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CNRS and Ceremade
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Abstract

This paper considers large-scale simulations of wave propagation phenomena. We argue that
it is possible to accurately compute a wavefield by decomposing it onto a largely incomplete set
of eigenfunctions of the Helmholtz operator, chosen at random, and that this provides a natural
way of parallelizing wave simulations for memory-intensive applications.

Where a standard eigenfunction expansion in general fails to be accurate if a single term
is missing, a sparsity-promoting `1 minimization problem can vastly enhance the quality of
synthesis of a wavefield from low-dimensional spectral information. This phenomenon may be
seen as “compressive sampling in the Helmholtz domain”, and has recently been observed to
have a bearing on the performance of data extrapolation techniques in seismic imaging [41].

This paper shows that `1-Helmholtz recovery also makes sense for wave computation, and
identifies a regime in which it is provably effective: the one-dimensional wave equation with
coefficients of small bounded variation. Under suitable assumptions we show that the number
of eigenfunctions needed to evolve a sparse wavefield defined on N points, accurately with very
high probability, is bounded by

C(η) · logN · log logN,

where C(η) is related to the desired accuracy η and can be made to grow at a much slower
rate than N when the solution is sparse. The PDE estimates that underlie this result are new
to the authors’ knowledge and may be of independent mathematical interest; they include an
L1 estimate for the wave equation, an L∞ − L2 estimate of extension of eigenfunctions, and a
bound for eigenvalue gaps in Sturm-Liouville problems.

In practice, the compressive strategy makes sense because the computation of eigenfunctions
can be assigned to different nodes of a cluster in an embarrassingly parallel way. Numerical
examples are presented in one spatial dimension and show that as few as 10 percents of all
eigenfunctions can suffice for accurate results. Availability of a good preconditioner for the
Helmholtz equation is important and also discussed in the paper. Finally, we argue that the
compressive viewpoint suggests a competitive parallel algorithm for an adjoint-state inversion
method in reflection seismology.
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1 Introduction

In this paper we consider a simple model for acoustic waves,

σ2(x)
∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0, x ∈ [0, 1], (1)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x),

with Dirichlet (u(0, t) = u(1, t) = 0) or Neumann (u′(0, t) = u′(1, t) = 0) boundary conditions. The
parameter σ(x) is viewed as the acoustic impedance of the medium, we will assume at least that
0 < σmin 6 σ(x) 6 σmax, almost everywhere. In the sequel we will see how the classical equation
of a vibrating string, with parameters ρ(x) and µ(x), can be transformed into (1) in such a way
that all the results of this paper hold unaffected in the more general case.

Most numerical methods for solving (1) fall into two categories: either simulation in the time
domain, by timestepping from initial and boundary data; or in the frequency domain using an
expansion in terms of time-harmonic solutions. For the latter approach, when u(x, t) = vω(x)eiωt,
then vω solves the Helmholtz equation

v′′ω(x) + ω2σ2(x)vω(x) = 0, x ∈ [0, 1], (2)

with Dirichlet or Neumann boundary conditions. The special values of ω for which (2) has a
solution correspond to eigenvalues λ of the operator L = σ−2d2/dx2 with the same boundary
boundary conditions, through λ = −ω2. The natural inner product that makes the operator L
self-adjoint is the one of the weighted space L2

σ2([0, 1],R),

〈f, g〉 =
∫ 1

0
f(x)g(x)σ2(x)dx. (3)

(The regular L2 inner product will not be used in the sequel.) Self-adjointness of L classically
implies orthogonality of the eigenfunctions, in the sense that 〈vω1 , vω2〉 = δω1,ω2 . The operator L is
also negative definite (Dirichlet) or negative semi-definite (Neumann) with respect to the weighted
inner product, which justifies the choice of sign for the eigenvalues. As a result, any solution u(x, t)
of (1) can be expanded as

u(x, t) =
∑
ω

cω(t)vω(x), (4)

where
cω(t) = 〈u0, vω〉 cosωt+ 〈u1, vω〉

sinωt
ω

.

If we are ready to make assumptions on u(x, t), however, equation (4) may not be the only
way of synthesizing u(x, t) from its coefficients cω(t) = 〈u(·, t), vω〉. The situation of interest in this
paper is when u(x, t) is approximately sparse for each time t, i.e, peaks at a few places in x, and
the impedance σ(x) has minimal regularity properties. When these conditions are met, we shall
see that the information of the solution u(x, t) is evenly spread, and contained several times over
in the full collection of coefficients cω(t). In other words, there is a form of uncertainty principle
to guarantee that a solution that peaks in x cannot peak in ω, and that it is possible to decimate
cω(t) in such a way that a good approximation of u(x, t) can still be recovered. In addition, there
exists a nonlinear procedure for this recovery task, which is so simple that it may have nontrivial
implications for the numerical analysis of wave equations.
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1.1 The Compressive Strategy

How to recover a sparse, sampled function f(j/N) from a set of discrete orthobasis coefficients
ck, which is incomplete but nevertheless “contains the information” of f(j/N), has been the concern
of a vast body of recent work on compressed sensing [13, 28]. In this approach, the proposed solution
for recovering f(j/N) is to find a vector with minimum `1 norm among all vectors which have the
observed ck as coefficients. Compressed sensing currently finds most of its applications in signal or
image processing, but its philosophy turns out to be relevant for computational wave propagation
as well, where the basis vectors are discretized eigenfunctions of the Helmholtz equation.

Accordingly, we formulate an `1 problem for recovering u(x, t) at fixed time t from a restricted
set of coefficients cω(t). To guarantee that these coefficients be informative about u(x, t), we will
sample ω at random. For practical reasons explained later, we use the following sampling scheme:
1) draw a number w uniformly at random between 0 and some maximum value ωmax, 2) find the
closest ω[k] to w, such that λ[k] = −ω2

[k] is an eigenvalue, 3) add this eigenvalue to a list provided
it does not already belong to it, and 4) repeat until the size of the list reaches a preset value K.
Eventually, denote this list as ΩK = {ω[k] : k = 1, . . . ,K}.

Putting aside questions of discretization for the time being, the main steps of compressive wave
computation are the following. Fix t > 0.

1. Form the randomized set ΩK and compute the eigenvectors vω(x) for ω ∈ ΩK ;

2. Obtain the coefficients of the initial wavefields as 〈u0, vω〉 and 〈u1, vω〉, for ω ∈ ΩK ;

3. Form the coefficients of the solution at time t as

cω(t) = 〈u0, vω〉 cosωt+ 〈u1, vω〉
sinωt
ω

, ω ∈ ΩK ;

4. Solve the minimization problem

min
ũ

∫ 1

0
σ(x)|ũ(x)| dx, such that 〈ũ, vω〉 = cω(t), ω ∈ ΩK . (5)

The algorithmic specifics of points 1 and 4 will be discussed at length in the sequel. The
main result of this paper concerns the number K = |ΩK | of coefficients needed to ensure that
the minimizer ũ(x) just introduced approximates u(x, t) within a controlled error, and controlled
probability of failure.

1.2 Main Result

Specific notions of sparsity of the solution, and smoothness of the medium, will be used in the
formulation of our main result.

• Sparsity of the solution. Assume that u[j](t) is the solution of a discretization of the problem
(1) on N equispaced spatial points, i.e., u[j](t) ' u(j/N, t). A central quantity in the analysis
is the “size of the essential support” Sη of this discretized solution, i.e., in a strategy that
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approximates u[j](t) by its S largest entries in modulus, how large would S need to be so
that the error made is less than a threshold η in a weighted `1 sense. Then this particular
choice of S is called Sη. More precisely, for fixed t > 0 consider a tolerance η > 0, and the
largest level γ at which ∑

j:|u[j](t)|6γ

σ[j]|u[j](t)| 6 η, (6)

where σ[j] should be thought of as σ(j/N), or possibly a more sophisticated variant involving
cell averages. Then Sη is the number of terms in this sum, i.e., the number of grid points
indexed by j such that |u[j](t)| 6 γ. In all cases Sη 6 N , but the sparser u(x, t) the smaller
Sη.

• Smoothness of the medium. We consider acoustic impedances σ(x) with small total variation
Var log(σ). In particular, we will require Var(log σ) < π. See Section 3 for a discussion of
total variation. Note that σ(x) is permitted to have discontinuities in this model.

Three sources of error arise in the analysis: 1) the discretization error

τ = ‖u[j](t)− u(j/N, t)‖`2 ,

where the `2 norm is over j; 2) the truncation error η just introduced, due to the lack of exact
sparsity; and 3) a numerical error ε made in computing the discrete eigenvalues and eigenvectors,
which shows as a discrepancy

ε = ‖c̃ω̃(t)− cω(t)‖`2 ,

for fixed t, and where the `2 norm is over ω ∈ ΩK . In addition to the absolute accuracy requirement
that ε be small, we also need the following minor relative accuracy requirements for the eigenvalues
and eigenvectors. Two quantities A, B are said to be within a factor 2 of each other if A/2 6 B 6
2A.

Definition 1. (Faithful discretization) A spatial discretization of the Helmholtz equation (2) is
called faithful if the following two properties are satisfied.

• The gap |ω̃n+1 − ω̃n| between two consecutive eigenvalues of the discrete equation is within a
factor 2 of the gap |ωn+1 − ωn| between the corresponding exact eigenvalues;

• There exists a normalization of the computed eigenvectors ṽω̃[j] and exact eigenvectors vω(x)

such that the discrete norm
(

1
N

∑
j σ[j]2ṽω̃[j]2

)1/2
is within a factor 2 of ‖vω‖L2

σ2
, and simul-

taneously maxj |σ[j]ṽω̃[j]| is within a factor 2 of ‖σvω‖L∞.

Finally, we assume exact arithmetic throughout. The following theorem is our main result.

Theorem 1. Assume that Var(log σ) < π, and that the discretization of (2) is faithful in the
sense of Definition 1. Assume that K eigenvectors are drawn at random according to the procedure
outlined above. There exists C(σ) such that if K obeys

K > C(σ) · Sη logN · log2(Sη) log(Sη logN), (7)

(with N sufficiently large so that all the logarithms are greater than 1), then with very high proba-
bility the solution ũ[j](t) of a discrete version of the minimization problem (5) obeys

‖u(j/N, t)− ũ[j](t)‖`2 6
C1√
Sη
η + C2ε+ τ. (8)
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Furthermore, C(σ) can be taken to obey

C(σ) 6 C3 ·
π + Var(log σ)
π −Var(log σ)

· exp(2Var(log σ)), (9)

where C3 is a numerical constant. “Very high probability” here means 1− O(N−α) where α is an
affine, increasing function of C3.

The discrete CWC algorithm is described in Section 2.2. The proof of Theorem 1 is in Sections
2.3 and 2.4.

Contrast this behavior of the `1 problem by considering instead an `2 regularization; by Plancherel
the solution u] would then simply be the truncated sum

u](x, t) =
∑
ω∈ΩK

cω(t)vω(x),

with error
‖u(·, t)− u](·, t)‖2L2

σ2
=
∑
ω/∈ΩK

|cω(t)|2.

This shows that u] may be very different from u as soon as ΩK is not the complete set. In fact, the
uncertainty principles discussed in this paper would show that the resulting error for sparse u(x, t)
and random ΩK is large with very high probability.

The estimate (8) is a statement of robustness of the `1 recovery method, and is intimately
related to a well-established stability result in compressed sensing [12]. If errors are made in the
discretization, in particular in computing eigenvectors on which the scheme is based (ε 6= 0), then
equation (8) shows that this error will carry over to the result without being overly amplified.
This robustness is particularly important in our context since in practice a compressive numerical
scheme is bound to be the “driver” of a legacy code for the Helmholtz equation.

Theorem 1 also states that, if the discrete solution happens to be compactly supported on a
small set (Sη << N for η = 0), and no error is made in solving for the Helmholtz equation, then the
compressive scheme would recover the discrete solution exactly, with high probability, and without
using all the eigenvectors. It is not unreasonable to speak about compact support of the solution
of a wave equation, since the speed of propagation is finite.

Another important point is that there exists no particular, “optimized” choice of the eigenvectors
that can essentially beat choosing them at random. The compressive strategy, whether in numerical
analysis or signal processing, is intrinsically probabilistic. In fact, making a deterministic choice
can possibly void the reliability of recovery as there would exist counter-examples to Theorem 1.

Finally, the estimate is quite important from the viewpoint of computational complexity. In
situations where Sη is small, computing K ∼ Sη logN eigenvectors whose identity is unimportant
as long as it is sufficiently randomized, can be much more advantageous than computing all N
of them. This leads to an easily parallelizable, frequency-based algorithm for the wave equation
requiring at most ∼ SηN2 logN operations instead of the usual ∼ N3 for a QR method computing
all eigenvectors. Complexity and parallelism questions are further discussed below.

1.3 Why It Works

The `1 regularization is chosen on the basis that it promotes sparsity while at the same time
defining a convex optimization problem amenable to fast algorithms. It provides an exact relaxation
of `0 problems when the vector to be recovered is sufficiently sparse, as was identified by David
Donoho and co-workers in the mid-nineties in the scope of work on basis pursuit [18]. The same `1

5



minimization extracts information of a sparse vector remarkably well in the presence of incomplete
data, provided the data correspond to inner products in a basis like Fourier, for which there exists
a form of uncertainty principle. This observation was probably first treated mathematically in 1989
in [29], and was refined using probabilistic techniques in work of Candès, Romberg, and Tao [13],
as well as Donoho [28], both in 2004. This line of work received much attention and came to be
known as compressed sensing or compressive sampling.

Consider the `1 minimization problem in RN ,

min ‖f‖1 s.t. f · ϕk = ck, k ∈ ΩK ,

where ΩK is a subset of 1, . . . , N , and {ϕk} is an orthobasis. The inner product f · ϕk is called
a “measurement”. The following three conditions are prerequisites for guaranteeing the success of
recovery of `1 minimization.

