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1 Definitions and Notations

We adopt the following convention for the Fourier transform and its inverse,

f̂(ξ) =
∫
e−ix·ξf(x) dx,

f(x) =
1

(2π)2

∫
eix·ξ f̂(ξ) dξ.

The inner product between two functions of L2(Rn,C) is written 〈f, g〉 =
∫
f(x)g(x)dx.

We denote inequalities up to a multiplicative constant by A ≤ C · B or A = O(B). The
constant C might vary from line to line and comes with or without subscripts to highlight its
dependence on the relevant parameters. We use the multi-index formalism for derivatives
and powers, xα = xα1

1 . . . xαn
n and ∂α

x = ∂α1

∂x
α1
1

. . . ∂αn

∂xαn
n

. In addition, |α| = α1 + . . .+ αn.

Fourier Integral Operators

An operator T is said to be a Fourier Integral Operator (FIO) if it is of the form

Tf(x) =
∫
eiΦ(x,ξ)a(x, ξ)f̂(ξ) dξ. (1.1)

Here Φ is a phase function and a is an amplitude which we suppose obey the following
standard assumptions [21]:

• the phase Φ(x, ξ) is C∞, homogeneous of degree 1 in ξ, i.e. Φ(x, λξ) = λΦ(x, ξ) for
λ > 0, and with Φxξ = ∇x∇ξΦ, obeys the nondegeneracy condition

|det Φxξ(x, ξ)| > c > 0, (1.2)

uniformly in x and ξ;

• the amplitude a is a symbol of order m, which means that a is C∞, and obeys

|∂α
ξ ∂

β
xa(x, ξ)| ≤ Cαβ(1 + |ξ|)m−α. (1.3)

In the remainder of this paper, we will only consider symbols of order m = 0 although
is it clear that our main result, namely, Theorem 5.3 adapts to any symbol order. Under
these assumptions, it is known that T maps the Schwartz class S to S continuously and is
bounded as an L2-operator, see [21]. We may then express T in any orthonormal basis or
tight frame of L2,

〈Tf, γµ〉 =
∑
µ′

〈Tγµ′ , γµ〉〈f, γµ′〉.

In other words, the associated operator

T (µ, µ′) = 〈fµ, T fµ′〉; (1.4)

maps the coefficients of an object f into those of Tf .
In this paper, we shall be interested in the decomposition of Fourier Integral Operators

in curvelet tight frames of L2(R2). We would like to emphasize that there is nothing special
about the dimension d = 2. It is clear that our definition of tight frames extends to arbitrary
dimensions and that all of our main results, namely, Theorems 5.1, 5.2 and 5.3 would hold
in that setting as well.
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Figure 1: Basic angular window.

2 Second Generation of Curvelets

This section introduces tight frames. Unlike the original curvelet transform [5], this con-
struction does not use ridgelets. Our exposition is taken from [6].

2.1 Scale/Angle Localization

For each pair (j, `), j ≥ 0 and ` = 0, 1, 2, . . . , 2bj/2c − 1, we let νj,` be the angular window
νj,`(θ) = ν(2bj/2cθ − π`). Note that for ` = 0, 1, . . . , 2bj/2c − 1, νj,`(θ + π) = νj,`+2bj/2c(θ).
Then define the symmetric window χj,`(ξ) in the polar coordinates system by

χj,`(ξ) = w(2−j |ξ|) (νj,`(θ) + νj,`(θ + π)) . (2.1)

Here, we will assume that ν is an even, C∞ angular window which is supported on
[−π, π] and obeys

|ν2(θ)|2 + |ν2(θ − π)|2 = 1, θ ∈ [0, 2π), (2.2)

where in the above equation, it is understood that we take the 2π-periodization of the
function ν, see Figure 1. It is not hard to deduce from our assumptions that for each j ≥ 0,

2bj/2c+1−1∑
`=0

|ν(2bj/2cθ − π`)|2 = 1, (2.3)

where again we have assumed 2π-periodization of the translates ν(2bj/2cθ − π`).
As for the radial window, we will suppose that w is compactly supported and obeys

|w0(t)|2 +
∑
j≥0

|w(2−jt)|2 = 1, t ∈ R. (2.4)

A possible choice is to select w as in the construction of Meyer wavelets [14, 15], namely C∞

and supported on [0, 4π/3] and [2π/3, 8π/3] respectively. In the remainder of this paper,
we will assume this special choice of window.
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Figure 2: Curvelet Tiling of the Frequency Plane. In the frequency domain, curvelets are
supported near symmetric ‘parabolic’ wedges. The shaded area represents such a generic
wedge.

Put χ2
0(ξ) = w2

0(|ξ|) + w2(|ξ|)2. For j ≥ 1, νj,`(θ) and νj,`(θ + π) have non-overlapping
supports and, therefore, (2.3) and (2.4) give that the family (χj,`) is a perfect tiling of the
frequency plane by compactly supported windows in the sense that

|χ0(ξ)|2 +
∑
j≥1

2bj/2c−1∑
`=0

|χj,`(ξ)|2 = 1. (2.5)

We will use such windows to localize the Fourier transform near symmetric wedges of length
about 2j and width about 2j/2. Indeed, χj,` is localized near the symmetric wedge

Wj,` = {±ξ, 2j ≤ |ξ| ≤ 2j+1, |θ − π · ` · 2−bj/2c| ≤ π

2
2−bj/2c}, (2.6)

and note that for each `, χj,` is obtained from χj,0 by applying a rotation. This corresponds
to splitting dyadic annuli at every other scale. Figure 2 gives a graphical representation of
theses wedges and associated tiling.

2.2 New Tight Frames of Curvelets

We now introduce some notations that we will use throughout the remainder of this article.
We put J to be the pair of indices J = (j, `), j ≥ 0, ` = 0, 1, . . . , 2bj/2c − 1 and let
θJ = π · ` · 2−bj/2c. Next, we let MJ denote the set of coefficients µ = (j, `, k) with a fixed
value of the scale/angle pair J = (j, `).

For each j ≥ 1, the support of w(2−j |ξ|)v(2bj/2cθ) is contained in the rectangle Rj =
I1j × I2j where

I1j = {ξ1, tj ≤ ξ1 ≤ tj + Lj}, I2j = {ξ2, |ξ2| ≤ lj/2};
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Rj is symmetric around the axis θ = 0. We will write the length Lj and width lj as Lj =
δ1π2j and lj = δ22π2dj/2e. It is not difficult to verify that our assumptions about localizing
windows imply that δ1 and δ2 obey δ1 = 2(1 +O(2−j/2)) and δ2 = 10π/9 respectively.

We let Ĩ1j be ±I1j and set R̃j = Ĩ1j × I2j . It is well-known that eiπ(k1+1/2)ξ1/Lj/
√

2Lj ,
k1 ∈ Z, is an orthobasis for L2(Ĩ1j). Since ei2πk2ξ2/lj/

√
lj is an orthobasis for L2(I2j), the

sequence (uj,k)k∈Z2 defined as

uj,k(ξ1, ξ2) =
2−3j/4

2π
√
δ1δ2

ei(k1+1/2)2−jξ1/δ1 eik22−dj/2eξ2/δ2 , k1, k2 ∈ Z, (2.7)

is then an orthobasis for L2(R̃j).
We are now in position to introduce curvelets using the frequency-domain definition.

Letting RθJ
be the rotation by θJ , we define

γ̂µ′(ξ) = (2π) · χJ(ξ)uj,k(R∗
θJ
ξ), µ′ = (j, `, k). (2.8)

We also define coarse scale curvelets γ̂µ0(x) = (2π) · χ0(ξ)uk(ξ) where uk(ξ) = (2πδ0)−1 ·
ei(k1ξ1/δ0+k2ξ2/δ0). Here, δ0 is chosen small enough for (uk)k∈Z2 to be an orthobasis for L2

functions with a compact support containing that of χ0, e.g. δ0 = 32/3.
Observe that ∑

µ∈MJ

|〈F, γ̂µ〉|2 = (2π)2 ·
∫
|F (ξ)|2|χJ(ξ)|2 dξ

since by construction (ujk(R∗
θJ
ξ))k is an orthobasis over the support of χJ . It then follows

from (2.5) that for any F ∈ L2(R2),∑
µ

|〈F, γ̂µ〉|2 = (2π)2 · ‖F‖2
L2

and, therefore, γ̂µ is a tight frame for L2(R2). In conclusion, the Plancherel formula gives
that (γµ)µ∈M obeys ∑

µ

|〈f, γµ〉|2 = ‖f‖2
L2(R2). (2.9)

This last equality says (γµ)µ∈M is a tight frame and standard arguments imply that any
f ∈ L2(R2) can be expanded as

f =
∑

µ

〈f, γµ〉γµ, (2.10)

with equality holding in an L2-sense.
We would like to remark that the construction presented here was rapidly introduced

by Candès and Guo in [7]. Since the redaction of that paper, Candès became aware of
the work of Smith. In [20], Smith introduces a tight frame which is nearly identical to
that described above for the purpose of studying parametrices of second-order linear wave
equations.

