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Abstract

In this talk, I will discuss the Real bordism spectrum and the theory of Real orien-
tations. This is an equivariant refinement of the complex cobordism spectrum and the
theory of complex orientations. The Real bordism spectrum and its norms are crucial in
Hill–Hopkins–Ravenel’s solution of the Kervaire invariant one problem in 2009. I will talk
about their solution and explain how the Real bordism spectrum is further creating many
connections between equivariant stable homotopy theory and chromatic homotopy the-
ory. These newly established connections allow one to use equivariant machinery to attack
classical computations that were long considered unapproachable. This talk contains joint
work with Agnès Beaudry, Jeremy Hahn, Mike Hill, Guchuan Li, Lennart Meier, Guozhen
Wang, Zhouli Xu, and Mingcong Zeng.

Contents

1 What does Real mean? 2

2 Lubin–Tate spectra 5

3 Chromatic homotopy theory 6

4 Computations of EhGn 8

5 Kervaire invariant one problem 12

6 Detection tower 15

References 18

*Typed by Jack Davies (Universiteit Utrecht) and Heyi Zhu (University of Ullinois Urbana-Champaign).

1



1 What does Real mean?

Let C2 be the cyclic group of order 2 and write τ for the generator. A Real space1 is simply a
space X with a C2-action, so X comes with a map τ : X Ñ X such that τ � τ is the identity.
A Real vector bundle E over a Real space X is the data of a complex vector bundle E Ñ X
and a Real space structure on E, such that E Ñ X is C2-equivariant and the C2-action on all
fibres

τ : Ex Ñ Eτpxq

is anti C-linear, meaning that τpz � vq � z � τpvq, where z is the complex conjugate of z P C.2

As in the nonequivariant world, we can form the monoid of isomorphism classes of Real vector
bundles over X and take its Grothendieck group completion, and we obtain a group KRpXq.
This is a cohomology theory, and leads to the C2-equivariant spectrum KR called Atiyah’s
Real K-theory ; see [Ati66].

To property study equivariant cohomology theories like KR, we use equivariant stable
homotopy theory. Recall that for a nonequivariant spectrum X, its homotopy groups can
be given by πnX � rSn, Xs. One main feature of equivariant stable homotopy theory (for
some fixed group G) is that there are more spheres. For every G-representation V , we obtain
a sphere SV by one-point-compactification. This also yields more homotopy groups for G-
spectra using the formula πGVX � rSV , XsG, which leads to the ROpGq-graded homotopy
groups of X, denoted by πG�X; see [LMS86] or [HHR16]. Let us talk about two examples of
such theories.

Example 1 (Atiyah’s Real K-theory KR). The C2-spectrum KR combines complex K-theory
KU and real K-theory KO. The underlying nonequivariant spectrum is KU , and the (homo-
topy) fixed point spectrum is KO:

KC2
R � KhC2

R � KO

There are also two different periodicities in the ROpC2q-graded homotopy groups of KR. The
first is an equivariant refinement of complex Bott periodicity

πC2
��ρKR � πC2

�
KR,

where ρ indicates the regular representation of C2 (which can also be given by C with the
complex conjugation action), which has dimension 2. There is also an 8-fold period from real
Bott periodicity

πC2
��8KR � πC2

�
KR.

Before we get into the more important example for us, let us recall its nonequivariant
counterpart.

1As mentioned in [Ati66], the motiviation for the adjective Real with a capital “r” comes from real algebraic
geometry: if X is the set of complex points of an algebraic variety over R, then X has the natural structure of
a Real space in the sense discussed here, with C2-action given by complex conjugation.

2It’s important to note that this is not equivalent to the data of a C2-equivariant complex vector bundle!
In that case we would ask τ to be C-linear on fibres, so τpz � vq � z � τpvq.
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Example 2 (Complex bordism MU). Write γn for the universal complex n-bundle over BUpnq,
and BUpnqγn for its Thom space. There is a map BUpnq Ñ BUpn� 1q classified by sending
γn to the complex pn � 1q-bundle given by adding a trivial line bundle. This yields a map
between Thom spaces

Σ2BUpnqγ � BUpnqγn`C Ñ BUpn� 1qγn�1 ,

and these maps give us structure maps for the nonequivariant spectrum MU of complex bor-
dism.

