
GALOIS EXTENSIONS IN CHROMATIC HOMOTOPY THEORY

Abstract. Notes for the talk by Lior Yanovski at the Viva Talbot! workshop in June 2021.
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1. Higher algebra

Like classical algebra is built from considering the symmetric monoidal abelian category (Ab,⊗,Z) of
abelian groups, the world of higher algebra can be said to be built out of the stable ∞-category (Sp,⊗,S).
Just as rings can be defined as algebras over Z, we can define E1- and E∞-rings (what would correspond
to associative and commutative rings, respectively) as algebras over the sphere spectrum S. The world of
classical algebra can be embedded into higher algebra via the Eilenberg–Mac Lane functor

H : Ab −→ Sp

which takes an abelian group A the spectrum HA whose homotopy groups is A concentrated in degree 0.
This functor is not strictly symmetric monoidal, but it is lax symmetric monoidal. Hence associative and
commutative rings are sent to E1- and E∞-rings, respectively. In between classical algebra and higher
algebra we can also find the world of homological algebra in the sense that we have an equivalence of stable
∞-categories

DZ ' ModHZ(Sp) .

There are lots of examples of (ring) spectra such as: the sphere spectrum S, Eilenberg–Mac Lane spectra HR,
the spherical group ring of a topological group S[G], various flavours of K-theory such as KU and KO, and
so on.

2. Chromatic homotopy theory

When solving mathematical problems, a common strategy is to divide the problem into smaller pieces.
That is, we localise, study the localised picture, and then try to puzzle the bits together into a global picture.
Let us work with some p-local spectrum X. The localisation

X[p−1] = colim(X
p→ X

p→ X
p→ · · · )

captures thing that happen away from p, while the completion

X∧p = lim(· · · → X/p3 → X/p2 → X/p)

Date: July 20, 2021.

1



captures what happens at p. We can then piece together the information using the arithmetic pullback
square

X //

��

X[1/p]

��
X∧p // X∧p [1/p]

One crucial difference between classical algebra and higher algebra is once we complete at p, there is still
non-trivial localisations. That is, for every p-complete spectrum X, there is an asymptotically defined
endomorphism

v1 : ΣdX → X .

These maps suffices for the definition of localization and completion:

X[v−11 ] ∈ SpT (1) and X∧v1 ∈ Sp∧(p,v1) ,

analogously to before. Again, we have a pullback square, now referred to as the chromatic pullback square

X //

��

X[v−11 ]

��
X∧v1

// X∧v1 [v−11 ]

This process continues with endomorphisms v2, v3, and so on. In particular, we will write

LT (n)X = X∧(p,v1,...,vn−1)
[v−1n ] ∈ SpT (n) .

One way to think about this picture is that we have access to more prime fields. While the finite fields Fp
and the rationals Q are the only prime fields in algebra, corresponding to the characteristics p and 0, there
are more prime fields in higher algebra. For each p, working with spectra there is instead a whole hierarchy
of “prime field” interpolating between Q and Fp.

Figure 1. The chromatic picture with the prime ideals and the residue fields in higher algebra.

It is worth noting that the K(n)-local world in always contained in the T (n)-local world, in the sense that

SpK(n) ⊆ SpT (n)

for all 0 ≤ n <∞. The famous telescope conjecture deals with the supposed equivalence between these two
world.

Conjecture 1 (Telescope conjecture).

LT (n) ' LK(n)
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The telescope conjecture is known to be true for n = 0 and n = 1. While the telescope conjecture is
generally believed to be false, it is here important to note that both the K(n)-localised and the T (n)-localised
world are interesting in their own right, for their own reasons.

• The K(n)-local picture in generally easier to work with and more amenable to computation, with
important connections to formal groups and algebraic geometry.

• The T (n)-local picture is less computable, but carries important information related to unstable
homotopy theory (by work of Heuts and Bousfield –Kuhn), as well as redshift phenomena in algebraic
K-theory.

3. Galois extensions of commutative rings

Definition 2 (Auslander–Goldman, Rognes). Let A → B be a homomorphism of commutative ring, mak-
ing B into an A-algebra, and let G be a finite group acting on B via A-algebra homomorphisms. We say
that A→ B is a G-Galois extension if the two maps

i : A −→ BG

and
h : B ⊗A B −→

∏
g∈G

B , x⊗ y 7→ (xg(y))g∈G

are isomorphisms1.

The underlying motivation behind the definition is that Galois extensions should correspond to Spec(B)
being a principal G-bundle over Spec(A). The reader can check for themselves that this agrees with the
classical definition of a Galois extension whenever A and B are fields.