2.3 Space-Side Picture

The point of our construction is that curvelets are real-valued objects. Indeed, let γj be

the inverse Fourier transform of 2−3j/4
√

δ1δ2
χj,0(ξ)e

i
2−jξ1
2δ1 . This function is real-valued and

γj,0,k(x) = γj(x1 − 2−jk1/δ1, x2 − 2−dj/2ek2/δ2).
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Now, the envelope of γj is concentrated near a vertical ridge of length about 2−j/2 and
width 2−j . Define γ(j) by

γj(x) = 23j/4γ(j)(Djx)

where Dj is the diagonal matrix

Dj =
(

2j 0
0 2j/2

)
. (2.11)

In other words, the envelope γ(j) is supported near a disk of radius about one, and owing to
the fact that χj,0 is supported away from the axis ξ1 = 0, γ(j) oscillates along the horizontal
direction. In short, γ(j) resembles a 2-dimensional wavelet of the form ψ(x1)ϕ(x2) where ψ
and ϕ are respectively father and mother-gendered wavelets. Let kδ be the Cartesian grid
(k1/δ1, k2/δ2). With these notations,

γj,0,k(x) = 23j/4γj(Djx− kδ).

and the relationship γj,`,k(ξ) = γj,0,k(R∗
θJ
ξ) gives

γµ(x) = 23j/4 γ(j)(DjR
∗
θJ
x− kδ). (2.12)

Hence, we defined a tight frame of elements which are obtained by anisotropic dilations,
rotations and translations of a collection of unit-scale oscillatory blobs. Curvelets occur at
all dyadic lengths and exhibit an anisotropy increasing with decreasing scale like a power
law; curvelets obey a scaling relation which says that the width of a curvelet element is
about the square of its length; width ∼ length2. Conceptually, we may think of the curvelet
transform as a multiscale pyramid with many directions and positions at each length scale,
and needle-shaped elements (or ’fat’ segments) at fine scales.

We conclude this section with a brief summary of the main points of the curvelet
transform:

• We decompose the frequency domain into dyadic annuli |x| ∈ [2j , 2j+1).

• We decompose each annulus into wedges θ = π` · 2−j/2. That is, we divide at every
other scale as shown on Figure 2.

• We use oriented local Fourier bases on each wedge.

2.4 Complex-Valued Curvelets

Although our definition implies that curvelets are real valued, we may also introduce
complex-curvelets as follows: instead of tiling the frequency plane with pairs of symmetric
wedges, we may actually consider tilings with single wedges. Specifically, we may choose
windows of the form

χj,`(ξ) = w(2−j |ξ|) νj,`(θ). (2.13)

Now, for ` = 0, the support of this window is contained in the single rectangle Rj = I1j×
I2j . We then slightly modify our definitions of orthobases which are now ei2πk1ξ1/Lj/

√
Lj

for L2(I1j) and ei2πk2ξ2/lj/
√
lj for L2(I2j). The sequence (uj,k)k∈Z2 defined as

uj,k(ξ1, ξ2) =
2−3j/4

2π
√
δ1δ2

eik12−jξ1/δ1 eik22−dj/2eξ2/δ2 , k1, k2 ∈ Z, (2.14)

is then an orthobasis for L2(Rj). The complex-valued curvelets are similarly defined with
(2.8), and also constitute a tight frame.
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3 Atomic Decompositions

As we will see later, to prove our main result and especially Theorem 5.2, it would be most
helpful to work with tight frames of curvelet compactly supported in space. Unfortunately,
it is unclear at this point how to construct such tight frames with nice frequency localization
properties. However, there exist useful atomic decompositions with compactly supported
curvelet-like atoms. We now explore such decompositions.

In this section, the notation fa,θ refers to the function obtained from f after applying
a parabolic scaling and rotation

fa,θ(x) = a3/4f (DaRθx) , Da =
(
a 0
0

√
a

)
,

and where Rθ is the rotation matrix which maps the vector (1, 0) into (cos θ,− sin θ). Note
that this is an isometry as

‖fa,θ‖L2 = ‖f‖L2 .

In [19], Smith proved the following result: let φ be a Schwartz function obeying ϕ̂(1, 0) 6=
0; then one can find another Schwartz function ψ, and a function q(ξ) such that the following
formula holds

q(ξ)
∫

a≥1
φ̂a,θ(ξ)ψ̂a,θ(ξ) adadθ = r(ξ); (3.1)

here r is a smooth cut-off function obeying

r(ξ) =
{

1 |ξ| ≥ 2
0 |ξ| ≤ 1

,

and q is a standard Fourier multiplier of order zero; that is, for each m ≥ 0, there exists a
constant Cm such that

|Dmq(ξ)| ≤ Cm(1 + |ξ|2)−m/2.

This formula is useful because it allows us to express any object whose Fourier transform
vanishes on {|ξ| ≤ 2} as a continuous superposition of curvelet-like elements. We now make
some specific choices for φ. In the remainder of this section, we will take φ(x) = ψ(−x)
and the function ψ of the form

ψ(x1, x2) = ψD(x1)ϕD(x2), (3.2)

where both ϕD and ψD are compactly supported and obey

SuppϕD ⊂ [0, 1], SuppψD ⊂ [0, 1].

We will assume that ϕD and ψD are C∞ and that the function ψD has vanishing moments
up to order D, i.e. ∫

ψD(x1)xk
1 dx1 = 0, k = 0, 1, . . . , D. (3.3)

For each a ≥ 1, each b ∈ R2 and each θ ∈ [0, 2π), introduce

ψa,θ,b(x) := ψa,θ(x− b) = a3/4ψ (DaRθ(x− b)) ; (3.4)

and given an object f , define coefficients by

R(f)(a, b, θ) =
∫
ψa,θ,b(x)f(x)dx. (3.5)
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Now, suppose for instance that f̂ vanishes over |ξ| ≤ 2, then (3.1) gives the exact recon-
struction formula

f(x) =
∫

a≥1
R(q(D)f))(a, b, θ)ψa,θ,b(x)µ(dadθdb), (3.6)

with µ(dadθdb) = adadθdb. In the remainder of this section, we will use the shorter notation
dµ for µ(dadθdb).

As is now well-established, the reproducing formula may be turned into a so-called
’atomic decomposition’. Not surprisingly, our atomic decomposition will just mimic the
discretization of the curvelet frame as introduced in section 2. With the notations of that
section, we introduce the cells Qµ defined as follows: for j ≥ 0, ` = 0, 1, . . . 2bj/2c − 1 and
k = (k1, k2) ∈ Z2, the cell Qµ is the collections of triples (a, θ, b) for which

2j ≤ a < 2j+1, |θ − θJ | ≤
π

2
2−bj/2c

and
DjRθJ

b ∈ [k1, k1 + 1)× [k2, k2 + 1).

Note that
∫
Qµ
dµ = 3π/2 for j even, and 3π for j odd. We may then break the integral

(3.6) into a sum of terms arising from different cells, namely,

f(x) =
∑

µ

αµmµ(x) (3.7)

where

αµ = ‖R(q(D)f)‖L2(Qµ), mµ(x) =
1
αµ

∫
Qµ

R(q(D)f))(a, b, θ)ψa,θ,b(x) dµ. (3.8)

Of course, the decomposition (3.7) greatly resembles the tight frame expansion, compare
(2.9). In particular, the atoms mµ are curvelet-like in the sense that they share all the
properties of the tight frame (γµ) –only they are compactly supported in space. In the
remainder of the paper, we will call these elements atoms. Below are some crucial properties
of these atoms.

