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We continue the analysis of the continuous wavelet transform on the

2-sphere, introduced in a previous paper. After a brief review of the trans-

form, we define and discuss the notion of directional spherical wavelet, i.e.,

wavelets on the sphere that are sensitive to directions. Then we present a

calculation method for data given on a regular spherical grid G. This tech-

nique, which uses the FFT, is based on the invariance of G under discrete

rotations around the z axis preserving the ϕ sampling. Next, a numeri-

cal criterion is given for controlling the scale interval where the spherical

wavelet transform makes sense, and examples are given, both academic and

realistic. In a second part, we establish conditions under which the recon-

struction formula holds in strong Lp sense, for 1 ≤ p < ∞. This opens

the door to techniques for approximating functions on the sphere, by use

of an approximate identity, obtained by a suitable dilation of the mother

wavelet.
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1. INTRODUCTION: THE SPHERICAL CONTINUOUS

WAVELET TRANSFORM

In a previous paper [6], two of us have introduced a continuous wavelet trans-

form (CWT) on the 2-sphere S2, using the general construction of coherent states

on manifolds developed in [1, 2]. We will pursue this study here and focus on

three aspects left out in [6], namely the extension to anisotropic wavelets, the prac-

tical implementation of the transform with a (reasonably) fast algorithm and its

application to the problem of approximation of functions on S2 (in Lp sense).

The key point of the spherical CWT is that it lives entirely on the sphere (signals

and wavelets) and it is derived from invariance considerations, via group-theoretical

methods. First, one identifies the affine transformations of S2: Motions, which are

realized by rotations % ∈ SO(3), and local dilations, which are obtained by lifting to

S2, by inverse stereographical projection, the usual dilations in the plane tangent at

the North Pole. Then one shows that these transformations may be embedded (via

the Iwasawa decomposition) into the conformal group of S2, which is the Lorentz

group SO0(3, 1). The latter possesses a natural unitary irreducible representation

in the space L2(S2) of finite energy signals on S2, and this representation is square

integrable over the parameter space SO(3) × R+
∗ of the CWT (see [6] for the pre-

cise mathematical definitions). As a consequence, a genuine CWT may be set up

according to the general scheme of [1, 2].

In order to fix our notations and make the paper reasonably self-contained, we

recall first the essential facts, referring to [6] for the details. The spherical coor-

dinates on S2 are denoted by ω = (θ, ϕ) and the space of finite energy signals by

L2(S2) ≡ L2(S2, dµ), where dµ(ω) = sin θ dθ dϕ is the usual (rotation invariant)

measure on S2. The affine transformations on S2 are realized in L2(S2) by the

following unitary operators:

• motions:

(R%f)(ω) = f(%−1ω) = (Uqr(%)f)(ω), % ∈ SO(3), (1.1)

where Uqr is the (infinite-dimensional) quasi-regular representation of SO(3) in

L2(S2);

• dilations:

(Daf) (ω) ≡ fa(ω) = λ(a, θ)1/2f(ω1/a), a ∈ R
+
∗ , (1.2)

where ωa ≡ (θa, ϕ) and tan θa

2 = a tan θ
2 (indeed, θ 7→ θa is the dilation obtained

by inverse stereographical projection). Here λ(a, θ) is the cocycle (Radon-Nikodym

derivative) which expresses the noninvariance of the measure µ under dilation, and

it is given by

λ(a, θ) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2
.

A spherical wavelet is a function ψ ∈ L2(S2) that is an admissible vector for the

representation of the Lorentz group mentioned above. The admissibility condition
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reads as

Gl ≡
8π2

2l + 1

∑

|m|≤l

∫ ∞

0

da

a3
|ψ̂a(l,m)|2 < c , (1.3)

where f̂(l,m) ≡ 〈Y ml |f〉 denotes a Fourier coefficient of f ∈ L2(S2) and the constant

c > 0 is independent of l. This condition is not easy to use. However, a necessary

(and almost) sufficient condition for admissibility is the zero mean condition

Cψ ≡
∫

S2

dµ(θ, ϕ)
ψ(θ, ϕ)

1 + cos θ
= 0. (1.4)

Typical admissible wavelets are the difference wavelets

ψ
(α)
φ (θ, ϕ) = φ(θ, ϕ) − 1

α
Dαφ(θ, ϕ) (α > 1), (1.5)

for a given smoothing function φ ∈ L2(S2). The most familiar one is the spherical

DOG wavelet ψ
(α)
G , corresponding to a Gaussian smoothing function φG(θ, φ) =

exp(− tan2(θ/2)), θ ∈ [−π, π], i.e., a Gaussian centered on the North Pole of the

sphere.

Then, given an admissible wavelet ψ, the family {ψa,% ≡ R%Daψ = R% ψa, % ∈
SO(3), a > 0} is an overcomplete set of functions in L2(S2) and even a continuous

frame, nontight in general.

Accordingly, the spherical CWT of a signal s ∈ L2(S2) is defined as

S(%, a) = 〈ψa,%|s〉 =

∫

S2

dµ(ω) [R%Daψ](ω) s(ω) (1.6)

=

∫

S2

dµ(ω) ψa(%−1ω) s(ω).

It is instructive to split % ∈ SO(3) into % = (χ, [ω′]) with χ ∈ SO(2) and

ω′ ∈ S2 . This is formally done through a projection % 7→ ω′(%) in the fiber

bundle S2 ' SO(3)/SO(2) followed by an arbitrary choice of section ω′ 7→ [ω′] in

SO(3). The splitting corresponds to decomposing the motion R% of the wavelet ψa
into an initial rotation of angle χ around the North Pole ω0 followed by a transport

to the point ω′ = %ωo on the sphere (these two operations could have been defined

in the reverse order). In other words,

R%ψa(ω) = Rχψa([ω
′]−1ω)

where Rχ is a rotation around the North Pole. Accordingly, the spherical wavelet

transform will also be denoted by S(χ, ω′, a). Of course, the dependence on χ can

be dropped if the wavelet ψ is axisymmetric. We will have a closer look at the

consequences of anisotropy for the spherical wavelet transform in Section 2.

The admissibility of the wavelet ψ is sufficient to guarantee the invertibility of

the transform, i.e., one may reconstruct the signal s from its transform S. More

precisely,

s(ω) =

∫

R
+
∗

∫

SO(3)

da d%

a3
S(%, a)A−1ψa,%(ω) , (1.7)
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where d% is the invariant Haar measure on the group SO(3) and A is the frame

operator, whose action is a multiplication in the Fourier space,

Âf(l,m) = Glf̂(l,m)

with Gl defined in the admissibility condition (1.3). As usual, the integral in (1.7)

is to be taken in the weak sense. Again, if the wavelet ψ is axisymmetric, the

transform reads S(ω′, a) and the integral over SO(3) is replaced by an integral over

S2, with respect to the measure dµ:

s(ω) =

∫

R
+
∗

∫

S2

da dµ(ω′)

a3
S(ω′, a)A−1ψa,ω′(ω) . (1.8)

At this point, three questions arise. First, what are the concepts involved and

what can we expect from the additional rotation parameter χ when the wavelet

is not axisymmetric ? After discussing the definition, we present in Section 2 a

constructive procedure for designing directional wavelets on the sphere. Doing

so, we extend the directional analysis capabilities of the CWT to the sphere. This

could be important for applications, since many directional features (roads, streams,

geological faults,. . . ) abound on the spherical Earth!

Second, does this spherical CWT yield a practical analysis tool for signals on the

sphere, as its flat space counterpart? In particular, can one design a (reasonably)

fast algorithm for a transform that is more general than a convolution on the sphere?