Everything we just did for MU has a natural C2-equivariant refinement.

Example 3 (Real bordism MUR). Both BUpnq and γn are naturally Real spaces by complex
conjugation, and the map γn Ñ BUpnq defines a Real vector bundle. We can also check that
the map BUpnq Ñ BUpn � 1q is C2-equivariant, where we now view the trivial line bundle
over BUpnq has as a copy of the regular representation ρ. This yields the C2-equivariant map
of spaces

ΣρBUpnqγ � BUpnqγn`C Ñ BUpn� 1qγn�1 ,

giving us structure maps for the C2-equivariant spectrum MUR of Real bordism. This has
underlying spectrum MU by construction, but its (homotopy) fixed points are something
much more complicated than MO (real bordism), although they are known. This spectrum
MUR is crucial in Hill–Hopkins–Ravenel’s solution to the Kervaire invariant one problem
(more on this later!).

The classical spectrum MU has many desirable features. Its homology groups MU�pXq
are the groups of bordism classes of manifolds over X with complex linear structure on their
stable normal bundle, ie, bordism classes of almost complex manifolds over X. Moreover, its
homotopy groups are an infinite polynomial ring

π�MU �MU�pptq � Zrx1, x2, . . .s |xi| � 2i,

from calculations done by Milnor and Novikov; also see [Ada74, §II]. There is also the theory
of complex orientations; see ibid.

Definition 4 (Complex orientations). Given a multiplicative cohomology theory E, then a
complex orientation on E is a class x P rE2pCP8q which restricts to a unit inside

rE2pCP1q � rE2pS2q � rE0pS0q � π0E.

Many calculations simplify if E has a complex orientation. For example, using the Atiyah–
Hirzebruch spectral sequence one can calculate

E�pCP8q � E�JxK E�pCP8 �CP8q � E�Jx, yK,

where x, y are classes in degree 2. There is a map CP8 �CP8 Ñ CP8 which classifies the
tensor product of line bundles, and this induces a map on E-cohomology

E�pCP8q Ñ E�pCP8 �CP8q.
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If E is complex oriented, then we can consider the image of x ÞÑ F px, yq, some power series in
two variables. This power series actually defines what is called a formal group law over π�E.
One can show that for a multiplicative cohomology theory E, the set of complex orientations
of E are in bijection with the homotopy classes of maps MU Ñ E of homotopy commutative
ring spectra; see [Lur, Lec.6]. This can be reformulated to the following theorem of Quillen.

Theorem 5 (Quillen). The universal complex oriented spectrum is MU , and it carries the
universal formal group law.

There are other (simpler) examples of complex oriented ring spectra.

Example 6 (Eilenberg–Mac Lane spectra). Writing HZ for the Eilenberg–Mac Lane spectrum
for the integers, the spectrum representing integral singular cohomology, then there is a map
MU Ñ HZ. This can either be seen using Definition 4 or by setting MU Ñ HZ to be the
zeroth truncation. The formal group law associated to HZ is called the additive formal group
law, and is given by

Gapx, yq � x� y.

This reflects the usual additivity properties of Chern classes in singular cohomology.

Example 7 (Complex K-theory). Another typical example is KU . Constructing the complex
orientation can be obtained through a study of KU , and the associated formal group law is
called the multiplicative formal group law, given by the formula

Gmpx, yq � x� y � βxy,

where β P π2KU is the Bott class.

There is a natural C2-equivariant lift of the story of complex orientations to what are called
Real orientations; see [Ara79] and [HK01].

Definition 8 (Real orientations). Given a multiplicative C2-equivariant cohomology theory
E, then a Real orientation on E is a class x P rEρC2

pCP8q which restricts to a unit inside

rEρC2
pCP1q � rEρC2

pSρq � rE0
C2
pS0q � πC2

0 E.

Here, and everywhere else in the lecture, CPn and CP8 will always have the structure of a
Real space given by complex conjugation.

Araki tells us that given a Real oriented C2-spectrum E, then we can calculate some
C2-equivariant ROpC2q-graded cohomology groups

E�C2
pCP8q � E�C2

JxK E�C2
pCP8 �CP8q � E�C2

Jx, yK,

where x and y are now classes in degree ρ.3 As you should expect by now, the map CP8 �
CP8 Ñ CP8 given above is C2-equivariant, and we obtain a formal group law, now over
πC2
�
E. Moreover, Hu and Kriz show that homotopy classes of maps of homotopy commutative

C2-ring spectra MUR Ñ E are in bijection with Real orientations of E. Prime examples of
Real oriented theories are of course Atiyah’s Real K-theory KR, and Real bordism itself MUR.
But there are also more examples, which we will explore now.