Lemma 3.1. Rewrite the atoms mµ as mµ(x) = 23j/4a(µ) (DjRθJ
x− k) (note the re-

semblance with (2.12)). In other words, mµ is obtained from a(µ) after parabolic scaling,
rotation, and translation. For all µ, the a(µ)’s verify the following properties.

• Compact support;
Supp a(µ) ⊂ cQ. (3.9)

• Nearly vanishing moment along the horizontal axis; let m = D/2. Then for each
k = 0, 1, . . . ,m, there is a constant Cm such that∫

a(µ)(x1, x2)xk
1 dx1 ≤ Cm · 2−j(m+1). (3.10)

• Regularity; for every α ∈ Z2
+

|Dαa(µ)(x)| ≤ cα. (3.11)

In (3.10) and (3.11), the constants may be chosen independently of µ and f .

8



Proof of Lemma. By definition a(µ)(x) = 2−3j/4mµ (DjRθJ
x− k) and, therefore,

a(µ)(x) =
1
αµ

∫
(Rf)(a, θ, b)a3/42−3j/4ψ(DaRθ(R−1

θJ
D−1

j (x+ k)− b) dµ

=
1
αµ

∫
(Rf)(a, θ, b)|A|1/2ψ (A(x− (β − k)) dµ, (3.12)

where A = DaRδD
−1
j with δ = θ − θJ and β = DjRθJ

b.
Let us first verify the assertion about the support of a(µ). Recall that over a cell Qµ,

β ∈ [k1, k1 + 1)× [k2, k2 + 1), and hence for all b ∈ Qµ, we have

Suppψ (A(x− (β − k))) ⊂ Suppψ(Ax) + [0, 1]2.

Next Suppψ(Ax) ⊂ A−1[0, 1]2 with A−1 = DjR−δD
−1
a . It is not difficult to check that

A−1[0, 1]2 ⊂ [c1, c2)× [d1, d2) which then gives (3.9).
There are several ways to prove the property about nearly vanishing moments. A possi-

bility is to show that the Fourier transform of a(µ) is appropriately small in a neighborhood
of the axis ξ1 = 0. We choose a more direct strategy and show that∣∣∣∣∫ ψ(A(x− β))xk

1 dx1

∣∣∣∣ ≤ Cm · 2−j(m+1). (3.13)

uniformly over the (a, θ, b) ∈ Qµ. The property (3.10) follows from this fact. Indeed,∫
a(µ)(x1, x2)xk

1 dx1 =
1
αµ

∫
Qµ

Rf(a, θ, b)dµ
∫
|A|1/2ψ(A(x− β))xk

1 dx1,

and the Cauchy-Schwarz inequality gives∣∣∣∣∫ a(µ)(x1, x2)xk
1 dx1

∣∣∣∣ ≤ 1
αµ

· ‖Rf‖L2(Qµ) ·

(∫
Qµ

∣∣∣∣∫ |A|1/2ψ(A(x− β))xk
1 dx1

∣∣∣∣2 dµ
)1/2

=

(∫
Qµ

∣∣∣∣∫ |A|1/2ψ(A(x− β))xk
1 dx1

∣∣∣∣2 dµ
)1/2

.

The uniform bound (3.13) together with the fact that
∫
Qµ
dµ is either 3π or 3π/2 gives

(3.10).
We then need to establish (3.13). Let D be ∂/∂x2, recall that by assumption (3.2)–(3.3),

we have that for all x2 ∈ R,∫
Dnψ(x1, x2)xk

1 dx1 = 0, k = 0, 1, . . . , D,

and more generally, for each α 6= 0 and β∫
Dnψ(αx1 + β, x2)xk

1 dx1 = 0, k = 0, 1, . . . , D. (3.14)

We shall use (3.14) to prove (3.13). Letting

A =
(
a11 a12

a21 a22

)
9



and with the same notations as before, a simple calculation shows that a21 = −
√
a2−j sin δ.

As a ≤ 2(j+1) and |δ| ≤ π/2 · 2−bj/2c, we have

|a21| ≤ c · 2−j . (3.15)

We then write

ψ(Ax) = ψ(a11x1 + a12x2, a21x1 + a22x2)

=
N−1∑
n=0

Dnψ(a11x1 + a12x2, a22x2)
(a21x1)n

n!
+O((a21x1)N )

and, therefore,∫
ψ(Ax)xk

1 dx1 =
N−1∑
n=0

an
21

n!

∫
Dnψ(a11x1 + a12x2, a22x2)xn+k

1 dx1 +O(aN
21)

Fix k ≤ D and pick N = D − k + 1 so that for n = 0, 1, . . . , N − 1, n+ k ≤ D. By virtue
of (3.14) all the integrals in the sum vanish and the only remaining term is O(aN

21) which
because of (3.15) is O(2−jN ). As a consequence, setting m = D/2, we conclude that∣∣∣∣∫ ψ(Ax)xk

1 dx1

∣∣∣∣ ≤ Cm · 2−j(m+1), k = 0, 1, . . .m;

this is the content of (3.13).
Last, the regularity property is a simple consequence of the Cauchy Schwarz inequality;∣∣∣a(µ)(x1, x2)

∣∣∣ ≤ 1
αµ

∫
|Rf(a, θ, b)||A|1/2‖ψ‖L∞ dµ

≤ ‖ψ‖L∞ · 1
αµ
‖Rf‖L2(Qµ) ·

(∫
Qµ

|A|dµ

)1/2

= 2
√

3π · ‖ψ‖L∞ .

These last inequalities used the facts that |A| ≤ 4 for (a, θ, b) ∈ Qµ and
∫
Qµ

dµ ≤ 3π. Esti-
mates for higher derivatives are obtained in exactly the same fashion –after differentiation
of the integrand. This finishes the proof of the lemma.

4 Curvelet Molecules

We introduce the notion of curvelet molecule; our objective, here, is to encompass under this
name a wide collection of systems which share the same essential properties as the curvelets
and curvelet atoms we have just introduced. In some sense, our formulation is inspired by
the notion of ’vaguelettes’ in wavelet analysis [17]. Our motivation for introducing this
concept is the fact that operators of interest do not map curvelets into curvelets or curvelet
atoms into curvelet atoms, but rather into these molecules. Note that the terminology
‘molecule’ is somewhat standard in the literature of harmonic analysis [13].

Definition 4.1. A family of functions (mµ)µ is said to be a family of curvelet molecules
with regularity R iff (for j > 0) they may be expressed as

mµ(x) = 23j/4a(µ) (DjRθJ
x− k) ,

where for all µ, the a(µ)’s verify the following properties:
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• Smoothness and spatial localization: for each |β| ≤ R, and each m = 0, 1, 2 . . .

|∂β
xa

(µ)(x)| ≤ Cm · (1 + |x|)−m. (4.1)

• Nearly vanishing moments: for each n = 0, 1, . . . , R, there is a constant Cn such that

|â(µ)(ξ)| ≤ Cn ·min(1, 2−j + |ξ1|+ 2−j/2|ξ2|)n. (4.2)

Here, the constants may be chosen independently of µ so that the above inequalities hold
uniformly over µ. There is of course an obvious modification for the coarse scale molecules
which are of the form a(µ)(x− k) with a(µ) as in (4.1).

In short, the definition is similar to that introduced in Lemma (3.1) but for the re-
quirement that a(µ) be compactly supported. Indeed, the assumption about the vanishing
moments (3.10) is nearly equivalent to (4.2). We find the formulation (4.2) to be more
concrete as it gives precise size estimates of the Fourier transform of a molecule at low
frequencies.