Indeed one cannot rely on what has been done with the Fast Spherical Harmonic

Transform [17, 21, 22], because of the rotation parameter χ. Preliminary results

were given in [6], and we confirm them here. We present in Section 3 an efficient

algorithm, following an approach similar to that of Windheuser [34], that is, using

an FFT over the longitude angle ϕ. Several examples are given.

Third, the reconstruction formula (1.7) is valid only in the weak sense. In the flat

case, however, the corresponding formula holds in the strong L2 sense [10, 32]. This

guarantees that it can be used for approximating functions on the plane through

an approximate identity. That means, convolution with a smoothing kernel, which

tends to the identity (δ function) as the parameter goes to 0. We show in Section

4 that exactly the same situation prevails on the sphere [33]. First one switches

to an L1 formalism (as already mentioned in [6]), introducing a modified dilation

operatorDa that preserves the L1 norm of functions. It turns out that the operator

Da generates an approximate identity in Lp(S2) for every p ∈ [1,∞], and this shows

that the reconstruction formula (1.7) actually holds in strong Lp sense. In this way,

we recover the approximation scheme developed by Freeden et al. and applied

by them extensively to geophysical data [13, 14]. These authors consider various

approximation kernels and introduce a form of discrete wavelet transform, through

a kind of multiresolution on S2. By contrast, our approach has the advantage of

giving to the approximation parameter the clear meaning of a local dilation factor,

thus grounding the approximation scheme in the general continuous wavelet theory,

itself based on group-theoretical considerations.
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2. A CLOSER LOOK AT THE ANISOTROPIC SPHERICAL CWT

In this section, we aim at giving a clear meaning to the rotation parameter χ,

which was not considered in [6]. We discuss the notion of direction on the sphere

and how this is related to the ability of performing a directional analysis of data

defined on a sphere by means of the spherical wavelet transform. We also build

examples of anisotropic spherical wavelets in Section 2.2.

2.1. Remarks on the definition

Whenever the wavelet ψ is not axisymmetric, the continuous spherical wavelet

transform depends on the additional parameter χ. This is written as

S(χ, ω′, a) =

∫

S2

dµ(ω) Rχψa([ω′]−1ω) s(ω).

In this formula, there is an arbitrariness in the way the rotation [ω′] of SO(3) is

associated to the point ω′ on the sphere. The map [·] : S2 → SO(3), called a section

in group theory, can be depicted as mapping the sphere to a tangent vector field

of unit length defined on it. Indeed, there are infinitely many ways of choosing the

direction of each tangent vector in the tangent plane. From a practical viewpoint,

however, some choices are better than other ones for a given section. It should

preferably be smooth to correspond to the idea of direction defined on the sphere.

Therefore, we expect the values of the wavelet transform to correspond to filtering

in a given direction χ and at a given scale a like in the case of the 2-D wavelet

transform in the plane [4].

Some caution should be exercised, however, when dealing with directions on

the sphere. It is a classical result in topology that there exists no differentiable

vector field of constant norm on S2, which means there is no global way of defining

directions. There will always be some singular point where the definition fails.1 In

other words, one cannot comb a perfectly spherical porcupine! Therefore, testing

orientations on the sphere using directional wavelets is necessarily a small scale

operation, that is, a local procedure. This ability to perform local analysis is

definitely one of the most important properties of wavelet analysis.

From now on, we will make use of the classical parametrization of SO(3) in

terms of Euler angles, % ≡ (χ, θ′, ϕ′), which corresponds to the choice of section

(θ′, ϕ′) 7→ (0, θ′, ϕ′), which in turn defines a direction on the sphere. The singular

points are the North and South Poles: it makes no sense to define cardinal points

at the poles!

For this choice of parametrization, we may write

Rχψa([ω
′]−1ω) = ψa,χ,ω′(ω) ≡ ψa,χ,θ′,ϕ′(θ, ϕ) , (2.1)

which implies

ψa,χ,θ′,ϕ′(θ, ϕ) = ψa,χ,θ′,0(θ, ϕ− ϕ′) . (2.2)

1This is valid for S2, but not in the case of the circle S1 and the higher dimensional spheres S3

and S7.
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Therefore, (1.6) becomes a convolution in ϕ which, by means of the convolution

theorem, takes the form

S(χ, θ′, ϕ′, a) =

∫ π

0

∫ 2π

0

ψa,χ,θ′,0(θ, ϕ− ϕ′) s(θ, ϕ) sin θ dθ dϕ (2.3)

= 2π

∞∑

k=−∞

ei kϕ
′

∫ π

0

ψ̌χ,θ′,0,a(θ)[k] š(θ)[k] sin θ dθ , (2.4)

where, for any function h : S2 → R,

ȟ(θ)[k] =

∫ 2π

0

dϕ h(θ, ϕ) e−i kϕ (2.5)

is the Fourier series of h in the longitudinal coordinate ϕ.

In the discretization step of Section 3, the relations (2.3)-(2.4) will give us a tool

for reducing the computational time of the spherical CWT. Indeed, they will allow

us to use the fast Fourier transform (FFT), like in [34].

2.2. Directional wavelets

We have not yet addressed the problem of constructing good directional wavelets

on S2. In this section, we will quickly show that this job is naturally handled in

our framework. First of all, we recall that the very definition of a direction on S2

forces us to work at small scales. As we are all familiar with, the geometry of S2

at small scales, or for large radii of the sphere, is closer and closer to that of R2.

As proved in [5], the spherical wavelet transform respects one’s intuition by closely

approximating the Euclidean wavelet transform at small scales. This is a property

known as the Euclidean Limit, and we may remark that he notation used in (2.1)

is consistent with it: Roughly speaking, as the radius of the sphere goes to infinity,

ψa,χ,ω′(ω) goes to ψa,χ,b(x), where b ∈ R
2 is the translation parameter [6].

Moreover, it is a simple application of the Euclidean Limit to show that small

scale Euclidean wavelets can be mapped to the sphere and yield small scale ad-

missible spherical wavelets. These can then be dilated at larger scales using the

spherical dilation. This is neatly summarized by the following result [6]:

Proposition 2.1. Let ψ ∈ L2(R2) be an admissible 2-D Euclidean wavelet. The

inverse stereographic projection of a square integrable function is defined, in polar

coordinates, by

(
Π−1f

)
(θ, ϕ) =

2f(2 tan θ
2 , ϕ)

1 + cos θ
,

and is in L2(S2). Then the function Π−1ψ is an admissible spherical wavelet for the

transform defined with the dilation preserving the L2 norm. The function Π−1ψ
1+cos θ is

an admissible spherical wavelet for the transform defined with the dilation preserving

the L1 norm.

This result tells us that we can construct a spherical wavelet starting from any

Euclidean wavelet. Now what does this tell us about directional wavelets? Since
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FIG. 1. Real part of the spherical Morlet wavelet at scale (a) a = 0.03 and (b) a = 0.3.

directional sensitivity is a local or small scale attribute, it should intuitively survive

this process. But there is more than intuition in this result. The stereographic

projection and both spherical and Euclidean dilations are conformal mappings.

Thus Proposition 2.1 defines a conformal application that, by definition, preserves

angles. The directional sensitivity of the Euclidean wavelet is thus transported to

the spherical wavelet.

A natural candidate for building a directional spherical wavelet is to start with

the Euclidean Morlet or Gabor wavelet [3] :

ψM (~x) = ei
~k0·~xe−‖~x‖2

. (2.6)

Using Proposition 2.1, we find the following spherical wavelet :

ψM (θ, ϕ) =
eik0 tan θ

2
cos (ϕ0−ϕ)e−

1
2

tan2 θ

2

1 + cos θ
. (2.7)

This function is represented in Figs. 1 and 2 for various values of the scale and

rotation parameters. Note that this function is not strictly admissible but, for k0

large enough (typically greater than 6), there is no practical difference with a true

wavelet (exactly as in the flat case).

