πic`k(x) |ξ|(θ−θ`)
k
. This is done

by truncating the Taylor expansion to the first d`k terms

e2πic`k(x) |ξ|(θ−θ`)
k ≈

d`k−1∑
m=0

βx
`km(x)βξ

`km(ξ).

The value of each d`k is also chosen to obtain a good accuracy.

• Third, combine the separated expansions for k = 1, . . . , 2p+1 into one separated rep-
resentation for e2πiΦ`(x,ξ). Simply expanding the product of the expansions obtained
in the previous step would be sufficient for proving a theorem like those presented in
Section 2 but in practice though, the number of terms in the expansion is too large
and far from optimal. We thus combine the product of separated expansions two-
by-two with the compression procedure to be described next, and repeat the process
until there is only one separated expansion left. The final expansion provides us with
the required functions {γx

`t(x)} and {γξ
`t(ξ)}.

The compression procedure used to combine the product of two separated expansions
is quite standard. Suppose we only have two expansions (the subscript ` is implicit) and
write their product as(

d1−1∑
m1=0

βx
1m1

(x)βξ
1m1

(ξ)

)(
d2−1∑
m2=0

βx
2m2

(x)βξ
2m2

(ξ)

)
=
∑

m1,m2

(
βx

1m1
(x)βx

2m2
(x)
) (

βξ
1m1

(ξ)βξ
2m2

(ξ)
)

:=
∑
m

cx
m(x)cξ

m(ξ).

We adopt the matrix notation and introduce

(A)x,m = cx
m(x), (B∗)m,ξ = cξ

m(ξ).

The problem is to find two matrices Ã and B̃ which have far fewer columns than A and B,
and yet obeying ÃB̃∗ ≈ AB∗. This may be achieved by means of the QR factorization and
of the SVD:

1. Construct QR factorizations A = QARA and B = QBRB.

2. Compute the singular value decomposition of RAR∗
B and truncate the singular values

below a threshold ε together with their associated left and right singular vectors, i.e.
RAR∗

B ≈ UMSMV ∗
M where SM is a truncated diagonal matrix of singular values.

3. Set Ã = QAUMSM and B̃ = QBVM .

Suppose A is m × q and B is n × q with both m and n much larger than q. The
computational complexity of the compression procedure is O((m + n)q2). In our setup,
m = |X| = N2, n = |W`| = O(N1.5), and q, the rank bound, is uniformly bounded in
N (Theorem 2 shows that q is bounded by a small fractional power of ε, independently
of N). Therefore, the complexity of a single compression procedure is O(N2). Since this
needs to be carried out 2p− 1 times for each of the

√
N wedges, the overall complexity of

the deterministic preprocessing is O(
√

N × N2) = O(N2.5) where the constant is directly
related to the rank bounds of Section 2.
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Next, let us consider the storage requirement. For each wedge, the size of the final
separated expansion is O(N2). Since there are

√
N wedges, the total storage requirement

is O(N2.5), which can be costly when N is large. For example, in a typical problem with
N = 1024 and q = 20, the total storage would be about 10 GB assuming double precision is
used. Our second approach to solve the preprocessing step addresses this issue and requires
dramatically less storage space.

3.2 Preprocessing step: randomized approach

This section describes a randomized approach for computing the functions {γx
`t(x)} and

{γξ
`t(ξ)} for a fixed `. The method is based on the work presented in Kapur and Long [29].

We use matrix notations and set A to be the matrix defined by

Ax,ξ := e2πiΦ`(x,ξ), x ∈ X, ξ ∈ W`. (3.2)

The matrix A is m by n with m = N2 and n = O(N1.5). Assume the prescribed error
ε is fixed, Theorem 2 tells us that there exists a low rank factorization of A with rank
rε = O(1) (again, by this we mean that rε is bounded by a constant independent of N ,
although not independent of ε). Using this knowledge, the following randomized method
finds an approximate factorization

A ≈ UT,

where U is of size m× q, T is q × n and q = O(1) in N .

• Select a set C of r columns taken from A uniformly at random, and define A[C] to be
the submatrix formed by these columns. In practice, a safe choice is to take r about
three times larger than the (unknown) rε.

• Compute the singular value decomposition A[C] ≈ USV ∗ where the diagonal of S
contains only the singular values greater than the threshold ε. Since A has a separation
rank rε = O(1), we expect U to be of size m× q where q is about rε.