1. The vector f to be recovered needs to be sparse;

2. The basis vectors ϕk are incoherent ; and

3. The actual ϕk used as measurement vectors are chosen uniformly at random among the ϕk.

Sparsity of a vector can mean small support size, but in all realistic situations it is measured
from the decay of its entries sorted in decreasing order. Typically, a vector is sparse when it has a
small `p quasi-norm for 0 < p 6 1, and the smaller p the stronger the measure of sparsity.

Incoherence of an orthobasis {ϕk} of RN means that

sup
j,k=1,...,N

|ϕk[j]| 6
µ√
N
, (10)

where the parameter µ > 1, simply called incoherence, is a reasonably small constant. For instance,
if ϕk are the column of the isometric discrete Fourier transform, then µ attains its lower bound
of 1, and the Fourier vectors are said to be maximally incoherent. The generalization where an
orthobasis is incoherent with respect to another basis is often considered in the literature, in which
case incoherence means small inner products of basis vectors from the two bases. Hence in our case
we also speak of incoherence with respect to translated Diracs.

The condition of uniform random sampling of the measurement vectors is needed to avoid,
with high probability, complications of an algebraic nature that may prevent injectivity of the
projection of sparse vectors onto the restricted set of measurements, or at least deteriorate the
related conditioning. More quantitatively, randomness allows to promote the incoherence condition
into a so-called restricted isometry property (RIP). We will have more to say about this in the sequel.
Note that if the measurement basis is itself generated randomly, e.g. as the columns of a random
matrix with i.i.d. gaussian entries, then the further randomization of the measurement vectors is
of course not necessary.

When these three conditions are met, the central question is the number K of measurements
needed for the `1 recovery to succeed. Recent papers [14, 49] show that the best answer known to
date is

K > C · µ2 · S logN · log2(S) log(S logN),

where S is the number of “big” entries in the vector to be recovered, µ is the incoherence, and
C is a decent constant. (The trailing log factors to the right of S logN are conjectured to be
unnecessary.) Stability estimates of the recovery accompany this result [12]. All this will be made
precise in Section 2; let us only observe for now that (7) is manifestly a consequence of this body
of theory.
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The mathematical contribution of this paper is the verification that the conditions of 1) sparsity,
2) incoherence, and 3) uniform sampling are satisfied in presence of Helmholtz measurements for
solutions of the wave equation, and in the context of a practical algorithm. For all three of these
requirements, we will see that a single condition of bounded variation on log σ suffices in one spatial
dimension.

• We show in Section 3.1 that when Var(log σ) < 1, the wave equation (1) obeys a Strichartz-like
L1 estimate∫ 1

0
σ(x)|u(x, t)|dx 6 D(σ) ·

(∫ 1

0
σ(x)|u0(x)|dx+

∫ 1

0
σ2(x)|

∫ x

0
u1(y)dy|dx

)
,

for t 6 1/σmin, and where

D(σ) = C

√
σmax

σmin

1
1−Var(log σ)

.

This result shows that, in an L1 sense, the sparser the initial conditions the sparser the
solution at time t. Hence choosing sparse initial conditions gives a control over the quality
of `1 recovery through the discrete quantity Sη introduced above—although we don’t have a
precise estimate to quantify this latter point.

• We show in Section 3.2 that when Var(log σ) <∞, solutions of the Helmholtz equation must
be extended, which translates into a property of incoherence at the discrete level. If vω solves
(2), the extension estimate is

‖σvω‖L∞ 6
√

2 exp(Var(log σ)) · ‖vω‖L2
σ2
.

A quadrature of the integral on the right-hand side would reveal a factor 1/
√
N , hence a com-

parison with the definition (10) of incoherence shows that the leading factor
√

2 exp(Var(log σ))
is in fact—modulo discretization questions—an upper bound on the incoherence µ of eigen-
functions with translated Diracs.

• We show in Section 3.3 that when Var(log σ) < π, two eigenvalues of the Helmholtz equation
(2) cannot be too close to each other: if λj = −ω2

j for j = 1, 2 are two distinct eigenvalues,
then

π −Var(log σ)∫ 1
0 σ(x) dx

6 |ω1 − ω2| 6
π + Var(log σ)∫ 1

0 σ(x) dx
,

This gap estimate shows that if we draw numbers uniformly at random within [0, ωmax], and
round them to the nearest ω[k] for which λ[k] = −ω2

[k] is an eigenvalue, then the probabilities
pn of selecting the n-th eigenvalue λn are of comparable size uniformly in n—again, modulo
discretization questions. This provides control over departure from the uniform distribution,
and quantifies the modest penalty incurred in the bound on K as the ratio of probabilities

minn pn
punif

>
π −Var(log σ)
π + Var(log σ)

,

where punif refers to the case of uniform σ and equispaced ωn.

Bounded variation can be thought of as the minimum smoothness requirement of an one-
dimensional acoustic medium, for which wave propagation is somewhat coherent, and no local-
ization occurs. For instance, the incoherence result physically says that the localization length is
independent of the (temporal) frequency of the wave, for media of bounded variation.

All the points discussed above will be properly integrated in the justification of Theorem 1, in
Section 2. The proofs of the three PDE results are in Section 3.

7



1.4 How It Works

A classical algorithm for computing all N eigenvectors of the discrete Helmholtz equation would
be the QR method, with complexity an iterative O(N3). Since not all eigenvectors are required
however, and since the discretized operator L is an extremely sparse matrix, all-purpose linear
algebra methods like QR acting on matrix elements one-by-one are at a big disadvantage.

Instead, it is more natural to set up a variant of the power method with randomized shifts for
computing the desired eigenvectors and corresponding eigenvalues. We have chosen the restarted
Arnoldi method coded in Matlab’s eigs command. In our context, the power method would compute
the inverse (L+w2)−1 for a shift w chosen at random, and apply it repeatedly to a starting vector
(with random i.i.d. entries, say), to see it converge to the eigenvector with eigenvalue closest to
−w2. The probability distribution to place on w should match the spectral density of L as closely
as possible; one important piece of a priori information is the estimate (34) on eigenvalue gaps.

Applying (L+w2)−1, or in practice solving the system (L+w2)u = f , can be done in complexity
O(N2) using an iterative method. However, the inversion needs not be very accurate at every step,
and can be sped up using an adequate preconditioner. It is the subject of current research to bring
the complexity of this step down to O(N) with a constant independent of frequency w, see [34] for
some of the latest developments. In this paper we use a particularly efficient preconditioner based
on discrete symbol calculus [24] for pre-inverting L − w2 (there is no typo in the sign), although
the resulting overall complexity is still closer to O(N2) than to O(N).

The resolution of `1 minimization can be done using standard convex optimization methods
[8] such as interior point for linear programming in the noiseless setting, and second order cone
programming in the noisy case [18]. One can however exploit the separability of the `1 norm
and design specific solvers such as exact [30] or approximate [32] path continuation and iterative
thresholding [35, 22, 20, 54]. In this paper we used a simple iterative thresholding algorithm.

The complexity count is as follows:

• It takes O(KN2) operations to solve for K eigenvectors with a small constant, and as we
have seen, K is less than N in situations of interest;

• Forming spectral coefficients at time t = 0 and their counterpart at time t is obviously a
O(N) operation.

• It is known that solving an `1 problem with N degrees of freedom converges geometrically
using the methods explained below [9] and is therefore a O(N) operation.

Compared to the QR method, or even to traditional timestepping methods for (1), the compres-
sive scheme has a complexity that scales favorably with N . The control that we have over the size
of K comes from the choice of sparse initial conditions, and also from the choice of time t at which
the solution is desired. If the initial conditions are not sparse enough, they can be partitioned into
adequately narrow bumps by linearity; and if t is too big, the interval [0, t] can be divided into
subintervals over which the compressive strategy can be repeated.

More details on the implementation can be found in Section 4.

1.5 Significance

The complexity count is favorable, but we believe the most important feature of the com-
pressive solver, however, is that the computation of the eigenvectors is “embarrassingly parallel”,
i.e., parallelizes without communication between the nodes of a computer cluster. This is unlike
both traditional timestepping and Helmholtz-via-QR methods. The `1 solver—proximal iterative
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thresholding—also parallelizes nicely and easily over the different eigenvectors, without setting up
any domain decomposition method. We leave these “high-performance computing” aspects to a
future communication.

Another decisive advantage of the compressive strategy is the ability to freely access the solution
at different times. In inverse problems involving the wave equation, where an adjoint-state equation
is used to form the gradient of a misfit functional, one is not just interested in solving the wave
equation at a given time t, but rather in forming combinations such as∫ T

0

∂2u

∂2t
(x, t)q(x, t) dt,

where u solves an initial-value problem, and q solves a final-value problem—the adjoint-state wave
equation. A classical timestepping method requires to keep large chunks of the history in memory,
because u(x, t) is formed by time stepping up from t = 0, and q(x, t) is formed by time stepping
down from t = T . The resulting memory overhead in the scope of reverse-time migration in
reflection seismology is well documented in [57]. The compressive scheme in principle alleviates
these memory issues by minimizing the need for timestepping.

Let us also comment on the relief provided by the possibility of solving for incomplete sets
of eigenvectors in the scope of compressive computing. As we saw, using an iterative power-type
method has big advantages over a QR method. Could an iterative method with randomized shifts
be used to compute all eigenvectors? The answer is hardly so, because we would need to “collect” all
eigenvectors from repeated random sampling. This is the problem of coupon collecting in computer
science; the number of realizations to obtain all N coupons, or eigenvectors, with high probability, is
O(N logN) with a rather large constant. If for instance we had already drawn all but one coupons,
the expected number of draws for finding the last one is a O(N)—about as much as for drawing the
first N/2 ones! For this reason, even if the required number of eigenvectors is a significant fraction
of N , the compressive strategy would remain attractive.

Finally, we are excited to see that considerations of compression in the eigenfunction domain
requires new kinds of quantitative estimates concerning wave equations. We believe that the ques-
tions of sparsity, incoherence, and eigenvalue gaps are completely open in two spatial dimensions
and higher, for coefficients σ(x) that present interesting features like discontinuities.

1.6 Related Work

As mentioned in the abstract, and to the best of our knowledge, `1 minimization using Helmholtz
eigenfunctions as measurement basis vectors was first investigated in the context of seismic imag-
ing by Lin and Herrmann [41] in 2007. Data extrapolation in seismology is typically done by
marching the so-called single square root equation in depth; Herrmann and Lin show that each
of those steps can be formulated as an optimization problem with an `1 sparsity objective in a
curvelet basis [11], and constraints involving incomplete sets of eigenfunctions of the horizontal
Helmholtz operator. The depth-stepping problem has features that make it simpler than full wave
propagation—extrapolation operators with small steps are pseudodifferential hence more prone to
preserving sparsity than wave propagators—but [41] deals with many practical considerations that
we have idealized away in this paper, such as the choice of basis, the higher dimensionality, and
the handling of real-life data.

Sparsity alone, without using eigenfunctions or otherwise incoherent measurements, is also the
basis for fast algorithms for the wave equation, particularly when the same equation needs to be
solved several times. Special bases such as curvelets and wave atoms have been shown to provide
sparse representations of wave propagators [51, 10]. Speedups of a factor as large as 20, over both
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spectral and finite difference methods, have been reported for a two-dimensional numerical method
based on those ideas [25]. See also [33] for earlier work in one spatial dimension. Computational
harmonic analysis for the solution of PDE has its roots in the concept of representing singular
integral operators and solving elliptic problems using wavelets [44, 6, 19].

From a pure complexity viewpoint, methods based solely on decomposing the equation in a fixed
basis are not entirely satisfactory however, because of the heavy tails of supposedly nearly-diagonal
matrices. The resulting constants in the complexity estimates are cursed by the dimensionality
of phase-space, as documented in [25]. There is also the question of flexibility vis-a-vis special
domains or boundary conditions. We anticipate that representing the equation in an incoherent
domain, instead, followed by a sparse recovery like in this paper may not suffer from the same ills.

Of course, sparsity and incoherence ideas have a long history in imaging problems unrelated to
computation of PDE, including in geophysics [50]. As mentioned earlier, from the mathematical
perspective this line of work has mostly emerged from the work of Donoho and collaborators [29, 18].
See [43] for a nice review.

Finally, previous mathematical work related to the theorems in Section 3 are discussed at the
end of the respective proofs.

2 The Compressive Point of View: from Sampling to Computing

In this section we expand on the reasoning of Section 1.3 to justify Theorem 1. We first introduce
the quoted recent results of sparse signal recovery.

2.1 Elements of Compressed Sensing

Consider for now the generic problem of recovering a sparse vector f0 of RN from noisy mea-
surements y = Φf0 + z ∈ RK , with K 6 N , and ‖z‖2 6 ε. The `1 minimization problem of
compressed sensing is

min ‖f‖`1 , s.t. ‖Φf − y‖2 6 ε. (P1)

At this level of generality we call Φ the measurement matrix and take its rows ϕk to be orthonormal.
Accurate recovery of (P1) is only possible if the vectors ϕk are incoherent, i.e., if they are as different
as possible from the basis in which f0 is sparse, here Dirac deltas. Candès, Romberg and Tao make
this precise by introducing the S-restricted isometry constant δS , which is the smallest 0 < δ < 1
such that

(1− δ)||c||2`2 6 ||ΦT c||2`2 6 (1 + δ)||c||2`2 . (11)

for all subsets T of {1, . . . , N} such that |T | 6 S, for all vectors c supported on T , and where ΦT is
the sub-matrix extracted from Φ by selecting the columns in T . Equation (11) is called S-restricted
isometry property.

Candès, Romberg and Tao proved the following result in [12].

