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Abstract

We provide a simple analysis of the Douglas-Rachford splitting algorithm in the context
of `1 minimization with linear constraints, and quantify the asymptotic linear convergence
rate in terms of principal angles between relevant vector spaces. In the compressed sensing
setting, we show how to bound this rate in terms of the restricted isometry constant. More
general iterative schemes obtained by `2-regularization and over-relaxation including the dual
split Bregman method [27] are also treated, which answers the question how to choose the
relaxation and soft-thresholding parameters to accelerate the asymptotic convergence rate.
We make no attempt at characterizing the transient regime preceding the onset of linear
convergence.
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1 Introduction

1.1 Setup

In this paper we consider certain splitting algorithms for basis pursuit [7], the constrained
optimization problem

min ‖x‖1 s.t. Ax = b. (1.1)

Throughout this paper we consider A ∈ Rm×n with m ≤ n, and we assume that A has full
row rank. We also assume that the solution x∗ of (1.1) is unique.

In particular, we treat splitting algorithms that naturally arise in the scope of minimiza-
tion problems of the form

min
x

f(x) + g(x),

where f and g are convex, lower semi-continuous (but not otherwise smooth), and have
simple resolvents of their subdifferentials

JγF = (I + γF )−1, JγG = (I + γG)−1,

where F = ∂f(x) and G = ∂g(x) are the respective subdifferentials of f and g at x. In
those terms, x is a minimizer if and only if 0 ∈ F (x)+G(x). Resolvents are also often called
proximal operators, as they obey JγF (x) = arg minz γf(z) + 1

2
‖z − x‖2. In the case of basis

pursuit, it is well known that

• f(x) = ‖x‖1 and g(x) = ι{x:Ax=b}, the indicator function equal to zero when Ax = b
and +∞ otherwise;

• JγF is soft-thresholding (shrinkage) by an amount γ,

JγF (x)i = Sγ(x)i = sgn(xi) max{|xi| − γ, 0};

• JγG is projection onto the set Ax = b, namely

JγG(x) = P(x) = x + A+(b − Ax),

with A+ = AT (AAT )−1 denoting the pseudo inverse.

The simplest splitting algorithm based on the resolvents is

xk+1 = JγF JγGxk.

This iteration is successful in the special case when f and g are both indicators of convex
sets, but does not otherwise generally enjoy good convergence properties. Instead, one is led
to consider reflection operators RγF = 2JγF − I, RγG = 2JγG − I, and write the Douglas-
Rachford splitting [25, 10]{

yk+1 = 1
2
(RγF RγG + I)yk = JγF ◦ (2JγG − I)yk + (I − JγG)yk,

xk+1 = JγGyk+1,
(1.2)
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where I is the identity. The operator Tγ = 1
2
(RγF RγG + I) is firmly non-expansive regardless

of γ > 0 [25]. Thus yk converges to one of its fixed points y∗. Moreover, x∗ = JγG(y∗) is one
solution to 0 ∈ F (x) + G(x).

For general convex functions f(x) and g(x), the sublinear convergence rate O(1/k) of the
algorithm (1.2) was proven for averages of iterates in [6, 19]. The firm non-expansiveness
also implies ‖yk − yk−1‖2 ≤ 1

k
‖y0 − y∗‖2, see Appendix A. Convergence questions for the

Douglas-Rachford splitting were recently studied in the context of projections onto possibly
nonconvex sets [1, 22] with potential applications to phase retrieval [2].

In the case of basis pursuit, we note that the Douglas-Rachford (DR) iteration takes the
form {

yk+1 = Sγ(2x
k − yk) + yk − xk,

xk+1 = yk+1 + A+(b − Ayk+1)
. (1.3)

1.2 Main result

In practice, (1.3) often settles into a regime of linear convergence. See Figure 1.1 for an
illustration of a typical error curve where the matrix A is a 3 × 40 random matrix and x∗

has three nonzero components. Notice that the error ‖yk − y∗‖ is monotonically decreasing
since the operator Tγ is non-expansive. The same cannot be said of ‖xk − x∗‖.

In this example, the regime of linear convergence was reached quickly for the yk. That
may not in general be the case, particularly if AAT is ill-conditioned. Below, we provide the
characterization of the error decay rate in the linear regime. To express the result, we need
the following notations.

Assume that the unique solution x∗ of (1.1) has r zero components. Let ei (i = 1, · · · , n)
be the standard basis in Rn. Denote the basis vectors corresponding to zero components
in x∗ as ej (j = i1, · · · , ir). Let B be the r × n selector of the zero components of x∗, i.e.,
B = [ei1 , · · · , eir ]

T . Let N (A) = {x : Ax = 0} denote the nullspace of A and R(AT ) = {x :
x = AT z, z ∈ Rm} denote the range of AT .

Then, for the numerical example discussed earlier, the slope of log ‖yk −y∗‖ as a function
of k is log (cos θ1) for large k, where θ1 is the first principal angle between N (A) and N (B).
See Definition 2.3 in Section 2.3 for principal angles between subspaces.

Our main result is that the rate of decay of the error is indeed cos θ1 for a large class of
situations that we call standard, in the sense of the following definition.

Definition 1.1. Consider a basis pursuit problem (b, A) with solution x∗. Consider y0 an
initial value for the Douglas-Rachford iteration, and y∗ = limk→∞ T k

γ y0.
Consider the preimage of the soft thresholding of all vectors with the same signs as x∗:

Q = {S−1
γ (x) : sgn(x) = sgn(x∗)} = Q1 ⊗ Q2 ⊗ · · ·Qn,

where

Qj =


(γ, +∞), if x∗

j > 0

(−∞,−γ), if x∗
j < 0

[−γ, γ], otherwise

.
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Figure 1.1: A typical error curve for Douglas-Rachford

We call (b, A; y0) a standard problem for the Douglas-Rachford iteration if R(y∗) belongs to
the interior of Q, where R is the reflection operator defined earlier. In that case, we also
say that the fixed point y∗ of Tγ is an interior fixed point. Otherwise, we say that (b, A; y0)
is nonstandard for the Douglas-Rachford iteration, and that y∗ is a boundary fixed point.

Theorem 1.2. Consider (b, A; y0) a standard problem for the Douglas-Rachford iteration,
in the sense of the previous definition. Then the Douglas-Rachford iterates yk obey

‖yk − y∗‖ ≤ C (cos θ1)
k ,

where C may depend on b, A and y0 (but not on k), and θ1 is the leading principal angle
between N (A) and N (B).

The auxiliary variable yk in (1.3) converges linearly for sufficiently large k, thus xk is also
bounded by a linearly convergent sequence since ‖xk − x∗‖ = ‖P(yk) − P(y∗)‖ = ‖P(yk −
y∗)‖ ≤ ‖yk − y∗‖.

Intuitively, convergence enters the linear regime when the support of the iterates essen-
tially matches that of x∗. By essentially, we mean that there is some technical consideration
(embodied in our definition of a “standard problem”) that this match of supports is not a
fluke and will continue to hold for all iterates from k and on. When this linear regime is
reached, our analysis in the standard case hinges on the simple fact that Tγ(y

k) − y∗ is a
linear transformation on yk − y∗ with an eigenvalue of maximal modulus equal to cos θ1.

In the nonstandard case (y∗ being a boundary fixed point), we furthermore show that
the rate of convergence for yk is generically of the form cos θ̄1, where 0 < θ̄1 ≤ θ1 is the
leading principal angle between N (A) and N (B̄), with B̄ a submatrix of B depending on
y∗. Nongeneric cases are not a priori excluded by our analysis, but have not been observed
in our numerical tests. See Section 2.5 for a discussion of the different types of nonstandard
cases.
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1.3 Regularized basis pursuit

In practice, if θ1 is very close to zero, linear convergence with rate cos θ1 might be very slow.
The following regularized problem is often used to accelerate convergence,

min
x

{
‖x‖1 +

1

2α
‖x‖2 : Ax = b

}
. (1.4)

It is proven in [28] that there exists a α∞ such that the solution of (1.4) with α ≥ α∞ is the
solution of (1.1). See [23] for more discussion of α∞. For the rest of this paper, we assume
α is taken large enough so that α ≥ α∞.

For all the discussion regarding `2-regularized basis pursuit, it is convenient to make the
technical assumption that θ1 ≤ π

4
. Notice that regularization is probably unwarranted in the

event θ1 > π/4, since cos θ1 would be a very decent linear convergence rate.
In particular, the Douglas-Rachford splitting (1.2) with f(x) = ‖x‖1+ 1

2α
‖x‖2 and g(x) =

ι{x:Ax=b} is equivalent to the dual split Bregman method for basis pursuit [27], which will be
discussed in Section 4.3.
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Figure 1.2: An illustration of the rate of linear convergence for Douglas-Rachford splitting
on `2-regularized basis pursuit: ρ(θ, c) for a fixed θ. The vertical axis is ρ(θ, c) and the
horizontal axis is c = α

α+γ
. The case α = +∞ (unregularized DR) is at c = 1, ρ = cos θ.

With the same assumptions and notations as in Theorem 1.2, assuming θ1 ≤ π
4
, for the

Douglas-Rachford splitting (1.2) on (1.4), we have ‖yk −y∗‖ ≤ Cρ(θ1, c)
k where c = α

α+γ
and

ρ(θ, c) =

{√
c cos θ, if c ≥ 1

(cos θ+sin θ)2

1
2

(
c cos(2θ) + 1 +

√
cos2(2θ)c2 − 2c + 1

)
if c ≤ 1

(cos θ+sin θ)2

.
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Let c∗ = 1
(cos θ1+sin θ1)2

which is equal to arg minc ρ(θ1, c). Let c] = 1
1+2 cos θ1

which is the

solution to ρ(θ1, c) = cos θ1. See Figure 1.2. Then for any c ∈ (c], 1), we have ρ(θ1, c) < cos θ1.
The asymptotic convergence rate of (1.2) on (1.4) is faster than (1.3) if α

α+γ
∈ (c], 1). The

best achievable asymptotic convergence rate is ρ(θ1, c
∗) =

√
c∗ cos θ1 = cos θ1

cos θ1+sin θ1
= 1

1+tan θ1

when α
α+γ

= c∗.