• Select a set R of r rows taken from A uniformly at random, and define A[R] to be the
submatrix formed by these rows. Similarly, let U[R] be the submatrix of U containing
the same rows.

• Set T = U+
[R]A[R] where U+

[R] is the pseudo-inverse of U[R].

• The matrices U and T provide an approximate factorization, i.e. A ≈ UT . We
identify the columns of U with the family {γx

`t(x)}, and the rows of T with {γξ
`t(ξ)}.

This randomized approach works well in practice although we are not able to offer a
rigorous proof of its accuracy, and expect one to be non-trivial. We merely argue that the
validity of this methodology hinges on the following observations:

• First, the columns of A are highly correlated. Following the arguments in Section 2,
it is not difficult to show that a pair of columns with nearby values of the frequency
index ξ ∈ W` have a large inner product. Therefore, as we sample uniformly at
random, we get a good coverage of the set W` (leaving no large hole) and as a result,
the sampled columns nearly span the space generated by the columns of A. Note
that one could also use a deterministic regular sampling strategy; for instance, we
could take a Cartesian subgrid as a subset of W`. We observed that in practice, the
probabilistic approach provides slightly better approximations.
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• As the SVD routine is numerically stable, it allows us to extract an orthobasis of the
column space of A[C] in a robust way.

• By construction, the columns of U are orthonormal. Results from random projection
and the geometry of high-dimensional spaces imply that, as long as U does not corre-
late with the canonical orthobasis, the columns of U[R] are almost orthogonal as well.
This allows us to recover the matrix T in a stable and robust fashion.

The computational complexity of this randomized approach is quite low. The SVD
step has a complexity of O(mr2) = O(N2), while the matrix product T = U+

[R]A[R] takes
O(nrq) = O(N1.5) operations. Therefore, for each `, the complexity of the randomized
approach is O(N2). Since the same procedure needs to be carried out for all the

√
N

wedges, the overall complexity is O(N2.5).
Often we do not know the exact value of rε. Instead of setting r conservatively to

be an unnecessarily large number, this difficulty is addressed as follows: we begin with
a small r, and check whether q is significantly smaller than r. If this is the case, we
accept the factorization. Otherwise, we double r and restart the process. Geometrical
increase guarantees that the work wasted (due to unsuccessful attempts) is bounded by the
work of the final successful attempt. In practice, we accept the result when q ≤ r/3, and
this criterion seems to work well in our numerical experiments. A more conservative test
certainly improves the reliability of the factorization but increases the running time.

We finally examine the storage requirement. A naive approach is to store the matrices
U and T for each wedge W`. As T is much smaller than U in size, the storage requirement
for each wedge is roughly the size of U , which is N2q = O(N2). Multiplying this by the
number of wedges gives a total storage requirement of O(N2.5), which can be quite costly
for large N as already mentioned in the last section. We propose to store the matrices V S−1

and U+
[R] instead. Both matrices only require storage of size O(rq) = O(1). Whenever we

need U and T , we form the products U = A[C]V S−1 and T = U+
[R]A[R]. Note that the

elements of the matrices A[C] and A[R] are given explicitly by the formula (3.2) and there
is of course no need to store them at all. Putting it differently, we rewrite the computed
factorization as

A ≈ A[C] V S−1U+
[R] A[R] (3.3)

and store only the matrices V S−1 and U+
[R].

We would like to point out that such a scheme is not likely to work for the deterministic
approach. The main reason is that the deterministic approach involves multiple compression
procedures which make use of QR factorizations and SVD decompositions. These numerical
linear algebra routines are quite complicated, and therefore, it would be difficult to relate
the resulting low-rank factorization with the elements of the matrix A, which have the
simple form (3.2).

3.3 Comparison

Table 1 compares the deterministic and the randomized approaches in view of the computa-
tional complexity and storage requirement. The deterministic approach has the advantage
of guaranteeing an accurate low rank separation. However, the constant in the time com-
plexity can be quite large as for each wedge, it requires 2p compression procedures to
combine multiple separated expansions into a single one. Moreover, since the compression
step uses QR factorizations and SVDs, we are forced to store the final expansion, which
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can be quite costly for large N . In practice, the randomized approach constructs a near
optimal low rank expansion with very high probability, requires very low storage space, and
enjoys a significantly lower constant in time complexity since it does not utilize repeated
QR factorizations or singular value decompositions.

time storage
randomized O(N2.5) (small constant) O(

√
N)

deterministic O(N2.5) (large constant) O(N2.5)

Table 1: Comparison of the deterministic and randomized approaches.