3The notation x is supposed to remind us that this element is a C2-equivariant lift or refinement of the
classical class x which has degree 2, the underlying dimension of ρ.
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2 Lubin–Tate spectra

It turns out that KU belongs for a more general class of spectra; see [Lur, Lec.21-2]. Fix
a perfect field κ of characterisic p ¡ 0, and a formal group law Γn of height n over κ. The
deformation theory of Lubin–Tate says Γn admits a universal deformation, which can be
characterised by a map MU� Ñ En�, where

En� �W pκqJu1, . . . , un�1Kru�1s

is the universal deformation ring. The Landweber exact functor theorem states that this
graded ring is actually the homotopy groups of a homotopy commutative ring spectrum En,
called the Lubin–Tate spectrum of the pair pκ,Γnq. This is a complex oriented cohomology
theory whose associated formal group law is the universal deformation of Γn.

Example 9 (p-adic complex K-theory). The connection with KU can be explained as follows:
if κ � Fp is the field with two elements and Γ1 is the multiplicative formal group law Γ1px, yq �
x � y � βxy, then the associated Lubin–Tate spectrum E1 is the p-completion of K-theory
KU^

p .

Example 10 (Elliptic cohomologies). Another huge source of formal group laws comes from
elliptic curves. This leads to elliptic cohomology theories, topological modular forms, the
Witten genus, and much more. The Lubin–Tate spectra associated to such formal groups
from elliptic curves are forms of elliptic cohomology.

An application of Lubin–Tate spectra is to study the structure of the stable homotopy
groups of spheres. Recall the following theorem of Freudenthal from 1937.

Theorem 11 (Freudenthal). The abelian groups πn�kS
n stabilise for n ¡ k � 1.

We then define the kth stable homotopy group of spheres by the (eventually stable) colimit

πst
k S

0 � colimπn�kS
n.

In the 1930s, Pontryagin constructed an isomorphism

πst
k S

0 � Ωfr
k ,

where Ωfr
k is the group of cobordism classes of stably framed k-manifolds. This establishes a

deep relationship between homotopy theory and geometry. Over the past 80 years, describing
πst
� S

0 has been fundamental to algebraic topology. Lubin–Tate spectra can isolate certains
“sectors” in our computations of these homotopy groups, and also give connections to other
areas of mathematics (such as modular forms and geometric topology).

To take us back to equivariant stable homotopy theory, we would like to put a group action
on these Lubin–Tate spectra En. The work of Lubin–Tate shows that the Morava stabiliser
group

Gn � Gpκ,Γnq � AutpΓnq �Galpκ{Fpq

acts on En�, and one might hope to lift this to an action of spectra on En. A solution
is provided by the following theorem of Goerss, Hopkins, and Miller using Goerss–Hopkins
obstruction theory; see [GH04, §7].
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Theorem 12 (Goerss–Hopkins–Miller). The homotopy commutative ring spectrum En has the
structure of an E8-ring, which is unique up to contractible choice. Moreover, the Gpκ,Γnq-
action on En� lifts to an action on En by maps of E8-rings, which is also unique up to
contractible choice.

We can therefore consider En as a Gpκ,Γnq-equivariant commutative ring spectrum.4 Let
us now fix our prime p � 2, and specialise to a simple subgroup of the Morava stabiliser group
C2 ¤ Gpκ,Γnq. The action of C2 on En� now comes from the inverse r�1sΓn of the formal
group law Γn. The Gpκ,Γnq-action on Lubin–Tate spectra restricts to a C2-action of E8-rings
on En. Consider the following schematic:

MUR En

MU� En�

?

We already have the map of ringsMU� Ñ En�, and moreover we know that it is C2-equivariant;
it classifies a formal group. We also know that both of these rings and their C2-actions come
from the nonequivariant homotopy groups of two C2-spectra MUR and En. The natural
question is then:

Is there a C2-equivariant map of spectra MUR Ñ En lifting MU� Ñ En�?