Theorem 2. For f0 ∈ RN , call f0,S the best approximation of f0 with support size S. Let S be
such that δ3S + 3δ4S < 2. Then the solution f of (P1) obeys

‖f − f0‖2 6 C1 ε+ C2
‖f0 − f0,S‖`1√

S
. (12)

The constants C1 and C2 depend only on the value of δ3S and δ4S.
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Sparsity of f0 is encoded in the rate of decay of ‖f0 − f0,S‖`1 as S →∞.
The problem of linking back the restricted isometry property to incoherence of rows was perhaps

first considered by Candès and Tao in [14]. In this paper we will use the following refinement due to
Rudelson and Vershynin [49]. It relates the allowable value of S to the number K of measurements
and the dimension N of the vector to be recovered.

Theorem 3. Let A be a N -by-N orthogonal matrix, and denote µ =
√
N maxij |Aij |. Extract Φ

from A by selecting K rows uniformly at random. For every ε there exists a constant Cε > 0 such
that if

K > Cε · µ2 · S logN · log2(S) log(S logN)), (13)

then Φ obeys the S-restricted isometry property (11) with δS < ε and with very high probability.

Randomness plays a key role in this theorem; no instance of a corresponding deterministic result
is currently known. Above, “very high probability” means tending to 1 as O(N−m), where m is an
affine increasing function of C in (13). The proof of Theorem 3 in [49] uses arguments of geometric
functional analysis and theory of probability in Banach spaces. Note that [49] prove the theorem
for µ = 1, but it is straightforward to keep track of the scaling by µ in their argument1.

2.2 Discretization

Equations (12) and (13) formally appear to be related to the claims made in Section 1.3, but
we have yet to bridge the gap with the wave equation and its discretization.

Let us set up a consistent finite element discretization of (1) and (2), although it is clear that
this choice is unessential. The Helmholtz equation with boundary conditions can be approximated
as ∑

j

Lijvω̃[j] + ω̃2
∑
j

Mijvω̃[j] = 0,

where the stiffness matrix L (a discretization of the second derivative) and the mass matrix M
properly include the boundary conditions. Square brackets indicate integer indices. Here ω̃ is the
discrete counterpart to the exact ω, and has multiplicity one, like ω, by the assumption of faithful
discretization (Definition 1). The discrete eigenvector vω̃[j] is an approximation of the eigenfunction
samples vω(j/N).

We assume for convenience that the mass matrix can be lumped, and that we can write Mij =
σ[i]2δij . If σ is smooth, then σ[i] ' σ(i/N); and if σ lacks the proper smoothness for mass lumping
to be a reasonable operation, then all the results of this paper hold with minimal modifications.
We also assume that Lij is symmetric negative definite; as a result, so is σ[i]−1Lijσ[j]−1, and the
usual conclusions of spectral theory hold: ω̃ < 0, and σ[j]vω̃[j] are orthogonal for different ω̃, for
the usual dot product in j.

The corresponding semi-discrete wave equation (1) is

−d
2u[i]
dt2

(t) + σ[i]−2
∑
j

Liju[j](t) = 0,

u[j](0) = u0(j/N),
du[j]
dt

(0) = u1(j/N)

1For the interested reader, [49] denotes µ by K. The scalings of some important quantities for the argument in
[49], in their notations, are C10 ∼ K, E1 ∼ K, k1 ∼ K, and k ∼ K2.
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Because Lij is the same stiffness matrix as above, the solution is

u[j](t) =
∑
ω̃

(
cos(ω̃t)c0,ω̃ +

sin(ω̃t)
ω̃

c1,ω̃

)
vω̃[j].

with
c0,ω̃ =

∑
j

σ[j]2vω̃[j] u[j](0), c1,ω̃ =
∑
j

σ[j]2vω̃[j]
du[j]
dt

(0).

Call
cω̃(t) = cos(ω̃t)c0,ω̃ +

sin(ω̃t)
ω̃

c1,ω̃.

A discretization error is incurred at time t > 0: we have already baptized it τ = ‖u[j](t)−u(j/N, t)‖2
in the introduction. It is not the purpose of this paper to relate τ to the grid spacing. A nice
reference for the construction of finite elements for the wave equation, in a setting far generalizing
the smoothness assumptions made on σ in this paper, is in [47].

Let us now focus on the discrete formulation. The ideal `1 problem that we would like to solve
is

min
∑
j

σ[j]|u[j](t)|, s.t.
∑
j

σ[j]2u[j](t) vω̃[j] = cω̃(t),

where ω̃ ∈ Ω̃K are chosen uniformly at random.
In practice, we must however contend with the error in computing the discrete eigenvalues ω̃

and eigenvectors vω̃[j] by an iterative linear algebra method. This affects the value of cω̃(t) as well
as the measurement vectors in the equality constraints above. We model these errors by introducing
the computed quantities ṽω̃[j] and c̃ω̃(t), and relaxing the problem to

min
∑
j

σ[j]|u[j](t)|, s.t. ‖
∑
j

σ[j]2u[j](t) ṽω̃[j]− c̃ω̃(t)‖2 6 ε, (14)

for some adequate2, ε, like mentioned throughout in Section 2.1. The `2 norm is here over ω̃.

2.3 Proof of Theorem 1

Let us now explain why the machinery of Section 2.1 can be applied to guarantee recovery in
the `1 problem (14). First, it is convenient to view the unknown vector to be recovered in (14) as
σ[j]|u[j](t)|, and not simply u[j](t). This way, we are exactly in the situation of Theorem 2: the
objective is a non-weighted `1 norm, and the measurement vectors Aω̃,j ≡ σ[j]vω̃[j] are orthogonal
with respect to the usual dot product in j.

Sparsity of the discrete solution σ[j]u[j](t) is measured by the number of samples Sη necessary
to represent it up to accuracy η in the `1 sense, as in equation (6). If we let uS [j](t) be the
approximation of u[j](t) where only the S largest entries in magnitude are kept, and the others put
to zero, then Sη is alternatively characterized as the smallest integer S such that∑

j

σ[j]|u[j](t)− uS [j](t)| 6 η.

This expression is meant to play the role of the term ‖f0 − f0,S‖`1 in equation (12).
One last piece of the puzzle is still missing before we can apply Theorems 2 and 3: as explained

earlier, the methods for drawing eigenvalues at random do not produce a uniform distribution. The
2Here ε is assumed to be known, but in practice it is permitted to over-estimate it.
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following proposition quantifies the effect of nonuniformity of the random sampling on the number
of measurements K in Theorem 3. Recall that our method for drawing eigenvectors qualifies as
without replacement since an eigenvalue can only appear once in the set ΩK .

Proposition 4. Let A be an N -by-N orthogonal matrix. Denote by Kunif the number of rows taken
uniformly at random in order to satisfy the accuracy estimate (8) with some choice of the constants
C1, C2. Now set up a sampling scheme, nonuniform and without replacement for the rows of A,
as follows:

• In the first step, draw one row from a distribution pn, and call it n1;

• At step k, draw one row from the obviously rescaled distribution

pn

1−
∑k−1

j=1 pnj

and call it nk. Repeat over k.

Denote by K the number of rows taken from this sampling scheme. In order to satisfy the estimate
(8) with the same constants C1 and C2 as in the uniform case, it is sufficient that K compares to
Kunif as

K >
punif

minn=1,...,N pn
Kunif.

where punif would be the counterpart of pn in the uniform case, i.e., punif = 1/N .

Proof. See the Appendix.

We can now apply the theorems of compressed sensing. Call ũ[j](t) the solution of (14). By
Theorem 2, the reconstruction error is

‖ũ[j](t)− u(j/N, t)‖2 6 ‖u[j](t)− u(j/N, t)‖2 + ‖ũ[j](t)− u[j](t)‖2
6 τ + C1

η√
Sη

+ C2ε.

The number K of eigenvectors needed to obtain this level of accuracy with very high probability
is given by a combination of Theorem 3 and Proposition 4:

K > C ·
(

punif

min pn
· µ2

)
· Sη logN · log2(Sη) log(Sη logN)), (15)

and where the incoherence µ is given by

µ =
√
N max

ω̃,j
|σ[j]vω̃[j]| (16)

This justifies (7) and (8) with the particular value

C(σ) = C ·
(

punif

min pn
· µ2

)
. (17)

It remains therefore to justify the link between C(σ) and the smoothness of σ, given in equation
(9). This entails showing that

1. µ has a bound independent of N (eigenvectors are incoherent); and

13



2. the ratio of probabilities can be bounded away from zero independently of N .

In addition, we would like to argue that Sη can be much smaller than N , which expresses
sparsity. All three questions are answered through estimates about the wave equation, which are
possibly new. Although the setup of the recovery algorithm is fully discrete, it is sufficient to
focus on estimates the non-discretized wave equation; we explain below why this follows from the
assumption of faithful discretization in Definition 1.

2.4 Sparsity, Incoherence, and Randomness

We address these points in order.

• Sparsity. The quantity Sη introduced above depends on time t and measures the number
of samples needed to represent the discrete solution u[j](t) to accuracy η in (a weighted) `1
space. It is hoped that by choosing sparse initial conditions, i.e., with small Sη at time t = 0,
and restricting the time T up to which the solution is computed, Sη will remain small for all
times 0 6 t 6 T . If we expect to have such control over Sη, it is necessary to first show that
the `1 norm of the solution itself does not blow up in time, and can be majorized from the `1
norm at time zero. In Section 3.1 we establish precisely this property, but for the continuous
wave equation and in the L1 norm. The only condition required on σ for such an estimate to
hold is Var(log σ) < 1.

• Incoherence. We wish to bound µ =
√
N max |σ[j]vω̃[j]| by a quantity independent of N when

the vω̃[j] are `2 normalized in a weighted norm,

N∑
j=1

σ[j]2|vω̃[j]|2 = 1.

In Section 3.2, we show that provided Var(log σ) <∞, we have the continuous estimate

‖σvω‖L∞ 6
√

2 exp(Var(log σ)) · ‖vω‖L2
σ2
.

At the discrete level, approximating the integral
∫
σ2(x)|vω(x)|2 dx by the sum 1

N

∑N
j=1 σ[j]2|vω[j]|2

shows that the quantity independent of N is the incoherence (16). More precisely, the assump-
tion of faithful discretization allows to relate continuous and discrete norms, and conclude
that

µ 6 C ·
√
N‖σvω‖L∞

√
1
N

∑
j σ[j]2ṽ2

ω̃[j]

‖vω‖L2
σ2

6 C ·
√

2 exp(Var(log σ)),

where C is the numerical constant that accounts for the faithfulness of the discretization,
here C = 8 for the arbitrary choice we made in Definition 1.

• Randomness. Finally, for the question of characterizing the probability distribution for picking
eigenvectors, recall that it derives from the strategy of picking shifts w at random and then
finding the eigenvalue λ[k] = −ω2

[k] such that ω[k] is closest to w. To make sense of a probability
distribution over shifts, we consider eigenvalues for the continuous Helmholtz equation (2) in
some large interval [−W 2, 0], or equivalently, 0 6 k < N .

If σ = 1, then ωn = nπ, with n > 1 if Dirichlet, and n > 0 if Neumann. The corresponding
eigenfunctions are of course cos(nπ) (Neumann) and sin(nπ) (Dirichlet). In this case, a
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uniform sampling of the shifts w would generate a uniform sampling of the frequencies ω[k].
We regard the spectrum in the general case when σ(x) 6= 1 as a perturbation of ωn = nπ. So
we still draw the shifts w uniformly at random, and derive the corresponding distribution on
the ω[k] from the spacing between the ωn. Namely if we let ∆ωmin, ∆ωmax be the minimum,
respectively maximum distance between two consecutive ωn in the interval n ∈ [0, N − 1]—
each eigenvalue is known to have multiplicity one—then the probability of picking any given
eigenvalue by this scheme obeys

pn > punif
∆ωmin

∆ωmax
,

where punif = 1
N would be the corresponding probability in the uniform case.

In Section 3.3, we prove that the spacing between any two consecutive ωn obeys

π −Var(log σ)∫ 1
0 σ(x) dx

6 |ωn − ωn+1| 6
π + Var(log σ)∫ 1

0 σ(x) dx
,

provided Var(log σ) <∞. By the assumption made in Definition 1, the computed eigenvalues
satisfy a comparable bound,

1
2
π −Var(log σ)∫ 1

0 σ(x) dx
6 |ω̃n − ω̃n+1| 6 2

π + Var(log σ)∫ 1
0 σ(x) dx

.

In the continuous case, the gap estimate implies

pn
punif

>
∆ωmin

∆ωmax
>
π −Var(log σ)
π + Var(log σ)

,

while an additional factor 1/4 is incurred in this lower bound, in the discrete case.

Note that the probabilities of selecting the endpoint eigenvalues 0 and −ω2
max would in princi-

ple be halved by the advocated sampling procedure, because their interval is one-sided. This
is a non-issue algorithmically since the endpoint eigenvalues are much more easily computed
than the others, by a power method without inversion. By default, we can include those
eigenvalues in ΩK . Mathematically, adding measurements (eigenvectors) deterministically
cannot hurt the overall performance as we saw in Proposition 4.

The observations on incoherence and randomness can be combined with (17) to justify the form
of C(σ) in equation (9):

C(σ) 6 C ·
(

punif

min pn
· µ2

)
6 C · π + Var(log σ)

π −Var(log σ)
· exp(2Var(log σ)).