3.4 Evaluation step

Once the families {γx
`t(x)} and {γξ

`t(ξ)} are available, we use the approximation

(Lf)(x) ≈ 1
N

∑
`

∑
t

γx
`t(x)

∑
ξ

e2πi∇ξΦ(x,ξ̂`)·ξ
[
γξ

`t(ξ)χ`(ξ)f̂(ξ)
]

to evaluate Lf(x). The algorithm simply carries out the evaluation step by step:

1. Compute f̂ , the Fourier transform of f .

2. For each ` and t, form f̂`t(ξ) := γξ
`t(ξ)χ`(ξ)f̂(ξ).

3. For each ` and t, compute g`t(x) :=
∑

ξ e2πi∇ξΦ(x,ξ̂`)·ξ f̂`t(ξ).

4. Compute (Lf)(x) ≈ 1
N

∑
`

∑
t γx

`t(x)g`t(x).

The only step that requires attention is the third: it asks to evaluate the Fourier series∑
ξ e2πi∇ξΦ(x,ξ̂`)·ξ f̂`t(ξ) at the N2 points {∇ξΦ(x, ξ̂`) : x ∈ X}. Even though X is a Carte-

sian grid, the warped grid {∇ξΦ(x, ξ̂`) : x ∈ X} is no longer so. In fact, the formula for g`t

is a nonuniform Fourier transform of the second kind, a subject of considerable attention
[2, 5, 24, 32, 33] since the seminal paper of Dutt and Rokhlin [20]. We adopt the approach
introduced in the latter paper, and following their notations, set

• m = 4, q = 8 and b = 0.425 for 6 digits of accuracy,

• m = 4, q = 16 and b = 0.785 for 11 digits of accuracy.

We specify these parameter values because they impact the numerical accuracies we will
report in the next section, and because it will help anyone interested in reproducing our
results.

The algorithm in [20] generally assumes that the Fourier coefficients are supported on
the full grid Ω which is symmetric with respect to the origin. For each `, the support of
f̂`t(ξ) is W`, which is to say that most of the values of the input on the grid Ω are zero. To
speed up the nonuniform fast Fourier transform, each wedge W`, which is close to either
one of the diagonals, is sheared by 45 degrees so that it becomes approximately horizontal
or vertical. Notice that 45 degree shearing of f̂`t(ξ) is a simple relabeling of the array. In
addition, all wedges are then translated so that their support fits in a rectangle of smaller
volume centered around the origin. As the nonuniform FFT [20] asks to compute the FFT
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of the input data (and then finds a way of interpolating the result on an unstructured grid),
we gain efficiency since the input array is now of smaller size. Mathematically, the shearing
operation takes the form

ξ′ = Mξ − ξc,

where M is either the identity or a 45-degree shear matrix and ξc is a translation parameter.
Thus, we organize the computations as in∑

ξ

e2πi∇ξΦ(x,ξ̂`)·ξ f̂`t(ξ) =
∑
ξ′

e2πi∇ξΦ(x,ξ̂`)·M−1(ξ′+ξc)f̂`t(M−1(ξ′ + ξc))

= e2πi∇ξΦ(x,ξ̂`)·M−1ξc
∑
ξ′

e2πi∇ξΦ(x,ξ̂`)·M−1ξ′ f̂`t(M−1(ξ′ + ξc)),

where the final summation is a nonuniform Fourier transform at points (M∗)−1∇ξΦ(x, ξ̂`).
In condensed form, the oscillatory modes of the function we wish to evaluate are centered
around a center frequency; we factor out this frequency, interpolate the residual, and add
the factor back in; for the same accuracy, interpolating the smoother residual requires a
smaller computational effort.

A two-dimensional nonuniform fast Fourier transform takes O(N2 log N) operations.
This operation needs to be repeated q = O(1) times for each one of the

√
N wedges.

Therefore, the overall complexity is O(N2.5 log N).