3. IMPLEMENTATION OF THE SPHERICAL CWT

For a practical implementation of the spherical CWT, the first step is that of

discretization. This means finding a suitable grid in the parameter space, so as

to allow a fast calculation and a good approximation of the continuous theory.

As we shall see, the key to the algorithm presented below is to use an FFT in

the (periodic) longitude angle ϕ. We also need some sort of criterion on the grid

density for controlling aliasing problems, as indicated already in [3]. More pre-

cisely, we have to specify the scale interval in which the spherical wavelet trans-

form makes sense. A possible answer will be suggested in Section 3.2. Then sev-

eral examples will be discussed, both academic and real-life. All the examples
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FIG. 2. Real part of the spherical Morlet wavelet at scale a = 0.03 and centered at
(π/3, π/3). (a) χ = 0 and (b) χ = π/2.

are computed with our wavelet toolbox YAWTB/Yet-Another-Wavelet-Toolbox,

to be found on the web sites http://www.fyma.ucl.ac.be/projects/yawtb or

http://www.yawtb.be.tf.

3.1. Discretization and algorithm

Following an approach similar to that in [34], the first step is to discretize the

integral (2.3) on a regular spherical grid M ×N

G = {(θt = π
M t, ϕp = 2π

N p) | 0 ≤ t ≤M − 1, 0 ≤ p ≤ N − 1} (3.1)

by a weighted sum (χ and a are fixed throughout)

S(χ, θt′ , ϕp′ , a) ' S[χ, t′, p′, a] (3.2)

=
∑

0≤ t≤M−1

0≤ p≤N−1

ψa,χ,t′ [t, p− p′] s[t, p] wtp (3.3)

where

· s[t, p] ≡ s(θt, ϕp);

· ψa,χ,t′ [t, p− p′] ≡ ψa,χ,θ
t′
,0(θt, ϕp−p′);

· the index of ϕ is extended to Z by angular periodicity with the rule ϕr+N =

ϕr;

· wtp = wt = 2π2

MN sin θt are the weights suggested in [34] for the discretization

of the Lebesgue measure on the particular grid G.

Notice that other discretization techniques than a plain Riemann sum, as used in

(3.3), would be beneficial only if one imposes additional regularity conditions on

the signal s. Also, other weights wtp could be chosen to achieve a better approxi-

mation of (3.2). An example of a different choice, both for the weights and for the
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discretization technique, is that of a band-limited spherical function, as considered

in [17].

Evaluating the sums in Eq. (3.3) requires MN additions and multiplications for

each (t′, p′), that is, M2N2 operations altogether.

However, an easy simplification can be obtained for the longitudinal coordinates

by the use of a Fourier series and the Plancherel formula. Indeed, denoting by

ȟ[t, k] =
∑

0≤p≤N−1

h[t, p] exp(−i kp2π

N
), (3.4)

the longitudinal Fourier coefficients of a given discrete function h, we obtain

S[χ, t′, p′, a] = 2π
∑

0≤t≤M−1

wt F [χ, t′, p′, a, t] (3.5)

with

F [χ, t′, p′, a, t] =


 ∑

0≤k≤N−1

ψ̌a,χ,t′ [t, k] š[t, k] exp(i kp′
2π

N
)


 . (3.6)

The quantity F may be computed with the Inverse Fast Fourier Transform

(IFFT), which leads to a reduction of the computational time from O(M 2N2) to

O(M2N logN). On a grid G of 256× 256, the gain is a factor of 46.

In practice, computing the spherical wavelet transform for a fixed scale a and a

fixed orientation χ proceeds along the following steps :

Initialization

· Compute the matrix š = (š[t, k])tk obtained by applying the FFT on each

row (row FFT) of the original data s = (s[t, p])tp;

For t′ = 0 to M − 1 do

· Compute the matrix Ψ̌a,χ,t′ = (ψ̌a,χ,t′ [t, k])tk deduced from the row FFT of

the matrix Ψa,χ,t′ = (ψa,χ,t′ [t, p])tp ;

· Compute the product matrix P̌a,χ,t′ = ( š[t, k] ψ̌a,χ,t′ [t, k] )tk and apply the

inverse FFT on each of its rows. This yields a matrix Pa,χ,t′ corresponding

to the convolution of the rows of s with the rows of the wavelet Ψa,t′,χ ;

· Finally, the t′ th row of S is given by

S[χ, t′, p′, a] =
∑

0≤t≤M−1

wt Pa,χ,t′ [t, p
′],

for 0 ≤ p′ ≤ N − 1.

end.
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3.2. Numerical criterion for the scale range

The discretization of the continuous spherical wavelet transform gives rise to a

sampling problem. Since the grid G is fixed, if we contract or dilate too much our

wavelet, we obtain a function which is very different from the original ψ. In other

words, aliasing occurs and the wavelet is no longer numerically admissible. We may

easily understand this phenomenon by studying a dilated wavelet centered on the

North Pole.

We have seen in Section 1 that a function ψ ∈ L2(S2, dµ) is admissible only if it

satisfies the zero mean condition (1.4). Approximating the integral by its Riemann

sum, we get the quantity

C[ψ] =
∑

1≤t≤M−1

1≤p≤N−1

ψ(θt, ϕp)

1 + cos θt
wtp (3.7)

using the weights wtp defined in the previous section.

Because of the discretization, even if ψ verifies (1.4), it is not necessarily true

that C[ψ] vanishes. However, we may suppose that this quantity is very close to

zero when ψ is sampled sufficiently, that is, if the grid G is fine enough.

However, it is difficult to give a quantitative meaning to the value of C[ψ]. How

small is ‘very close to zero’? Here is a possible solution to this problem. Since the

spherical measure µ and the function 1 + cos θ are positive, it is clear that

C[ψ] ≤ C[|ψ|] (3.8)

for any ψ ∈ L2(S2, dµ). So we can define a normalized numerical admissibility by

C̃[ψ] =
C[ψ]

C[|ψ|] , (3.9)

a quantity always contained in the interval [-1,1].
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a = 0.5, the sampling is correct; (b) For a = 0.05, subsampling occurs, negative parts of Daψ
(α)
G

are completely missed; (c) Subsampling on the negative parts of Daψ
(α)
G

for a = 3.5. Notice the
minimum at θ = 0.

We can now give a precise definition of numerical admissibility of a wavelet ψ

centered on the North Pole.

Definition 3.1. A spherical wavelet of L2(S2, dµ) is numerically admissible on

G with threshold p% (or simply p%- admissible on G), if the numerical normalized

admissibility (3.9) is smaller than (100− p)/100 in absolute value:

|C̃[ψ]| ≤ 100− p

100
. (3.10)

As an example, we present in Fig. 3 the behavior of the dilated spherical DOG

wavelet, Daψ
(α)
G (α = 1.25), as a function of a > 0, discretized on a 128× 128 grid

(notice that, in the flat case, α = 1.6 is the value for which the DOG wavelet is

almost indistinguishable from the mexican hat).