4.1 Interpretation

This definition implies a series of useful estimates. For instance, consider θJ = 0 so that
RθJ

is the identity (arbitrary molecules are obtained by rotations). Then, mµ obeys

|mµ(x)| ≤ Cm · 23j/4 ·
(
1 + |2jx1 − k1|+ |2j/2x2 − k2|

)−m
(4.3)

for each m > 0, and similarly for its derivatives

|∂β
xmµ(x)| ≤ C · 23j/4 · 2(β1+β2/2)j ·

(
1 + |2jx1 − k1|+ |2j/2x2 − k2|

)−m
. (4.4)

Another useful property is the almost vanishing moments property which says that in he
frequency plane, a molecule is localized near the dyadic corona {2j ≤ |ξ| ≤ 2j+1}; |m̂µ(ξ)|
obeys

|m̂µ(ξ)| ≤ C · 2−3j/4 ·min(1, 2−j(1 + |ξ|))n, (4.5)

which is valid for every n < R, which gives the frequency localization

|m̂µ(ξ)| ≤ C · 2−3j/4 · |SJ(ξ)|n (4.6)

where for J = (j, 0)

SJ(ξ) = min(1, 2−j(1 + |ξ|)) · (1 + |2−jξ1|+ |2−j/2ξ2|)−1. (4.7)

For arbitrary J , SJ is obtained from SJ0 , will J0 = (j, 0) by a simple rotation of angle θJ ,
i.e. SJ0(RθJ

ξ).
In short, a curvelet molecule is a needle whose envelope is supported near a ridge of

length about 2−j/2 and width 2−j and which displays an oscillatory behavior across the
ridge.
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4.2 Near Orthogonality of Curvelet Molecules

Let µ and µ′ be two indices corresponding to angular parameters θJ (resp. θJ ′) and location
parameter xµ (resp. x′µ). Introduce the notional squared distance

d(µ, µ′) = |θJ − θJ ′ |2 + |xµ − xµ′ |2 + |〈eJ , xµ − xµ′〉|, (4.8)

where eJ is the codirection of the first curvelet molecule, i.e. eJ = (cos θJ , sin θJ). (The
expression may equivalently be written using eJ ′ instead, as shown in the appendix) In
(4.8) angles and angle differences are understood modulo π.

Curvelet molecules are not necessarily orthogonal to each other, 1 but in some sense,
they are almost orthogonal.

Lemma 4.2. Let (mµ)µ and (pµ′)µ′ be two families of curvelet molecules with regularity
R. Define ω as

ω(µ, µ′) = 2|j−j′| ·
(
1 + 2min(j,j′)d(µ, µ′)

)
. (4.9)

Then for j, j′ ≥ 0,
|〈mµ, pµ′〉| ≤ C · ω(µ, µ′)−n. (4.10)

for every n ≤ D(R) where D(R) goes to infinity as R goes to infinity.

Proof. Throughout the proof of (4.10), it will be useful to keep in mind that A ≤ C ·
(1 + |B|)−m for every m ≤ 2m′ is equivalent to A ≤ C · (1 + B2)−m for every m ≤ m′.
Similarly, if A ≤ C · (1 + |B1|)−m and A ≤ C · (1 + |B2|)−m for every m ≤ 2m′, then
A ≤ C · (1 + |B1| + |B2|)−m for every m ≤ m′. As noted earlier, the constants may vary
from expression to expression.

As in Section 2, we let J be the scale/angle pair (j, `). For notational convenience put
∆θ = θJ − θJ ′ and ∆x = xµ − xµ′ . We abuse notation by letting mJ be the molecule
a(µ)(DjRθJ

x), i.e. mJ is obtained from mµ by translation to that it is centered near the
origin. Put Iµµ′ = 〈mµ, pµ′〉. In the frequency domain, Iµµ′ is given by

Iµµ′ =
∫
m̂J(ξ)p̂J ′(ξ) e−i(∆x)·ξ dξ.

Put j0 to be the minimum of j and j′. The Appendix shows that∫
|SJ(ξ)SJ ′(ξ)|n dξ ≤ C · 23j/4+3j′/4 · 2−|j−j′|n ·

(
1 + 2j0 |∆θ|2

)−n
. (4.11)

Therefore, the frequency localization of the curvelet molecules (4.6) gives∫
|m̂J(ξ)| |p̂J ′(ξ)| dξ ≤ C · 2−3j/4−3j′/4 ·

∫
|SJ(ξ)SJ ′(ξ)|n dξ

≤ C · 2−|j−j′|n ·
(
1 + 2j0 |∆θ|2

)−n
. (4.12)

This inequality explains the angular decay. A series of integrations by parts will introduce
the spatial decay.

The partial derivatives of m̂J obey

|∂α
ξ m̂J(ξ)| ≤ C · 2−3j/4 · 2−j(α1+

α2
2

) · |SJ(ξ)|n.
1We do not know yet whether orthobases of curvelets exist.
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Put ∆ξ to be the usual Laplacian in ξ. Because p̂µ′ is misoriented with respect to eJ , simple
calculations show that

|∆ξp̂J ′(ξ)| ≤ C · 2−3j′/4 · 2−j′ · |SJ ′(ξ)|n,

| ∂
2

∂ξ21
p̂J ′(ξ)| ≤ C · 2−3j′/4 · (2−2j′ + 2−j′ | sin(∆θ)|2) · |SJ ′(ξ)|n.

Recall that for t ∈ [−π/2, π/2], 2/π · |t| ≤ | sin t| ≤ |t|, so we may just as well replace
| sin(∆θ)| by |∆θ| in the above inequality. Set

L = I − 2j0∆ξ −
22j0

1 + 2j0 |∆θ|2
∂2

∂ξ21
,

On the one hand, for each k, Lk(m̂J p̂J ′) obeys

|Lk(m̂J p̂J ′)(ξ)| ≤ C · 2−3j/4−3j′/4 · |SJ(ξ)|n · |SJ ′(ξ)|n.

On the other hand

Lke−i(∆x)·ξ = [1 + 2j0 |∆x|2 +
22j0

1 + 2j0 |∆θ|2
|〈eJ ,∆x〉|2]ke−i(∆x)·ξ.

Therefore, a few integrations by parts gives

|Iµµ′ | ≤ C · 2−|j−j′|n ·
(
1 + 2j0 |θJ − θJ ′ |2

)−n ·
(

1 + 2j0 |∆x|2 +
22j0

1 + 2j0 |∆θ|2
|〈eJ ,∆x〉|2

)−n

,

and then

|Iµµ′ | ≤ C · 2−|j−j′|n ·
(

1 + 2j0(|∆θ|2 + |∆x|2) +
22j0

1 + 2j0 |∆θ|2
|〈eJ ,∆x〉|2

)−n

.

One can simplify this expression by noticing that

(1 + 2j0 |∆θ|2) +
22j0 |〈eJ ,∆x〉|2

1 + 2j0 |∆θ|2
&
√

1 + 2j0 |∆θ|2 2j0 |〈eJ ,∆x〉|√
1 + 2j0 |∆θ|2

= 2j0 |〈eJ ,∆x〉|.

This yields equation (4.10) as required.

Remark Assume that one of the two terms or both terms are coarse scale molecules, e.g.
pµ′ , then the decay estimate is of the form

|〈mµ, pµ′〉| ≤ C · 2−jn ·
(
1 + |xµ − xµ′ |2 + |〈eJ , xµ − xµ′〉|

)−n
.

For instance, if they are both coarse scale molecules, this would give

|〈mµ, pµ′〉| ≤ C ·
(
1 + |xµ − xµ′ |

)−n
.

The following result is a different expression for the almost-orthogonality, and will be
at the heart of the sparsity estimates for FIO’s.
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Lemma 4.3. Let (mµ)µ and (pµ)µ be two families of curvelet molecules with regularity R.
Then for each p > p∗,

sup
µ

∑
µ′

|〈mµ, pµ′〉|p ≤ Cp.

Here p∗ → 0 as R → ∞. In other words, for p > p∗, the matrix Iµµ′ = (〈mµ, pµ′〉)µ,µ′

acting on sequences (αµ) obeys

‖Iα‖`p ≤ Cp · ‖α‖`p .

Proof. Put as before j0 = min(j, j′). The appendix shows that∑
µ∈Mj′

(
1 + 2j0(d(µ, µ′)

)−np ≤ C · 22|j−j′| (4.13)

provided that np > 2. We then have∑
µ′

|Iµµ′ |p ≤ C ·
∑
j′∈Z

2−2|j−j′|np · 22|j−j′| ≤ Cp,

provided again that np > 2.
Hence we proved that for p ≤ 1, I is a bounded operator from `p to `p. We can of course

interchange the role of the two molecules and obtain

sup
µ′

∑
µ

|〈mµ, pµ′〉|p ≤ Cp.