3.5 Evaluating the adjoint operator

We conclude this section by presenting how to rapidly apply the adjoint Fourier integral
operator. Begin by expanding the Fourier transform in (1.1) and write

(Lf)(x) =
∫ (∫

e2πi(Φ(x,ξ)−y·ξ)dξ

)
f(y)dy.

for x, y, ξ ∈ R2. The adjoint operator is then given by

(L∗f)(x) =
∫ (∫

e−2πi(Φ(y,ξ)−x·ξ)dξ

)
f(y)dy

=
∫ (∫

e−2πiΦ(y,ξ)f(y)dy

)
e2πix·ξdξ

or equivalently as

(̂L∗f)(ξ) =
∫

e−2πiΦ(y,ξ)f(y)dy

in the Fourier domain. Similarly, one readily checks that the adjoint of the discrete-time
FIO is given by the formula

(̂L∗f)(ξ) =
1
N

∑
y

e−2πiΦ(y,ξ)f(y),

where ξ ∈ Ω and y ∈ X.
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Now follow the same set of ideas as in Section 3.4, and decompose L∗ as

(̂L∗f)(ξ) =
1
N

∑
`

χ`(ξ)
∑

y

e−2πiΦ(y,ξ)f(y)

=
1
N

∑
`

χ`(ξ)
∑

y

e−2πiΦξ(y,ξ̂`)·ξe−2πiΦ`(y,ξ)f(y)

=
1
N

∑
`

χ`(ξ)
∑

y

e−2πiΦξ(y,ξ̂`)·ξ
∑

t

γx
`t(y)γξ

`t(ξ)f(y)

=
1
N

∑
`

∑
t

χ`(ξ)γ
ξ
`t(ξ)

∑
y

e−2πiΦξ(y,ξ̂`)·ξ
(
γx

`t(y)f(y)
)

.

The right-hand side of the last equation provides the key steps of the algorithm.

1. For each ` and t ≤ q, compute f`t(y) := γx
`t(y)f(y).

2. For each ` and t ≤ q, compute g`t(ξ) :=
∑

y e−2πiΦξ(y,ξ̂`)·ξf`t(y) using the nonuniform
fast Fourier transform of the first kind, see [20, 24] for details.

3. Compute (̂L∗f)(ξ) ≈ 1
N

∑
`

∑
t χ`(ξ)γ

ξ
`t(ξ)g`t(ξ).

4. Finally, take an inverse 2D FFT to get (L∗f)(x).

Clearly, all the results and discussions concerning the matrix vector product Lf apply here
as well.

4 Numerical Results

This section presents several numerical examples to demonstrate the effectiveness of the
algorithms introduced in Section 3. Our implementation is in Matlab and all the computa-
tional results we are about to report were obtained on a desktop computer with a 2.6 GHz
CPU and 3 GB of memory. We have implemented both the deterministic and randomized
approaches for the preprocessing step. We choose to report the timing and accuracy results
of the randomized approach only since it requires less time and storage as shown in Section
3.2.

We first study the error of the separated approximation generated by the randomized
preprocessing step. For x = (x1, x2) and ξ = (ξ1, ξ2), set the phase function to be

Φ±(x, ξ) = x · ξ ±
√

r2
1(x)ξ2

1 + r2
2(x)ξ2

2 . (4.1)

We show in the Appendix that the transformation, which for each x integrates f along an
ellipse centered at x and with axes of length r1(x) and r2(x), can be cast as a sum L+ +L−
of two FIOs given by

(L±f)(x) =
∫

a±(x, ξ)e2πiΦ±(x,ξ)f̂(ξ)dξ, (4.2)

and with phases obeying (4.1).
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In our numerical example, we consider the phase Φ+ and choose

r1(x) =
1
9
(2 + sin(4πx1))(2 + sin(4πx2)),

r2(x) =
1
9
(2 + cos(4πx1))(2 + cos(4πx2)).

In each wedge W`, the phase is then linearized and a low rank separated approximation
UT of the matrix

A =
(
e2πiΦ`(x,ξ)

)
x∈X,ξ∈W`

is computed. To estimate the approximation error, we randomly select two sets Γ and ∆ of
s rows and s columns. Put AΓ∆ to be the s by s the submatrix of A with these rows and
columns. The separated rank approximation to AΓ∆ is then obtained by multiplying UΓ

and T∆ where UΓ is the submatrix of U with rows in Γ and T∆ is that of T with columns
in ∆. The error is then estimated via

‖AΓ∆ − UΓT∆‖F

‖AΓ∆‖F
,

where ‖ · ‖F stands for the Frobenius norm. In our numerical test, we set s to be 200, and
Table 2 displays approximation errors for different combinations of problem size N and
accuracy ε. The results show that the randomized approach works quite well and that the
estimated error is controlled well below the threshold ε.