12 ANTOINE, DEMANET, JACQUES AND VANDERGHEYNST

According to this plot, the wavelet Daψ
(α)
G is 99% - admissible on the scale inter-

val a ∈ [0.072, 24.71]. The lower limit is due to the fact that, for small a, Daψ
(α)
G

is not sampled enough. The upper limit comes from the subsampling of the area

far from the North Pole which, according to the spherical dilation, gets more and

more contracted. Fig. 4 presents three typical behaviors of Daψ
(α)
G discretized on

a 22 point θ sampling. For a = 0.5, the sampling is correct. For a = 0.05, that

is, below the lower admissibility bound, subsampling occurs, so that negative parts

of Daψ
(α)
G are completely missed. Clearly, this discretized wavelet is no longer ad-

missible. Exactly the same effect was observed long ago in the flat case [3]. The

third case, with a = 3.5, thus beyond the upper bound, is less intuitive. Here the

subsampling takes place for large values of θ, that is, close to the South Pole, but

the result is the same, the discretized wavelet does not have a zero mean, it is not

admissible. In addition, the curve presents a minimum at θ = 0. This somewhat

unexpected effect is in fact due to the cocycle, as is the dependence of the height

on a. Indeed, if one performs the same calculation without the cocycle, all curves

show a maximum at θ = 0, with the same height. Here again we see that curvature,

which requires the presence of the cocycle, has a nontrivial effect.

Two remarks remain to be made about the admissibility and its numerical con-

sequences. Both follow from the obvious fact that choosing polar coordinates ef-

fectively breaks the spherical symmetry, by introducing a singularity at the North

Pole.

First, the simplified admissibility condition (1.4) is only valid for wavelets which

vanish at θ = π. So, unlike in the flat case, the simplified admissibility of a mother

wavelet ψ does not imply that of all the translated wavelets Rρψ with ρ in SO(3)

(this does not happen, of course, for the full admissibility condition (1.3)).

Second, the sampling of a wavelet centered on the North Pole is not the same as

if it would be centered on an equatorial point. Therefore, given a certain percentage

of numerical admissibility for Daψ, the interval of allowed scales a is not necessarily

valid everywhere on the sphere. In other words, we cannot ensure that RρDaψ will

be sampled finely enough for all the possible ρ ∈ SO(3).

3.3. Numerical analysis of the unit function

It is instructive to consider the function ι identically equal to 1. In the flat case,

this function has a vanishing WT, by the admissibility condition
∫
d~x ψ(~x) = 0

on the wavelet, but it is not square integrable and thus cannot be reconstructed.

In the present case, however, the situation is different. The function ι is square

integrable, since the sphere S2 is compact, but its WT does not vanish, because of

the presence of the cocycle. Indeed, the function ι is invariant under rotation, but

not under dilation:

(Daι)(θ, ϕ) = λ(a, θ)1/2 6≡ 1, (3.11)

and, therefore,

I(%, a) = 〈R%Daψ|ι〉 = 〈ψ|Daι〉 ≡ I(a)

=

∫

S2

dµ(ω) ψ(ω) λ(a, θ)1/2 6= 0. (3.12)
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FIG. 5. Mean value <I(a)> of the spherical wavelet transform of the unit function ι as a
function of the scale a (log-log representation).

Thus, for fixed a, the WT I(a) of the unit function is constant, and essentially

negligible for a � 1. Significant values appear only for a > 2, and these scales

are irrelevant for the analysis of signals such as contours. As a consequence, the

spherical CWT does have the familiar local filtering effect, provided small scales

are considered. This will be confirmed by the examples below. Once again, we see

that the CWT is useful only as a local analysis.

To get a quantitative estimation of this effect, we present in Fig. 5, the mean

value <I(a)> of I(a) on the sphere as a function of the scale a. We have to take

this average because, in practice, I(a) is not exactly constant due to the gridding

artifacts.2 Variations around this mean are however small, close of 10−3, and

essentially constant with scales. We see indeed that, for a < 0.1 (this number may

depend on the grid used, of course), < I(a) > is numerically negligible over the

whole sphere, and may be taken as zero to a very good approximation.

3.4. Examples of spherical wavelet transforms

As a first example, we analyze in Fig. 6 an academic picture, namely, (the

characteristic function of) a spherical sector on S2, with one of the corners sitting

at the North Pole. The sector is given by 0◦ ≤ θ ≤ 50◦, 0◦ ≤ ϕ ≤ 90◦ and is

discretized on a 128×128 grid in (θ, ϕ). The wavelet used is again the spherical DOG

ψ
(α)
G , for α = 1.25, discretized on the same grid. According to the admissibility

analysis presented above (Fig. 3), the wavelet is 95% –admissible on the scale

interval a ∈ [0.033, 29.27]. Thus we can evaluate the continuous spherical wavelet

transform of this picture for various scales in the allowed range, and we have chosen

2The density of points on a spherical regular grid is higher at the poles than on the equator.
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FIG. 6. Spherical wavelet transform of the characteristic function of a spherical triangle
with apex at the North Pole, 0◦ ≤ θ ≤ 50◦, 0◦ ≤ ϕ ≤ 90◦, obtained with the spherical DOG

wavelet ψ
(α)
G

, for α = 1.25. (a) Original image. The transform is shown at four successive scales,
(b) a = 0.5; (c) a = 0.2; (d) a = 0.1; and (e) a = 0.035. As expected, it vanishes inside the
triangle, and presents a “wall” along the contour, with sharp peaks at each vertex. Notice that
the scales are different in the four cases.
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(a) (b)

FIG. 7. Squared modulus of the spherical wavelet transform of (the characteristic function
of) a spherical triangle with apex at the North Pole, 0◦ ≤ θ ≤ 50◦, 0◦ ≤ ϕ ≤ 90◦, obtained with

the spherical Morlet wavelet. ψ
(α)
G

, for α = 1.25. (a) for χ = 0◦. (b) for χ = 90◦. The WT selects
the features (here the “walls”) oriented along meridians or parallels, according to the value of χ.

four successive scales from a = 0.5 to a = 0.035. Fig. 6 shows that the spherical WT

behaves here exactly as, in the flat case, the WT of the characteristic function of a

square, as shown in [3]. For large a, the WT sees only the object as a whole, thus

allowing to determine its position on the sphere. When a decreases, increasingly

finer details appear; in this simple case, only the contour remains, and it is perfectly

seen at a = 0.035. The transform vanishes in the interior of the triangle, as it

should, only the “walls” remain, with a negative value (black) just outside, a zero-

crossing right on the boundary and a sharp positive maximum (white) just inside.

In addition, each corner gives a neat peak, which is positive, since the corner is

convex [3]. Notice that the three corners are alike, so that indeed the poles play

no special role in our spherical WT, contrary to what occurs often in the classical

spherical analysis based on spherical harmonics [13, 12, 25, 26].

In the second example, Fig. 7, we use the same spherical sector, but defined

on a 256 × 256 spherical grid G. This time, we choose to test the directional

sensitivity of the spherical Morlet wavelet, keeping the scale fixed. In the flat case,

the wavelet transform responds to different directions as a function of the rotation

parameter; here the notion of direction is replaced by that of orientation with

respect to meridians or parallels. In other words, directions here can be referred to

as cardinal points: χ = 0◦ corresponds the North–South direction, i.e., meridians,

and χ = 90◦ to the East–West direction, i.e., parallels. These cardinal points could

have been defined in another way, if we remember that we arbitrarily chose to work

with the Euler angles in the implementation of our transform.
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(a) (b)

(c) (d)

FIG. 8. Spherical wavelet transform of the spherical map of the European area, computed
with the spherical DOG wavelet for α = 1.25. (a) The original picture; (b) Wavelet transform at
a = 0.032; (c) The same at a = 0.016; (d) The same at a = 0.0082
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As a third, real life example, we present in Fig. 8 the wavelet transform of a

significant piece of the terrestrial globe, covering Europe, Greenland and North

Africa. As before, we use the spherical DOG wavelet ψ
(α)
G for α = 1.25. The

transforms are shown again at three successive scales, a = 0.032, 0.016, 0.0082 (the

grid used here is finer than the one used in the previous examples, so that smaller

values of a are admissible). As expected, the resolution improves with diminishing

a. However, at a = 0.0082, the discretization grid used for the computation of the

transform coincides with that of the original picture, so that one sees exactly the

same artifacts, such as a closed strait of Gibraltar, an unresolved complex Corsica–

Sardinia, ragged coastlines, etc. Of course, we cannot hope to improve on the

resolution of the original! As for the rapidity, the original is a 512 × 1024 point

picture, and each transform takes about one CPU hour on a 400 MHz Digital PC.