1.4 Generalized Douglas-Rachford and Peaceman-Rachford

The generalized Douglas-Rachford splitting introduced in [10] can be written as

yk+1 = (1 − λk)y
k + λk

RγF RγG + I

2
yk, λk ∈ (0, 2), (1.5)

We have the usual DR splitting when λk = 1. In the limiting case λk = 2, (1.5) becomes the
Peaceman-Rachford (PR) splitting

yk+1 = RγF RγGyk. (1.6)

Consider (1.5) with constant relaxation parameter λ ∈ (0, 2] on (1.4). With the same
assumptions and notations as in Theorem 1.2, assuming θ1 ≤ π

4
, we have the eventual linear

convergence rate ‖yk − y∗‖ ≤ Cρ(θ1, c, λ)k where c = α
α+γ

and

ρ(θ, c, λ) =

{√
c sin2 θλ2 − (1 − c cos(2θ))λ + 1, if c ≥ 1

(cos θ+sin θ)2

1
2

(
λc cos(2θ) − λ + 2 + λ

√
cos2(2θ)c2 − 2c + 1

)
if c ≤ 1

(cos θ+sin θ)2

.

For fixed θ and c, the optimal relaxation parameter is

λ∗(θ, c) = arg min
λ

ρ(θ, c, λ) =

{
2 if c ≤ c̄ = 1

2−cos(2θ)
1
c
−cos 2θ

1−cos (2θ)
if c ≥ c̄

,

which is a continuous non-increasing function with respect to c and has range (1, 2] for
c ∈ (0, 1).

The convergence rate at the optimal λ = λ∗ is

ρ(θ, c, λ∗) =


c cos(2θ) +

√
cos2(2θ)c2 − 2c + 1, if c ≤ c∗ = 1

(cos θ+sin θ)2√
2c − 1, if c∗ ≤ c ≤ c̄ = 1

2−cos(2θ)√
2c−1−c2 cos2 (2θ)

2 sin θ
√

c
, if c ≥ c̄

.

See Figure 1.3 for the illustration of the asymptotic linear rate ρ(θ, c, λ). Several inter-
esting facts can be seen immediately:

1. For Peaceman-Rachford splitting, i.e., (1.5) with λ = 2, if c ≥ c∗, the asymptotic rate
ρ(θ, c, 2) =

√
2c − 1 is independent of θ.

2. For any c < c̃ = 1
2−cos2 θ

, we have ρ(θ, c, 2) < ρ(θ, c, 1), i.e., the Peaceman-Rachford
splitting has a better convergence rate than Douglas-Rachford.

3. The best possible rate of (1.5) is min
c,λ

ρ(θ, c, λ) = ρ(θ, c∗, 2) = 1−tan θ
1+tan θ

.
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Figure 1.3: An illustration of eventual linear convergence rate for generalized Douglas-
Rachford splitting with constant relaxation parameter λ on `2-regularized basis pursuit:
ρ(θ, c, λ) for a fixed θ. The vertical axis is ρ(θ, c, λ) and the horizontal axis is c = α

α+γ
. For

c ≤ c̄, the best relaxation parameter is λ∗ = 2.

1.5 Context

There is neither strong convexity nor Lipschitz continuity in the objective function of (1.1)
even locally around x∗, but any xk with the same support as x∗ lies on a low-dimensional
manifold, on which the objective function ‖x‖1 is smooth. Such property is characterized
as partial smoothness [24]. In other words, it is not surprising that nonsmooth optimization
algorithms for (1.1) converge linearly if xk has the correct support. For example, see [17, 29].

The main contribution of this paper is the quantification of the asymptotic linear conver-
gence rate for Douglas-Rachford splitting on basis pursuit. It is well-known that Douglas-
Rachford on the dual problem is the same as the alternating direction method of multipliers
(ADMM) [13], which is also equivalent to split Bregman method [16]. Thus the analysis
in this paper also applies to ADMM on the dual problem of `2-regularized basis pursuit,
i.e., the dual split Bregman method for basis pursuit [27]. By analyzing the generalized
Douglas-Rachford introduced in [10] including the Peaceman-Rachford splitting, we obtain
the explicit dependence of the asymptotic convergence rate on the parameters.

1.6 Contents

Details and proof of the main result will be shown in Section 2. In Sections 3, we apply
the same methodology to obtain the asymptotic convergence rates for Douglas-Rachford,
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generalized Douglas-Rachford and Peaceman-Rachford splittings on the `2-regularized basis
pursuit. In Section 4, we discuss the equivalence between Douglas-Rachford and dual split
Bregman method, and their practical relevance. Numerical experiments illustrating the
theorems are shown.

2 Douglas-Rachford for Basis Pursuit

2.1 Preliminaries

For any subspace X in Rn, we use PX (z) to denote the orthogonal projection onto X of the
point z ∈ Rn.

In this section, we denote F (x) = ∂‖x‖1, G(x) = ∂ι{x:Ax=b}, and the resolvents are
JγF (x) = Sγ(x) and JγG(x) = P(x) = x + A+(b − Ax). For convenience, we use R = 2P − I
to denote reflection about Ax = b, i.e., R(x) = x + 2A+(b − Ax). It is easy to see that R is
idempotent. Then Tγ = Sγ ◦ R + I − P.

Let N(x∗) denote the set of coordinate indices associated with the nonzero components
of x∗, namely, N(x∗) ∪ {i1, · · · , ir} = {1, · · · , n}. Recall the definition of Q in the previous
section. Then for any z ∈ Q, the soft thresholding operator can be written as Sγ(z) =
z − γ

∑
j∈N(x∗)

sgn(x∗
j)ej − B+Bz.

Lemma 2.1. The assumption that x∗ is the unique minimizer of (1.1) implies N (A) ∩
N (B) = {0}.

Proof. Suppose there exists a nonzero vector z ∈ N (A) ∩ N (B). For any ε ∈ R with small
magnitude, we have sgn(x∗ + εz)T = sgn(x∗)T and A(x∗ + εz) = b. For nonzero small ε,
the uniqueness of the minimizer implies ‖x∗‖1 < ‖x∗ + εz‖1 = sgn(x∗ + εz)T (x∗ + εz) =
sgn(x∗)T (x∗ + εz) = ‖x∗‖1 + ε sgn(x∗)T z. Thus sgn(x∗)T z 6= 0.

On the other hand, for the function h(ε) = ‖x∗ + εz‖1 = ‖x∗‖1 + ε sgn(x∗)T z on a small
neighborhood of ε = 0, the minimum of h(ε) is h(0), thus sgn(x∗)T z = h′(0) = 0. This
contradicts with the fact that sgn(x∗)T z 6= 0.

The sum of the dimensions of N (A) and N (B) should be no larger than n since N (A)∩
N (B) = {0}. Thus, n − m + n − r ≤ n implies m ≥ n − r.

N (A) ∩ N (B) = {0} also implies the orthogonal complement of the subspace spanned
by N (A) and N (B) is R(AT ) ∩ R(BT ). Therefore, the dimension of R(AT ) ∩ R(BT ) is
m + r − n.

2.2 Characterization of the fixed points of Tγ

Since ∂ι{x:Ax=b} = R(AT ), the first order optimality condition for (1.1) reads 0 ∈ ∂‖x∗‖1 +
R(AT ), thus ∂‖x∗‖1∩R(AT ) 6= ∅. Any such η ∈ ∂‖x∗‖1∩R(AT ) is called a dual certificate.

We have the following characterization of the fixed points of Tγ.

Lemma 2.2. The set of the fixed points of Tγ can be described as

{y∗ : y∗ = x∗ − γη, η ∈ ∂‖x∗‖1 ∩R(AT )}.
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Moreover, for any two fixed points y∗
1 and y∗

2, we have y∗
1−y∗

2, R(y∗
1)−R(y∗

2) ∈ R(AT )∩R(BT ).
Thus there is a unique fixed point y∗ if and only if R(AT ) ∩R(BT ) = {0}.

Proof. For any η ∈ ∂‖x∗‖1 ∩ R(AT ), consider the vector y∗ = x∗ − γη. Since Ax∗ = b and
A+Aη = η (implied by η ∈ R(AT )), we have P(y∗) = y∗ + A+(b−Ay∗) = x∗ − γη + A+(b−
Ax∗ + Aγη) = x∗ + A+(b − Ax∗) = x∗. Further, η ∈ ∂‖x∗‖1 implies Sγ(x

∗ + γη) = x∗. Thus
Tγ(y

∗) = Sγ(2x
∗ − y∗) + y∗ − x∗ = Sγ(x

∗ + γη) − x∗ + y∗ = y∗.
Second, for any fixed point y∗ of the operator Tγ, let η = (x∗ − y∗)/γ. Then

P(y∗) = x∗, (see Theorem 5 in [10]) (2.1)

implies η = A+Aη, thus η ∈ R(AT ). Further, y∗ = Tγ(y
∗) implies Sγ(x

∗ + γη) = x∗. We
have x∗ = arg minz γ‖z‖1 + 1

2
‖z − (x∗ + γη)‖2, thus η ∈ ∂‖x∗‖1.

Finally, let y∗
1 and y∗

2 be two fixed points. Then y∗
1 − y∗

2 = −γ(η1 − η2) and R(y∗
1) −

R(y∗
2) = γ(η1 − η2) for some η1, η2 ∈ ∂‖x∗‖1 ∩ R(AT ). Notice that η1, η2 ∈ ∂‖x∗‖1 implies

η1 − η2 ∈ R(BT ). So we get y∗
1 − y∗

2, R(y∗
1) − R(y∗

2) ∈ R(AT ) ∩R(BT ).

With the assumption the matrix A has full row rank, the following condition is sufficient
[12] and necessary [30] to ensure existence of a unique solution x∗ to (1.1):

1. those columns of A with respect to the support of x∗ are linearly independent.

2. there exists a dual certificate η ∈ ∂‖x∗‖1 ∩ R(AT ) such that PN (B)(η) = sgn(x∗) and
‖PR(BT )(η)‖∞ < 1.