ε =1e-3 ε =1e-4 ε =1e-5 ε =1e-6
N = 64 3.57e-04 4.93e-05 3.21e-06 5.17e-07
N = 128 3.11e-04 2.28e-05 4.19e-06 5.81e-07
N = 256 2.85e-04 2.83e-05 2.94e-06 4.13e-07
N = 512 1.66e-04 2.82e-05 4.38e-06 6.80e-07

Table 2: Relative errors of the low rank separated representation constructed using the
randomized approach.

Next, consider the relationship between the separation rank and the threshold ε. Corol-
lary 3 shows that ε scales like N−p for a fixed constant p provided that the separation rank
grows gently like p log N . In this experiment, we use the same phase function Φ(x, ξ) in
(4.1), and show the separation rank for different values of N and p in Table 3. These results
suggest that the separation rank is roughly proportional to both p and the logarithm of
N , which is compatible with the theoretical estimate. Moreover, when N is fixed, the rank
seems to grow linearly with respect to p, which possibly implies that the constant C(p) in
Theorem 3 in fact grows linearly with respect to p.

We would like to point out that the number of wedges affects the complexity of our
algorithm in two ways. On the one hand, it is obvious from Section 3.4 that the complexity
grows with the number of wedges in a linear way. On the other hand, if we lower the
number of wedges, the opening angle for each wedge has to increase. This implies in an
increase in the separation rank, which results a growth in the computational complexity.
In the experiments in Tables 2 and 3, we set the number of wedges to be d

√
2Ne, which in

practice balances these two competing factors.
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p =1 p =1.5 p =2 p =2.5 p =3
N =64 7 10 14 18 22
N =128 9 12 17 21 24
N =256 9 12 17 21 25
N =512 10 15 19 24 27

Table 3: Ranks of the separated representation generated by the randomized approach for
different values of N and p. The prescribed error is equal to N−p.

We now turn to the numerical evaluation of (Lf)(x),

(Lf)(x) =
1
N

∑
ξ

e2πiΦ(x,ξ)f̂(ξ), (4.3)

where the phase function Φ is the same as in (4.1). In this example, f is an array of
independently and identically mean-zero normal random variables (Gaussian white noise),
which in some ways is the most challenging input. The threshold ε is set to be 10 N−2

(i.e., p = 2). To estimate the error, we first pick s points {xi : i = 1, . . . , s} from X and
put {(̃Lf)(xi)} for the output of our algorithm (Section 3.4). We then compare the values
of (̃Lf)(xi) at these points with those of {(Lf)(xi)} obtained by evaluating (4.3) directly.
Finally, we estimate the relative error with√∑

i |(Lf)(xi)− (̃Lf)(xi)|2∑
i |(Lf)(xi)|2

.

Here, we choose s = 100, and Table 4 summarizes our findings for various values of N . The
results show that our algorithm performs well. The error is controlled well below threshold
and the speedup over the naive algorithm is significant for large values of N .

(N, ε) Preprocessing(s) Evaluation(s) Speedup Error Storage(MB)
(64,2.44e-03) 2.06e+00 3.89e+00 2.05e+00 2.08e-03 0.76
(128,6.10e-04) 1.09e+01 2.45e+01 6.58e+00 8.02e-04 1.26
(256,1.53e-04) 8.10e+01 1.65e+02 1.67e+01 1.00e-04 2.01
(512,3.81e-05) 4.67e+02 9.88e+02 4.46e+01 4.22e-05 3.06

Table 4: Numerical evaluation of Lf(x) with f a two dimensional white-noise array. The
second and third columns give the number of seconds spent in the preprocessing and eval-
uation steps respectively. The fourth column shows the speedup factor over the naive
algorithm for computing (Lf)(x) using the direct summation (4.3). The fifth column is
the estimated relative error and the last gives the amount of memory used in terms of
megabytes.

We have only considered the evaluation of FIOs in “Egorov” form thus far (constant
amplitude) but the algorithm described in Section 3 can be easily extended to operate
with general amplitudes provided that the term a(x, ξ) also admits a low rank separated
representation in the variables x and ξ.