This is not bad, given the size of the original file.

4. WAVELET APPROXIMATIONS ON THE SPHERE

The central theme of approximation theory is the representation of a function

by a truncated series expansion into a family of basis functions, for instance, the

elements of a frame. Thus, in the flat case, 1-D or 2-D, wavelets are widely used

for approximation in various function spaces [20]. The crucial advantage is their

multiresolution character, which is optimally adapted to local perturbations. A

natural framework is given by the Lebesgue spaces Lp(Rn), 1 ≤ p < ∞. One of

the reasons is that approximation is often formulated in terms of convolution with

an approximate identity, and many useful convolution identities are available in Lp

[15, 19].

Thus, in order to apply these considerations to the sphere S2, it is necessary to

have a good notion of convolution on S2. For that purpose, it is useful to represent

the sphere as the quotient SO(3)/SO(2), since the convolution machinery extends

almost verbatim to locally compact groups, and then partly to homogeneous spaces.

For the convenience of the reader, we have collected in the Appendix the main

definitions and essential properties of convolution on a locally compact group. In

what follows, we will need two different cases. For simplicity, we write L2(SO(3)) ≡
L2(SO(3), d%), where d% is the Haar measure on SO(3), and Lp(S2) ≡ Lp(S2, dµ).

• If f ∈ L2(SO(3)) and g ∈ L1(S2), then f ? g ∈ L2(S2) with

‖f ? g‖2 ≤ ‖f‖2 ‖g‖1, (4.1)

where the norms refer to the corresponding spaces.

• If f ∈ L2(S2) and g ∈ L1(S2), their spherical convolution is the function on

SO(3) defined as

(f ?̃ g)(%) =

∫

S2

dµ(ω) f(%−1ω) g(ω) . (4.2)

Then f ?̃ g ∈ L2(SO(3), d%) and

‖f ?̃ g‖2 ≤ ‖f‖2 ‖g‖1, (4.3)
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Here, however, we are only interested in functions on the sphere S2, that is,

functions on SO(3) that are SO(2)-invariant. In particular, we will deal mostly

with axisymmetric functions on S2, that is, functions of θ alone (such functions

are also called zonal). Thus, we will focus on elements of L2([−1,+1], dt), where

t = cos θ, for which the Fourier series reduces to a Legendre expansion:

ψ(t) =
∞∑

l=0

2l+ 1

4π
ψ̂(l)Pl(t),

ψ̂(l) = 2π

∫ +1

−1

dt Pl(t)ψ(t) =

√
4π

2l + 1
ψ̂(l, 0) .

If f is a zonal function, the spherical convolution (4.2) takes a simpler form [13]:

Proposition 4.1. Let f and g be two measurable functions on S2. If f is zonal,

the spherical convolution of f and g is a function on S2, which can be written:

(f ? g)(ω′) =

∫

S2

dµ(ω) f(ω̂′ · ω̂) g(ω) , (4.4)

where ω̂′ · ω̂ is the R3 scalar product of unit vectors of directions ω′ and ω.

Proof. The proof amounts to a straightforward application of harmonic analysis

(Fourier series) on S2. Let us rewrite the argument in the integral (4.2), denoting

by ω′ ≡ %̇ ∈ S2 the left coset of % ∈ SO(3):

f(%−1ω′) = [Uqr(%)f ] (ω′)

=

∞∑

l=0

∑

|m|≤l

[Uqr(%)f ]
�

(l,m)Y ml (ω′),

=
∞∑

l=0

∑

|m|≤l

{D l
m0(ω)f̂(l, 0)}Y ml (ω′), since f is zonal

=

∞∑

l=0

f̂(l)
∑

|m|≤l

Y ml (ω)Y ml (ω′) .

Then the addition theorem for spherical harmonics yields

f(%−1ω′) =

∞∑

l=0

2l+ 1

4π
f̂(l)Pl(ω̂

′ · ω̂) = f(ω̂′ · ω̂) .

A very useful property of zonal convolution is the spherical Young inequality : if

f ∈ Lp([−1,+1], dt) and g ∈ Lq(S2), with 1 ≤ p, q <∞, then f ? g ∈ Lr(S2), with

1/p+ 1/q = 1 + 1/r, and we have [13]

‖f ? g‖r ≤ ‖f‖p ‖g‖q ,with 1/p+ 1/q = 1 + 1/r. (4.5)

Now we may turn to the approximation problem proper. As in the Euclidean

case [19, 30], a convenient technique is to perform a convolution with a smoothing
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kernel, that acts as an approximate identity. For the sake of simplicity, we will only

deal with zonal kernels, following mainly [13].

Definition 4.2. Let Kτ , τ ∈ (0, τo], τo ∈ R+
∗ , be a family of elements of

L1([−1,+1], dt) satisfying K̂τ (0) = 1. The functional Sτ [f ] defined by

Sτ [f ] = Kτ ? f , f ∈ Lp(S2) , 1 ≤ p <∞,

is called a singular integral. It is called an approximate identity of Lp(S2) if

lim
τ→0
τ>0

‖f − Sτ [f ] ‖p = 0 , ∀f ∈ Lp(S2) . (4.6)

The following theorem characterizes those spherical kernels which are associated

with an approximate identity.

Theorem 4.3. Let {Kτ} be a uniformly bounded spherical kernel, that is, there

exists a constant M , independent of τ , such that

∫ +1

−1

dt |Kτ (t)| ≤M , ∀τ ∈ (0, τo] .

Then the associated singular integral is an approximate identity of Lp(S2) if and

only if

lim
τ→0
τ>0

K̂τ (n) = 1 , ∀n ≥ 0 . (4.7)

A proof may be found in [13]. A particularly interesting case is given by positive

definite kernels. In this case, since |Pl(t)| ≤ 1, {Kτ} is uniformly bounded, with

bound M = supτ∈(0,τ0] K̂τ (0).

The following theorem gives a nice characterization of approximate identities

associated with positive kernels.

Theorem 4.4. Let {Kτ}, τ ∈ (0, τo], be a positive kernel associated to a singular

integral of Lp(S2). Then each of the following conditions is equivalent to (4.6) and

(4.7), which means that {Kτ} is the kernel of an approximate identity:

(i) lim
τ→0
τ>0

K̂τ (0) = 1,

(ii) lim
τ→0
τ>0

∫ δ

−1

dtKτ (t) = 0, δ ∈ (−1,+1).

It is important to notice that the second condition is a constraint on the local-

ization of the kernel. Approximate identities are a very useful tool for harmonic

analysis on the sphere and many applications can be found in [13].

We can now reformulate the results of Section 1 in the language of approximate

identities on the sphere. This is a very interesting way of handling functions on
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the sphere, because it allows to represent information by means of localized, and

hierarchically organized, coefficients. With such a representation, a local modifica-

tion of the function would only result in a slight local perturbation of the original

coefficients, a definite advantage over Fourier series.

Many examples of approximate identities are given in [13]. In general, they are

based on families of kernels indexed by a parameter which behaves like a dilation.