Theorem 3 (Rognes). If A is a connective commutative ring spectrum, Galois extensions of A are in
bijection with Galois extensions of π0(A).

4. Classical Cyclotomic extensions

Recall that the cyclotomic polynomials are defined recursively via the formula

(tn − 1) =
∏
d|n

Φd(t) .

A root ωm of Φm(t) is necessarily a primitive mth root of unity, and we say that

R[ωm] = R[t]/Φm(t)

is a cyclotomic extension of R. Note that (Z/m)× acts on R[ωm] by permuting the mth roots of unity.
While R[ωm] is not in general a (Z/m)×-Galois extension of R, it is so whenever m is invertible in R.

Example 4. It is well known that R[ω4] = C is a C2-Galois extension of R.

Example 5. We have that Fp[ωpd−1] is a (Z/(pd − 1))×-extension of Fp. This splits into a product

Fp[ωpd−1] ∼= Fpd × · · · × Fpd
of copies of the Z/d-Galois extension Fp → Fpd . The above example can also be lifted integrally into a Galois
extension

Zp[ωpd−1] ∼= W (Fpd)× · · · ×W (Fpd)

splitting into a product of copies of the Z/d-Galois extension Zp →W (Fpd). After inverting p, we have that

W (Fpd)[p−1] = Qp(ωpd−1)

1In the case of classical commutative rings this definition is due to Auslander–Goldman, while Rognes extended it also to

commutative ring spectra. In this case “isomorphism” should be interpreted as “equivalence” and the G-fixed points appearing

in the map i is to be interpreted as the G-homotopy fixed points BhG. The two maps

i : A→ BhG and h : B ⊗A B →
∏
G

B ' F (G+, B)

cannot then technically be described in terms of elements, but must be constructed as certain right adjoints. Rognes’ definition
also makes sense more generally for G that might be be finite, namely stably dualizable groups.
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which assemble into a maximal unramified extension

Qur
p =

⋃
d

Qp(ωpd−1)

of Qp. Moreover, as p is invertible, we also have cyclotomic extensions of p-power order which assemble into

Qp(ωp∞) =
⋃
r

Qp[ωpr ] .

Theorem 6 (Kronecker–Weber). All abelian Galois extensions of Qp can be obtained in this way, in the
sense that we have an isomorphism

Gal(Qp/Qp)ab ∼= Ẑ× Z×p .

Here Ẑ corresponds to Qur
p and Z×p corresponds to Qp(ωp∞). Note that the Prüfer ring Ẑ is also secretly the

Galois group of the Galois extension Fp → F̄p

5. ∞-categorical cyclotomic extensions

To be able to generalise to the setting of higher algebra it will be useful to have an alternative view on
cyclotomic extensions which does not make use of quotients. To start with, let us note that for every m we
have an isomorphism

R[t]/(tm − 1) ∼= R[Cm]

where the right hand side is acted on by (Z/m)×. For m = pr consider the short exact sequence

0 −→ Cp −→ Cpr −→ Cpr−1 −→ 0

which induces maps

Cp
ι−→ R[Cpn ]→ R[Cpr−1 ] .

If p is invertible in R, then the element

ε =
1

p

∑
g∈Cp

ι(g)

in R[Cpn ] is an idempotent, so induces a splitting

R[Cpr ] ∼= R[Cpr−1 ]×R[ωpr ] ,

with a cyclotomic extension appearing in the second factor on the right hand side.
By an observation by Waldhausen-Schwänzl we can do everything ∞-categorically.

Example 7. We can define spherical Witt vectors in such a way that we have a Z/d-Galois extension

S∧p −→ SW (Fpd)

lifting the ordinary Z/d-Galois extension Zp →W (Fpd).

Remark 8. An generalization of the above ideas, which allows for adjoining roots of arbitrary elements
a ∈ π0R×:

π0(R[a1/n]) ' π0(R)[t]/(tn − s)
via twisted group rings, was also considered by Lawson.

6. Chromatic Galois extensions

Rognes’ framework for Galois extensions also makes sense in localised settings as well as for groups other
than finite one. In particular, in K(n)-local spectra we have a (pro)-Galois extension

LK(n)S∧p −→ En

where En denotes Morava E-theory. Here the (pro)-Galois group is the so called Morava stablizer group

Gn = Ẑ n Sn, where Sn denotes the automorphism group of the height n Honda formal group law over Fp.
That this is indeed a Galois extension is essentially a theorem by Devinatz–Hopkins, reworked by Rognes
into the Galois extension formalism. Moreover, this is the maximal Galois extensions in some precise sense.
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One can think of Sn as a twisted form of GLn(Z)n. The abelianisation of the Morava stablizer group is
again the group appearing in the Kronecker–Weber theorem:

Gab
n ' Ẑ× Z×p .