To study the performance of our algorithm in the more general setup of variable ampli-
tudes, we continue with the example where f is integrated along ellipses (4.2) (recall the
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phase (4.1)). The Appendix shows that a possible choice for the amplitudes a±(x, ξ) and
phases Φ±(x, ξ) is

a±(x, ξ) =
1
4π

( J0(2πρ(x, ξ))± iY0(2πρ(x, ξ)) ) e∓2πiρ(x,ξ), (4.4)

Φ±(x, ξ) = x · ξ ± ρ(x, ξ) (4.5)

with
ρ(x, ξ) =

√
r2
1(x)ξ2

1 + r2
2(x)ξ2

2 .

Here, J0 and Y0 are Bessel functions of the first and second kind respectively, see the
Appendix for details.

For the axes lengths, set

r1(x) = r2(x) ≡ r(x) =
1
16

(3 + sin(4πx1))(3 + sin(4πx2)) (4.6)

(which means that our ellipses are circles). We compute (L+f)(x) for different values
of N and ε and provide the results in Table 5. The computational analysis shows that
our algorithm performs equally well in the variable amplitude case. For N = 512, the
speedup factor over the naive evaluation is about 162. It is clear from Section 3.4 that the
dominant part of the evaluation step is the O(q

√
N) steps of nonuniform FFTs. A tailored

implementation of the nonuniform FFT algorithm would certainly result in better speedup
factors.

(N, ε) Preprocessing(s) Evaluation(s) Speedup Error Storage(MB)
(64,2.44e-03) 2.18e+01 3.67e+01 4.54e+00 7.30e-04 0.37
(128,6.10e-04) 1.09e+02 1.65e+02 1.49e+01 4.00e-04 0.59
(256,1.53e-04) 6.62e+02 8.46e+02 4.49e+01 1.39e-04 0.89
(512,3.81e-05) 3.42e+03 4.43e+03 1.62e+02 3.69e-05 1.38

Table 5: Numerical evaluation of Lf(x) with f a two dimensional white-noise array.

An extremely important property of Fourier integral operators is that, under the non-
degeneracy condition

det
(

∂2Φ
∂xi∂ξj

)
6= 0,

the composition of an FIO with its adjoint preserves the singularities of the input function.
Mathematically speaking, if WF (f) is the wave front set of f [19, 37], then

WF (L∗Lf) = WF (f).

This property serves as the foundation for most of the current imaging techniques in re-
flection seismology [37]. In the final example of this section, we verify this phenomenon
numerically. We choose the phase function to be

Φ(x, ξ) = x · ξ + r(x)|ξ|,

where r(x) is given by (4.6), and compute (L∗Lf) using the algorithm discussed in Sections
3.4 and 3.5. Figure 2 displays results for three input functions with different kinds of
singularities. Looking at the picture, we see that the “singularities” of Lf are of course
different than those of f , but we also see that the “singularities” of L∗Lf coincide with
those of f .
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Figure 2: Numerical verification of the fact WF (L∗Lf) = WF (f). Each row, from left to
right, shows the magnitudes of f(x), (Lf)(x) and (L∗Lf)(x) . Notice that the wave front
set of f(x) and (L∗Lf)(x) are numerically as close as they can be. Remark : the images
on the left column and on the right column are not supposed to be the same; only their
“singularities” coincide. In other words, the adjoint L∗ is not the inverse of L.
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5 Discussion

5.1 About randomized algorithms

The method used in the randomized preprocessing step was first introduced by Kapur and
Long [29]. Lately, there has been a lot of research devoted to the development of randomized
algorithms for generating low rank factorizations, and we would like to discuss some of this
work.

Drineas, Kannan and Mahoney [18] describe a randomized algorithm for computing
a low-rank approximation to a fixed matrix. The main idea is to form a submatrix by
selecting columns with a probability proportional to their norm. Since this work is about
unstructured general matrices, it does not guarantee a small approximation error. As an
example, suppose all the columns of the matrix have the same norm and one of them is
orthogonal to the span of the other columns. Unless this column is selected, the orthogonal
component is lost and the resulting approximation is poor.

Our situation is different. Since each entry of our matrix

A =
(
e2πiΦ`(x,ξ)

)
x∈X,ξ∈W`

has unitary magnitude, the uniform probability used in our algorithm is actually the same
as that proposed above [18]. In some ways then, our approach is a special case of that
of Drineas et. al. But the point is that our matrix has a special structure. As we argued
earlier, the columns of A are often highly correlated and we believe that this is the reason
why the randomized subsampling performs well.