Therefore, with assumption that there is a unique solution x∗ to (1.1), there always exists
a dual certificate η ∈ ∂‖x∗‖1∩R(AT ) such that PN (B)(η) = PN (B)(x

∗) and ‖PR(BT )(η)‖∞ <
1. By Lemma 2.2, y∗ = x∗ − γη is a fixed point. And R(y∗) is in the interior of Q since
R(y∗) = R(x∗ − γη) = x∗ + γη.

We call a fixed point y∗ an interior fixed point if R(y∗) is in the interior of the set Q, or a
boundary fixed point otherwise. A boundary fixed point exists only if R(AT )∩R(BT ) 6= {0}.

Definition 2.3. Let U and V be two subspaces of Rn with dim(U) = p ≤ dim(V). The
principal angles θk ∈ [0, π

2
] (k = 1, · · · , p) between U and V are recursively defined by

cos θk = max
u∈U

max
v∈V

uT v = uT
k vk, ‖u‖ = ‖v‖ = 1,

uT
j u = 0, , uT

j u = 0, , j = 1, 2, · · · , k − 1.

The vectors (u1, · · · , up) and (v1, · · · , vp) are called principal vectors.

Lemma 2.4. Assume y∗ is a boundary fixed point and R(y∗) lies on a L-dimensional face of
the set Q. Namely, there are L coordinates j1, · · · , jL such that |R(y∗)jl

| = γ (l = 1, · · · , L).
Recall that B = [ei1 , · · · , eir ]

T , hence {j1, · · · , jL} is a subset of {i1, · · · , ir}. Let B1 denote
the (r − 1) × n matrix consisting of all row vectors of B except [ej1 ]

T . Recursively define Bl

as the (r − l) × n matrix consisting of all row vectors of Bl−1 except [ejl
]T for l = 2, · · · , L.

If there exists an index l such that R(AT ) ∩R(BT
l ) = 0, let M be the smallest such integer;

otherwise, let M = L. Then M ≤ dim
[
R(AT ) ∩R(BT )

]
, and the first principal angle

between N (A) and N (Bl) (l = 1, · · · ,M) is nonzero.
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Proof. Let Rl (l = 1, · · · , L) denote the one dimensional subspaces spanned by ejl
, then

R(Bl−1) = Rl ⊕R(Bl) and N (Bl) = Rl ⊕N (Bl−1).
Let z∗ be an interior fixed point. Notice that |R(y∗)jl

| = γ and |R(z∗)jl
| < γ for each

l = 1, · · · , L, thus PRl
[R(y∗) − R(z∗)] = R(y∗)jl

− R(z∗)jl
6= 0. By Lemma 2.2 we have

R(y∗) − R(z∗) ∈ R(AT ) ∩R(BT ), therefore

Rl * (R(AT ) ∩R(BT ))⊥, ∀l = 1, · · · , L. (2.2)

Since R(BT ) = R(BT
l ) ⊕R1 ⊕ · · · ⊕ Rl−1, with (2.2), we conclude that

dim
[
R(AT ) ∩R(BT

1 )
]
≤ dim

[
R(AT ) ∩R(BT )

]
− 1.

Similarly, we have

dim
[
R(AT ) ∩R(BT

l )
]
≤ dim

[
R(AT ) ∩R(BT

l−1)
]
− 1, l = 1, · · · ,M.

Therefore,

dim
[
R(AT ) ∩R(BT

l )
]
≤ dim

[
R(AT ) ∩R(BT )

]
− l, ∀l = 1, · · · ,M, (2.3)

thus M ≤ dim
[
R(AT ) ∩R(BT )

]
.

Let N (A) ∪ N (B) denote the subspace spanned by N (A) and N (B). Since Rn =
[R(AT ) ∩ R(BT )] ⊕ [N (A) ∪ N (B)] = [R(AT ) ∩ R(BT

l )] ⊕ [N (A) ∪ N (Bl)], by(2.3), we
have dim [N (A) ∪N (Bl)] ≥ dim [N (A) ∪N (B)] + l = dim [N (A)] + dim [N (B)] + l =
dim [N (A)] + dim [N (Bl)] for (l = 1, · · · ,M). Therefore N (A) ∩ N (Bl) = 0, and the first
principal angle between N (A) and N (Bl) is nonzero.

2.3 The characterization of the operator Tγ

Lemma 2.5. For any y satisfying R(y) ∈ Q and any fixed point y∗, Tγ(y) − Tγ(y
∗) =

[(In − B+B)(In − A+A) + B+BA+A](y − y∗) where In denotes the n × n identity matrix.

Proof. First, we have

Tγ(y) = [Sγ ◦ (2P − I) + I − P](y) = Sγ(R(y)) + y − P(y)

= R(y) − γ
∑

j∈N(x∗)

ej sgn(x∗
j) − B+BR(y) + y − P(y)

= P(y) − γ
∑

j∈N(x∗)

ej sgn(x∗
j) − B+BR(y).

The last step is due to the fact R = 2P − I. The definition of fixed points and (2.1) imply

Sγ(R(y∗)) = x∗, (2.4)

thus R(y∗) ∈ Q. So we also have

Tγ(y
∗) = P(y∗) − γ

∑
j∈N(x∗)

ej sgn(x∗
j) − B+BR(y∗).
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Let v = y − y∗, then

Tγ(y) − Tγ(y
∗) = P(y) − B+BR(y) −

[
P(y∗) − B+BR(y∗)

]
= y + A+(b − Ay) − B+B(y + 2A+(b − Ay))

−
[
y∗ + A+(b − Ay∗) − B+B(y∗ + 2A+(b − Ay∗))

]
= v − A+Av − B+Bv + 2B+BA+Av

= [(In − B+B)(In − A+A) + B+BA+A]v.

We now study the matrix

T = (In − B+B)(In − A+A) + B+BA+A. (2.5)

Let A0 be a n×(n−m) matrix whose column vectors form an orthonormal basis of N (A)
and A1 be a n×m matrix whose column vectors form an orthonormal basis of R(AT ). Since
A+A represents the projection to R(AT ) and so is A1A

T
1 , we have A+A = A1A

T
1 . Similarly,

In − A+A = A0A
T
0 . Let B0 and B1 be similarly defined for N (B) and R(BT ). The matrix

T can now be written as
T = B0B

T
0 A0A

T
0 + B1B

T
1 A1A

T
1 .

It will be convenient to study the norm of the matrix T in terms of principal angles
between subspaces.

Without loss of generality, we assume n − r ≤ n − m. Let θi (i = 1, · · · , n − r) be
the principal angles between the subspaces N (A) and N (B). Then the first principal angle
θ1 > 0 since N (A)∩N (B) = 0. Let cos Θ denote the (n− r)× (n− r) diagonal matrix with
the diagonal entries (cos θ1, · · · , cos θ(n−r)).

The singular value decomposition (SVD) of the (n − r) × (n − m) matrix E0 = BT
0 A0

is E0 = U0 cos ΘV T with UT
0 U0 = V T V = I(n−r), and the column vectors of B0U0 and A0V

give the principal vectors, see Theorem 1 in [3].
By the definition of SVD, V is a (n − m) × (n − r) matrix and its column vectors are

orthonormalized. Let V ′ be a (n−m)× (r−m) matrix whose column vectors are normalized

and orthogonal to those of V . For the matrix Ṽ = (V, V ′), we have I(n−m) = Ṽ Ṽ T . For
the matrix E1 = BT

1 A0, consider ET
1 E1 = AT

0 B1B
T
1 A0. Since B0B

T
0 + B1B

T
1 = In, we have

ET
1 E1 = AT

0 A0 − AT
0 B0B

T
0 A0 = I(n−m) − V cos2 ΘV T = (V, V ′)

(
sin2 Θ 0

0 I(r−m)

)
(V, V ′)T ,

so the SVD of E1 can be written as

BT
1 A0 = E1 = U1

(
sin Θ 0

0 I(r−m)

)
Ṽ T . (2.6)

Notice that A0 = B0B
T
0 A0 + B1B

T
1 A0 = B0E0 + B1E1, so we have

A0A
T
0 = (B0, B1)

(
E0E

T
0 E0E

T
1

E1E
T
0 E1E

T
1

)
(B0, B1)

T

= (B0U0, B1U1)

 cos2 Θ cos Θ sin Θ 0
cos Θ sin Θ sin2 Θ 0

0 0 I(r−m)

 (B0U0, B1U1)
T . (2.7)
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Let C denote the orthogonal complement of R(AT ) ∩ R(BT ) in the subspace R(BT ),

namely, R(BT ) = [R(AT )∩R(BT )]⊕C. Then the dimension of C is n−m. Let B̃0 = B0U0

and B̃1 = B1U1, then the column vectors of B̃0 form an orthonormal basis of N (B). The

column vectors of B̃1 are a family of orthonormal vectors in R(BT ). Moreover, the SVD

(2.6) implies the columns of B̃1 and A0Ṽ are principal vectors corresponding to angles
{π

2
−θ1, · · · , π

2
−θ(n−r), 0, · · · , 0} between the two subspaces R(BT ) and N (A) , see [3]. And

θ1 > 0 implies the largest angle between R(BT ) and N (A) is less than π/2, so none of the

column vectors of B̃1 is orthogonal to N (A) thus all the column vectors of B̃1 are in the

subspace C. By counting the dimension of C, we know that column vectors of B̃1 form an
orthonormal basis of C.

Let B̃2 be a n×(r+m−n) whose columns form an orthonormal basis of R(AT )∩R(BT ),
then we have

A0A
T
0 = (B̃0, B̃1, B̃2)


cos2 Θ cos Θ sin Θ 0 0

cos Θ sin Θ sin2 Θ 0 0
0 0 I(r−m) 0
0 0 0 0(r+m−n)


 B̃T

0

B̃T
1

B̃T
2

 .