Such are, for instance, the Abel-Poisson kernel,

Qτ (t) =
1

4π

1 − τ2

(
1 + τ2 − 2τt

)3/2
=

∞∑

l=0

2l + 1

4π
τ l Pl(t) , τ ∈ (0, 1) ,

and the Gauss kernel,

Gτ (t) =

∞∑

l=0

2l + 1

4π
e−l(l+1)τ Pl(t) , τ ∈ R

+
∗ .

Since dilation is introduced directly as a parameter in those kernels, there is no

unique way of generating approximate identities, as in Rn. But this problem dis-

appears naturally if one uses the spherical dilation. However, we have to modify

the dilation operator and adapt it to the L1 environment. Using the notation of

Section 1, we define, instead of Da, as given in (1.2), the new dilation operator:

(Daf)(ω) ≡ fa(ω) = λ(a, θ)f(ω1/a), (4.8)

and this operator clearly conserves the L1 norm. Notice that the situation is more

complicated here than in the flat case. There, indeed, changing the dilation operator

from L2 to L1 simply amounts to change the power of a in front of the transform

[6]. Here, one replaces the factor λ(a, θ)1/2 by its square λ(a, θ), but this modifies

the CWT itself in a nontrivial way. In particular, the admissibility condition (1.3)

becomes

8π2

2l+ 1

∑

|m|≤l

∫ ∞

0

da

a
|ψ̂a(l,m)|2 < c . (4.9)

The following result, the equivalent of Proposition 3.7 of [6], shows that our new

dilation operator does not change the mean of a function.

Proposition 4.5. If ψ ∈ L1(S2), then

∫

S2

dµ(ω) ψa(ω) =

∫

S2

dµ(ω) ψ(ω) . (4.10)

The proof reduces to a simple change of variables, followed by using the cocycle

relation

λ(a−1, θ)λ(a, θa) = λ(1, θ) = 1 .

Acting with this dilation on a suitable function, one can now construct easily an

approximate identity, as shown in the next proposition.
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FIG. 9. Kernel of an approximate identity obtained by dilating a Gaussian mother function
with scaling factor a = 0.7 (continuous), 0.5 (dashed) and 0.3 (dotted).

Proposition 4.6. Let f ∈ C ([−1,+1]) satisfying f̂(0) = 1. Then the family

{fa ≡ Daf, a > 0}, is the kernel of an approximate identity.

Proof. The family {fa} , a ∈ (0, 1], is uniformly bounded because

∫ +1

−1

dt |fa(t)| = ‖f‖1 .

It thus remains to verify that

lim
a→0
a>0

f̂a(l) = 1 .

With the following change of variables :

t′ =
(a2 + 1)t+ (a2 − 1)

(a2 − 1)t+ (a2 + 1)
,

and using the cocycle law, for all a ∈ (0, 1], we find

lim
a→0
a>0

f̂a(l) = lim
a→0
a>0

∫ +1

−1

dt′ Pl

(
(1 + a2)t′ + (1 − a2)

(1 − a2)t′ + (1 + a2)

)
f(t′) .

The integrand is bounded :

∣∣∣∣Pl
(

(1 + a2)t′ + (1 − a2)

(1 − a2)t′ + (1 + a2)

)
f(t′)

∣∣∣∣ ≤ max
t∈[−1,+1]

|f(t)|,
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and since

lim
a→0
a>0

Pl

(
(1 + a2)t′ + (1 − a2)

(1 − a2)t′ + (1 + a2)

)
= 1 ,

we finally have

lim
a→0
a>0

f̂a(l) = f̂(0) = 1 ,

which gives the result.

This technique is applied in Fig. 9 to a zonal function of Gaussian shape, namely

the mother wavelet of the spherical DOG wavelet, φG(θ, ϕ) = exp(− tan2(θ/2)), θ ∈
[−π, π]. One clearly sees how dilation localizes the kernel better and better as a→ 0.

In the L1 formalism, we recall from [6] that the necessary condition for admissi-

bility becomes a genuine zero mean condition, exactly as in the flat case:

ψ̂(0, 0) =
1√
4π

∫

S2

dµ(θ, ϕ)ψ(θ, ϕ) = 0, (4.11)

and, therefore, by Proposition 4.5, ψ̂a(0, 0) = 0, ∀ a > 0.

Correspondingly, the difference wavelet ψ
(α)
φ given in (1.5) is replaced by

ψ̃
(α)
φ (θ, ϕ) = φ(θ, ϕ) −Dαφ(θ, ϕ) (α > 1).

Now, combining the modified dilation operator Da with the usual rotation oper-

ator R%, we define a new set of spherical wavelets, starting from an admissible ψ,

namely, ψa% ≡ R%D
aψ = R% ψ

a. Accordingly, we redefine as follows the spherical

wavelet transform of a signal s ∈ L2(S2):

S̃ψ(%, a) =

∫

S2

dµ(ω) ψa%(ω) s(ω). (4.12)

In particular, if the wavelet ψ is zonal, we get

S̃ψ(ω, a) =

∫

S2

dµ(ω′) ψa(ω̂ · ω̂′) s(ω′). (4.13)

We can now state our main result, namely that the spherical CWT admits a

reconstruction formula, valid in the strong L2 topology, exactly as the usual CWT

in Rn. Actually, the formula holds in any strong Lp topology, for 1 ≤ p < ∞.

As in the flat case [11, 24, 32], we may distinguish between a bilinear and a linear

formalism (the latter being a limiting case of the former). But there is a crucial

difference. In the flat case, it is advantageous, but not compulsory, to treat the large

scales or low frequencies separately, in terms of a scaling function (in the context of

the so-called infinitesimal multiresolution analysis). Here, however, we are forced to

do it. The reason is that, geometrically, only small scales are relevant and lead to

the expected filtering behavior, as discussed in Section 3.3. We arbitrarily choose

a = ao as reference scale and define the scales a > ao as large (we could, for

instance, put ao = 1).
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Let us begin with the bilinear analysis. Given a wavelet ψ ∈ L1(S2), we define

the corresponding scaling function Φ ≡ Φ(ao) by its Fourier coefficients :

|Φ̂(l,m)|2 =

∫ ∞

ao

da

a
|ψ̂a(l,m)|2, l ≥ 1, (4.14)

|Φ̂(0, 0)|2 =
1

8π2
(4.15)

(the integral in (4.14) converges in virtue of the admissibility condition (4.9) sat-

isfied by ψ). Of course, (4.14) does not define the function Φ uniquely. We can, for

instance, assume in addition that Φ̂(l,m) ≥ 0, ∀ l,m, as in [13].

Corresponding to (4.12), we define the large scale part of a signal s as

Σ̃Φ(%, ao) =

∫

S2

dµ(ω) Φ
(ao)
% (ω) s(ω), (4.16)

where we have put Φ
(ao)
% (ω) ≡ Φ(ao)(%−1ω).

Theorem 4.7 (Bilinear analysis). Let ψ ∈ L1(S2) be a wavelet and let Φ ≡
Φ(ao), ao > 0, denote the associated scaling function. Assume the following two

conditions are satisfied:

• for all l = 1, 2, . . .,

8π2

2l + 1

∑

|m|≤l

∫ ∞

0

da

a
|ψ̂a(l,m)|2 = 1 , (4.17)

• for all ε ∈ (0, ao), there is a constant M > 0, independent of ε, such that

∫ ao

ε

da

a
‖ψa‖2 ≤M . (4.18)

Then, for all s ∈ L2(S2), we have the equality

s =

∫ ao

0

da

a

∫

SO(3)

d% S̃ψ(%, a)ψa% +

∫

SO(3)

d% Σ̃Φ(%, ao) Φ(ao)
% , (4.19)

where S̃ψ is the spherical CWT of s with respect to the wavelet ψ, Σ̃Φ is the large

scale part of s and the integral is understood in the strong sense in Lp(S2), 1 ≤ p <

∞.