A recent article by Martinsson, Rokhlin and Tygert [30] presents a new randomized
solution to the same problem. The only inconvenience of this algorithm, probably inevitable
for general matrices, is that one needs to visit all the entries of the matrix multiple times.
This can be quite costly in our setup since there are O(N4) entries. This is why we adopt
the method by Kapur and Long.

5.2 Storage compression

We would like to comment on the storage compression strategy discussed at the end of
Section 3.2. In fact, what we described there can be viewed as a way of compressing low
rank matrices.

In a general context, the entries of a matrix can be viewed as interaction coefficients
between a set of objects indexed by the rows and another set indexed by the columns. In
our case, the first set contains the grid points x in X, while the second set consists of the
frequencies ξ in W`. Call these two sets I and J , and the interaction matrix AI,J . The
standard practice for compressing AI,J is to find two sets I ′ and J ′ of smaller sizes and
form an approximation

AI,J ≈ MI,I′MI′,J ′MJ ′,J .

Here I ′ is either a subset of I or a set which is close by in some sense, and likewise for
J ′ and J . For example, in the fast multipole method of Greengard and Rokhlin [25],
J ′ is the multipole representation at the center of the box containing J while I ′ is the
local representation at the center of the box containing I. The matrices MI,I′ , MI′,J ′ and
MJ ′,J are implemented as the multipole-to-multipole, multipole-to-local and local-to-local
translations. This becomes even more obvious when one considers the newly proposed
kernel independent fast multipole method by Ying, Biros and Zorin [38]. There, I ′ and J ′
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Figure 3: Factorization of interaction between A and B. (a) the standard scheme, (b) the
scheme abstracted from the storage compression method used (3.3).

are the equivalent densities supported on the boxes containing I and J , while MI,I′ , MI′,J ′

and MJ ′,J can be computed directly from interaction matrices and their inverses. In both
cases, we are fortunate in the sense that prior knowledge offers us efficient ways to multiply
MI,I′ , MI′,J ′ and MJ ′,J with arbitrary vectors. Whenever this is not true, one might be
forced to store these matrices, which could be quite costly.

What we have presented in (3.3) is a different factorization:

AIJ ≈ AIJ ′RJ ′I′AI′J .

This factorization can be viewed as a variant of the pseudoskeleton approximation proposed
in [22, 23], which came to our attention after we had released the initial version of this paper.
Notice that since AIJ ′ and AI′J are interaction matrices themselves, there is no need to
store them as long as we can compute the interaction coefficients easily. The only thing we
need to keep in storage is the matrix RJ ′I′ . However, as long as the interaction is low rank,
I ′ and J ′ have far fewer objects than I and J , so that RJ ′I′ only uses very little storage.
Finally, we would like to point out that, instead of representing the interaction from J ′ (a
subset of J) to I ′ (a subset of I), RJ ′I′ is a reverse interaction. Figure 3 shows conceptually
how the current factorization differs from the standard one.

5.3 Curvelets, wave atoms and beamlets

There might be other ways of evaluating Fourier integral operators, and we would like to
discuss their relationships with the approach taken in this paper.

Curvelets, proposed by Candès and Donoho [12], are two dimensional waveforms which
are highly anisotropic in the fine scales. Each curvelet is identified with three numbers to
indicate its scale, orientation and position, and the set of all curvelets form a tight frame.
Recently, Candès and Demanet [10, 11] have shown that the curvelet representation of the
Fourier integral operators is optimally sparse. More precisely, a Fourier integral operator
only has O(N2) nonnegligible entries in the curvelet domain. The wave atom frame, which
is recently introduced by Demanet and Ying [15], has the same property. If we were able to
find such a representation efficiently, we would hold an O(N2 log N) algorithm for evaluating
a Fourier integral operator which would operate as follows:

1. Apply the forward curvelet transform to the input and get curvelet coefficients.
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2. Apply the sparse FIO to the curvelet coefficient sequence.

3. Apply the inverse curvelet transform.

Both steps 1 and 3 require at most O(N2 log N) operations [13].
Constructing the curvelet representation of FIO from the phase function Φ(x, ξ) effi-

ciently has, however, proved to be nontrivial. At the moment, we are only able to construct
an approximation which is asymptotically accurate by studying the canonical relation em-
bedded inside the phase function Φ(x, ξ). Such a construction would be adequate if we
were interested in applying an FIO to input functions with only high frequency modes.
However, one often wants a representation which is accurate for all frequency modes, and
we are currently not aware of any efficient method for constructing such a representation.