For p = 1, the above expression says that I is a bounded operator from `∞ to `∞. By
interpolation, we then conclude that I is a bounded operator from `p to `p for every p.

4.3 Curvelets, atoms and molecules

The picture of curvelet molecules in the frequency plane is exactly that of curvelets :
two bumps located on opposite wedges, symmetric with respect to the origin. Obvi-
ously, curvelets obey the molecule properties for arbitrary degrees R of regularity. Further,
complex-valued curvelets, as introduced in Section 2.4, are supported on a single wedge in
the frequency plane and accordingly, they also verify the assumptions of curvelet molecules.
They are indeed a very special case of molecules.

Needless to say that the atoms of Section 3 are curvelet molecules with spatial compact
support, compare Lemma 3.1 with the definition of a molecule. We conclude this section
with an important observation. It is of course possible to decompose a molecule into a
series of atoms

mµ =
∑
µ′

αµ
µ′ρµ′ .

The coefficients would then obey the same estimate as in Lemma 4.2

|αµ
µ′ | ≤ C · |ω(µ, µ′)|−n, (4.14)

and in particular, for each p > 0

sup
µ

∑
µ′

|αµ
µ′ |

p < Ap.

This is briefly justified in the appendix.
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5 Main Results

We decompose a Fourier Integral Operator T in a tight frame of curvelets (γµ)µ as in Section
2. We introduce the curvelet matrix

Tµµ′ = 〈Tγµ′ , γµ〉;

we wish to show that this matrix is sparse. Our main result (Theorem 5.3) will prove that
for each p > 0, T obeys

sup
µ′

∑
µ

|Tµµ′ |p ≤ Bp.

Let γµ be a fixed curvelet with codirection θµ. Set ξµ = (cos θµ, sin θµ) to be the
unit vector in the direction θµ (so that in frequency γ̂µ is localized near {ξ, |ξ/|ξ| − ξµ| ≤
π · 2dj/2e}). With the same notations as in Section 9, we decompose the phase of our FIO
as

Φ(x, ξ) = Φξ(x, ξµ) · ξ + δ(x, ξ), φµ(x) = Φξ(x, ξµ). (5.1)

In effect, the above decomposition ‘linearizes’ the frequency variable and is classical, see
[18, 21]. With these notations, we may rewrite the action of T on our curvelet γµ as

(Tγµ)(x) =
∫
eiφµ(x)·ξeiδ(x,ξ)a(x, ξ)γ̂µ(ξ) dξ. (5.2)

Now for a fixed value of the parameter µ, we introduce the decomposition

T = T2,µT1,µ,

where
(T1,µf)(x) =

∫
eix·ξbµ(x, ξ)f̂(ξ) dξ, (T2,µf)(x) = f(φµ(x)), (5.3)

with bµ(x, ξ) = eiδ(φ
−1
µ (x),ξ). In effect, this decomposition allows the separate study of the

nonlinearities in frequency ξ and space x in the phase function Φ. The point is that both
T1,µ and T2,µ are sparse in a curvelet tight frame—only for very different reasons.

Theorem 5.1. Let (γµ)µ be a tight frame of complex-valued curvelets. T1 maps this family
of curvelets into curvelet molecules with arbitrary regularity R.

The choice of the curvelet family being complex-valued in the above theorem is not
essential. T1 acting on real curvelets would give rise to two molecules, and keeping track
of this fact in subsequent discussions would be unnecessarily heavy. In the real case it is
clear that the structure and the sparsity of a FIO matrix can be recovered by expressing
each real curvelet as a superposition of two complex curvelets.

Theorem 5.2. Let (ρµ)µ be a family of curvelet atoms (compactly supported in space) with
regularity R. There is an explicit mapping µ 7→ t(µ) acting on the indices µ ∈ M , so that
T2 maps each curvelet atom ρµ into another atom ρ̃t(µ) of the same regularity R.

The latter theorem says that the ’warped’ atom ρµ ◦ φµ is an atom, only its scale,
orientation, and location may have been changed. Section 7 will make explicit this index
mapping t; at this point, we would like to emphasize that t is not necessarily one-to-one
nor onto.

Note that Theorem 5.2 also means that a smooth warping preserves the sparsity of
curvelet expansions, which is a result of independent interest.

Our main result follows and is mostly a consequence of Theorems 5.1 and 5.2.
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Theorem 5.3. Let T be a Fourier Integral Operator acting on functions of R2, as defined
in Section 9 and Tµµ′ be denote its matrix elements in a curvelet tight frame. Then with t
the index mapping introduced in Theorem 5.2, the element Tµµ′ obeys for each n > 0

|Tµµ′ | ≤ C · |ω(µ, t(µ′))|−n,

where ω is as in (4.9). Moreover, for every 0 < p ≤ ∞, (Tµµ′) is bounded from `p to `p.

The remaining 3 sections are devoted to the proofs of Theorems 5.1, 5.2 and 5.3. The
dependence of φµ upon µ is not essential in proving Theorems 5.1, 5.2 as the only property
of interest is that the derivatives of φµ are bounded from above and below uniformly over
µ (which follows from our assumptions about Φ). This is the reason why in Sections 6 and
7, we will drop this dependence on µ and work with a generic warping φ.

6 Proof of Theorem 5.1

We will assume without loss of generality that our curvelet γµ is centered near zero (k = 0)
and is nearly vertical (θJ = 0).

Set mµ = T1γµ. We first show that mµ obeys the smoothness and spatial localization
estimate of a molecule (4.1). With the same notations as before, recall that mµ is given by

mµ(x) =
∫
eix·ξbµ(x, ξ)γ̂µ(ξ) dξ, bµ(x, ξ) = eiδ(φ

−1(x),ξ)a(φ−1(x), ξ). (6.1)

To study the spatial decay of mµ(x), we introduce the differential operator

Lξ = I − 22j ∂
2

∂ξ21
− 2j ∂

2

∂ξ22
,

and evaluate the integral (6.1) using an integration by parts argument. First, observe that

LN
ξ e

ix·ξ =
(
1 + |2jx1|2 + |2j/2x2|2

)N
eix·ξ.

Second, we claim that for every integer N ≥ 0,

|LN
ξ [bµ(x, ξ)γ̂µ(ξ)]| ≤ C · 2−3j/4. (6.2)

(The factor 2−3j/4 comes from the L2 normalization of γ̂µ.) This inequality is proved in
the Appendix. Hence,

mµ(x) =
(
1 + |2jx1|2 + |2j/2x2|2

)−N
∫
LN

ξ [bµ(x, ξ)γ̂µ(ξ)] eix·ξ.

Since |LN
ξ [bµ(x, ξ)γ̂µ(ξ)]| ≤ C · 2−3j/4 and is supported on a pair of symmetric dyadic

rectangles RJ , of length about 2j and width 2j/2, we then established that

|mµ(x)| ≤ C · 23j/4(
1 + |2jx1|2 + |2j/2x2|2

)N .
The derivatives of mµ are essentially treated in the same way. Begin with

∂α
x (eix·ξbµ(x, ξ)) =

∑
β+γ≤α

∂β(eix·ξ) ∂γ(bµ(x, ξ))

=
∑

β+γ≤α

∂γ(bµ(x, ξ)) ξβeix·ξ
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Therefore, the partial derivatives of mµ are given by

(∂α
xmµ)(x) =

∑
β+γ≤α

Iβ,γ(x), (6.3)

where
Iβ,γ(x) =

∫
eix·ξ∂γ

x(bµ(x, ξ))ξβ γ̂µ(ξ) dξ. (6.4)

First, observe that on the support of γ̂µ, |ξ|β obeys |ξ|β ≤ C ·2jβ1 ·2jβ2/2. Second, the term
∂γ

xb(x, ξ) is of the same nature as bµ(x, ξ) in the sense that it obeys all the same estimates
as before. In particular, we claim that for every integer N ≥ 0,

|LN
ξ [∂γ

xbµ(x, ξ)ξβ γ̂µ(ξ)]| ≤ C · 2−3j/4 · 2jβ1 · 2jβ2/2. (6.5)

Hence, the same argument as before gives

|Iβ,γ(x)| ≤ C · 23j/4 · 2jβ1 · 2jβ2/2(
1 + |2jx1|2 + |2j/2x2|2

)N .
Now since β ≤ α, we may conclude that

|(∂α
xmµ)(x)| ≤ C · 23j/4 · 2jα1 · 2jα2/2(

1 + |2jx1|2 + |2j/2x2|2
)N .