Proof. We consider the first term in (4.19). Since ψ ∈ L1(S2) and s ∈ L2(S2),

Young’s convolution inequality (4.2) shows that S̃ψ ∈ L2(SO(3)). As in the flat

case [32], we define the infinitesimal detail at scale a:

d(a)(ω) =

∫

SO(3)

d% S̃ψ(%, a)ψa%(ω) .

This is a convolution on SO(3) and Young’s inequality (4.1) shows that d(a) ∈
L2(S2).
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Explicitly, we have

d(a)(ω) =

∫

S2

dµ(ω′) s(ω′)

∫

SO(3)

d% ψa(%−1ω′)ψa(%−1ω) . (4.20)

As in the proof of Proposition 4.1, we use the relation

ψa(%−1ω′) =

∞∑

l=0

∑

|m|≤l

∑

|n|≤l

D l
mn(%) ψ̂

a(l, n)Y ml (ω′), (4.21)

to find

d(a)(ω) =

∫

S2

dµ(ω′) s(ω′)
∑

lmn
l′m′n′

Y ml (ω′)Y m
′

l′ (ω) ψ̂a(l, n) ψ̂a(l′, n′)

×
∫

SO(3)

d% D l
mn(%)D l′

m′n′(%) .

Using the orthogonality of Wigner functions and the addition theorem for spherical

harmonics, this gives:

d(a)(ω) = 2π

∫

S2

dµ(ω′) s(ω′)

∞∑

l=0

∑

|m|≤l

Pl (ω̂ · ω̂′) |ψ̂a(l,m)|2 .

Now consider the following expression :

s(ao)
ε (ω) =

∫ ao

ε

da

a
d(a)(ω)

= 2π

∫

S2

dµ(ω′) s(ω′)

∫ ao

ε

da

a

∞∑

l=0

∑

|m|≤l

Pl (ω̂ · ω̂′) |ψ̂a(l,m)|2 .

In virtue of condition (4.18), the double summation on the r.h.s. of this equation

is absolutely and uniformly convergent, since it is majorized by

∫ ao

ε

da

a

∞∑

l=0

∑

|m|≤l

|ψ̂a(l,m)|2 =

∫ ao

ε

da

a
‖ψa‖2.

Now let us introduce the quantity:

K(ao)
ε (t) = 2π

∞∑

l=0

∑

|m|≤l

(∫ ao

ε

da

a
|ψ̂a(l,m)|2

)
Pl(t) ,

so that

s(ao)
ε = K(ao)

ε ? s.

By (4.18), we see that K(ao)
ε ∈ L1([−1,+1]), for all 0 < ε ≤ ao, and ‖K(ao)

ε ‖1 ≤
2πM .
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Next, we show in the same way that the second term in (4.19) equals H(ao) ? s,

where

H(ao)(t) = 2π

∞∑

l=0

∑

|m|≤l

|Φ̂(l,m)|2 Pl(t).

Again, H(ao) ∈ L1([−1,+1]). Finally, we define the kernel Kε = K(ao)
ε + H(ao),

which also belongs to L1([−1,+1]. Condition (4.18) shows that Kε is a uniformly

bounded kernel. In addition, from (4.17) and the definition (4.14)-(4.15) of Φ̂(l,m),

we deduce the following constraint on its Legendre coefficients :

lim
ε→0

K̂ε(l) =
8π2

2l+ 1

∑

|m|≤l

(∫ ao

0

da

a
|ψ̂a(l,m)|2 + |Φ̂(l,m)|2

)

=





8π2

2l + 1

∑

|m|≤l

∫ ∞

0

da

a
|ψ̂a(l,m)|2 = 1, l ≥ 1,

8π2 |Φ̂(0, 0)|2 = 1, l = 0.

Then Theorem 4.3 shows that Kε is the kernel of an approximate identity, which

proves the existence of the strong limit in L2(S2):

lim
ε→0

(Kε ? s) = s.

As a check of the reconstruction formula (4.19), let us consider the unit function

ι. Contrary to the case of the L2 formalism, the L1-normalized CWT of ι vanishes

identically, as a consequence of Proposition 4.5:

Ĩψ(%, a) =

∫

S2

dµ(ω) ψa(ω) =

∫

S2

dµ(ω) ψ(ω) = 0.

Hence only the second term, the large scale part, subsists in (4.19). Using again

the expansion (4.21), we find successively:

ĨΦ(%, ao) =

∫

S2

dµ(ω) Φ(%−1ω) = Φ̂(0, 0),

and, for (4.19),

ι(ω) = Φ̂(0, 0)

∫

SO(3)

d% Φ(%−1ω) = 8π2 |Φ̂(0, 0)|2 = 1.

This result shows that the large scale part of a signal must be treated separately,

because constant functions on the sphere are square integrable, and hence must be

reconstructible, although their CWT vanishes identically. In practice, of course,

large scales should be irrelevant, since wavelet analysis is local, and we expect the

second term in (4.19) to be numerically negligible (that is, one must choose ao large

enough for this to be true).
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Theorem 4.7 applies, in particular, to a zonal wavelet. The only change is the

parameter space of the spherical CWT which takes the form of the product S2×R+
∗ ,

with the measure a−1da dµ(ω). A further simplification yet is to consider a singular

reconstruction wavelet and build a framework similar to the Morlet linear analysis.

As in the bilinear case, we begin by defining, through its Legendre coefficients, a

scaling function φ ≡ φ(ao) that takes care of the large scales :

φ̂(l) =

∫ ∞

ao

da

a
ψ̂a(l), l ≥ 1, (4.22)

φ̂(0) = 1. (4.23)

The corresponding large part of a signal s is then

σ̃φ(ω, ao) =

∫

S2

dµ(ω′) φ(ω̂ · ω̂′) s(ω′), (4.24)

In these notations, the linear reconstruction formula is given by the following

theorem.

Theorem 4.8 (Linear analysis). Let ψ ∈ L1(S2) be a zonal wavelet satisfying

the following two conditions:

• for all l = 1, 2, . . .,

∫ ∞

0

da

a
ψ̂a(l) = 1 , (4.25)

• for all ε ∈ (0, ao),

∞∑

l=0

2l + 1

4π

∫ ao

ε

da

a
ψ̂a(l) <∞ . (4.26)

Then, for all s ∈ L2(S2), we have the equality

s(ω) =

∫ ao

0

da

a
S̃ψ(ω, a) + σ̃φ(ω, ao) ,

the integral being again understood in the strong sense in Lp, 1 ≤ p <∞.

Proof. The same arguments as in the proof of Theorem 4.7 show that the partial

sum

s(ao)
ε (ω) =

∫ ao

ε

da

a
S̃ψ(ω, a)

belongs to L2(S2). Expanding this expression and adding the large scale term, we

find

sε(ω) =

∫

S2

dµ(ω′)

∫ ao

ε

da

a
ψa(ω̂ · ω̂′) s(ω′) + σ̃φ(ω, ao)
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=

∫

S2

dµ(ω′) s(ω′)

(∫ ao

ε

da

a
ψa(ω̂ · ω̂′) + φ(ω̂ · ω̂′)

)

=

∫

S2

dµ(ω′) s(ω′)
∞∑

l=0

2l+ 1

4π

(∫ ao

ε

da

a
ψ̂a(l) + φ(l)

)
Pl(ω̂ · ω̂′)

= (κε ? s)(ω) ,

where we have used (4.26) and set

κε(t) =

∞∑

l=0

2l+ 1

4π

(∫ ao

ε

da

a
ψ̂a(l) + φ(l)

)
Pl(t) .