A priori, this is an overly optimistic question, as the C2-action on the left comes from the
geometry of complex conjugation, and the C2-action on the right comes from obstruction
theory and the deformation theory from purely algebraic gadgets. However, there is a positive
answer, given to us by work of Hahn and the speaker; see [HS20].

Theorem 13 (Hahn–S.). The Lubin–Tate spectrum En is Real oriented: it receives a C2-
equivariant map

MUR Ñ En

from the Real bordism spectrum MUR.

This opens the door to a series of computations in stable homotopy theory.

3 Chromatic homotopy theory

The theory of chromatic homotopy theory tells us that the collection of Lubin–Tate spectra
for various heights determines p-local stable homotopy theory; see [Lur] for some general infor-
mation. The following is the chromatic convergence theory of Hopkins–Ravenel; see [Rav92,
§8.6].

Theorem 14 (Hopkins–Ravenel). The homotopy limit of the diagram

� � � Ñ LEnS
0 Ñ LEn�1S

0 Ñ � � � Ñ LE1S
0 Ñ LE0S

0

is equivalent to the p-local sphere spectrum S0
ppq. Here LE denotes the Bousfield localisation

functor with respect to the spectrum E.

4This is done using a cofree construction.
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This theorem states that to understand the (p-localisation of the) stable homotopy groups
of spheres, one can understand the localisations LEnS

0 and how they fit together. The chro-
matic fracture square states that the following natural diagram of spectra is Cartesian:

LEnS
0 LKpnqS

0

LEn�1S
0 LEn�1LKpnqS

0

The spectrum Kpnq above is that of Morava K-theory of height n (at the prime p). The slogan
of chromatic homotopy theory then reads:

In order to study S0
ppq, we need to study the Kpnq-local spheres and how they “glue” together.

The connection between chromatic homotopy theory and equivariant homotopy theory lies in
the following theorem of Hopkins and Devinaz.

Theorem 15 (Hopkins–Devinaz). The map of spectra LKpnqS
0 Ñ EhGn

n is an equivalence.

This implies that the spectra EhGn , for G a finite5 subgroup of Gn, are central objects to
study in chromatic homotopy theory. In general, such spectra capture large scale periodicity
phenomena in stable homotopy theory, and modern detection theorems help us directly study
elements in π�S

0 using the unit map (also known as the Hurewicz map) π�S
0 Ñ π�E

hG
n . The

latter technique is used in Hill, Hopkins, and Ravenel’s solution to the Kervaire invariant one
problem (still to come!). Let us discuss some computations at low heights.

Example 16 (At height 1). There is a homotopy fixed point spectra sequence

H�pG;π�Enq ùñ π�E
hG
n

which we totally understand for n � 1, as EhC2
1 � KO^

2 . This is very closely related to
the image of J : π�O Ñ π�S

0, which captures everything above the line of slope 1{5 in the
Adams–Novikov spectral sequence for S0 due to work by Mahowald.

Example 17 (At height 2). The Lubin–Tate spectra at height 2 are closely related to topological
modular forms tmf (and tmf with level structure); see [Beh20]. These spectra are topological
refinements of the classical rings of modular forms in number theory and are closely related
to elliptic curves. This is a very active area of research! The Hurewicz map π�S

0 Ñ π� tmf
detects an astounding number of elements, nearly everything in π�S

0 for �   60. These
spectra can also be used to give resolutions of the Kp2q-local sphere. Computations of height
2 Lubin–Tate spectra rely heavily on the geometry of elliptic curves. One usually choses a nice
supersingular6 elliptic curve which can give an explicit understanding of how G acts on E2�.

5The Morava stabiliser group Gn is a pro-finite group, and therefore studying fixed points with respect to
the whole group is difficult.

6A supersingular elliptic curve is one whose formal group has height 2, otherwise we say an elliptic curve is
ordinary when the formal group has height 1.
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At higher heights the spectra EhGn see a lot more information, but we find ourselves with
many problems. Firstly, the homotopy groups π�E

hG
n are extremely difficult to compute. This

comes from the fact that the G-action on π�En is very difficult to compute, a consequence of
this action coming purely from obstruction theory. It is also not possible to use elliptic curves
anymore either, as they always have height ¤ 2. Work by Behrens–Lawson on topological
automorphic forms attempts to find formal groups of higher height using more sophisticated
algebro-geometric input; see [BL10].