This establishes the smoothness and localization property.
The above analysis shows that mµ is a “ridge” of effective length 2−j/2 and width 2−j ;

to prove that mµ is a molecule, we now need to evidence its oscillatory behavior across
the ridge. In other words, we are interested in the size of the Fourier transform at low
frequencies (4.2)–(4.5).

Formally, the Fourier transform of mµ is given by

m̂µ(ξ) =
∫ ∫

eix·(λ−ξ)bµ(x, λ)γ̂µ(λ) dxdλ. (6.6)

We should point out that because the amplitude b is not of compact support in x, the
sense in which (6.6) holds is not obvious. This is a well-known phenomenon in Fourier
analysis and a classical technique to circumvent such difficulties would be to multiply mµ

(or equivalently bµ) by a smooth and compactly supported cut-off function χ(εx) and let ε
tend to zero. We omit those details as they are standard.

Set L = −i∂x1 . To develop bounds on |m̂µ(ξ)|, observe that

Lneix·λ = (λ1)n.

An integration by parts then gives

m̂µ(ξ) =
∫ ∫

eix·λLn
(
e−ix·ξ bµ(x, ξ)

)
λ−n

1 γ̂µ(λ) dxdλ

Hence,

m̂µ(ξ) =
n∑

m=0

cm ξm
1 F̂m(ξ),
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where
Fm(x) =

∫
eix·λ(∂n−m

x1
b(x, ξ))λ−n

1 γ̂µ(λ) dλ.

Note that Fm is exactly of the same form as (6.4)—but with λ−n
1 instead of λβ—and

therefore, the exact same argument as before would give

|Fm(x)| ≤ C · 23j/4 · 2−jn(
1 + |2jx1|2 + |2j/2x2|2

)N .
We then established

‖F̂m‖L∞ ≤ ‖F‖L1 ≤ Cm · 2−3j/4 · 2−jn,

which gives
|mµ(ξ)| ≤ C · 2−3j/4 · 2−jn · (1 + |ξ|n),

as required. This finishes the proof of Theorem 5.1.
The careful reader will object that we did not study the case of coarse scale curvelets; it

is obvious that coarse scale elements are mapped into coarse scale molecules and, here, the
argument would not require the deployment of the sophisticated tools we exposed above.
We omit the proof.

7 Warpings

7.1 Proof of Theorem 5.2

As mentioned earlier, curvelet atoms depend in a nonessential way upon the object f we
wish to analyze and we shall drop this dependence in our notations. To prove Theorem 5.2,
recall that we need to show that for each curvelet atom ρµ with regularity R, the ’warped’
atom ρµ ◦ φ is also a curvelet atom, with the same regularity.

As in Section 3, we suppose our curvelet atom is of the form

ρµ(x) = 23j/4a(µ)(DjRθJ
(x− xµ)),

where a(µ) obeys the conditions of Lemma 3.1. (Here, the location xµ may be formally
defined by xµ = (DjRθJ

)−1kδ.) Define yµ and Aµ by

yµ = φ−1(xµ), and Aµ = (∇φ)(yµ) (7.1)

so that
φ(y) = xµ +Aµ(y − yµ) + h(y − yµ).

With these notations, it is clear that the warped atom ρµ ◦φ will be centered near the point
yµ; that is,

ρµ(φ(y)) = 23j/4a(µ) (DjRθJ
(Aµ(y − yµ) + h(y − yµ))) .

To simplify matters, we first assume that Aµ is the identity and show that ρµ◦φ is a curvelet
atom with the same scale and orientation as ρµ. Later, we will see that in general, ρµ ◦ φ
is an atom whose orientation depends upon Aµ, and whose scale may be taken to be the
same as that of ρµ. Assume without loss of generality that θJ = 0 and yµ = 0 (statements
for arbitrary orientations and locations are obtained in an obvious fashion) so that

ρµ(φ(y)) = 23j/4a(µ) (Dj(y + h(y))) = 23j/4b(µ)(Djy), (7.2)
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with
b(µ)(y) = a(µ)

(
y +Djh(D−1

j y)
)
.

The atom a(µ) is supported over a square of sidelength about 1; likewise, b(µ) is also com-
pactly supported in a box of roughly the same size—uniformly over µ. We then need to
derive smoothness estimates and show that b(µ) obeys

|∂αb(µ)(y)| ≤ Cα, |α| ≤ R. (7.3)

Over the support of ρµ ◦ φ, h = (h1, h2) deviates little from zero and obeys

|hk(y)| ≤M · 2−j , |∂ihk(y)| ≤M · 2−j/2, i, k = 1, 2,

and for each α, |α| > 1,
|∂αhk(y)| ≤ Cα, k = 1, 2. (7.4)

This estimates holds, of course, uniformly over µ. It follows that for |y1|, |y2| ≤ C, the
perturbation h obeys for each α

2j · |∂αh1(2−jy1, 2−j/2y2)| ≤ Cα, 2j/2 · |∂αh2(2−jy1, 2−j/2y2)| ≤ Cα. (7.5)

The bound (7.3) is then a simple consequence of (7.5) together with the fact that all the
derivatives of a(µ) up to order R are bounded, uniformly over µ.

We now show that ρµ ◦ φ exhibits the appropriate behavior at low frequencies.

ρ̂µ ◦ φ(ξ) =
∫
e−ix·ξρµ(φ(x)) dx

=
∫
e−iφ−1(x)·ξρµ(x)

dx

|det∇φ|(φ−1(x))
.

We will use the nearly vanishing moment property of ρµ. Set

Sξ(x) = e−iφ−1(x)·ξ/|det∇φ|(φ−1(x));

note that over the support of ρµ and for each n ≤ R, we have available the following upper
bound on the partial derivative of Sξ

|∂n
1 Sξ(x)| ≤ Cn · (1 + |ξ|n).

Classical arguments give

ρ̂µ ◦ φ(ξ) =
n−1∑
k=0

∫
∂k

1Sξ(0, x2)
k!

dx2

∫
ρµ(x1, x2)xk

1 dx1dx2 + E, (7.6)

where E is a remainder term obeying

|E| ≤ Cn · 2−3j/4 · 2−jn · sup |∂n
1 Sξ(x)| ≤ Cn · 2−3j/4 · 2−jn(1 + |ξ|n). (7.7)

The near-vanishing moment property gives that each term in the right-hand side of (7.6)
obeys the estimate in (7.7). This proves that the Fourier transform of ρµ ◦ φ obeys

|ρ̂µ ◦ φ(ξ)| ≤ Cn · 2−jn(1 + |ξ|n)
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as required.
We now discuss the case where the derivative Aµ is arbitrary. In this case, (7.2) becomes

ρµ(φ(y)) = mµ(Aµy),

with
mµ(y) = 23j/4a(µ)

(
Dj(y + h̃(y))

)
, and h̃(y) = h(A−1

µ y).

Our assumptions about FIOs guarantee that |A−1
µ | is uniformly bounded and, therefore,

it follows from the previous analysis that mµ is a curvelet atom. As a consequence ρµ ◦
φ is a curvelet atom with the same regularity R since it is clear that bounded linear
transformations of the plane map curvelet atoms into curvelet atoms.

7.2 Microlocal Correspondence

There are many ways to establish a formal index correspondence and we only present
a possible approach. With the notations of Section 5, we have seen that the warping
φµ(x) = Φξ(x, ξµ) maps the curvelet atom ρµ into mµ(Aµ(y − yµ)) where mµ is an atom
centered at the origin and with the same scale 2−jµ and codirection ξµ as ρµ. Define τµ by

τµ = AT
µ ξµ/‖AT

µ ξµ‖.

With these notations, the atom ρµ ◦ φµ is another atom at about the same scale 2−jµ and
with codirection τµ and location yµ. We then may introduce the index mapping t (see
Section 5) defined as follows: µ′ = t(µ) with (1) jµ′ = jµ, (2) ξµ′ is the closest point to τµ
on our discrete lattice, and (3) xµ′ is the closest point to yµ on the Cartesian lattice induced
by the pair (jµ′ , θµ′). Although there exist more sophisticated mappings, our microlocal
correspondence provides a simple description which is sufficient for our exposition.