3 Sparsity, Incoherence, and Gap Estimates for the Wave Equa-
tion

Let us first recall the basic results concerning wave equations. We only need to require σ0 6
σ(x) 6 σ1 for a.e. x ∈ [0, 1], to obtain existence and uniqueness. In that context, when u0 ∈
H1(0, 1) and u1 ∈ L2(0, 1), the solution obeys u ∈ C0

t ([0, T ], H1
x(0, 1))∩C1

t ([0, T ], L2
x(0, 1)), as well

as the corresponding estimate

‖u(t, x)‖L∞t H1
x

6 C(T ) · (‖u0‖H1 + ‖u1‖L2) , (18)
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where the supremum in time is taken (here an in the sequel) over [0, T ]. Another background result
is the continuous dependence on the coefficients σ(x) in L∞. Let uk, k = 1, 2 solve (20) with σk in
place of σ, over the time interval [0, T ]. Then

‖u1 − u2‖L∞t L∞x 6 C(T, u0, u1) · ‖σ1 − σ2‖L∞ . (19)

All these results are proved by standard energy estimates. See [42] and [55] for existence and
uniqueness; and [3, 4] for continuity on the parameters.

It seems that we have lost a bit of generality in considering the wave equation (1) with a single
parameter σ(x), instead of the usual equation of acoustics

ρ(x)
∂2u

∂t2
+∇ · (µ(x)∇u) = 0, x ∈ Rd, (20)

with the two parameters ρ(x) (density) and µ(x) (bulk modulus). Equation (1) however follows
from (20) if we change the unique spatial variable z into

x =
∫ z

0
µ−1(z′)dz′,

and put σ(x) =
√
ρ(x)µ(x) the local acoustic impedance. With µ bounded from above and be-

low a.e., such a change of variables would only alter the constants in the results of sparsity and
incoherence proved in this section. It would not alter the eigenvalue gap result of Section 3.3.
Hence we can focus on (1) without loss of generality. For reference, the local speed of sound is
v(x) =

√
µ(x)/ρ(x).3

In the sequel we further assume that log σ has bounded variation. The space BV ([0, 1]) is
introduced by defining the seminorm

Var(f) = sup
{xj}

∑
j

|f(xj−1)− f(xj)|,

where the supremum is over all finite partitions of [0, 1] such that xj is a point of approximate
continuity of f . Var is called the essential variation4 of f , and also equals the total variation
|f ′|([0, 1]) of f ′ as a signed measure on [0, 1]. The norm of BV ([0, 1]) is then ‖σ‖BV = ‖σ‖L1 +
Var(σ). If the total variation is taken over the interval [0, x] instead, we will denote it as Varx(σ).

We will need the following result for BV functions in one dimension.

Lemma 1. Let f ∈ BV ([0, 1]), and extend it outside of [0, 1] by the constant values f(0+) and
f(1−) respectively. For every ε > 0, consider a mollifier ρε(x) = 1

ερ
(
x
ε

)
, where ρ ∈ C∞(R), ρ > 0,

supp(ρ) ⊂ [−1, 1], and
∫

R ρ(x) dx = 1. Consider fε(x) =
∫

R ρε(x− y)f(y) dy for x ∈ R. Then

1. For each ε > 0, fε ∈ C∞(R);

2. limε→0

∫ 1
0 |f(x)− fε(x)| dx = 0;

3Notice that a homeomorphism z 7→ x is the natural obstruction to the 1D inverse problem of recovering the
parameters ρ and µ from boundary measurements of u. As a result only the local impedance is recoverable up to
homeomorphism from boundary measurements, not the local speed of sound. This observation, only valid in one
spatial dimension, is discussed in great detail in [3].

4The variation of f would be defined using the same supremum, but over all partitions of [0, 1]. Requiring that xj
is a point of approximate continuity addresses the problem of inessential discontinuities of where f(x) is not in the
interval defined by the left and right limits f(x−) and f(x+). See [60] on p.227 or [27] on p.17 for a comprehensive
discussion.
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3. For each ε > 0 and x ∈ R, minx∈[0,1] f(x) 6 fε(x) 6 maxx∈[0,1] f(x);

4. For each ε > 0, Var(fε) =
∫ 1

0 |f
′
ε(x)| dx;

5. limε→0 Var(fε) = Var(f).

Proof. All these facts are proved in [60]: points 1 and 2 on p.22, point 3 by elementary majorations
(see also p.22), point 4 on p.227, and point 5 on p.225.

3.1 Analysis of Sparsity

In this section we prove the following L1 estimate.

Theorem 5. Let u ∈ C0
t ([0, T ], H1

x(0, 1))∩C1
t ([0, T ], L2

x(0, 1)) solve (20) with Dirichlet or Neumann
boundary conditions, and let U1(x) =

∫ x
0 u1(y) dy. Assume log σ ∈ BV ([0, 1]), with

Var(log σ) < 1.

Let t] = 1/σmin, a lower bound on the time it takes a fully transmitted bump to travel the length of
the interval [0, 1]. For each t > 0, let n be the smallest integer such that t 6 nt]; then

‖u(·, t)‖L1 6 2
(
σmax

σmin

)3/2

·Dn · (‖u0‖L1 + ‖σU1‖L1) , (21)

with D = 1
1−Var(log σ) . If instead (20) is posed with periodic boundary conditions, then it suffices

that Var(log σ) < 2 and the same result holds with D = 1
1− 1

2
Var(log σ)

.

This result calls for a few remarks, which are best expressed after the proof is complete.

Proof. The proof is divided into five steps.
First, we approximate σ ∈ BV by an M -term piecewise constant function σpc. Assuming the

inequality holds for σpc, we then show how to pass to the limit M → ∞. Second, in order to
show the inequality for σpc, we approximate the solution u(·, t) by a piecewise interpolant on an
equispaced N -point grid. This step allows to break up the solution into localized pulses that interact
with one discontinuity of the medium at a time. Third, we recall the formulation of reflection and
transmission of pulses at interfaces of a piecewise constant medium, and simplify it using a model
in which cancellations are absent. This simplification provides an upper bound for a particular
weighted L1 norm of the wavefield. Fourth, we present a recursive bump splitting procedure
for handling the exponential number of scattering events and homogenizing the corresponding
traveltimes. Fifth, we quantify the growth of the weighted L1 norm in terms of combinations of
reflection and transmission coefficients. In particular, sums of reflection coefficients are linked back
to the total variation of log σ(x).

Let us tackle these points in order.

1. The result of adaptive L∞ approximation of BV functions by piecewise constants in one
dimension is due to Kahane and goes as follows. For a given partition {xj ; j = 0, . . . ,M} of
[0, 1], where x0 = 0 and xM = 1, we define an M -term approximant as

σpc(x) =
M∑
j=1

σjχ[xj−1,xj)(x). (22)
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Denote by ΣM the set of all such approximants, i.e., all the possible choices of a partition
{xj} and coefficients σj . Then Kahane’s inequality states that

inf
σpc∈ΣM

‖σpc − σ‖L∞ 6
Var(σ)

2M
. (23)

There exists at least one approximant σpc that reaches this bound, and that also satisfies
Var(σpc) 6 Var(σ). See the nice review article [26] by Ron DeVore for a proof.

We saw earlier in equation (19) that the solution depends continuously on σ. The same bound
holds, trivially, if we use the weaker L1 norm for u:

‖u1 − u2‖L∞t L1
x

6 C(T, u0, u1) · ‖σ1 − σ2‖L∞ ,

This inequality provides a way of passing to the limit M →∞ in (21), provided the constant
D in (21) is shown to be uniform in M .

2. Let us now decompose the initial conditions into localized bumps up to a controlled error.
Since we need u0 ∈ H1(0, 1) and u1 ∈ L2(0, 1) for consistency with the basic theory, we
can approximate both u0 and U1 =

∫ x
u1 by piecewise linear interpolants built from equis-

paced samples. The Bramble-Hilbert lemma handles the question of accuracy of polynomial
interpolants and is for instance well covered in basic texts on finite elements.5

Lemma 2. (Bramble-Hilbert) Let v ∈ H1(0, 1). For each positive integer N , we let h = 1/N
and

vh(x) =
N∑
i=0

v(ih)ϕi,h(x),

where ϕi,h are the “tent” interpolating functions which were defined as

ϕ0,N (x) = (1−Nx)χ06x6h(x), ϕN,N (x) = (1 +N(x− 1))χ1−h<x61(x),

ϕj,N (x) = (1 +N(x− jh))χ(j−1)h6x6jh(x) + (1−N(x− jh))χjh<x6(j+1)h(x),

for 1 6 j 6 N − 1. Then

‖v − vh‖H1 6 C · ‖v‖H1 · h, and ‖v − vh‖L2 6 C · ‖v‖H1 · h2.

Consider now the solution uh(·, t) of (20) with the piecewise linear interpolants u0,h and U1,h

substituted for the initial conditions u0 and U1. The growth estimate (18) provides a way to
control the discrepancy (uh − u)(·, t). With L∞t denoting L∞(0, T ), we have

‖u− uh‖L∞t L1
x

6 ‖u− uh‖L∞t H1
x

6 C(T ) · (‖u0 − u0,h‖H1 + ‖U1 − U1,h‖H1) by (18)
6 C(T ) · (‖u0‖H1 + ‖U1‖H1) · h by Lemma 2,

which tends to zero as h→ 0.
5Tent elements are only a mathematical tool in this section, they are not used in the numerical method. Also note

that we are not considering a full discretization here; only the initial conditions are modified.
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It is sufficient to argue that (21) holds for localized initial conditions of the type ϕi,h(x).
Indeed, if we let u0,h =

∑
u0,iϕi,h(x), and denote by ϕi,h(x, t) the solution of the wave

equation with ϕi,h(x) in place of u0 and 0 for U1, then

‖uh(·, t)‖L1 6

(∑
i

|u0,i|

)
· ‖ϕi,h(·, t)‖L1

6

(∑
i

|u0,i|

)
·D‖ϕi,h‖L1

6 2D · ‖u0,h‖L1 .

The last inequality is a simple L1—`1 equivalence property for piecewise affine functions on
equispaced grids. The corresponding inequality for u(x, t) and u0 then follows after taking
the limit h→ 0, provided we show that D is independent of h.

Next, we explain how to control the L1 norm of traveling bump solutions uh(·, t).

3. Equation (20) has an explicit solution when σpc is piecewise constant. Let us start by re-
hearsing the textbook case of a medium with impedance σ1 for x < x0, and σ2 6= σ1 for
x > x0. Assume that both u0 and U1 =

∫ x
u1 are supported on {x : x < 0}, and form the

linear combinations

f(x) = u0(x)− σ1U1(x), g(x) = u0(x) + σ1U1(x).

For small times, f will give rise to right-going waves and g to left-going waves. Without loss
of generality, let us assume g = 0. Then the solution is given by

u(x, t) =
{
f(x− t/σ1) +Rf(2x0 − x− t/σ1) if x 6 x0;
Tf(x0 + σ2

σ1
(x− x0 − t/σ2)) if x > x0.

(24)

In order for both u and ∂u
∂x to be continuous at x = 0, we need to impose that the reflection

and transmission coefficients be determined as

R =
1− σ2/σ1

1 + σ2/σ1
, T =

2
1 + σ2/σ1

.

Note that the situation of a wave, initially supported on {x : x > 0}, and reflecting at the
interface from the right, is entirely analogous. The reflection and transmission coefficients
would be obtained by interchanging σ1 and σ2. Let us call the situation described by (24) a
single scattering event.

In order to study the growth of
∫
|u(·, t)|dx, it is important to remove the cancellations that

occur in (24) when R < 0. For this purpose, decouple wavefields as

u1(x, t) =
{
f(x− t/σ1) if x 6 x0;
Tf(x0 + σ2

σ1
(x− x0 − t/σ2)) if x > x0.

(25)

u2(x, t) =
{
Rf(2x0 − x− t/σ1) if x 6 x0;
0 if x > x0.

(26)

We have u = u1 + u2, but the point of introducing the couple (u1, u2) is that there is one
particular weighted L1 norm that never decreases in time, namely the L1

σ3/2 norm defined as

|||v||| :=
∫ 1

0
|v(x)| (σ(x))3/2 dx, |||(v1, v2)||| := |||v1|||+ |||v2|||.
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Indeed, |||u(·, 0)||| = |||f ||| in σ1, and it is straightforward to write

|||u1(·, t)|||+ |||u2(·, t)||| =
∫ −t/σ1

−∞
|f(x)|σ3/2

1 dx+

[
|R|+

(
σ2

σ1

)1/2

T

]∫ ∞
−t/σ1

|f(x)|σ3/2
1 dx.

Since R2 + σ2
σ1
T 2 = 1 (conservation of energy), taking the square root of each term in this

convex combination yields

|R|+
(
σ2

σ1

)1/2

T > 1.

It is convenient to write T̃ =
(
σ2
σ1

)1/2
T . Upper and lower bounds for the L1

σ3/2 norm of the
couple (u1, u2) follow:

|||f ||| 6 |||u1(·, t)|||+ |||u2(·, t)||| 6
[
|R|+ T̃

]
· |||f |||. (27)

4. We can treat the more general case of a piecewise constant medium by decomposing the initial
conditions u0 and U1 into a collection of small bumps, following the preceding discussion of
a single interface. Fix a partition {xj : 0 6 j 6 M} of [0, 1] defining an M -term approximant
σpc, such that σpc(x) = σj when xj−1 < x 6 xj for j > 1. Let us choose the parameter h in
the construction of the tent functions ϕi,h small enough that scattered bumps intersect with
at most one discontinuity of σpc at a time. Since the minimum and maximum traveling speed
are 1/σmax and 1/σmin respectively, it suffices to take

h =
1
2
σmin

σmax
min

16j6M
|xj−1 − xj | (28)

Let us generically call ϕ(x) such a bump, and assume that it is supported on (xj−1, xj) for
some 0 6 j 6 M . It gives rise to left- and right-going waves.