Since (B̃0, B̃1, B̃2) is a unitary matrix and A1A
T
1 = In − A0A

T
0 , we also have

A1A
T
1 = (B̃0, B̃1, B̃2)


sin2 Θ − cos Θ sin Θ 0 0

− cos Θ sin Θ cos2 Θ 0 0
0 0 0(r−m) 0
0 0 0 I(r+m−n)


 B̃T

0

B̃T
1

B̃T
2

 . (2.8)

Therefore, we get the decomposition

T = B0B
T
0 A0A

T
0 + B1B

T
1 A1A

T
1

= (B̃0, B̃1, B̃2)


cos2 Θ cos Θ sin Θ 0 0

− cos Θ sin Θ cos2 Θ 0 0
0 0 0(r−m) 0
0 0 0 I(r+m−n)


 B̃T

0

B̃T
1

B̃T
2

 . (2.9)

2.4 Standard cases: the interior fixed points

Assume the sequence yk will converge to an interior fixed point.
First, consider the simple case when R(AT ) ∩ R(BT ) = {0}, then m + r = n and the

fixed point is unique and interior. Let Ba(z) denote the ball centered at z with radius a.
Let ε be the largest number such that Bε(R(y∗)) ⊆ Q. Let K be the smallest integer such
that yK ∈ Bε(y

∗) (thus R(yK) ∈ Bε(R(y∗))). By nonexpansiveness of Tγ and R, we get
R(yk) ∈ Bε(R(y∗)) for any k ≥ K. By a recursive application of Lemma 2.5, we have

Tγ(y
k) − y∗ = T(Tγ(y

k−1) − y∗) = · · · = Tk−K(yK − y∗), ∀k > K.

Now, (2.9) and R(AT )∩R(BT ) = {0} imply ‖T‖2 = cos θ1. Notice that T is normal, so we
have ‖Tq‖2 = ‖T‖q

2 for any positive integer q. Thus we get the convergence rate for large k:

‖Tγ(y
k) − y∗‖2 ≤ (cos θ1)

k−K‖yK − y∗‖2, ∀k > K. (2.10)
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If R(AT ) ∩ R(BT ) 6= {0}, then there are many fixed points by Lemma 2.2. Let I be
the set of all interior fixed points. For z∗ ∈ I, let ε(z∗) be the largest number such that
Bε(z∗)(R(z∗)) ⊆ Q.

If yK ∈
∪

z∗∈I
Bε(z∗)(z

∗) for some K, then consider the Euclidean projection of yK to I,

denoted by y∗. Then PR(AT )∩R(BT )(y
K − y∗) = 0 since y∗

1 − y∗
2 ∈ R(AT ) ∩ R(BT ) for any

y∗
1, y

∗
2 ∈ I. By (2.9), R(AT ) ∩R(BT ) is the eigenspace of eigenvalue 1 for the matrix T. So

we have ‖T(yK − y∗)‖ ≤ cos θ1‖yK − y∗‖, thus the error estimate (2.10) still holds.
The sequence yk may converge to a different fixed points for each initial value y0; the

fixed point y∗ is the projection of yK to I. Here K is the smallest integer such that yK ∈∪
z∗∈I

Bε(z∗)(R(z∗)).

Theorem 2.6. For the algorithm (1.2) solving (1.1), if yk converges to an interior fixed
point, then there exists an integer K such that (2.10) holds.

2.5 Nonstandard cases: the boundary fixed points

Suppose yk converges to a boundary fixed point y∗. With the same notations in Lemma
2.4, for simplicity, we only discuss the case M = 1. More general cases can be discussed
similarly. Without loss of generality, assume j1 = 1 and R(y∗)1 = γ. Then the set Q is equal
to Q1⊕Q2⊕· · ·⊕Qn, with Q1 = [−γ, γ]. Consider another set Q1 = (γ, +∞)⊕Q2⊕· · ·⊕Qn.
Any neighborhood of R(y∗) intersects both Q and Q1.

There are three cases:

I. the sequence R(yk) stays in Q if k is large enough,

II. the sequence R(yk) stays in Q1 if k is large enough,

III. for any K, there exists k1, k2 > K such that R(yk1) ∈ Q and R(yk2) ∈ Q1.

Case I. Assume yk converges to y∗ and R(yk) stay in Q for any k ≥ K. Then
PR(AT )∩R(BT )(y

K−y∗) must be zero. Otherwise, by (2.9), we have lim
k→∞

yk−y∗ = PR(AT )∩R(BT )(y
K−

y∗) 6= 0. By (2.9), the eigenspace of T associated with the eigenvalue 1 is R(AT ) ∩R(BT ),
so (2.10) still holds.

Case II Assume yk converges to y∗ and R(yk) stay in Q1 for any k ≥ K. Let B̄ =
[ei2 , · · · , eir ]

T . Following Lemma 2.5, for any y satisfying R(y) ∈ Q1, we have Tγ(y)−Tγ(y
∗) =

[(In − B̄+B̄)(In − A+A) + B̄+B̄A+A](y − y∗).
Without loss of generality, assume n− r + 1 ≤ n−m. Consider the (n− r + 1) principal

angles between N (A) and N (B̄) denoted by (θ̄1, · · · , θ̄(n−r+1)). Let Θ1 denote the diagonal
matrix with diagonal entries (θ̄1, · · · , θ̄(n−r+1)). Then the matrix T̄ = (In−B̄+B̄)(In−A+A)+
B̄+B̄A+A can be written as

T̄ = (B̃0, B̃1, B̃2)


cos2 Θ1 cos Θ1 sin Θ1 0 0

− cos Θ1 sin Θ1 cos2 Θ1 0 0
0 0 0(r−m−1) 0
0 0 0 I(r+m−n−1)


 B̃T

0

B̃T
1

B̃T
2

 ,

(2.11)
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where (B̃0, B̃1, B̃2) are redefined accordingly.
By Lemma 2.4, θ̄1 > 0. Following the first case, we have PR(AT )∩R(B̄T )(y

K − y∗) = 0. So

‖Tγ(y
k) − y∗‖2 ≤ (cos θ̄1)

k−K‖yK − y∗‖2, ∀k > K.

Convergence is slower than previously, as θ̄1 ≤ θ1.
Case III Assume yk converges to y∗ and R(yk) stay in Q ∪ Q1 for any k ≥ K. Then

PR(AT )∩R(B̄T )(y
K − y∗) = 0. And for yk ∈ Q1 we have ‖Tγ(y

k) − y∗‖2 ≤ (cos θ̄1)‖yk −
y∗‖2. Let D be the orthogonal complement of R(AT ) ∩ R(B̄T ) in R(AT ) ∩ R(BT ), namely
R(AT ) ∩ R(BT ) = R(AT ) ∩ R(B̄T ) ⊕ D. For yk ∈ Q, we have ‖PD⊥(Tγ(y

k) − y∗)‖2 ≤
cos θ1‖PD⊥(yk − y∗)‖2 and PD(Tγ(y

k) − y∗) = PD(yk − y∗).
For the Case III, which we refer to as nongeneric cases, no convergence results like

‖Tγ(y
k)− y∗‖2 ≤ (cos θ̄1)‖yk − y∗‖2 can be established since PD(Tγ(y

k)− y∗) = PD(yk − y∗)
whenever R(yk) ∈ Q. Even though it seems hard to exclude Case III from the analysis, it
has not been observed in our numerical tests.

2.6 Generalized Douglas-Rachford

Consider the generalized Douglas-Rachford splitting (1.5) with constant relaxation parame-
ter: {

yk+1 = yk + λ
[
Sγ(2x

k − yk) − xk
]

xk+1 = yk+1 + A+(b − Ayk+1)
, λ ∈ (0, 2). (2.12)

Let T λ
γ = I + λ [Sγ ◦ (2P − I) − P]. Then any fixed point y∗ of T λ

γ satisfies P(y∗) = x∗,
[8]. So the fixed points set of T λ

γ is the same as the fixed points set of Tγ. Moreover, for any
y satisfying R(y) ∈ Q and any fixed point y∗, T λ

γ (y) − T λ
γ (y∗) = [In + λ(In − B+B)(In −

2A+A) − λ(In − A+A)](y − y∗).
To find the asymptotic convergence rate of (2.12), it suffices to consider the matrix

Tλ = In + λ(In − B+B)(In − 2A+A) − λ(In − A+A) = (1 − λ)In + λT. By (2.9), we have

Tλ = B̃


cos2 Θ + (1 − λ) sin2 Θ λ cos Θ sin Θ 0 0

−λ cos Θ sin Θ cos2 Θ + (1 − λ) sin2 Θ 0 0
0 0 (1 − λ)I(r−m) 0
0 0 0 I(r+m−n)

 B̃T ,

where B̃ = (B̃0, B̃1, B̃2).
Notice that Tλ is a normal matrix. By the discussion in Section 2, if yk in the iteration of

(2.12) converges to an interior fixed point, the asymptotic convergence rate will be governed
by the matrix

Mλ =

 cos2 Θ + (1 − λ) sin2 Θ λ cos Θ sin Θ 0
−λ cos Θ sin Θ cos2 Θ + (1 − λ) sin2 Θ 0

0 0 (1 − λ)I(r−m)

 .

Note that ‖Mλ‖ =
√

λ(2 − λ) cos2 θ1 + (1 − λ)2 ≥ cos θ1 for any λ ∈ (0, 2). Therefore, the
asymptotic convergence rate of (2.12) is always slower than (1.3) if λ 6= 1. We emphasize
that this does not mean (1.3) is more efficient than (2.12) for xk to reach a given accuracy.
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2.7 Relation to the Restricted Isometry Property

Let A be a m × n random matrix and each column of A is normalized, i.e.,
∑
i

A2
ij = 1 for

each j. The Restricted Isometry Property (RIP) introduced in [5] is as follows.

Definition 2.7. For each integer s = 1, 2, · · · , the restricted isometry constants δs of A is
the smallest number such that

(1 − δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2, (2.13)

holds for all vectors x with at most s nonzero entries.

In particular, any vector with the same support as x∗ can be denoted as (In − B+B)x
for some x ∈ Rn. The RIP (2.13) with s = n − r implies

(1− δ(n−r))‖(In −B+B)x‖2 ≤ ‖A(In −B+B)x‖2 ≤ (1 + δ(n−r))‖(In −B+B)x‖2, ∀x ∈ Rn.