The projection onto the second factor is given by the so-called determinant map

det : Sn → Z×p .

One can think of the Galois group Gal(Qp/Q) as the height 0 analogue of the Morava stabilizer group.
We might wonder whether you can realize those abelian Galois extensions again as some sort of cyclotomic
extensions.

• For the Ẑ part, the answer is yes. The finite quotients

Gn → Ẑ � Z/d

classify the Galois extensions

LK(n)S∧p −→ LK(n)SW (Fpd)

and hence embed into prime to p cyclotomic extensions.
• However, the finite quotients

Gn → Z×p � (Z/pr)×

do not classify p-power cyclotomic extension.

There is actually a stronger no-go theorem.

Theorem 9 (Devalapurkar). For n ≥ 1, there is no K(n)-local commutative ring spectrum R such that π0R
contains a primitive pth root of unity.

However, they do come from some some sort of higher analogue of cyclotomic extensions!

7. Higher Roots of Unity

From the functor of points point of view: for commutative R-algebras S, the R-algebra R[Cpn ] corepresents
prth roots of unity is the sense that we have a bijection

HomR(R[Cpr ], S) ∼= Hom(Cpr , S
×) .

In the same way, R[ωpr ] corepresents primitive prth roots of unity.
In the higher setting, we define the height n root of unity of S as a map

ω(n) : HCpr −→ ΩnS× .

This is corepresented by R[BnCpn ] and acted on by (Z/pr)×. There is also a natural definition for ω(n) to
be primitive. It turns our that working K(n)-locally, the ring SK(n)[B

nCpn ] splits equivariantly as

SK(n)[B
nCpn ] ' SK(n)[B

nCpr−1 ]× SK(n)[ω
(n)
pr ] .

Here, the second factor corepresents the primitive higher roots of unity.

Theorem 10 (Westerland). The algebra SK(n)[ω
(n)
pr ] is (S/pr)×-Galois and is classified by the composition

Gn
det−→ Z×p � (Z/pr)× .

The slogan here is that the determinant det : Gn −→ Z×p is the p-adic cyclotomic character.
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8. Higher semiadditivity (aka ambidexterity)

Given m ≥ −2, we say that a space A is called m-finite if it is m-truncated, has finitely many connected
components and all of its homotopy groups are finite. It is called π-finite if it is m-finite for some m.

Definition 11 (Hopkins–Lurie). For every space A, there is a canonical map

colim
A
−→ lim

A
.

We say that an ∞-category is ∞-semiadditive if this map is an equivalence for all π-finite spaces A.

Semiadditivity gives us access to a bunch of important structure. In particular, semiadditivity gives us the
ability to sum a finite family of morphisms between two objects. That is, it tells us how to define integration
on a morphism ϕ : A→ Map(X,Y ) where A is π-finite. This is map from X to Y denoted∫

A

ϕ .

In particular, given a π-space we always have a distinguished map |A| : S→ X obtained by integrating the
constant map A→ Map(X,X) at the identity IdX .

Theorem 12 (Hopkins–Lurie, Greenlees–Hovey–Sadofsky). The ∞-categories SpK(n) are ∞-semiadditive
for all 0 ≤ n <∞.

It turns out that in SpK(n), the map |BnCp| : X → X is always invertible in π0(R). We consider the fibre
sequence

BnCp −→ BnCpn −→ BnCpr−1

which induces a map
ι : BnCp −→ Ω∞(SK(n)[B

nCpr ]) .

The integration-framework allows us to define an idempotent

ε =
1

|BnCp|

∫
g∈BnCp

ι(g)

in π0(SK(n)[B
nCpr ]). Being an idempotent, it induces a (Z/pr)×-equivariant splitting of the above fibre

sequence in such a way that

SK(n)[B
nCpr ][(1− ε)−1] ' SK(n)[ω

(n)
pr ] .

So, SK(n)[ω
(n)
pr ] corepresents the space of primitve prth roots of unity of height n.

9. Telescopic Galois Extensions

Theorem 13 (Carmeli–Schlank–Yanovski). The ∞-category SpT (n) is ∞-semiadditive of height n for all
0 ≤ n <∞.

Theorem 14. The algebra ST (n)[ω
(n)
pr ] is a (Z/pr)×-Galois extension of ST (n).

Corollary 15. We can lift every finite abelian G-Galois extension SK(n) → R to a G-Galois extension

ST (n) → Rf .
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