• Consider ϕ as a right-going initial condition of the wave equation; namely, u0 = ϕ/2 and
U1 = −ϕ/(2σj). Choose a time t∗ large enough that the first term ϕ(x− t∗/σj) vanishes
in (24), but small enough that no other scattering event than the one at xj has taken
place yet. Then the solution takes the form u = u1 + u2, with

u1(x, t∗) = [Rj,rϕ](x+ t∗/σj), u2(x, t∗) = [Tj,rϕ](x− t∗/σj+1), (29)

where we have introduced reflection and transmission operators

[Rj,rϕ](x) = Rj,rϕ(2xj − x), [Tj,rϕ](x) = Tj,rϕ(xj +
σj+1

σj
(x− xj)),

with
Rj,r =

1− σj+1/σj
1 + σj+1/σj

, Tj,r =
2

1 + σj+1/σj
.

The subscript r refers to the fact that the pulse ϕ came from the right.

• If instead ϕ had been chosen to correspond to a left-going bump in (xj−1, xj), then we
would have had

u1(x, t∗) = [Rj,`ϕ](x− t∗/σj), u2(x, t∗) = [Tj,rϕ](x+ t∗/σj+1),
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where now

[Rj,`ϕ](x) = Rj,`ϕ(2xj − x), [Tj,`ϕ](x) = Tj,`ϕ(xj +
σj−1

σj
(x− xj)),

and
Rj,` =

1− σj−1/σj
1 + σj−1/σj

, Tj,` =
2

1 + σj−1/σj
.

In both cases, the original bump disappears at t = t∗ and give rise to a couple (u1, u2). In
the regime of multiple scattering when t > t∗, bumps are recursively split and removed, using
the above characterization. For instance, at time t∗, we can restart the wave equation from
the left-going bump [Rj,rϕ](x+ t∗/σj) and submit it to scattering at xj−1; and independently
consider the right-going bump [Tj,rϕ](x− t∗/σj+1) and its scattering at xj+1. Applying this
procedure recursively after each scattering event, a binary tree in space-time is created, whose
nodes are the scattering events and whose edges are the broken bicharacteristics.

We therefore consider a collection of wavefields, i.e., an element u ∈ B(L1
σ3/2) where B is

an unordered set of bumps, equipped with the norm |||u||| =
∑

b |||ub|||, and such that the
solution of the wave equation is recovered as u =

∑
b ub. Obviously, |||u||| 6 |||u|||.

The upper and lower bounds (27) on the L1
σ3/2 norm of a singly scattered wavefield can be

applied recursively to address the multiple scattering situation. Every reflected bump picks
up a factor Rj,` or Rj,r as appropriate, and similarly every transmitted bump picks up a
factor T̃j,r =

√
σj+1/σj Tj,r or T̃j,` =

√
σj−1/σj Tj,` as appropriate.

For fixed time t, evaluating the number of scatterings that have taken place is an overwhelming
combinatorial task. Instead, let t] = σmin = minj σj be a lower bound on the total time it
takes a nonreflecting bump to travel the interval (0, 1).

Consider now the case of periodic boundary conditions. Dirichlet and Neumann boundary
conditions will be treated in point 6 below. Define the extended medium

σext(x) =


σpc(0) if x 6 −1;
σpc(x+ 1) if −1 < x 6 0;
σpc(x) if 0 < x 6 1;
σpc(x− 1) if 1 < x 6 2;
σpc(1) if x > 2.

With the same initial conditions supported inside [0, 1], any scattering that takes place in σpc

within the time interval [0, t]] would also take place in σext within the same time interval.
Since by equation (27) the L1

σ3/2 norm |||u(·, t)||| always increases during and after scattering,
it is safe to bound |||u(·, t)||| for t 6 t] by the L1

σ3/2 norm of the wavefield in the medium σext

for times t > t], in particular t → ∞. (This reasoning is why we needed the lower bound in
(27), hence the introduction of the special weighted norm.)

5. Finally, let us now bound the L1
σ3/2 norm of the recursively split wavefield u in the medium

σext, and show that it converges to a bounded limit when t→∞.

Again, assume without loss of generality that the initial bump ϕ is right-going, and supported
in some interval [xk−1, xk] ⊂ [0, 1]. We extend the partition {xj} of [0, 1] into the partition
{xj − 1} ∪ {xj} ∪ {xj + 1} of [−1, 2], indexed by the single parameter −M + 1 6 j 6 2M in
the obvious way.

We can identify various contributions to the bound on |||u|||:

21



• The fully transmitted bump, with magnitude
∏2M−1
j=k T̃j,r 6 1.

• The bumps undergoing one reflection, with combined magnitude less than

k+M−1∑
i1=k

(
∏

k6j1<i1

T̃j1,r) |Ri1,`| (
∏
j2<i1

T̃j2,`) 6
M−1∑
i=0

Ri,`.

• The bumps undergoing two reflections, with combined magnitude less than

k+M−1∑
i1=k

i1−1∑
i2=i1−M

(
∏

k6j1<i1

T̃j1,r) |Ri1,`| (
∏
j2<i1

T̃j2,`) |Ri2,r| (
∏
j3>i2

T̃j3,r) 6
M−1∑
i=0

|Ri,`| ·
M−1∑
i=0

|Ri,r|;

etc.

• The bumps undergoing 2n reflections, with combined magnitude less than(
M−1∑
i=0

|Ri,`|

)n
·

(
M−1∑
i=0

|Ri,r|

)n
.

Sums of reflection coefficients can be related to the total variation of log σ; by making use of
the identity

|1− x|
|1 + x|

6
1
2
| log x|, x > 0,

we easily get
M−1∑
i=0

|Ri,`| 6
1
2

M−1∑
i=0

| log σj − log σj−1| 6
1
2

Var(log σ).

The same bound holds for
∑
|Ri,r|. The bound for |||u||| is a geometric series with sufficient

convergence criterion
Var(log σ) < 2,

and value
|||u||| 6 1

1− 1
2Var(log σ)

|||ϕ|||.

For times beyond t], of the form t 6 nt] for some integer n, this construction can be iterated
and the factor [1− 1

2Var(log σ)]−1 needs to be put to the power n.

We have taken ϕ to be a right-going bump so far, but if instead we consider general initial
conditions u0 and U1 over the same support, then we should form two one-way bumps as
ϕ± = u0±σjU1 in the interval [xj−1, xj ]. We can now 1) go back to u through |||u||| 6 |||u|||,
2) pass to the limits M → ∞, h → 0, and 3) use the equivalence of L1 and L1

σ3/2 norms to
gather the final bound as

‖u(·, t)‖L1 6
2 (σmax/σmin)3/2(
1− 1

2Var(log σ)
)n (‖u0‖L1 + ‖σU1‖L1), when t 6 nt].

6. We now return to the case of Dirichlet or Neumann boundary conditions. Bumps meeting
x = 0 or x = 1 reflect back inside [0, 1] with no modification in the L1 or L1

σ3/2 norm.
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The extended medium giving rise to equivalent dynamics should then be defined by mirror
extension instead of periodization, as

σext(x) =


σpc(1) if x 6 −1;
σpc(−x) if −1 < x 6 0;
σpc(x) if 0 < x 6 1;
σpc(2− x) if 1 < x 6 2;
σpc(0) if x > 2.

The reasoning proceeds as previously in this extended medium. The discontinuities of σext(x)
are the points {x̃j ;−M + 1 6 j 6 2M} of [−1, 2] defined as the proper reindexing of {−xj}∪
{xj} ∪ {2− xj}.
If we define R̃j,` and R̃j,r as the reflection coefficients at x = x̃j , −M + 1 6 j 6 2M , then
the study of combined amplitudes of reflected bumps involves the quantities

k+M−1∑
i=k

R̃i,`, and
k+M−1∑
i=k

R̃i,r.

Because the extension is now mirror instead of periodic, each of these sums may involve
a given reflection coefficient, Rj,` or Rj,r, twice within a span of length M of the index j.
Therefore we can only bound each sum individually by Var(log σ) instead of 1

2Var(log σ) as
previously. The reasoning continues exactly like before, with this loss of a factor 2.

Let us make a few remarks.

• For the application to the sparse recovery problem, the weighted L1
σ norm is used instead.

In the last steps of the proof we can use the equivalence of L1
σ3/2 and L1

σ norms to slightly
modify the estimate into∫ 1

0
σ(x)|u(x, t)| dx 6 2

(
σmax

σmin

)1/2

·Dn ·
(∫ 1

0
σ(x)|u0(x)| dx+

∫ 1

0
σ2(x)|U1(x)| dx

)
. (30)

• The constant in the estimate (21) depends on time only through the maximum number of
rotations around the periodized interval [0, 1]. That this constant does not tend to one as
t → 0+ is the expected behavior, because a single scattering event whereby a bump splits
into two or more bumps can happen arbitrarily early.

• On the other hand we do not known if the condition Var(log σ) < 1 (Dirichlet or Neumann),
or Var(log σ) < 2 (periodic boundary condition) is essential for an L1 estimate to hold.
Any proof argument that would attempt at removing a condition of this kind—or explain
its relevance—would need to account for the combinatorics of destructive interfererence that
occurs in regimes of multiple scattering. This question may offer a clue into localization
phenomena.

• The reader may wonder why we have only included initial conditions and no forcing to
the wave equation, as is customary in Strichartz estimates. The presence of an additional
forcing F (x, t) in equation (1), however, would spoil sparsity for most choices of F . Only
well-chosen forcings, properly localized and polarized along bicharacteristics relative to the
initial conditions, have any hope of preserving the peaky character of a solution to the wave
equation—otherwise energy would be introduced and distributed among too large a set of
bicharacteristics.
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• Lastly, an estimate such as (21) would not generally hold for media that are not of bounded
variation. This phenomenon can be illustrated in the small ε limit of a slab of random
acoustic medium with correlation length O(ε2), slab width O(1), and impinging pulse width
O(ε). This situation is considered in Chapter 9 of [37], where it is also shown that the intensity
of the reflected wave decays like 1/t2 in expectation, hence 1/t for the wave amplitude. The
corresponding picture at fixed t is that of a heavy-tailed wave that decays like 1/x—hence
does not belong to L1.

3.2 Analysis of Incoherence

In this section we prove a result of extension, or incoherence of the eigenfunctions of the operator
σ−2(x)d2/dx2 on the interval [0, 1], with Dirichlet (u(0) = u(1) = 0) or Neumann (u′(0) = u′(1) = 0)
boundary conditions. Recall that the natural inner product in this context is

〈f, g〉 =
∫ 1

0
f(x)g(x)σ2(x)dx,

with corresponding norm
‖f‖L2

σ2
=
√
〈f, f〉.

Theorem 6. Let log σ ∈ BV ([0, 1]), and let vω(x) obey v′′ω(x) = −ω2σ2(x)vω(x) on [0, 1] with
Dirichlet or Neumann boundary conditions. Then

‖σvω‖L∞ 6
√

2 exp (Var(log σ)) · ‖vω‖L2
σ2
. (31)

The point of this result is that the quantity exp (Var(log σ)) does not depend on ω.

Proof. Let us first discuss existence and smoothness of vω(x) in [0, 1]. The operator σ−2(x) d2

dx2

with Dirichlet or Neumann boundary conditions is not only self-adjoint but also negative semi-
definite with respect to the weighted inner product 〈·, ·〉L2

σ2
. Hence by spectral theory there exists

a sequence of eigenvalues 0 6 λ1 < λ2 < . . . and corresponding eigenvectors in L2
σ2 , orthonormal

for the same inner product. (Basic material on Sturm-Liouville equations and spectral theory in
Hilbert spaces can be found in [23].) We denote a generic eigenvalue as λ = ω2, and write

v′′ω(x) = −ω2σ2(x)vω(x).

This equation in turn implies that v′′ω ∈ L2
σ2(0, 1), hence also belongs to L2(0, 1), i.e. vω is in the

Sobolev space H2(0, 1). Iterating this regularity argument one more time, we can further conclude
that vω is in the space of functions whose second derivative is in BV .

Let us now fix ω, remove it as a subscript for notational convenience, and consider the quantity

I(x) = |v(x)|2 +
|v′(x)|2

ω2σ2(x)
.

Take σ ∈ C1 for the time being, and notice that a few terms cancel out in the expression of I ′(x);

I ′(x) = −2(log σ(x))′
|v′(x)|2

ω2σ2(x)
.

We can now bound
I ′(x) > −2|(log σ(x))′| I(x),
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and use Gronwall’s inequality to obtain a useful intermediate result on the decay of I(x),

I(x) > I(0) exp
(
−2
∫ x

0
|(log σ(y))′| dy

)
. (32)

In general, σ(x) is only of bounded variation, but the inequality (32) remains true if written as

I(x) > I(0) exp (−2Varx(log σ)) , (33)

(In fact, a slitghly stronger result with the positive and negative variations of log(σ) holds.) For
conciseness we justify this result in the Appendix.

The quantity σ2(x)I(x) is a continous function over [0, 1], therefore absolutely continuous, and
reaches its maximum at some point x∗. No special role is played by the origin in the estimate (33),
hence, for all x ∈ [0, 1], we have

max
[0,1]
|σ(x)v(x)|2 6 σ2(x∗)I(x∗) 6 exp (2Var(log σ))σ2(x)I(x).

Integrate over [0, 1];
‖σv‖2∞ 6 exp (2Var(log σ)) ‖I‖2L2

σ2
.

Now ∫ 1

0
σ2(x)I(x) dx =

∫ 1

0
σ2(x)|v(x)|2 dx+

∫ 1

0

|v′(x)|2

ω2
dx.

It is easy to verify that both terms in the right-hand side of the above equation are in fact equal
to each other, by multiplying the equation v′′ + ω2σ2v = 0 with v, integrating by parts over [0, 1],
and using the boundary conditions. Therefore

‖σv‖2∞ 6 2 exp (2Var(log σ)) ‖v‖2L2
σ2
,

which is the desired result.

A few remarks on related work and extensions are in order.