Let d denote the smallest eigenvalue of (AAT )−1. Then d > 0 since we assume A has full
row rank. For any vector y, we have

‖A+Ay‖2 = yT AT [(AAT )−1]T AAT (AAT )−1Ay = yT AT [(AAT )−1]T Ay ≥ d‖Ay‖2,

where the last step is due to the Courant–Fischer–Weyl min-max principle.
Therefore, we get

‖A+A(In − B+B)x‖2 ≥ d‖A(In − B+B)x‖2 ≥ d(1 − δ(n−r))‖(In − B+B)x‖2, ∀x ∈ Rn,
(2.14)

We will show that (2.14) gives a lower bound of the first principal angle θ1 between two
subspaces N (A) and N (B). Notice that (2.8) implies

A+A(In − B+B) = A1A
T
1 B0B

T
0 = (B0U0, B1U1)

 sin2 Θ 0
− cos Θ sin Θ 0

0 0

 (B0U0, B1U1)
T ,

by which we have ‖A+A(In − B+B)x‖2 = xT (B0U0, B1U1)

(
sin2 Θ 0

0 0

)
(B0U0, B1U1)

T x.

Let z = (B0U0, B1U1)
T x. Since In − B+B = (B0U0, B1U1)

(
I(n−r) 0

0 0

)
(B0U0, B1U1)

T ,

(2.14) is equivalent to

zT

(
sin2 Θ 0

0 0

)
z ≥ d(1 − δ(n−r))z

T

(
In−r 0

0 0

)
z, ∀z ∈ Rn,

which implies sin2 θ1 ≥ d(1 − δ(n−r)) by the Courant–Fischer–Weyl min-max principle. So
the RIP constant gives us

cos θ1 ≤
√

1 − d(1 − δ(n−r)).
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2.8 Numerical examples

We consider several examples for (1.3). In all the examples, y0 = 0 unless specified otherwise.
For examples in this subsection, the angles between the null spaces can be computed by
singular value decomposition (SVD) of AT

0 B0 [3].

Example 1 The matrix A is a 3×40 random matrix with standard normal distribution and
x∗ has three nonzero components. By counting dimensions, we know that R(AT )∩R(BT ) =
{0}. Therefore there is only one fixed point. See Figure 1.1 for the error curve of xk

and yk with γ = 1. Obviously, the error ‖xk − x∗‖ is not monotonically decreasing but
‖yk − y∗‖ is since the operator Tγ is non-expansive. And the slope of log ‖yk − y∗‖ is exactly
log(cos θ1) = log(0.9932) for large k.

2000 4000 6000 8000 10000 12000 14000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration number k

The error ‖yk − y∗‖

γ = 1
γ = 10
γ = 0.1
3 ∗ (cos θ1)

k

Figure 2.1: Example 2: for an interior fixed point, the asymptotic rate remains the same for
different soft-thresholding parameter γ. The slope of the straight line is log(cos θ1).

Example 2 The matrix A is a 10× 1000 random matrix with standard normal distribution
and x∗ has ten nonzero components. Thus there is only one fixed point. See Figure 2.1 for
the error curve of yk with γ = 0.1, 1, 10. We take y∗ as the result of (1.3) after 8 × 104

iterations. The slopes of log ‖yk − y∗‖ for different γ are exactly log(cos θ1) = log(0.9995)
for large k.

Example 3 The matrix A is a 18× 100 submatrix of a 100× 100 Fourier matrix and x∗ has
two nonzero components. There are interior and boundary fixed points. In this example, we
fix γ = 1 and test (1.3) with random y0 for six times. See Figure 2.2 for the error curve of
xk. In Figure 2.2, in four tests, yk converges to an interior fix point, thus the convergence
rate for large k is governed by cos θ1 = 0.9163. In the second and third tests, yk converges to
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different boundary fixed points1 thus convergence rates are slower than cos θ1. Nonetheless,
the rate for large k is still linear.

500 1000 1500 2000
10

−20

10
−15
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−10
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−5

10
0

10
5

Iteration number k

The error ‖xk − x
∗‖

1st test
2nd test
3rd test
4th test
5th test
6th test
100000 ∗ (cos θ1)

k

Figure 2.2: Example 3: fixed γ = 1 with random y0.
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The error ‖xk − x
∗‖

λ = 1

λ = 1.8

λ = 0.3

Figure 2.3: Example 4: The Generalized Douglas-Rachford (2.12) with different λ and fixed
γ = 1. The asymptotic convergence rate of (1.3) (λ = 1) is the fastest.

Example 4 The matrix A is a 5×40 random matrix with standard normal distribution and
x∗ has three nonzero components. See Figure 2.3 for the comparison of (1.3) and (2.12) with
γ = 1.

Remark 2.8. To apply Douglas-Rachford splitting (1.2) to basis pursuit (1.1), we can also

1At least, numerically so in double precision.
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choose g(x) = ‖x‖1 and f(x) = ι{x:Ax=b}, then Douglas-Rachford iterations become{
yk+1 = xk + A+(b − A(2xk − yk))

xk+1 = Sγ(y
k+1)

. (2.15)

The discussion in this section can be applied to (2.15). In particular, the corresponding
matrix in (2.5) is T = (In−A+A)(In−B+B)+A+AB+B, thus all the asymptotic convergence
rates remain valid. For all the numerical tests in this paper, we did not observe any significant
difference in performance between (1.3) and (2.15).

3 The `2 regularized Basis Pursuit

3.1 Preliminaries

For the `2 regularized Basis Pursuit (1.4), to use Douglas-Rachford splitting (1.2) to solve
the equivalent problem min

x
‖x‖1 + ι{x:Ax=b} + 1

2α
‖x‖2, there are quite a few splitting choices:

1.

f(x) = ‖x‖1 +
1

2αp
‖x‖2, g(x) = ι{x:Ax=b} +

1

2αq
‖x‖2, ∀p, q ≥ 1,

1

p
+

1

q
= 1. (3.1)

2.

g(x) = ‖x‖1 +
1

2αp
‖x‖2, f(x) = ι{x:Ax=b} +

1

2αq
‖x‖2, ∀p, q ≥ 1,

1

p
+

1

q
= 1. (3.2)

The following two resolvents will be needed:

• h(x) = ‖x‖1 + 1
2α
‖x‖2, Jγ∂h(x) = arg min

z
γ‖z‖1 + γ

2α
‖z‖2 + 1

2
‖z − x‖2 = α

α+γ
Sγ(x).

• h(x) = ι{x:Ax=b} + 1
2α
‖x‖2, Jγ∂h(x) = arg min

z
γι{z:Az=b} + γ

2α
‖z‖2 + 1

2
‖z − x‖2 = α

α+γ
x +

A+(b − α
α+γ

Ax).

3.2 Douglas-Rachford splitting

In particular, Douglas-Rachford splitting (1.2) using (3.1) with p = 1 and q = ∞ is equivalent
to the dual split Bregman method [27]. See Section 4.3 for the equivalence. We first discuss
this special case.

Let f(x) = ‖x‖1 + 1
2α
‖x‖2 and g(x) = ι{x:Ax=b}, the Douglas-Rachford splitting (1.2) for

(1.1) reads {
yk+1 = α

α+γ
Sγ(2x

k − yk) + yk − xk

xk+1 = yk+1 + A+(b − Ayk+1)
. (3.3)

Since ‖x‖1 + 1
2α
‖x‖2 is a strongly convex function, (1.4) always has a unique minimizer

x∗ as long as {x : Ax = b} is nonempty. The first order optimality condition 0 ∈ ∂F (x∗) +
∂G(x∗) implies the dual certificate set (∂‖x∗‖1 + 1

α
x∗) ∩ R(AT ) is nonempty. Let Tα

γ =
α

α+γ
Sγ ◦ (2P − I) + I − P.
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Lemma 3.1. The set of the fixed points of Tα
γ can be described as{

y∗ : y∗ = x∗ − γη, η ∈
(

∂‖x∗‖1 +
1

α
x∗

)
∩R(AT )

}
.

The proof is similar to the one of Lemma 2.2. We also have

Lemma 3.2. For any y satisfying α
α+γ

R(y) ∈ Q and any fixed point y∗, Tα
γ (y) − Tα

γ (y∗) =

[c(In − B+B)(In − A+A) + cB+BA+A + (1 − c)A+A] (y − y∗) where c = α
α+γ

.

Proof. First, we have

Tα
γ (y) = [cSγ ◦ (2P − I) + I − P](y) = cSγ(R(y)) + y − P(y)

= c

R(y) − γ
∑

j∈N(x∗)

ej sgn(x∗
j) − B+BR(y)

 + y − P(y)

Similarly we also have

Tα
γ (y∗) = c

R(y∗) − γ
∑

j∈N(x∗)

ej sgn(x∗
j) − B+BR(y∗)

 + y∗ − P(y∗).

Let v = y − y∗, then

Tα
γ (y) − Tα

γ (y∗) = c
[
R(y) − B+BR(y)

]
+ y − P(y)

−c
[
R(y∗) − B+BR(y∗)

]
− (y∗ − P(y∗))

= c[In − 2A+A − B+B + 2B+BA+A]v + A+Av

= [c(In − B+B)(In − A+A) + cB+BA+A + (1 − c)A+A]v.

Consider the matrix

T(c) = c(In − B+B)(In − A+A) + cB+BA+A + (1 − c)A+A, c =
α

α + γ
. (3.4)

Then T(c) = cT + (1 − c)A+A where T = (In − B+B)(In − A+A) + B+BA+A.
By (2.8) and (2.9), we have

T(c) = B̃


(1 − c) sin2 Θ + c cos2 Θ (2c − 1) cos Θ sin Θ 0 0

− cos Θ sin Θ cos2 Θ 0 0
0 0 0(r−m) 0
0 0 0 I(r+m−n)

 B̃T , (3.5)

where B̃ = (B̃0, B̃1, B̃2).
Following the proof in [30], it is straightforward to show there exists a dual certificate

η ∈ (∂‖x∗‖1 + 1
α
x∗) ∩ R(AT ) such that PN (B)(η) = PN (B)(x

∗) and ‖PR(BT )(η)‖∞ < 1. So
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there is at least one interior fixed point. Following Lemma 2.2, there is only one fixed point
y∗ if and only if R(AT ) ∩R(BT ) = {0}.