8 Proof of Theorem 5.3

Decompose T as T2 ◦ T1 and let γµ0 be a fixed curvelet. First, Theorem 5.1 proved that
T1γµ0 is a curvelet molecule mµ0 which we will express as a superposition of curvelet atoms
ρµ1

T1γµ0 = mµ0 =
∑
µ1

β0(µ1, µ0)ρµ1 .

Second, for each µ1, Theorem 5.2 shows that T2ρµ1 is a molecule mt(µ1) at the location
t(µ1), and

〈γµ2 , T2ρµ1〉 = β1(µ2, t(µ1)).

Hence,
〈γµ2 , Tγµ0〉 =

∑
µ1

β1(µ2, t(µ1))β0(µ1, µ0).

Of course, both β0 and β1 obey very special decay properties.

• By Theorem 5.1 and Lemma 4.2, |β0(µ1, µ0)| ≤ Cn · ω(µ1, µ0)−n for arbitrarily large
n > 0, provided that the selected atoms are regular enough.

• By Theorem 5.2 and Lemma 4.2, |β1(µ2, t(µ1))| ≤ Cn · ω(µ2, t(µ1))−n for arbitrarily
large n > 0, provided that the selected atoms are regular enough.
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To prove Theorem 5.3, we then only need to establish that∑
µ1

ω(µ2, t(µ1))−n · ω(µ1, µ0)−n ≤ Cn · ω(µ2, t(µ0))−n. (8.1)

We first argue that∑
µ1

ω(µ2, µ1)−n · ω(µ1, µ0)−n ≤ Cn · ω(µ2, µ0)−n. (8.2)

Recall that d(µ, µ′) ∼ d(µ′, µ) where d is defined as follows: d(µ, µ′) = |θJ − θJ ′ |2 + |xµ −
xµ′ |2 + |〈eJ , xµ − xµ′〉| and ω(µ, µ′) = 2|j−j′| (1 + 2min(j,j′)d(µ, µ′)). We closely follow the
argument in [20] and use the following lemma which is shown in the Appendix.

Lemma 8.1.
d(µ, µ′) ≤ C ·

(
d(µ, µ′′) + d(µ′′, µ′)

)
.

Define Iµ1 by

Iµ1 := ω(µ2, µ1)−N · ω(µ1, µ0)−N (8.3)

=
(
2|j2−j1|+|j1−j0|(1 + 2min(j2,j1)d(µ2, µ1))(1 + 2min(j0,j1)d(µ0, µ1))

)−N
.

To ease notations, put temporarily a0 = 2min(j0,j1), a2 = 2min(j2,j1), d01 = d(µ0, µ1), and
d12 = d(µ2, µ1). We develop a lower bound on (1 + a2d12)(1 + a0d01) = 1 + a2d12 + a0d01 +
a2d12a0d01. We make three simple observations: first,

a2d12 + a0d01 ≥ min(a2, a0)(d12 + d01) = A0, and d12 + d01 & d(µ0, µ2);

second,

a2d12 + a0d01 ≥ max(a2d12, a0d01) ≥ max(a2, a0) min(d12, d01) = B0;

and third

a2d12a0d01 = max(a2, a0) min(a2, a0) max(d12, d01) min(d12, d01)

≥ max(a2, a0) min(a2, a0) min(d12, d01)
d12 + d01

2
= A0B0/2.

This gives

1 + a2d12 + a0d01 + a2d12a0d01 ≥
1
2

(1 +A0 +B0 +A0B0) ≥
1
2
(1 +A0)(1 +B0).

We replace the values of A0, B0 by their expression, use the relation A0 ≥ d(µ0, µ2) and
obtain

Iµ1 ≤ C · 2−(|j2−j1|+|j0−j1|)N ·
(
1 + 2min(j2,j0,j1)d(µ2, µ0)

)−N
· (L1)−N

with
L1 = 1 + max(2min(j2,j1), 2min(j0,j1)) min(d01, d12).

Now observe that 2|j2−j1| ·2min(j2,j0,j1) ≥ 2min(j2,j0) and thus, we may remove the dependence
on µ1 in the factor (1+2min(j2,j0,j1)d(µ2, µ0))−N at the expense of changing the power from
−N to −N/2 , namely

Iµ1 ≤ C · 2−(|j2−j1|+|j0−j1|)N/2(1 + 2min(j2,j0)d(µ2, µ0)) · (L1)−N .
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Note that

L1 = min
(
1 + max(2min(j2,j1), 2min(j0,j1))d12, 1 + max(2min(j2,j1), 2min(j0,j1))d01

)
≥ min

(
1 + 2min(j2,j1)d12, 1 + 2min(j0,j1)d01

)
and, therefore,

(L1)−N ≤ max
(
(1 + 2min(j2,j1)d12)−N , (1 + 2min(j0,j1)d01)−N

)
≤ (1 + 2min(j2,j1)d12)−N + (1 + 2min(j0,j1)d01)−N .

We now sum this quantity over µ1. The proof of Lemma 4.3 shows that∑
µ1∈Mj1

(1 + 2min(j2,j1)d(µ2, µ1))−N ≤ C · 22|j2−j1|,

with, of course, a similar bound for the other term. In short,∑
µ1∈Mj1

Iµ1 ≤ C · 2−(|j2−j1|+|j0−j1|)(N
2
−2) · (1 + 2min(j2,j0)d(µ2, µ0))−N/2,

and thus ∑
µ1

Iµ1 ≤ C · 2−|j2−j0|(N−4)/2 · (1 + 2min(j2,j0)d(µ2, µ0))−(N−4)/2,

for sufficiently large N . This proves (8.2).
It remains to establish (8.1). To see why inequality (8.2) implies (8.1), observe that

it follows from our definitions that d(µ, t(µ′)) ∼ d(t−1(µ), µ′) and, therefore, ω(µ, t(µ′)) ∼
ω(t−1(µ), µ′). (This follows from our assumption that the microlocal correspondence is
nonsingular, i.e. |det Φxξ| is bounded from below.) Formally,∑

µ1

ω(µ2, t(µ1)) · ω(µ1, µ0)−n ≤ C ·
∑
µ1

ω(t−1(µ2), µ1) · ω(µ1, µ0)−n

≤ C · ω(t−1(µ2), µ0)−n ≤ C · ω(µ2, t(µ0))−n.

which is what we thought to establish.
Cases involving coarse scale elements are treated similarly and we omit the proof. The-

orem 5.3 is proved.

9 Conclusion

We proved that Fourier Integral Operators admit sparse representations in tight frames of
curvelets. Our results are not sharp with respect to smoothness, localization or number of
vanishing moments of these curvelets. We only discussed amplitudes and phases infinitely
differentiable in both variables.

It is instructive to notice why wavelets or ridgelets cannot be expected to sparsify FIO’s.
We quote from [4]: “Instead of curvelets, we may want to consider general scaling matrices
of the form Dj = diag(2j , 2jα), 0 ≤ α ≤ 1. We would then obtain tight frames whose
elements would be needles with length about 2−jα and width 2−j . We could then consider
representing an FIO with basis elements exhibiting such arbitrary scaling ratios.
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Figure 3: Relative position and orientation of two curvelet molecules in x-space. The
rectangles indicate their essential support.

• T1 is sparse if and only if the frequency support of our anisotropic elements are
supported near elongated rectangles with a scaling ratio obeying α ≤ 1/2.

• While T2 is sparse if and only if the effective support of our anistropic elements is not
too elongated and obeys α ≥ 1/2.

To fix ideas, suppose on the one hand that α = 1, which essentially gives tight frames of
wavelets. Then in a wavelet tight-frame, T2,µ would be sparse but T1,µ would not because
wavelets do not have a sufficiently fine frequency localization. On the other hand, suppose
that α = 0 which essentially gives tight frames of ridgelets. Then T1,µ would be sparse but
not T2,µ as a warped ridgelet does not look like another ridgelet. The parabolic scaling
α = 1/2 is the only scaling for which both operators are sparsified simultaneously.”