• The argument can be slightly modified to obtain instead

‖vω‖∞ 6
√

2 exp (Var(log σ))
‖vω‖L2

σ2

‖1‖L2
σ2

.

• The quantity I(x) that appears in the proof is, morally, the time-harmonic counterpart of the
sideways energy E(x) =

∫ T
0

[
σ2(x)|∂u∂t |

2 + |∂u∂x |
2
]
dt, where u would now solve (20). Sideways

refers to the fact that integration is carried out in t instead of x. This trick of interchanging
t and x while keeping the nature of the equation unchanged is only available in one spatial
dimension. It was recognized in the 1980s by W. Symes that “sideways energy estimates”
allowed to prove transparency of waves in one-dimensional BV media [56, 40], a result very
close in spirit to the eigenfunction result presented here. Independently, E. Zuazua [61], as
well as F. Conrad, J. Leblond, and J.P. Marmorat [21], used similar techniques for proving
controllability and observability results for waves in one-dimensional BV media. See [62] for
a nice review.
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• Theorem 6 is sharp in the sense that for each 0 < s < 1, there exists a medium σ(x) in the
Hölder space Cs([0, 1]) for which there exists a sequence of eigenfunctions exponentially and
arbitrarily localized around, say, the origin. Notice the embedding C1 ⊂ BV , but Cs ( BV
for s < 1. The construction is due to C. Castro and E. Zuazua, see [16]. In our setting, it
means that (31) cannot hold for such σ(x), because the constant in the right-hand side would
have to depend on ω.

• Related results in dimension two and higher, using local norms on manifolds with metric of
limited differentiability, e.g. C1,1, can be found in [52, 53, 39]. Interestingly, the constant
in front of the L2

loc norm in general grows like a fractional power law in λ, allowing the
possibility of somewhat localized eigenfunctions in dimensions greater than two, typically
near the boundaries of the domain.

• Physically, one may relate the total variation of log σ to a notion of localization length L, for
instance as the largest x such that Varx(log σ) is less than some prescribed constant C. Then
L dictates the decay rate of eigenfunctions, much in the spirit of Lyapunov exponents for the
study of localization for ergodic Schrödinger operators.

3.3 Analysis of Eigenvalue Gaps

This section contains the eigenvalue gap result. Notice that it is the square root of the eigen-
values which obey a uniform gap estimate.

Theorem 7. Let log σ ∈ BV ([0, 1]) with Var(log σ) < π. Let λj = −ω2
j , j = 1, 2, be two distinct

eigenvalues of σ−2(x) d2/dx2 on [0, 1] with Dirichlet or Neumann boundary conditions. Then

π −Var(log σ)∫ 1
0 σ(x) dx

6 |ω1 − ω2| 6
π + Var(log σ)∫ 1

0 σ(x) dx
. (34)

Proof. Consider a generic eigenvalue λ = −ω2 with eigenfunction u(x), and assume that σ ∈
C1([0, 1]). This restriction will be lifted by a proper limiting argument.

The quantity I(x) introduced in the proof of Theorem 6, should be seen as the square of the
radius r(x), in a polar decomposition

u′(x) = ωσ(x)r(x) cos θ(x), u(x) = r(x) sin θ(x).

If u′ 6= 0, then tan θ = ωσ u
u′ ; and if u = 0, then cot θ = 1

ωσ
u′

u . (We have already seen that u and u′

cannot simultaneously vanish since r2(x) = I(x) > 0 everywhere.) From either of those relations
one readily obtains

θ′(x) = (log σ(x))′ sin θ(x) cos θ(x) + ωσ(x). (35)

It is interesting to notice that the radius r(x) does not feed back into this first-order equation for
θ(x). Note also that the second term in the above equation quickly dominates as ω → ∞; if the
nonlinear term is neglected we get back the WKB approximation. The boundary conditions on θ
are:

Dirichlet: θ(0) = mπ, θ(1) = nπ;

Neumann: θ(0) =
π

2
+mπ, θ(1) =

π

2
+ nπ.

where m and n are arbitrary integers. Without loss of generality, set m = 0. There is also a
symmetry under sign reversal of both θ and ω, so we may restrict n > 0.
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Equation (35) with fixed θ(0) is an evolution problem whose solution is unique and depends
continuously on ω. Moreover, the solution is strictly increasing in ω, for every x, as can be shown
from differentiating (35) in ω and solving for dθ/dω using Duhamel’s formula.

The successive values of ω that correspond to eigenvalues λ = −ω2 are therefore determined
by the (quantization) condition that θ(1) = nπ for some n > 0 (Dirichlet), or θ(1) = π/2 + nπ for
some n > 0 (Neumann). By monotonicity of θ(1) in ω, there is in fact a bijective correspondence
between n and ω.

As a result, two distinct eigenvalues λj = −ω2
j , j = 1, 2, necessarily correspond to a phase shift

of at least π at x = 1. Set θj(x) for the corresponding phases. Then, by (35),

(θ1 − θ2)′(x) = (log σ)′(x)[sin θ1 cos θ1 − sin θ2 cos θ2] + (ω1 − ω2)σ(x).

Integrate in x and use the boundary conditions to find

nπ =
∫ 1

0
(log σ)′(x)[sin θ1 cos θ1 − sin θ2 cos θ2]dx+ (ω1 − ω2)

∫ 1

0
σ(x)dx, n 6= 0.

The factor in square brackets is bounded by 1 in magnitude, therefore

|ω1 − ω2| >
1∫ 1

0 σ(x)dx
(π −

∫ 1

0
|(log σ)′(x)|dx),

and also

|ω1 − ω2| 6
1∫ 1

0 σ(x)dx
(π +

∫ 1

0
|(log σ)′(x)|dx),

This proves the theorem in the case when σ ∈ C1([0, 1]). A standard limiting argument shows
that the properly modified conclusion holds when σ ∈ BV ([0, 1]); we leave this justification to the
Appendix.

A few remarks:

• The polar decomposition used in the proof of Theorem 7 is a variant of the so-called Prüfer
transformation [1], which is more often written as u′(x) = r(x) cos θ(x), u(x) = r(x) sin θ(x).
This simpler form does not appear to be appropriate in our context, however. Notice that
such polar decompositions are a central tool in the study of waves in random media [37].

• It is perhaps interesting to notice that Var(log σ) < π is a sufficient condition identified by
Atkinson in [1] for the convergence of the Bremmer series for the Sturm-Liouville problem.

4 Algorithms

This section discusses some of the finer points of the implementation. Basic discretization issues
were exposed in Section 2.2.
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4.1 Extraction of the Eigenvectors

The first part of the algorithm consists in extracting a random set of eigenvectors {ṽω̃}ω̃ of
the discretized operator L = Σ−2L where Σ = diagj(σ[j]). The discretized Laplacian L over R is
computed spectrally

L̂v[m] = −4π2m2v̂[m]

where m ∈ {−N/2 + 1, . . . , N/2} indexes the frequencies of the discrete Fourier transform. Fourier
transforms are computed in O(N logN) operation with the FFT.

Since we are interested in extracting only a few eigenvectors chosen at random, we use an
iterative method [2] that parallelizes trivially on multiple processors. Each processor computes and
stores independently from the others a few eigenvectors using an iterative method.

The simplest way to compute an eigenvector ṽω̃ whose eigenvalue −ω̃2 is closest to a given −ω̃2
0

is to compute iterative inverse powers

ṽ
(k+1)
ω̃ = (L+ ω̃2

0Id)−1ṽ
(k)
ω̃ ,

with an adequate starting guess ṽ(0)
ω̃ , typically white noise. In practice we use a variant of this

power iteration called the restarted Arnoldi method, and coded in Matlab’s eigs command. At
each iteration we approximately solve the linear system (L+ ω̃2

0Id)ṽ(k+1)
ω̃ = ṽ

(k)
ω̃ with a few steps of

stabilized bi-conjugate gradient [5]. Recent work [34] suggests that a shift in the reverse direction
L − ω̃2

0Id or a complex shift L+ iω̃2
0Id are good preconditionners for this linear system resolution.

Such preconditoners are applied efficiently using multigrid, or alternatively and as used in this
paper, using discrete symbol calculus. In this framework, it is the whole symbol of the operator
(L − ω̃2

0Id)−1 which is precomputed in compressed form, and then applied iteratively to functions
on demand. The resulting preconditioners are quite competitive. See [24] for more information.

Each shift ω̃2
0 should be chosen according to an estimate of the true (but unknown) eigenvalues

repartition to sample as uniformly as possible the set of eigenvectors of L. The eigenvalues of
the discrete Laplacian in a constant medium σ[j] = σ0 are {−ω2

max(2m/N)2}N/2m=−N/2+1 where
ω2

max = π2N2/σ2
0. Treating the general case as a perturbation of this constant setting leads draw

ω̃0 uniformly at random in [0, ωmax] where ωmax defined as the maximum eigenvalue of L. The
value of ωmax is readily available and computed using power iterations on L. We have seen in
Section 3.3 that the departure from uniformity is under control when the medium has a reasonable
total variation. We also explained that the sampling should be without replacement: in practice
the implementation of “replacement” carefully accounts for the multiplicity two of each eigenspace
in the case of periodic boundary conditions.

4.2 Iterative Thresholding for `1 Minimization

At the core of the compressive wave computation algorithm is the resolution of the optimization
problem (14) involving the `1 norm. We introduce the operator Φ : RN 7→ RΩ such that

Φu[ω̃] =
∑
j

u[j]ṽω̃[j]

where ω̃ ∈ Ω indexes K = |Ω| eigenvectors {ṽω̃}ω̃ of the discretized Laplacian and Σ = diagj(σ[j]).
Discarding the time dependency, the `1 optimization (14) is re-written in Lagrangian form as

min
u

1
2
||ΦΣ2u− c̃||2 + λ

∑
j

σ[j]|u[j]|. (36)
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The Lagrangian parameter λ should be set so that ||ΦΣ2u− c̃|| 6 ε.
As described in Section 2.2, ε account for the discretization error, and it can also reflects errors

in computation of the eigenvectors. This quantity can be difficult to estimate precisely, and it can
be slightly over-estimated, which increases the sparsity of the computed approximation.

Iterative algorithms solves the minimization (36) by sequentially applying a gradient descent
step to minimize ||ΦΣ2u− c̃|| and a soft thresholding to impose that the solution has a low weighted
`1 norm

∑
j σ[j]|u[j]|. This algorithm was proposed independently by several researcher, see for

instance [22, 20, 35], and its convergence is proved in [22, 20].
The steps of the algorithm are detailed in Table 1. They correspond to the application of the

iterative thresholding algorithm to compute the iterates Σu(k) with the measurement matrix ΦΣ.
Since this matrix satisfies ||ΦΣu|| 6 ||u|| by Plancherel, these iterates converge to a minimizer of
(36).

Since the correspondence between ε and λ is a priori unknown, λ is modified iteratively at step
4 of the algorithm so that the residual error converges to ε, as detailed in [17].

An important feature of the iterative algorithm detailed in Table 1 is that it parallelizes nicely
on clusters where the set of eigenvectors {vω̃}ω̃∈Ω̃ are distributed among several nodes. In this case,
the transposed operator Φ∗ is pre-computed on the set of nodes, and the application of ΦΣ2 and
Σ2Φ∗ is done in parallel during the iterations.

The iterative thresholding algorithm presented in Table 1 might not be the fastest way to solve
(36). Recent contributions to sparse optimization include for instance primal-dual schemes [59],
gradient pursuit [7], gradient projection [36], fixed point continuation [31], gradient methods [46],
Bregman iterations [58] and greedy pursuits [45]. These methods could potentially improve the
speed of our algorithm, although it is still unclear which method should be preferred in practice.

Another avenue for improvement is the replacement of the `1 norm by non-convex functionals
that favor more strongly the sparsity of the solution. Non-convex optimization methods such as
FOCUSS [38], re-weighted `1 [15] or morphological component analysis with hard thresholding
[54] can lead to a sub-optimal local minimum, but seem to improve over `1 minimization in some
practical situations.
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1. Initialization: set u(0) = 0 and k = 0.

2. Update of the solution: compute a step of descent of ||ΦΣ2u− c̃||2

ū(k) = u(k) + Φ∗
(
c̃− ΦΣ2u(k)

)
,

3. Minimize `1 norm: threshold the current update

∀ j, u(k+1)[j] = Sλ/σ[j](ū
(k)[j]),

where the soft thresholding operator is defined as

Sλ(α) =
{

0 if |α| < λ,
α− sign(α)λ otherwise.

4. Update the Lagrange multiplier: set

λ← λ
ε

||ΦΣ2u− c̃||

5. Stop: while ||u(k+1) − u(k)|| > tol, set k ← k + 1 and go back to 2.

Table 1: Iterative thresholding algorithm to solve (36).

4.3 Sparsity Enhancement

The success of the compressive method for wave propagation is directly linked to the sparsity
of the initial conditions u0 and u1. To enhance the performance for a fixed set of eigenvectors,
the initial data can be decomposed as u0 =

∑`−1
`=0 u

k
0 where each of the L components {u`0}` is

sufficiently sparse, and similarly for u1. The algorithm is then performed L times with each initial
condition u`0 and the solution is then recomposed by linearity. It would be interesting to quantify
the slight loss in the probability of success since L simulations are now required to be performed
accurately, using the same set of eigenvectors.

Since the solution might become less sparse with time t increasing, one can also split the time
domain into intervals [0, t] =

⋃
i[ti, ti+1], over each of which the loss of sparsity is under control.

The algorithm is restarted over each interval [ti, ti+1] using a decomposition of the wavefields at
time ti into a well chosen number L = Lti of components to generate sparse new initial conditions.