For simplicity, we only discuss the interior fixed point case. The boundary fixed point
case is similar to the previous discussion.

Assume yk converges to an interior fixed point y∗. Let ε be the largest number such
that Bε(R(y∗)) ⊆ S. Let K be the smallest integer such that yK ∈ Bε(y

∗) (thus R(yK) ∈
Bε(R(y∗))). By nonexpansiveness of Tα

γ and R, we get R(yk) ∈ Bε(R(y∗)) for any k ≥ K. So
we have

‖yk−y∗‖ = ‖T(c)(yk−y∗)‖ = · · · = ‖T(c)k−K(yK−y∗)‖ ≤ ‖T(c)k−K‖‖(yK−y∗)‖, ∀k > K.

Notice that T(c) is a nonnormal matrix, so ‖T(c)k‖ is much less than ‖T(c)‖k for large
k. Thus the asymptotic convergence rate is governed by lim

k→∞
k
√
‖T(c)k‖, which is equal to

the norm of the eigenvalues of T(c) with the largest magnitude.

It suffices to study the matrix M(c) =

(
(1 − c) sin2 Θ + c cos2 Θ (2c − 1) cos Θ sin Θ

− cos Θ sin Θ cos2 Θ

)
because PR(AT )∩R(BT )(y

K − y∗) = 0 (otherwise yk cannot converge to y∗).

Notice that det(M(c) − ρI) =
n−r∏
i=1

[ρ2 − (c cos(2θi) + 1)ρ + c cos2 θi]. Let ρ(θ, c) denote

the magnitude of the solution with the largest magnitude for the quadratic equation ρ2 −
(c cos(2θ) + 1)ρ + c cos2 θ, with discriminant ∆ = cos2(2θ)c2 − 2c + 1.

The two solutions of ∆ = 0 are [1±sin(2θ)]/ cos2(2θ). Notice that [1+sin(2θ)]/ cos2(2θ) ≥
1 for θ ∈ [0, π/2] and c ∈ (0, 1), we have

ρ(θ, c) =

{√
c cos θ, if c ≥ 1−sin(2θ)

cos2(2θ)
= 1

(cos θ+sin θ)2

1
2

(
c cos(2θ) + 1 +

√
cos2(2θ)c2 − 2c + 1

)
if c ≤ 1

(cos θ+sin θ)2

. (3.6)

It is straightforward to check that ρ(θ, c) is monotonically decreasing with respect to θ
for θ ∈ [0, π

4
]. Therefore, the asymptotic convergence rate is equal to ρ(θ1, c) if θ1 ≤ π

4
.

Let c∗ = 1
(cos θ1+sin θ1)2

which is equal to arg minc ρ(θ1, c). Let c] = 1
1+2 cos θ1

which is the

solution to ρ(θ1, c) = cos θ1. See Figure 1.2. Then for any c ∈ (c], 1), we have ρ(θ1, c) < cos θ1.
Namely, the asymptotic convergence rate of (3.3) is faster than (1.3) if α

α+γ
∈ (c], 1). The best

asymptotic convergence rate that (3.3) can achieve is ρ(θ1, c
∗) =

√
c∗ cos θ1 = cos θ1

cos θ1+sin θ1
=

1
1+tan θ1

when α
α+γ

= c∗.

Remark 3.3. The general cases of the two alternatives (3.1) and (3.2) with any p and q
can be discussed similarly. For Douglas-Rachford splitting (1.2) using (3.1) with q = 1 and
(3.2) with p = 1 or q = 1, the asymptotic linear rate (3.6) holds. Compared to (3.3), we
observed no improvement in numerical performance by using (3.1) or (3.2) with any other
values of p and q in all our numerical tests.

3.3 Generalized Douglas-Rachford and Peaceman-Rachford split-
tings

For the generalized Douglas-Rachford splitting (1.5), the choice of p and q in the (3.1) and
(3.2) may result in different performance. The main difference can be seen in the limiting
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case λk ≡ 2, for which (1.5) becomes the Peaceman-Rachford splitting (1.6).
If f(x) is convex and g(x) is strongly convex, the convergence of (1.6) is guaranteed, see

[9, 18]. On the other hand, (1.5) may not converge if g(x) is only convex rather than strongly
convex. For instance, (1.6) with (3.1) and p = 1 (or (3.2) and q = 1) did not converge for
examples in Section 4.4. To this end, the best choices of p and q for (1.5) should be (3.1)
with q = 1 and (3.2) with p = 1. We only discuss the case of using (3.1) with q = 1. The
analysis will hold for the other one.

Let f(x) = ‖x‖1 and g(x) = ι{x:Ax=b} + 1
2α
‖x‖2. Consider the following generalized

Douglas-Rachford splitting with a constant relaxation parameter λ:{
yk+1 = yk + λ

[
Sγ(2x

k − yk) − xk
]

xk+1 = α
α+γ

yk+1 + A+(b − α
α+γ

Ayk+1)
, λ ∈ (0, 2]. (3.7)

For the algorithm (3.7), the corresponding matrix in (3.4) is

T(c, λ) = I +λ[(I −B+B)(2c(I −A+A)− I)− c(I −A+A)] = (1−λ)I +λ[cT+(1− c)B+B],

where c = α
α+λ

and T = (I − B+B)(I − A+A) + B+BA+A.
By (2.9), we have

T(c, λ) = B̃


λc cos2 Θ λc cos Θ sin Θ 0 0

−λc cos Θ sin Θ λc cos2 Θ + (1 − λc)I(n−r) 0 0
0 0 (1 − λc)I(r−m) 0
0 0 0 I(r+m−n)

 B̃T ,

(3.8)

where B̃ = (B̃0, B̃1, B̃2).

It suffices to study the matrix M(c, λ) =

(
λc cos2 Θ λc cos Θ sin Θ

−λc cos Θ sin Θ λc cos2 Θ + (1 − λc)I(n−r)

)
.

Notice that det(M(c, λ)−ρI) =
n−r∏
i=1

[ρ2−(λc cos(2θi)−λ+2)ρ+c sin2 θiλ
2−(1−c cos(2θi))λ+1].

Let ρ(θ, c, λ) denote the magnitude of the solution with the largest magnitude for the
quadratic equation ρ2−(λc cos(2θ)−λ+2)ρ+c sin2 θλ2−(1−c cos(2θ))λ+1, with discriminant
∆ = λ2(cos2(2θ)c2 − 2c + 1).

The two solutions of ∆ = 0 are [1±sin(2θ)]/ cos2(2θ). Notice that [1+sin(2θ)]/ cos2(2θ) ≥
1 for θ ∈ [0, π/2] and c ∈ (0, 1), we have

ρ(θ, c, λ) =

{√
c sin2 θλ2 − (1 − c cos(2θ))λ + 1, if c ≥ 1−sin(2θ)

cos2(2θ)
= 1

(cos θ+sin θ)2

1
2

(
λc cos(2θ) − λ + 2 + λ

√
cos2(2θ)c2 − 2c + 1

)
if c ≤ 1

(cos θ+sin θ)2

.

(3.9)
It is straightforward to check that ρ(θ, c, λ) ≥ |1 − λc| and ρ(θ, c, λ) is monotonically

decreasing with respect to θ for θ ∈ [0, π
4
]. Therefore, the asymptotic convergence rate of

(3.7) is governed by ρ(θ1, c, λ) if θ1 ≤ π
4
.

The next step is to evaluate arg min
λ

ρ(θ, c, λ). When c ≤ c∗ = 1
(cos θ+sin θ)2

, ρ(θ, c, λ) is

monotonically decreasing with respect to λ. Let c̄ = 1
2−cos(2θ)

, for the quadratic equation
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κ(λ) = c sin2 θλ2 − (1 − c cos(2θ))λ + 1, we have

arg min
λ

κ(λ) =

{
2, if c∗ ≤ c ≤ c̄

1−c cos 2θ
c(1−cos (2θ))

, if c̄ ≤ c < 1
and min κ(λ) =

{
2c − 1, if c∗ ≤ c ≤ c̄
2c−1−c2 cos2 2θ

4c sin2 θ
, if c̄ ≤ c < 1

.

Let λ∗(θ, c) = arg min
λ

ρ(θ, c, λ), then

λ∗(θ, c) =

{
2 if c ≤ c̄ = 1

2−cos(2θ)
1
c
−cos 2θ

1−cos (2θ)
if c ≥ c̄

, (3.10)

which is a continuous non-increasing function w.r.t c and has range (1, 2] for c ∈ (0, 1).
The convergence rate with λ∗ is

ρ(θ, c, λ∗) =


ρ(θ, c, 2) = c cos(2θ) +

√
cos2(2θ)c2 − 2c + 1, if c ≤ c∗ = 1

(cos θ+sin θ)2

ρ(θ, c, 2) =
√

2c − 1, if c∗ ≤ c ≤ c̄ = 1
2−cos(2θ)

ρ(θ, c, 1−c cos 2θ
c(1−cos 2θ)

) =

√
2c−1−c2 cos2 (2θ)

2 sin θ
√

c
, if c ≥ c̄

.

See Figure 1.3 for the illustration of the asymptotic linear rate ρ(θ, c, λ).

Remark 3.4. We emphasize several interesting facts:

• For Peaceman-Rachford splitting, i.e., (3.7) with λ = 2, if c ≥ c∗, the asymptotic rate
ρ(θ, c, 2) =

√
2c − 1 is independent of θ.

• For any c < c̃ = 1
2−cos2 θ

, the Peaceman-Rachford splitting is faster than Douglas-
Rachford, i.e., ρ(θ, c, 2) < ρ(θ, c, 1).

• The best possible rate of (3.7) is ρ(θ, c∗, 2) = 1−tan θ
1+tan θ

.