10 Appendix

Proof of the fact that ω(µ, µ′) ∼ ω(µ′, µ). The only thing we have to check is that formu-
lating the estimate (4.8) through eJ or eJ ′ is equivalent. It is sufficient to notice that

|〈eJ ,∆x〉|+ |∆x|2 + |∆θ|2 ∼ |〈eJ ,∆x〉|+ |〈eJ ′ ,∆x〉|+ |∆x|2 + |∆θ|2.

In order to justify the nontrivial inequality, use the law of cosines illustrated in Figure 3:

|〈eJ ,∆x〉|2 + |〈eJ ′ ,∆x〉|2 = sin2 |∆θ| (d2
µ + d2

µ′)

= sin2 |∆θ| |∆x|2 ± 2|〈eJ ,∆x〉| |〈eJ ′ ,∆x〉| cos |∆θ|
≤ sin2 |∆θ| |∆x|2 + 2|〈eJ ,∆x〉| |〈eJ ′ ,∆x〉|.

It follows that ||〈eJ ,∆x〉| − |〈eJ ′ ,∆x〉|| ≤ C · |∆θ||∆x| ≤ C · (|∆θ|2 + |∆x|2) and, therefore,

|〈eJ ,∆x〉|+ |〈eJ ′ ,∆x〉| ≤ C · (2|〈eJ ,∆x〉|+ |∆θ|2 + |∆x|2).
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Proof of the inequality (4.11). Assume without loss of generality that J = J0. We may
express SJ ′(ξ) as SJ ′0

(R∆θξ), with ∆θ = θJ − θJ ′ . We begin by expressing the integral in
polar coordinates,

ξ1 = r cos θ (R∆θξ)1 = r cos(θ + ∆θ),
ξ2 = r sin θ (R∆θξ)2 = r sin(θ + ∆θ).

As we will see, the cosine factor is not crucial and we may just as well drop it. Consequently,∫
|SJ(ξ)SJ ′(ξ)|n dξ ≤ C·

∫ ∞

0
rdr

1
[1 + 2−jr]N

1
[1 + 2−j′r]N

∫ 2π

0
dθ[1+a| sin θ|]−N [1+a′| sin(θ+∆θ)|]−N ,

where a = 2−j/2r
1+2−jr

and a′ = 2−j′/2r
1+2−j′r

. This decoupling makes the problem of bounding the
inner integral on the variable θ tractable. For example when a > a′ > 1, following [17] p.56,∫ ∞

−∞
dθ[1 + a|θ|]−N [1 + a′|θ + ∆θ|]−N ≤ C · 1

a

1
[1 + a′|∆θ|]N

.

We get other estimates for other values and orderings of a and a′. The integral on r is then
broken up into several pieces according to the values of a, a′, j and j′. It is straightforward
to show that each of these contributions satisfies the inequality (4.11).

Proof of the inequality (4.13). Without loss of generality, assume that µ = (j, 0, 0) so
that the curvelet molecule mµ is nearly vertical and centered near the origin. We recall
that ∆θ = π · `′ · 2−bj′/2c, `′ = 0, 1, . . . 2bj

′/2c − 1, and xµ′ = RθJ′D
−1
j′ k

′, say. Then the sum
of interest is

2bj
′/2c−1∑
`′=0

∑
k′∈Z2

(
1 + 2j0(|2−j′/2l′|2 + |xµ′,2|2 + |xµ′,1|)

)−np
,

with j0 = min(j, j′). Note that and detD−1
j′ = 2−j−bj′/2c and that this Riemann sum is

bounded— up to a numerical multiplicative constant—by the corresponding integral:∫
R2

dx

2−3j′/2

∫
R

dy

2−j′/2
Cn · [1 + 2j0(y2 + x2

2 + |x1|)]−np ≤ C · 2−2(j0−j′) ≤ C · 22|j−j′|

provided that np ≥ 2.

Proof of (4.14). Recall that

αµ
µ′ =

(∫
Qµ′

|R(q(D)γµ)(a, b, θ)|2 dµ

)1/2

.

The first thing to notice is that q(D)γµ is still a family of curvelet molecules, because q(ξ)
is a multiplier of order zero. Since ψa,θ,b also obeys the molecule properties, lemma 4.2
implies the corresponding almost-orthogonality condition. Integrating over Qµ′ does not
compromise this estimate, as can be seen by applying the Cauchy-Schwarz inequality.

Proof of inequality (6.2). Derivatives of γ̂µ and a are treated using the following esti-
mates.

|∂α
ξ γ̂µ(ξ)| ≤ Cα · 2−3j/42−α1j2−α2j/2

|∂α
ξ a(φ

−1(x), ξ)| ≤ Cα · 2−|α|j on Wµ = supp(γ̂µ).
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We now develop size estimates for the phase perturbation δ. Following closely the discussion
in [21], p.407, we claim that on Wµ,

|∂α
ξ ∂

β
x δ(x, ξ)| ≤ Cαβ · 2−α1j2−α2j/2. (10.1)

The derivations in x add no complications. Hence, assume that β = 0. As the above result
(10.1) relies upon the homogeneity of the phase with respect to ξ, we recall a few useful
facts about homogeneous functions of degree one:

Φ = Φξ · ξ (Euler’s theorem),

Φξξ · ξ = 0 (differentiate the above relation),

∂α
ξ Φ = O(|ξ|1−|α|) .

It follows from the definition that δ(x, ξ1, 0) = 0 and likewise ∂δ
∂ξ2

(x, ξ1, 0) = 0. Thus for
every n, ∂nδ

∂ξn
1
(x, ξ1, 0) = 0 and ∂

∂ξ2
∂nδ
∂ξn

1
(x, ξ1, 0) = 0. Recall that the support conditions are

|ξ1| ≤ C · 2j and |ξ2| ≤ C · 2j/2. Taylor series expansions about ξ2 = 0 together with
homogeneity assumptions give

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ2|2|ξ|−1−α1) = O(2−α1j),

∂

∂ξ2

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ2||ξ|−1−α1) = O(2−j/22−α1j),

∂α2

∂ξα2
2

∂α1

∂ξα1
1

δ(x, ξ) = O(|ξ|1−α1−α2) = O(2−α1j2−α2j/2) when α2 ≥ 2,

as claimed. The point about these estimates is that they exhibit exactly the parabolic
scaling of curvelets. We conclude

|∂α
ξ e

iδ(φ−1(x),ξ)| ≤ Cα · 2−α1j2−α2j/2 on Wµ

and therefore (6.2).

Proof of Lemma 8.1. To simplify notations, set in the coordinates defined by {e1, e2},

xµ = (0, 0) xµ′ = (x1, x2) xµ′′ = (y1, y2)
e1 = (1, 0) e′1 = (cosα, sinα) e′′1 = (cosβ, sinβ)
|θl − θl′′ | = |β| |θl′ − θl′′ | = |α− β|

It is enough to show that there exists ε > 0 such that

ε|x1| ≤ |y1|+ | cosα(x1−y1)+sinβ(x2−y2)|+(|β|+ |α−β|)(|y1|+ |x1−y1|+ |y2|+ |x2−y2|),

because then (|β| + |α − β|)(|y1| + |x1 − y1| + |y2| + |x2 − y2|) ≤ C · (|β|2 + |α − β|2 +
|y1|2 + |x1 − y1|2 + |y2|2 + |x2 − y2|2). By contradiction let us assume that the inequality
fails. Then we must have |y1| < ε|x1|. It is always true that |x1 − y1| + |y1| ≥ |x1|
so it is necessary that |β| + |α − β| < ε. But then |α| < 2ε thus cosα > 1 − 4ε2 and
| sinα| < 2ε. The term | cosα(x1 − y1) + sinβ(x2 − y2)| is therefore always greater than
(1− 4ε2)|x1− y1|− ε|x2− y2|. But this quantity must also be less than ε|x1− y1|, otherwise
its sum with |y1| would exceed ε|x1|. So we must have |x2 − y2| > 1−ε−4ε2

ε |x1 − y1|. But
then the sum |y1|+ |x1−y1|+ |x2−y2| must dominate |x1|

2ε , which implies |β|+ |α−β| ≤ 2ε2.
By induction, α = β = 0 and |y1|+ |x1 − y1| ≥ |x1| yields a contradiction.
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