5 Numerical Experiments

5.1 Compressive Propagation Experiments

We perform simulations on a 1D grid of N = 2048 points, with impedance σ(x) of various
smoothness and contrast σmax/σmin. The result of the compressive wave computation is an ap-
proximate discrete solution {ũ[j](t)}N−1

j=0 at a fixed time step t of the exact solution {u[j](t)}j of
the discretized wave equation.

The performance of the algorithm is evaluated using the `2 recovery error in space and at several
time steps ti = Ti/nt for i = 0, . . . , nt−1 uniformly distributed in [0, T ], where nt = 100. The final
time is evaluated such that

∫ T
0 σ = 1, so that the initial spike at t = 0 propagates over the whole
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domain. This error is averaged among a large number of random sets Ω ∈ ΩK of K eigenvectors

Err(σ,K/N)2 =
1

Nnt|ΩK | ||u||
∑

Ω∈ΩK

nt−1∑
i=0

N−1∑
j=0

|u[j](ti)− ũ[j](ti)|2. (37)

Each set Ω ∈ ΩK is drawn at random using the procedure described in Section 4.1.
This error depends on the sub-sampling factor K/N , where K = |Ω| is the number of computed

eigenvectors, and on the impedance σ of the medium. Numerical evaluation of the decay of Err with
K are performed for two toy models of acoustic media that could be relevant in seismic settings:
smooth σ with an increasing number of oscillations, and piecewise smooth σ with an increasing
number of discontinuities. For each test, the initial condition u0 is a narrow gaussian bump of
standard deviation 7/N .

Smooth oscillating medium. A uniformly smooth impedance σγ parameterized by the number
of oscillations γ ∈ [1, 20] is defined as

σγ [j] =
σmax + 1

2
+
σmax − 1

2
(sin(2πγj/N) + 3) . (38)

The contrast σmax/σmin = σmax ∈ [1, 10] is also increased linearly with the complexity γ of the
medium, according to 1 + 9

19(γ − 1).
Figure 1 shows how the recovery error Err(σγ ,K/N) scales with complexity γ of the medium

and the number of eigenvectors K. For media with moderate complexity, one can compute an
accurate solution with N/10 to N/5 eigenvectors.

Piecewise smooth medium. Jump discontinuities in the impedance σ reflect the propagating
spikes and thus deteriorate the sparsity of the solution when t increases, as shown on Figure 2,
top row. Figure 2 shows that compressive wave computation is able to recover the position of the
spikes with roughly N/5 to N/4 eigenvectors.

To quantify more precisely the recovery performance, we consider a family of piecewise smooth
media σγ parameterized by its number of step discontinuities γ ∈ [1, 20]. The contrast σmax/σmin ∈
[1, 10] is also increased linearly with the complexity γ of the medium. The discontinuities are
uniformly spread over the spatial domain [0, 1]. The piecewise smooth impedance σγ is slightly
regularized by a convolution against a Gaussian kernel of standard deviation 5/N . This tends to
deteriorate the sparsity of the solution when t increases, but helps to avoid numerical dispersion
due to the discretization of the Laplacian. Figure 3 shows how the recovery error Err(σγ ,K/N)
scales with complexity of the medium and the number K of eigenvectors.

5.2 Compressive Reverse-Time Migration

In this example, we consider an idealized version of the inverse problem of reflection seismol-
ogy, where wavefield measurements at receivers are used to recover some features of the unknown
impedance σ(x). Our aim is to show that compressive wave computation offers significant mem-
ory savings in the implementation of a specific adjoint-state formulation that we call snapshot
reverse-time migration.

Review of 1D reverse-time migration. We will assume a one-dimensional setup as in the rest
of this paper, i.e.,

σ2(x)
∂2u

∂t2
− ∂u

∂x2
= 0, (39)
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Figure 1: Compressive wave propagation in a smooth medium. Top row: recovery error decay
log10(Err(σγ ,K/N)) as a function of the sub-sampling K/N for various complexity γ of the medium.
Each black dots corresponds to the error of a given random set Ω (the red curve is the result of
the averaging among these sets). Bottom row: 2D display of the error log10(Err(σγ ,K/N)) as a
function of both K/N (horizontal axis) and γ (vertical axis).

with a known localized initial condition u(x, 0) = u0(x), ∂u/∂t(x, 0) = u1(x), and over a domain
sufficiently large that the choice of boundary conditions does not matter. The x coordinate plays
the role of depth. As in classical treatments of reflection seismology, the squared impedance is
perturbed about a smooth, known reference medium σ2

0, as

σ2(x) = σ2
0(x) + r(x),

where the high-frequency perturbation r(x) has the interpretation of “reflectors”. The wave equa-
tion is then linearized as

σ2
0(x)

∂2u

∂t2
− ∂u

∂x2
= −r(x)

∂2uinc
∂t2

, (40)

where the incoming field uinc solves the wave equation in the unperturbed medium σ2
0. An im-

portant part of the seismic inversion problem—the “linearized problem”—is to recover r(x) from
some partial knowledge of u(x, t), interpreted as solving (40). We will assume the availability of
snapshot data, i.e., the value of u and ∂u/∂t at some fixed time T ,

(d1(x), d2(x)) = (u(x, T ),
∂u

∂t
(x, T )),
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Figure 2: Examples of approximate solution ũ[j](t) for a piecewise smooth medium.

possibly restricted in space to a region where the waves are reflected, by opposition to transmitted.
We then let F [σ2

0] for the forward, or modeling operator, to be inverted:(
d1

d2

)
= F [σ2

0]r. (41)

A more realistic seismic setup would be to assume the knowledge of u(0, t) for positive t, but
the step of going from (d1, d2) to u(0, t), or vice-versa, is a depth-to-time conversion that should
present little numerical difficulty. While assuming trace data u(0, t) would give rise to an adjoint-
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Figure 3: Compressive wave propagation in a piecewise smooth medium.

state wave equation with a right-hand side, working with snapshot data has the advantage of casting
the adjoint-state equation as a final-value problem without right-hand side.

More precisely, a simple argument of integration by parts (reproduced in the Appendix) shows
that the operator F in (41) is transposed as

F ∗[σ2
0]
(
d1

d2

)
= −

∫ T

0
q(x, t)

∂2uinc
∂t2

(x, t)dt, (42)

where q solves the adjoint-state equation

σ2
0(x)

∂2q

∂t2
− ∂q

∂x2
= 0, (43)

with final condition

q(x, T ) =
1

σ2
0(x)

d2(x),
∂q

∂t
(x, T ) =

−1
σ2

0(x)
d1(x).

(notice the swap of d1 and d2, and the minus sign.)
In nice setups, the action of F ∗[σ2

0], or F ∗ for short, called imaging operator, is kinematically
equivalent to that of the inverse F−1 in the sense that the singularities of r are in the same location

as those of F ∗
(
d1

d2

)
. In other words the normal operator F ∗F is pseudodifferential. We also show

in the Appendix that F ∗ is the negative Frechet derivative of a misfit functional for snapshot data,
with respect to the medium σ2, in the tradition of adjoint-state methods [48]. Hence applying the
imaging operator is a useful component of solving the full inverse problem.
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A standard timestepping method is adequate to compute (42); the adjoint wave equation is first
solved until time t = 0, then both u and q are evolved together by stepping forward in time and
accumulating terms in the quadrature of (42). However, this approach is not without problems:

• The CFL condition restricting the time step for solving the wave equation is typically smaller
than the time gridding needed for computing an accurate quadrature of (42). The potential
of being able to perform larger, upscaled time steps is obvious.

• The backward-then-forward technique just discussed assumes time-reversibility of the equa-
tion in q (or conversely of the equation in u), a condition that is not always met in practice,
notably when the wave equation comes with either absorbing boundary conditions or an ad-
ditional viscoelastic term. For non-reversible equations, computation of (42) comes with a
big memory overhead due to the fact that one equation is solved from t = 0 to T , while
the other one is solved from t = T to 0. One naive solution is to store the whole evolution;
a more sophisticated approach involves using checkpoints [57], where memory is traded for
CPU time, but still does not come close to the “working storage” in the time-reversible case.
In this context, it would be doubly interesting to avoid or minimize the penalty associated
with time stepping.

Numerical validation of compressive reverse time migration. As a proof of concept, we
now show how to perform snapshot reverse-time migration (RTM) without timestepping in the case
of the reversible wave equation, on a 1D grid of N = 2048 points. The approach here is simply to
compute independently each term of a quadrature of (42) using the compressive wave algorithm
for u and q. We leave to a future project the question of dealing with 2D and 3D non-reversible
examples, but we are confident that most of the ideas will carry through.

The smooth medium σ2
0 is defined as in (38) with γ = 1 (one oscillation) and a contrast

σ2
max/σ

2
min = 1.4. The reflectors r(x) is a sum of two Gaussian bumps of standard deviation 7/N

and amplitude respectively −0.6 and 0.6, see figure 4, top row.
We first compute the input d1 and d2 of the RTM by computing the solution u(x, t) of the

wave equation in the perturbed medium σ2 = σ2
0 + r, and then evaluate d1(x) = u(x, T ) and

d2(x) = ∂u
∂t (x, T ). The initial condition u(x, 0) is a second derivative of a Gaussian of standard

deviation 7/N . This simulates seismic observations at time t = T , see figure 4, top row.
The algorithm proceeds by computing approximations q̃(x, ti) and ũinc(x, ti) of the forward and

backward propagations q and uinc at Nt = N/10 equispaced times {ti}Nt−1
i=0 . These approximations

are computed for each ti independently, without time stepping, by using the compressive algorithm
with a small set of K < N eigenvectors. The RTM estimation of the residual r(x) is obtained by
discretizing (42)

r̃(x) = − 1
nt

nt−1∑
i=0

q̃(x, ti)
∂2ũinc
∂t2

(x, ti),

where the derivative is computed using finite differences.
The success of compressive RTM computations is measured using an error measure Err(K/N)

obtained similarly to (37) by averaging over several randomizations for the sets Ω ∈ ΩK of |Ω| = K
eigenvectors

Err(K/N)2 =
1

N |ΩK | ||u||
∑

Ω∈ΩK

N−1∑
j=0

|r̃0[j]− r̃[j]|2

where r̃0 is the RTM estimation obtained with the full set of N eigenvectors.

35



Figure 4, bottom row, displays the decay of Err(K/N) with the number of eigenvectors used for
the compressive computations. This shows that roughly 20% of eigenvectors are needed to reach 1
digit of accuracy, and 30% to reach 2 digits of accuracy.

Note that this simple RTM method cannot be expected to recover the original r(x) accurately,
mainly because we have not undone the action of the normal operator F ∗F in the least-square
treatment of the linearized problem.

Also note that the compressive algorithm was run “as is”, without any decomposition of the
initial condition, or split of the time interval over which each simulation is run, as in Section 4.3.
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Figure 4: Top row: perturbed speed σ2 and input d1 of the RTM computations. Middle row:
reference solution rRTM and approximated solution r̃RTM for K/N = 0.2. Bottom row: recovery
error decay log10(Err(K/N)) as a function of the sub-sampling K/N . Each black dot corresponds
to the error of a given random set Ω (the red curve is the result of the averaging among these sets).
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6 Discussion

A number of questions still need to be addressed, from both a mathematical and a practical
viewpoints.

• Number of eigenvectors. While it is easy to check the accuracy of a compressive solver relative
to a standard scheme, an important question is a posteriori validation without comparison
to an expensive solver. Were enough eigenvectors sampled? One way to answer this question
could be to compare simulation results to those of a coarse-grid standard finite difference
scheme. Another possibility is to check for convergence in K, as the recovered solution
stabilizes as more and more eigenvectors are added. To the best of our knowledge compressed
sensing theory does not yet contain a theoretical understanding of a posteriori validation,
though.

• Two and three-dimensional media. Passing to a higher-dimensional setting will require using
adequate bases for the sparsity of wavefields. Curvelets is one choice, and wave atoms is
another one, as both systems were shown to provide `p to `p boundedness for all p > 0, of
the wave equation Green’s functions in C∞ media [10, 51]. (Wavelets or ridgelets would only
provide `p to `1 boundedness.) The sparsity question for wave equations in simple nonsmooth
media, e.g. including one interface, is to our knowledge completely open. The question of
incoherence of the eigenfunctions with respect to such systems will be posed scale-by-scale,
in the spirit of wavelets vs. Fourier as in [18] for instance. Incoherence or extension questions
for generalized eigenfunctions may also be complicated by the presence of infinite-dimensional
eigenspaces in unbounded domains.

• Parallel computing. An exciting outlook is that of scaling the compressive approach to clusters
of computers where properly preconditioned and domain-decomposed Helmholtz equations
are solved in an entirely parallel fashion over ω. The `1 solver should be parallelized too, and
for the iterative schemes considered the two bottleneck operations are those of applying the
incomplete matrix of eigenvectors and its transpose. For reverse-time migration where several
times need to be considered, an outstanding question is that of being able to reliably predict
the location of large basis coefficients at time t from the knowledge of wavefields already solved
for at neighboring times t −∆t and t + ∆t. Note that the advocated “snapshot” variant of
reverse-time migration in Section 5.2 contains a preliminary time-to-depth conversion step.

• Other equations and random media. Any linear evolution equation that obeys interesting
sparsity and incoherence properties can in principle be studied in the light of compressive
computing. This includes the heat equation in simple media; and possibly also the (one-
particle) Schrödinger equation in smooth potentials when a bound on wave numbers of the
kind |ξ| . 1/h is assumed, where h is Planck’s constant. Interestingly, the compressive
method also makes sense for mildly random media as the `1 reconstruction empirically filters
out the trailing “coda” oscillations when they follow behind a coherent wavefront.