• The quadratic function κ(λ) is monotonically increasing if λ ≥
1
c
−cos 2θ

1−cos (2θ)
and decreasing

otherwise. For any λ < 1, (3.9) and (3.10) implies ρ(θ, c, λ) > ρ(θ, c, 1). Thus (3.7)
with λ < 1 has slower asymptotic rate than (3.3).

Example 5 The matrix A is a 40× 1000 random matrix with standard normal distribution
and x∗ has two nonzero components. We test the algorithms (3.3) and (3.7). See Section
4.3 for the equivalence between (3.3) and the dual split Bregman method in [27]. See Figure
3.1 for the error curve of xk. The best choice of the parameter c = α/(α + γ) according to
Figure 1.2 should be α/(α + γ) = c∗, which is c∗ = 0.756 for this example. Here c∗ indeed
gives the best asymptotic rate 1

1+tan θ1
for (3.3) but c∗ is not necessarily the most efficient

choice for a given accuracy, as we can see in the Figure 1.2 (a). The best asymptotic rates
(3.3) and (3.7) are 1

1+tan θ1
and 1−tan θ1

1+tan θ1
respectively when c = c∗ as we can see in Figure 3.1

(b).
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Error ‖xk − x∗‖/‖x∗‖

DR
Regulari zed DR with α/(α + γ ) = 0 .833

Regulari zed DR with α/(α + γ ) = 0 .756

(a) For the algorithm (3.3), c∗ = 0.756 indeed gives the best asymptotic rate
1

1+tan θ1
but c∗ is not necessarily the most efficient choice for a given accuracy.

100 200 300 400 500 600 700 800

10−10

10−5

100

105

I teration number k

Error ‖xk − x∗‖/‖x∗‖

DR
30 ∗ (cos θ 1)

k

Regulari zed DR with α/(α + γ ) = 0 .756

1015 ∗ [ 1

1+tan θ1

]k

Regulari zed PR with α/(α + γ ) = 0 .756

1012 ∗ [ 1−tan θ1

1+tan θ1

]k

(b) The best asymptotic rates.

Figure 3.1: Example 5: α = 20 is fixed. DR stands for (1.3) and Regularized DR stands for
(3.3). Regularized PR stands for (3.7) with λ = 2.
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4 Dual interpretation

4.1 Chambolle and Pock’s primal dual algorithm

The algorithm (1.2) is equivalent to a special case of Chambolle and Pock’s primal-dual
algorithm [6]. Let wk+1 = (xk − yk+1)/γ, then (1.2) with F = ∂f and G = ∂g is equivalent
to {

wk+1 = (I + 1
γ
∂f ∗)−1(wk + 1

γ
(2xk − xk−1))

xk+1 = (I + γ∂g)−1(xk − γwk+1)
, (4.1)

where f∗ is the conjugate function of f . Its resolvent can be evaluated by the Moreau’s
identity,

x = (I + γ∂f)−1(x) + γ

(
I +

1

γ
∂f ∗

)−1 (
x

γ

)
.

Let Xn = 1
n

n∑
k=1

xk and W n = 1
n

n∑
k=1

wk, then the duality gap of the point (Xn,W n)

converges with the rate O( 1
n
). See [6] for the proof. If f(x) = ‖x‖1 and g(x) = ι{x:Ax=b},

then wk will converge to a dual certificate η ∈ ∂‖x∗‖1 ∩R(AT ).

4.2 Alternating direction method of multipliers

In this subsection we recall the the widely used alternating direction method of multipliers
(ADMM), which serves as a preliminary for the next subsection. ADMM [15, 14] was shown
in [13] to be equivalent to the Douglas-Rachford splitting on the dual problem. To be more
specific, consider

min
z∈Rm

Ψ(z) + Φ(Dz), (P)

where Ψ and Φ are convex functions and D is a n × m matrix. The dual problem of the
equivalent constrained form min Ψ(z) + Φ(w) s.t. Dz = w is

min
x∈Rn

Ψ∗(−DT x) + Φ∗(x). (D)

By applying the Douglas-Rachford splitting (1.2) on F = ∂[Ψ∗ ◦ (−DT )] and G = ∂Φ∗, one
recovers the classical ADMM algorithm for (P),

zk+1 = arg min
z

Ψ(z) + γ
2
‖ 1

γ
xk + Dz − wk‖2

wk+1 = arg min
w

Φ(w) + γ
2
‖ 1

γ
xk + Dzk+1 − w‖2

xk+1 = xk + γ(Dzk+1 − wk+1)

, (ADMM)

with the change of variable yk = xk + γwk, and xk unchanged.
After its discovery, ADMM has been regarded as a special augmented Lagrangian method.

It turns out that ADMM can also be interpreted in the context of Bregman iterations. The
split Bregman method [16] for (P) is exactly the same as (ADMM), see [26]. Since we are
interested in Douglas-Rachford splitting for the primal formulation of the `1 minimization,
the algorithms analyzed in the previous sections are equivalent to ADMM or split Bregman
method applied to the dual formulation.
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4.3 Split Bregman method on the dual problem

In this subsection we show that the analysis in Section 3 can also be applied to the split
Bregman method on the dual formulation [27]. The dual problem of `2 regularized basis
pursuit (1.4) can be written as

min
z

−bT z +
α

2
‖AT z −P[−1,1]n(AT z)‖2, (4.2)

where z denotes the dual variable, see [28].
By switching the first two lines in (ADMM), we get a slightly different version of ADMM:

wk+1 = arg min
w

Φ(w) + γ
2
‖ 1

γ
xk + Dzk − w‖2

zk+1 = arg min
z

Ψ(z) + γ
2
‖ 1

γ
xk + Dz − wk+1‖2

xk+1 = xk + γ(Dzk+1 − wk+1)

. (ADMM2)

The well-known equivalence between (ADMM) and Douglas-Rachford splitting was first
explained in [13]. See also [26, 11]. For completeness, we discuss the equivalence between
(ADMM2) and Douglas-Rachford splitting.

Theorem 4.1. The iterates in (ADMM2) are equivalent to the Douglas-Rachford splitting
(1.2) on F = ∂Φ∗ and G = ∂[Ψ∗ ◦ (−DT )] with yk = xk−1 − γwk.

Proof. For any convex function h, we have λ ∈ ∂h(p) ⇐⇒ p ∈ ∂h∗(λ), which implies

p̂ = arg min
p

h(p) +
γ

2
‖Dp − q‖2 =⇒ γ(Dp̂ − q) = Jγ∂(h∗◦(−DT ))(−γq). (4.3)

Applying (4.3) to the first two lines of (ADMM2), we get

xk − γwk+1 = JγF (xk + γDzk) − γDzk. (4.4)

xk + γDzk+1 − γwk+1 = JγG(xk − γwk+1). (4.5)

Assuming yk = xk−1−γwk, we need to show that the (k+1)-th iterate of (ADMM2) satisfies
yk+1 = JγF ◦ (2JγG − I)yk + (I − JγG)yk and xk+1 = JγG(yk+1).

Notice that (4.5) implies

JγG(yk) = JγG(xk−1 − γwk) = xk−1 + γDzk − γwk.

So we have

JγG(yk) − yk = xk−1 + γDzk − γwk − (xk−1 − γwk) = γDzk,

and

2JγG(yk) − yk = xk−1 + 2γDzk − γwk = xk−1 + γDzk − γwk + γDzk = xk + γDzk.

Thus (4.4) becomes
yk+1 = JγF ◦ (2JγG − I)yk + (I − JγG)yk.

And (4.5) is precisely xk+1 = JγG(yk+1).
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Applying (ADMM2) on (4.2) with Ψ(z) = −bT z, Φ(z) = α
2
‖z−P[−1,1]n(z)‖2 and D = AT ,

we recover the LB-SB algorithm in [27],
wk+1 = arg min

w

α
2
‖w −P[−1,1]n(w)‖2 + γ

2
‖ 1

γ
xk + AT zk − w‖2

zk+1 = arg min
z

−bT z + γ
2
‖ 1

γ
xk + AT z − wk+1‖2

xk+1 = xk + γ(AT zk+1 − wk+1)

. (LB-SB)

It is straightforward to check that Ψ∗ ◦ (−A)(x) = ι{x:Ax=b} and Φ∗(x) = ‖x‖1 + 1
2α
‖x‖2.

By Theorem 4.1, (LB-SB) is exactly the same as (3.3). Therefore, all the results in Section
3 hold for (LB-SB). In particular, the dependence of the eventual linear convergence rate of
(LB-SB) on the parameters is governed by (3.6) as illustrated in Figure 1.2.

Remark 4.2. Let z∗ be the minimizer of (4.2) then αS1(A
T z∗) is the solution to (1.4), see

[28]. So tk = αS1(A
T zk) can be used as the approximation to x∗, the solution to (1.4), as

suggested in [27]. By Theorem 4.1, we can see that xk will converge to x∗ too. And it is easy
to see that xk satisfies the constraint Axk = b in (3.3). But tk does not necessarily lie in
the affine set {x : Ax = b}. Thus {tk} and {xk} are two completely different sequences even
though they both can be used in practice.

4.4 Practical relevance

To implement the algorithm exactly as presented earlier, the availability of A+ is necessary.
Algorithms such as (1.3) and (3.3), the same as (LB-SB), are not suitable if (AAT )−1 is
prohibitive to obtain. On the other hand, there are quite a few important problems for
which (AAT )−1 is cheap to compute and store in memory. For instance, AAT may be
relatively small and is a well-conditioned matrix in typical compressive sensing problems.
Another example is when AT represents a tight frame transform, for which AAT is the
identity matrix.

As for the efficiency of (LB-SB), see [27] for the comparison of (LB-SB) with other state-
of-the-art algorithms.

Next, we discuss several examples of (3.3), (LB-SB) and (3.7) for the tight frame of
discrete curvelets [4], in the scope of an application to interpolation of 2D seismic data. In
the following examples, let C denote the matrix representing the wrapping version of the
two-dimensional fast discrete curvelet transform [4], then CT represents the inverse curvelet
transform and CT C is the identity matrix since the curvelet transform is a tight frame.