Beamlets [16] were introduced by Donoho and Huo at roughly the same time as curvelets.
Beamlets are small segments at different positions, scales and orientations. As pointed out
in Section 4, curvilinear integrals make up an important subclass of FIOs, and beamlets
may offer ways to efficiently compute such simpler integrals. One might think of something
like this:

1. Compute the beamlet coefficient sequence of the input.

2. For each x ∈ X, figure out the integration curve and approximate it with a chain of
beamlet segments. Sum up the beamlet coefficients along the chain.

Assuming the integration curves are twice differentiable, we would need about
√

N beamlet
segments to approximate each curve. Thus, the overall complexity of this algorithm might
scale like O(N2.5), which is the same scaling as that of our algorithm. The problem is
that it is unclear how one would efficiently approximate the integration curve with beamlet
segments without sacrificing accuracy. Situations in which the input function f is highly
oscillatory or in which the integration curves have parts with a high curvature seem very
problematic.

Our algorithms decompose the FIO in the frequency domain whereas the beamlet based
approach processes data in the spatial domain. Sandwiched right in the middle, curvelets
and wave atoms operate in the phase-space—the product of the frequency and of the spatial
domains. We believe that operating in phase-space by exploiting the microlocal properties
of FIOs would be important to bring down the complexity to the optimal value of about
N2 operations.

A Integration Along Ellipses

The material in this section is probably not new, but we expand on it for the convenience of
the nonspecialist. Consider the generalization Radon transform that consists in integrating
f(x) along ellipses of axes lengths r1(x) and r2(x), and centered around x:

Gf(x) =
∫

f

(
x +

(
r1(x) cos θ
r2(x) sin θ

))
dθ.

We want to recast it as a sum of FIOs. Let us start by writing

Gf(x) =
∫

K(x, ξ)f̂(ξ) dξ,
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with

K(x, ξ) = e2πix·ξ
∫

exp
[
2πi

(
r1(x) cos θ
r2(x) sin θ

)
· ξ
]

dθ.

Put ρ(x, ξ) =
√

r2
1(x)ξ2

1 + r2
2(x)ξ2

2 and rewrite

K(x, ξ) = e2πix·ξ
∫

exp
[
2πiρ(x, ξ)

(
cos θ
sin θ

)
·
(

α(x, ξ)
β(x, ξ)

)]
dθ.

Here α2 + β2 = 1, and both α and β depend on x and ξ but the value of the integral is
independent of their particular value. This is because any change of variables θ → θ+φ(x, ξ),
effectively corresponding to a rotation of the unit vector (α, β), keeps the integral invariant.
So we may as well take α = 1, β = 0 and obtain

K(x, ξ) = e2πix·ξ
∫

e2πiρ(x,ξ) cos θ dθ =
e2πix·ξ

2π
J0(2πρ(x, ξ)).

Of course the Bessel function J0 oscillates, and we need to extract the phase from its
asymptotic behavior

J0(2πρ(x, ξ)) ∼

√
1

π2ρ(x, ξ)
cos
(
2πρ(x, ξ)− π

4

)
.

The idea is now to express J0(2πρ(x, ξ)) as a sum of two terms, each of which being the
product between a smooth amplitude (a demodulated version of J0 or the envelope of J0 if
you will) and the oscillatory exponential e±2πiρ(x,ξ). In effect, K is decomposed as a sum
of two FIOs:

K(x, ξ) = a+(x, ξ)e2πiΦ+(x,ξ) + a−(x, ξ)e2πiΦ−(x,ξ),

with
Φ±(x, ξ) = x · ξ ± ρ(x, ξ).

There are different ways to choose the amplitudes. One way is to let Y0 be the Bessel
function of the second kind of order zero [1] and exploit the identity 2J0 = (J0 + iY0) +
(J0 − iY0), which allows to write

a±(x, ξ) =
1
4π

( J0(2πρ(x, ξ))± iY0(2πρ(x, ξ)) ) e∓2πiρ(x,ξ).

Both amplitudes behave asymptotically like
√

1/π2ρ(x, ξ) as x →∞, which incidentally
shows that the order of the FIO is −1/2. The logarithmic singularity of Y0 near the origin
in ξ is mild and easily regularized with no loss of accuracy.
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