A Additional proofs

Complement to the proof of Theorem 6.
In order to justify (33), consider the quantity

Iε(x) = |u(x)|2 +
|u′(x)|2

ω2σ2
ε(x)

,
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where σε is adequately regularized in the sense of Lemma 1, but u(x) still solves the equation with
σ(x). Then by point 1 of Lemma 1, I ′ε(x) makes sense, and

I ′ε(x) =
(
σ2
ε(x)− σ2(x)
σ2
ε(x)

)
2Re (u′(x)u(x))− 2(log σε(x))′

|u′(x)|2

ω2σ2
ε(x)

.

The inhomogeneous Gronwall inequality6 can be applied and yields

Iε(x) > Iε(0) exp
(
−2
∫ x

0
|(log σε(y))′| dy

)
−
∫ x

0
Fε(y) exp

(
−2
∫ x

y
|(log σε(z))′| dz

)
dy, (44)

where

Fε(x) =
(
|σ2
ε(x)− σ2(x)|
σ2
ε(x)

)
2|u′(x)u(x)|.

We can now invoke the different points of Lemma 1. Points 2 and 3, in conjunction with uniform
boundedness of u and u′ over [0, 1], allow to conclude that

∫ 1
0 Fε(x) dx 6 C · ε for some constant

C. By points 4 and 5, the second term in the right-hand side of equation (44) tends pointwise to
zero as ε→ 0. Hence by point 2 we have limε→0 Iε(x) = I(x); and the first term in the right-hand
side of equation (44) is handled again by points 4 and 5. The inequality obtained in the limit is

I(x) > I(0) exp (−2Varx(log σ)) ,

which is what we sought to establish.

Complement to the proof of Theorem 7.
Let us show that (34) holds when σ ∈ BV ([0, 1]) and not just C1([0, 1]). Let σε be a regular-

ization of σ, in the usual sense. Define θε(x) through

cot θε(x) =
1

ωσε(x)
u′(x)
u(x)

, or tan θε(x) = ωσε(x)
u(x)
u′(x)

,

where u(x) solves the Sturm-Liouville problem with the un-regularized σ. Then a short calculation
shows that

θ′ε(x) =
σ′ε(x)
σε(x)

sin θε(x) cos θε(x) + ωσ(x)
σ(x)
σε(x)

sin2θε(x)
sin2θ(x)

.

The ratio of sine squared can be recast in terms of a familiar quantity:

sin2θε(x)
sin2θ(x)

=
1 + cot2θε(x)
1 + cot2θ(x)

=
1 + 1

ω2σ2
ε(x)
|u
′(x)
u(x) |

2

1 + 1
ω2σ2(x)

|u
′(x)
u(x) |2

=
Iε(x)
I(x)

.

The same result follows from a similar formula with cosines in case sin θ = 0. Consider now two
different frequencies ω1, ω2, and integrate to get

θε,1(1)− θε,2(1) =
∫ 1

0

σ′ε(x)
σε(x)

[sin θε,1 cos θε,1 − sin θε,2 cos θε,2]dx

+ (ω1 − ω2)
∫ 1

0
σ(x)

σ(x)
σε(x)

Iε(x)
I(x)

dx.

6If ẏ(t) 6 f(t) + g(t)y(t), then y(t) 6 y(0) exp
“R t

0
g(s)ds

”
+
R t
0
f(s) exp

“R t
s
g(τ)dτ

”
ds, and vice-versa with > in

both equations instead of 6.
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The first term is bounded by
∫ 1

0 |
σ′ε(x)
σε(x) |dx, which tends to Var(log σ) as ε→ 0 by point 5 of Lemma

1. The second integral can be compared to
∫ 1

0 σ(x)dx by studying

|
∫ 1

0
σ
σ

σε

Iε
I
dx−

∫ 1

0
σ dx| = |

∫ 1

0

σ

σεIε
(σIε − σεI) dx

6
∫ 1

0

σIε
σεI
|σ − σε| dx+

∫ 1

0

σ

I
|Iε − I| dx.

All four factors σ, I, σε and Iε are bounded and bounded away from zero, by Theorem 6 for I and
point 3 of Lemma 1 for σε and Iε. Point 2 of Lemma 1 then implies that

∫ 1
0 |σε − σ| dx → 0. We

have already argued in the proof of Theorem 6 that
∫ 1

0 |Iε − I| dx → 0. The limiting inequalities
are (34), as desired.

Proof of Proposition 4
Let p = min pn, where n = 1, . . . , N , and let punif = 1/N . The basic heuristic is that, even

if the probability of drawing a given measurement decreases by a factor pn/punif which may be
less than 1, this effect is at least more than offset by sampling a correspondingly larger number of
measurements, namely Kunif punif/p instead of Kunif.

First, let us see why the accuracy bound (8) still holds if we increase the probability for any
particular ωn to be included in the list ΩK .7 In our context, assume for the moment that

Pr(ωn ∈ ΩK) > Kunif punif, (45)

uniformly over n. Then we may reduce this setup to a situation where all Pr(ωn ∈ ΩK) = Kunif punif

by a rejection sampling procedure, where each ωn ∈ ΩK is further labeled as primary, or “accepted”,
with probability (Kunif punif)/Pr(ωn ∈ ΩK), and labeled as secondary, or “rejected”, otherwise.
The set of primary measurements alone would be adequate to call upon the general theory; passing
to obvious linear algebra notations the corresponding constraints are denoted as ‖Ax − b‖2 6 ε
where A satisfies the S-RIP with high probability. Adding the secondary measurements cannot
fundamentally hurt the recovery of `1 minimization, because the constraints become

‖Ax− b‖22 + ‖Bx− c‖22 6 (ε′)2

for some ε′ � ε, hence in particular include ‖Ax− b‖2 6 ε′. This latter “tube” condition, together
with the cone condition that ‖x‖1 should be minimized, suffice to obtain the recovery estimate on
x as was shown in [12]. Adding a compatible constraint involving ‖Bx − c‖2 only decreases the
feasibility set, hence does not alter the recovery estimate.

Second, it remains to show (45). An event such as ωn ∈ ΩK refers to the result of a sequential
sampling of K objects among N , without replacement, and according to a certain distribution, ei-
ther pn or punif. This setup is different that the one considered in the classical papers on compressed
sensing. It is shown below that

Pr(ωn ∈ ΩKunif
) = Kunif punif (uniform probabilities punif) (46)

in the uniform case, and

Pr(ωn ∈ ΩK) > Kp (nonuniform probabilities pn) (47)

7Interestingly, the statement that the accuracy of recovery is improved by adding measurements to the `1 mini-
mization problem, is in general false. It is only the error bound that does not degrade.
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in the nonuniform case. In order for Pr(ωn ∈ ΩK) to be greater than Kunif punif as in equation
(45), it suffices therefore that K > Kunif punif/p, which proves the proposition.

The following proof of (46) and (47) is due to Paul Rubin, who kindly allowed us to reproduce
the argument here.

In the case of uniform probabilities, write punif = p for short. Denote by Ωk the set of ωn drawn
during the first k iterations. By Bayes theorem applied to a sequence of nested (random) events,
we have

Pr(ωn /∈ Ωk) = Pr(ωn /∈ Ω1) · Pr(ωn /∈ Ω2|ωn /∈ Ω1) . . . Pr(ωn /∈ Ωk|ωn /∈ Ωk−1)

= (1− p) ·
(

1− p

1− p

)
. . .

(
1− p

1− (k − 1)p

)
= (1− p)

(
1− 2p
1− p

)
. . .

(
1− kp

1− (k − 1)p

)
.

The factors telescope in this product, with the result that Pr(ωn /∈ Ωk) = 1 − kp, hence Pr(ωn ∈
ΩK) = kp as desired.

In the case of nonuniform probabilities pn, consider the quantity

qk =
∑

n:ωn∈Ωk

pn.

The qk are themselves random variables, since they depend on the history of sampling up to
step k. Denote by Ω̂k one realization of Ωk, and q̂k the corresponding realization of the random
process qk. Then the reasoning essentially proceeds as previously, only by induction on k. First,
Pr(ωn /∈ Ω1) = 1− pn 6 1− p. Assume Pr(ωn /∈ Ωk−1) 6 1− (k − 1)p. Then

Pr(ωn /∈ Ωk|ωn /∈ Ω̂k−1) = 1− pn
1− q̂k−1

=
1− q̂k−1 − pn

1− q̂k−1
.

We claim that
1− q̂k−1 − pn

1− q̂k−1
6

1− kp
1− (k − 1)p

. (48)

To justify this inequality, write the sequence of equivalences

1− q̂k−1 − pn
1− q̂k−1

6
1− kp

1− (k − 1)p

(1− (k − 1)p)(1− q̂k−1 − pn) 6 (1− kp)(1− q̂k−1)

−pn + (k − 1)ppn 6 −p+ q̂k−1p

0 6 (pn − p) + p(q̂k−1 − (k − 1)p).

The last inequality is obviously true. Therefore

Pr(ωn /∈ Ωk|ωn /∈ Ω̂k−1) 6
1− kp

1− (k − 1)p
.

Because this bound is uniform over Ω̂k−1, it is easy to see that the same inequality holds when the
conditioning is on ωn /∈ Ωk−1 instead of being on ω /∈ Ω̂k−1.8

8Indeed, if a random event B is the disjoint union
S
Bi, and Pr(A|Bi) 6 C for all i, then Pr(A|B) 6 C as

well. This fact is a simple application of Bayes’s theorem: Pr(A|B) = Pr(A&B)/Pr(B) =
P
i Pr(A&Bi)/Pr(B) 6

C
P
i Pr(Bi)/Pr(B) = C.
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We conclude by writing

Pr(ωn /∈ Ωk) = Pr(ωn /∈ Ωk|ωn /∈ Ωk−1)Pr(ωn /∈ Ωk−1)

6
1− kp

1− (k − 1)p
(1− (k − 1)p)

= 1− kp.

Proof and discussion of equation (42)
In this proof, a subscript t denotes a time differentiation. Consider the following quantity,∫ T

0

∫
u

[
σ2

0

∂2

∂t2
− ∂2

∂x2

]
q dxdt,

where u solves (40), and q solves (43) with final data (d1(x), d2(x)) not necessarily equal to
(u(x, T ), ut(x, T )). Because of (43), this integral is zero. Two integrations by parts in x and t
reveal that

0 =
∫
σ2

0(qtu)|T0 dx−
∫
σ2

0(qut)|T0 dx+
∫ T

0

∫
q

[
σ2

0

∂2

∂t2
− ∂2

∂x2

]
u dxdt.

The boundary terms in x have been put to zero from assuming, for instance, free-space propagation.
In the first two terms, we can use u(x, 0) = ut(x, 0) = 0, and recognize that σ2

0qt(x, T ) = −d1(x)
and σ2

0q(x, T ) = d2(x). For the last term, we may use (40). The result is∫
d1(x)u(x, T ) dx+

∫
d2(x)ut(x, T ) dx = −

∫
r(x)

∫ T

0
q(x, t)

∂2uinc

∂t2
(x, t) dt dx.

On the left, we recognize 〈
(
d1

d2

)
, F [σ2

0]r〉, where the inner product is in L2(Rn,R2). The right-

hand-side is a linear functional of r(x), from L2(Rn,R) to R, hence we identify

F ∗[σ2
0]
(
d1

d2

)
= −

∫ T

0
q(x, t)

∂2uinc

∂t2
(x, t) dt,

as required.
Notice that this formula for the adjoint operator is motivated by a standard optimization

argument that we now reproduce. Consider the misfit functional J [σ2, u] for the data (d1, d2),
defined as

J [σ2, u] =
1
2

∫
(u(x, T )− d1(x))2 + (ut(x, T )− d2(x))2 dx,

and under the constraint that u solves the original wave equation (39). Then the form of F ∗ is
inspired by the negative Frechet derivative − δJ

δσ2 [σ2
0, uinc]. In order to see this, we can define a dual

variable q(x, t) corresponding to the constraint (39), dual variables µ0(x) and µ1(x) corresponding
to the initial conditions for u, and write the Lagrangian

L[σ2;u, q, µ0, µ1] = J [σ2, u]−
∫ T

0

∫
q

[
σ2 ∂

2

∂t2
− ∂2

∂x2

]
u dxdt+

∫
µ0u(x, 0)dx+

∫
µ1ut(x, 0)dx.

The same integrations by parts as earlier give

L[σ2;u, q, µ0, µ1] = J [σ2, u]−
∫ T

0

∫
u

[
σ2 ∂

2

∂t2
− ∂2

∂x2

]
q dxdt
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+
∫
σ2(qut)|T0 dx−

∫
σ2(qtu)|T0 dx+

∫
µ0u0dx+

∫
µ1u1dx.

The Frechet derivatives of L with respect to u(x, t), u(x, T ), and ut(x, T ) reveal the adjoint-state
equations:

δL

δu(x, t)
= −

[
σ2 ∂

2

∂t2
− ∂2

∂x2

]
q(x, t) = 0;

δL

δu(x, T )
= u(x, T )− d1(x)− σ2qt(x, T ) = 0;

δL

δut(x, T )
= ut(x, T )− d2(x) + σ2q(x, T ) = 0.

The derivative of L with respect to σ2 gives the desired formula

δJ

δσ2
=
∫ T

0
q(x, t)

∂2u

∂t2
(x, t) dt.

The derivatives with respect to q and µ0, µ1 replicate the constraints, and finally the derivatives
with respect to u(x, 0) and ut(x, 0) are not interesting because they involve µ0, µ1, which do not
play a role in the expression of δJ/δσ2.

Notice that the final conditions for q involve the predicted wavefields u and ut. If we put σ = σ0

however, and σ0 is smooth, then u = uinc. In that case, essentially no reflections occur and the
wavefields uinc(x, T ), ∂uinc/∂t(x, T ) are zero at time T , in the region of interest where the data lies.
It is only when making corrections to the guess σ1 that the predicted wavefields are important in
the final condition for q.
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