Example 6 We construct an example with A = CT to validate formula (3.6). Consider a
random sparse vector x∗ with length 379831 and 93 nonzero entries, in the curvelet domain
which is the range of the curvelet transform of 512 × 512 images. The size of the abstract
matrix CT is 262144 × 379831. Notice that, for any y ∈ R

512×512, Cy is implemented
through fast Fourier transform, thus the explicit matrix representation of C is never used
in computation. Let b = CT x∗ denote the 512 × 512 image generated by taking the inverse
transform of x∗, see Figure 4.1 (a).

Suppose only the data b is given, to recover a sparse curvelet coefficient, we can solve
(1.1) with A = CT and x being vectors in curvelet domain.
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We use both (1.3) and (3.3) with γ = 2 and α = 25 to solve (1.1). Since A is a huge
implicitly defined matrix, it is not straightforward to compute the angles exactly by SVD
as in small matrices examples. Instead, we obtain approximately the first principal angle
θ1 = arccos(0.9459) between N (A) and N (B) in a more efficient ad hoc way in Appendix
B. Assuming cos θ1 = 0.9459 and α

α+γ
= 25

27
, if yk in (3.3) converged to a fixed point of the

same type (interior or boundary fixed point) as yk in (1.3), the eventual linear rate of (3.3)

should be
√

α
α+γ

cos θ1 by (3.6). As we can see in Figure 4.1 (b), the error curve for (3.3)

matched well with the eventual linear rate
√

α
α+γ

cos θ1.

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a) The data b = CT x∗.
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(b) Here cos θ1 = 0.9459. DR stands for (1.3) and
LBSB stands for (3.3) and (LB-SB).

Figure 4.1: Example 6: Recovery of a sparse curvelet expansion.

Example 7 In this example, we consider a more realistic data b as shown in the left panel
of Figure 4.2 (a). The data b is generated by the following procedure. First, take a synthetic
seismic dataset b̃ consisting of 256 traces (columns) and 512 time samples (rows). Second,
solve the basis pursuit min

x
‖x‖1 with CT x = b̃ by (3.3) up to 50000 iterations. Third, set

the entries in x50000 smaller than 10−8 to zero and let x∗ denote the resulting sparse vector,
which has 679 nonzero entries. Finally, set b = CT x∗.

Given only the data b, the direct curvelet transform Cb is not as sparse as x∗. Thus
Cb is not the most effective choice to compress the data. To recover the curvelet coefficient
sequence x∗, we alternatively solve (1.1) with A = CT and x being vectors in curvelet
domain. For this particular example, x∗ is recovered. By the method in Appendix B, we get
cos θ1 = 0.99985. To achieve the best asymptotic rate, the parameter ratio α

α+γ
should be

c∗ = 1
(sin θ1+cos θ1)2

= 0.996549 by (3.6). See Figure 4.2 (b) for the performance of (LB-SB)

and (3.7) with fixed α = 5 and we can see the asymptotic linear rates match the best rates
1

1+tan θ1
and 1−tan θ1

1+tan θ1
when α

α+γ
= c∗.

Example 8 We consider an example of seismic data interpolation via curvelets. Let b be
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(a) Left: the original data b. Right: reconstructed data with 400 largest curvelet
coefficients x∗.
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(b) α = 5 is fixed. The eventual linear convergence. Douglas-Rachford (LBSB)
stands for (3.3) and (LB-SB). Peaceman-Rachford stands for (3.7) with λ = 2.

Figure 4.2: Example 7: compression of seismic data.
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(a) Left: observed data, about 47% random traces missing. Right: recovered
data after 200 iterations with relative error ‖CT x200 − b‖/‖b‖ = 2.6% where b
is the original data in Figure 4.2 (a).
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(b) Douglas-Rachford (LBSB) stands for (3.3) and (LB-SB). Peaceman-
Rachford stands for (3.7) with λ = 2.

Figure 4.3: Example 8: seismic data interpolation.
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the same data as in the previous example, see the left panel in Figure 4.2 (a). Let Ω be the
sampling operator corresponding to 47 percent random traces missing, see Figure 4.3 (a).

Given the observed data b̄ = Ω(b), to interpolate and recover missing data (traces), one
effective model is to pursue sparsity in the curvelet domain [21], i.e., solving min

x
‖x‖1 with

the constraint Ω(CT x) = b̄. Here x is a vector of curvelet coefficients. If x∗ is a minimizer,
then CT x∗ can be used as the recovered data. Let Ax = Ω(CT x). Then A+ = AT since Ω
represents a sampling operator. Thus (3.3) and (LB-SB) are straightforward to implement.
For this relatively ideal example, the original data b can be recovered. We also observe the
eventual linear convergence. See Figure 4.3 (a) for the recovered data after 200 iterations of
(3.3) and (LB-SB).

5 Conclusion

In this paper, we analyze the asymptotic convergence rate for Douglas-Rachford splitting
algorithms on the primal formulation of the basis pursuit, providing a quantification of
asymptotic convergence rate of such algorithms. In particular, we get the asymptotic con-
vergence rates for `2-regularized Douglas-Rachford, and the generalized Douglas-Rachford
including the Peaceman-Rachford splitting. The explicit dependence of the convergence rate
on the parameters may shed light on how to choose parameters in practice.

Appendix A

Lemma A.1. Let T be a firmly non-expansive operator, i.e., ‖T (u)−T (v)‖2 ≤ 〈u−v, T (u)−
T (v)〉 for any u and v. Then the iterates yk+1 = T (yk) satisfy ‖yk − yk+1‖2 ≤ 1

k+1
‖y0 − y∗‖2

where y∗ is any fixed point of T .

Proof. The firm non-expansiveness implies

‖(I − T )(u) − (I − T )(v)‖2 = ‖u − v‖2 + ‖T (u) − T (v)‖2 − 2〈u − v, T (u) − T (v)〉
≤ ‖u − v‖2 − ‖T (u) − T (v)‖2.

Let u = y∗ and v = yk, then

‖yk+1 − yk‖2 ≤ ‖yk − y∗‖2 − ‖yk+1 − y∗‖2.

Summing the inequality above, we get
∞∑

k=0

‖yk+1 − yk‖2 ≤ ‖y0 − y∗‖2. By the firm non-

expansiveness and the Cauchy-Schwarz inequality, we have ‖yk+1−yk‖ ≤ ‖yk −yk−1‖, which

implies ‖yn+1 − yn‖2 ≤ 1
n+1

n∑
k=0

‖yk+1 − yk‖2 ≤ 1
n+1

∞∑
k=0

‖yk+1 − yk‖2 ≤ 1
n+1

‖y0 − y∗‖2.

For the Douglas-Rachford splitting, see [20] for a different proof for this fact.
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Appendix B

Suppose N (A)∩N (B) = {0}, we discuss an ad hoc way to find an approximation of the first
principal angle θ1 between N (A) and N (B). Define the projection operators PN (A)(x) =
(I − A+A)x and PN (B)(x) = (I − B+B)x. Consider finding a point in the intersections of
two linear subspaces,

find x ∈ N (A) ∩N (B), (B.1)

by von Neumann’s alternating projection algorithm,

xk+1 = PN (A)PN (B)(x
k), (B.2)

or the Douglas-Rachford splitting,

yk+1 =
1

2
[(2PN (A) − I)(2PN (B) − I) + I](yk), xk+1 = PN (B)(y

k+1). (B.3)

For the algorithm (B.2), we have the error estimate ‖xk‖ = ‖(I −A+A)(I −B+B)kx0‖ ≤
(cos θ1)

2k‖x0‖ by (2.7).
Assume y∗ and x∗ are the fixed points of the iteration (B.3). Let T = (I − A+A)(I −

B+B) + I. For the algorithm (B.3), by (2.9), we have

‖xk+1 − x∗‖ ≤ ‖yk+1 − y∗‖ = ‖T(yk − y∗)‖ = ‖Tk(y0 − y∗)‖ ≤ (cos θ1)
k‖y0 − y∗‖.

Notice that 0 is the only solution to (B.1). By fitting lines to log(‖xk‖) for large k in (B.2)
and (B.3), we get an approximation of 2 log cos θ1 and log cos θ1 respectively. In practice,
(B.2) is better since the rate is faster and ‖xk‖ is monotone in k. This could be an efficient
ad hoc way to obtain θ1 when the matrix A is implicitly defined as in the examples in Section
4.4.
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[3] Åke Björck and Gene H. Golub. Numerical Methods for Computing Angles Between
Linear Subspaces. Mathematics of Computation, 27(123), 1973.

[4] E. Candès, L. Demanet, D. Donoho, and L. Ying. Fast discrete curvelet transforms.
Multiscale Modeling Simulation, 5(3):861–899, 2006.

[5] E.J. Candès and T. Tao. Decoding by linear programming. Information Theory, IEEE
Transactions on, 51(12):4203 – 4215, dec. 2005.

31



[6] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. J. Math. Imaging Vis., 40(1):120–145, May
2011.

[7] Scott Shaobing Chen, David L. Donoho, Michael, and A. Saunders. Atomic decompo-
sition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998.

[8] Patrick L. Combettes. Solving monotone inclusions via compositions of nonexpansive
averaged operators. Optimization, 53:475–504, 2004.

[9] Patrick L Combettes. Iterative construction of the resolvent of a sum of maximal
monotone operators. J. Convex Anal, 16(4):727–748, 2009.

[10] Jonathan Eckstein and Dimitri P. Bertsekas. On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators. Mathematical Pro-
gramming, 55:293–318, 1992.

[11] E. Esser. Applications of Lagrangian based alternating direction methods and connec-
tions to split Bregman. CAM Report 09-31, UCLA, 2009.

[12] J.-J. Fuchs. On sparse representations in arbitrary redundant bases. Information The-
ory, IEEE Transactions on, 50(6):1341 – 1344, june 2004.

[13] D. Gabay. Applications of the method of multipliers to variational inequalities. Aug-
mented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems
edited by M. FORTIN and R. GLOWINSKI, 1983.

[14] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Comput. Math. Appl., 2(1):17–40, January
1976.

[15] R. Glowinski and A. Marroco. Sur l’approximation, par elements finis d’ordre un, et
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