The Legendre coefficients of this kernel are

κ̂ε (l) =

∫ ao

ε

da

a
ψ̂a(l) + φ(l) .

As in the proof of Theorem 4.7, we deduce from condition (4.25) that limε→0 κ̂ε (l) =

1, ∀ l = 0, 1, . . .. Thus we have again an approximate identity, which allows us to

conclude that

lim
ε→0

‖s− κε ? s‖p = 0 .

The conclusion of this analysis is that our spherical CWT, with the modified di-

lation operator Da, leads to the same approximation scheme as that developed by

Freeden [13, 14]. Moreover, the present approach has the additional advantage of

giving a clear geometric meaning to the approximation parameter a. By the same

token, it intuitively explains the validity of the Euclidean limit established in [6].

Indeed, taking a→ 0 means going to the pointwise limit where curvature becomes

unimportant, that is, going to the tangent plane and recovering the flat CWT.

APPENDIX: CONVOLUTION ON A LOCALLY COMPACT

GROUP

Convolution of functions on a locally compact group is a well-defined operation

that shares many properties with its well-known Euclidean counterpart. It is defined

as follows:

Definition A.1 (Group convolution). Let G be a locally compact group with

left Haar measure dx, normalized to 1, and let f , g : G → C be two measurable

functions. The convolution product of f and g is defined a.e. by the integral :

(f ? g) (x) ≡
∫

G

f(xy)g(y−1) dy =

∫

G

f(y)g(y−1x) dy . (A.1)

When G is a commutative group, one has f ? g = g ? f . In general, however,

convolution is a noncommutative operation and we have the following relations :

(f ? g)(x) =

∫

G

f(xy−1)g(y)∆(y−1)dy ,
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where ∆(x) is the modular function on G.

One of the most interesting properties of the convolution integral is its regular-

izing effect on Lp elements. This is embodied in a number of inequalities, which

we shall use often in the sequel. Actually, they all stem from the following general

statement, analog to [19, Theorem 4.2], itself a generalization of [15, Proposition

V.4.6].

Proposition A.2 (Young’s inequality). Let G be a locally compact group with

left Haar measure dx. Let p, q, r ≥ 1 and 1/p+1/q+1/r = 2. Let f ∈ Lp(G, dx), g ∈
Lq(G, dx), and h ∈ Lr(G, dx). Then

∣∣∣∣
∫

G

(f ? g)(x)h(x) dx

∣∣∣∣ =

∣∣∣∣
∫

G

∫

G

f(y) g(y−1x)h(x) dx dy

∣∣∣∣ ≤ ‖f‖p ‖g‖q ‖h‖r.

(A.2)

Equivalently,

‖f ? g‖r ≤ ‖f‖p‖g‖q, with 1/p+ 1/q = 1 + 1/r. (A.3)

Proof. We follow closely the proof of [19, Theorem 4.2], assuming that f, g, h

are real and nonnegative. Rewrite the l.h.s. of (A.2) as

I =

∫

G

∫

G

α(x, y)β(x, y) γ(x, y) dx dy,

with

α(x, y) = f(y)p/r
′

g(y−1x)q/r
′

,

β(x, y) = g(y−1x)q/p
′

h(x)r/p
′

, (1/p+ 1/p′ = 1, etc.)

γ(x, y) = f(y)p/q
′

h(x)r/q
′

Noting that 1/p′ + 1/q′ + 1/r′ = 1, we get from Hölder’s inequality for three

functions [19] |I | ≤ ‖α‖r′ ‖β‖p′ ‖γ‖q′ . Then,

‖α‖r′r′ =

∫

G

∫

G

f(y)p g(y−1x)q dx dy

=

∫

G

∫

G

f(y)p g(x)q dx dy = ‖f‖pp ‖g‖qq,

where we have replaced x by yx and used the left invariance of the Haar measure dx

(the integrals may be interchanged by Fubini’s theorem). The same change of vari-

ables yields ‖β‖p
′

p′ = ‖g‖qq ‖h‖rr and trivially ‖γ‖q
′

q′ = ‖f‖pp ‖h‖rr. Putting the three re-

sults together then yields the r.h.s. of (A.2). As for (A.3), it is a mere restatement of

(A.2).

The result of Proposition A.2 extends to homogeneous spaces, as mentioned

already in [15, Section V.4] for the particular case p = 1, r = p′.
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Proposition A.3 (Young’s inequality on homogeneous spaces). Let G be a lo-

cally compact group with left Haar measure dx, H a closed subgroup such that

the quotient space G/H has the left invariant measure dω. Let p, q, r ≥ 1 and

1/p+ 1/q + 1/r = 2. Let f ∈ Lp(G, dx), g ∈ Lq(G/H, dω), and h ∈ Lr(G/H, dω).

Then
∣∣∣∣∣

∫

G/H

(f ? g)(ω)h(ω) dω

∣∣∣∣∣ =

∣∣∣∣∣

∫

G/H

∫

G

f(y) g(y−1ω)h(ω) dω dy

∣∣∣∣∣ ≤ ‖f‖p ‖g‖q ‖h‖r.

(A.4)

Equivalently, f ∈ Lp(G, dx), g ∈ Lq(G/H, dω) implies f ? g ∈ Lr(G/H, dω) with

1/p+ 1/q = 1 + 1/r and

‖f ? g‖r ≤ ‖f‖p ‖g‖q. (A.5)

Similarly, g ∈ Lq(G/H, dω), h ∈ Lr(G/H, dω) implies g ?̃ h ∈ Lp(G, dx), with

1/q + 1/r = 1 + 1/p, and

‖g ?̃ h‖p ≤ ‖g‖q ‖h‖r, (A.6)

where we have defined the spherical convolution as

(g ?̃ h)(y) =

∫

G/H

g(y−1ω)h(ω) dω. (A.7)

Proof. The proof is essentially the same, replacing x ∈ G by ω ∈ G/H , up to

the inequality |I | ≤ ‖α‖r′ ‖β‖p′ ‖γ‖q′ . For the first factor, we get

‖α‖r′r′ =

∫

G/H

∫

G

f(y)p g(y−1ω)q dω dy

=

∫

G/H

∫

G

f(y)p g(ω)q dω dy = ‖f‖pp ‖g‖qq,

where we have replaced ω by yω and used the left invariance of the Haar measure

dω. For the second factor, we have to proceed differently. We have

‖β‖p
′

p′ =

∫

G/H

∫

G

g(y−1ω)q e(y)h(ω)r dω dy,

where e(y) = 1, ∀y ∈ G. Obviously, e ∈ L1(G, dx) and gq ∈ L1(G/H, dω), hence

gq ? e ∈ L1(G/H, dω), with ‖gq ? e‖1 ≤ ‖e‖1 ‖gq‖1 = ‖g‖qq. From this, we get, by

the Schwarz inequality,

‖β‖p
′

p′ =

∫

G/H

(gq ? e)(ω)h(ω)r dω

≤ ‖gq ? e‖1 ‖hr‖1 = ‖g‖qq ‖h‖rr.

The rest is unchanged.
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Note that sharper constants, smaller than 1, may be put in the upper bounds

on the r.h.s. of all the inequalities, as shown in detail for Rn in [19]. In the text,

we use these inequalities for G = SO(3), G/H = SO(3)/SO(2) = S2, under the

following continuous inclusions:

L2(SO(3), d%) ? L1(S2, dµ) ↪→ L2(S2, dµ) , (A.8)

L2(S2, dµ) ?̃ L1(S2, dµ) ↪→ L2(SO(3), d%) . (A.9)
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