What is easy to understand is the C2-action on MUR, as this comes purely from geometric
inputs, hence the Real orientations of Lubin–Tate spectra establish the first known connec-
tion between these actions. This is how Theorem 13 makes many previously unaccessable
computations possible.

(30 minute break)

4 Computations of EhG
n

The Real orientation of Theorem 13 induces a morphism of ROpC2q-graded C2-homotopy fixed
point spectral sequences

HFPSSpMUhC2
R q Ñ HFPSSpEhC2

n q,

which converge to the C2-homotopy fixed points of the above spectra. Using work by Hu
and Kriz (see [HK01]), the spectral sequence on the left is completely understood, and the
differentials7

d2k�1�1pu
2k�1

2σ q � x2k�1a
2k�1�1
σ

induce all of the differentials in HFPSSpEhC2
n q. Indeed, we have the following theorem.

Theorem 18 (Hahn–S.). The E2-page of the ROpC2q-graded homotopy fixed point spectral
sequence of En takes the form

Es,t2 pEhC2
n q �W pF2nqJu1, . . . , un�1Kru�s b Zru�2σ, aσs{p2aσq.

The classes u1, . . . , un�1, u
�, and aσ are permantent cycles. All the differentials in the spectral

sequence are determined by the differentials

d2k�1�1pu
2k�1

2σ q � uku
2k�1a2k�1�1

σ 1 ¤ k ¤ n� 1,

d2n�1�1pu
2n�1

2σ q � u2n�1a2n�1�1
σ k � n,

and the multiplicative structures.

For n � 3, we have the E3-, E7-, E15-, and E8-pages for the HFPSSpEhC2
3 q can be found

as Figure 1, Figure 2, Figure 3, and Figure 4, respectively, all from [HS20].
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E hC2

3

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

F8[[ū1,ū2]]

Figure 1: E3-page of the homotopy fixed point spectral sequence for EhC2
3 .

Notice that on the E8-page Figure 4, we can visually see that EhC2
3 is 32-periodic.8 This

is actually just one of many general nice properties that these spectra satisfy.

Theorem 19 (Hahn–S.). The spectra EhC2
n are 2n�2-periodic for all n ¥ 1. As C2-spectra, the

Lubin–Tate spectra En are C2-equivariantly even,9 meaning that πkρ�1En � 0 for all k P Z
and πkρEn is the constant Mackey functor for all k P Z. The C2-spectra En are also Real
Landweber exact, meaning for all C2-spectra X we have an isomorphism10

MUR�pXq bMU� En� Ñ En�pXq.

Let us go back to the E8-page of EhC2
3 again; see Figure 4. Notice there are classes labelled

7The elements u2σ and aσ are described in [HM17, Cor.4.7]. In particular, in the case below, the class aσ
is a permantent cycle, and represents the essential C2-equivariant map S0 Ñ Sσ which sends one point to the
North pole and the other point to the South pole.

8When a ring spectrum E is said to be 2n-periodic, we mean that E is at least 2n-periodic. For example,
we could say KU is 4-periodic, although we never would. However, in all known examples, the periods stated
in this talk are sharp.

9Recall that nonequivariantly we say a spectrum X is even if the odd homotopy groups π2k�1X vanish.
10See [HM17, §3] for an explanation of C2-equivariant evenness and Real Landweber exactness.
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E hC2

3

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

F8[[ū2]]

Figure 2: E7-page of the homotopy fixed point spectral sequence for EhC2
3 .

by various Greek letters, such as η, ν, and σ, corresponding to the Hopf elements, as well as
more exotic elements such as elements in the κ family, κ and κ2. There is also a general theory
developed which tells us how much of the Hurewicz image of π�S

0 is detected by various
C2-fixed point spectra; see [LSWX19] and [HS20, §7].

Theorem 20 (Li–S.–Wang–Xu). The C2-fixed points of MUR detects the Hopf-, Kervaire-,
and κ-family.

Theorem 21 (Li–S.–Wang–Xu, Hahn–S.). The C2-fixed points of En detects the first n ele-
ments of the Hopf- and Kervaire-family, and the first pn� 1q elements of the κ-family.

There are also methods to access computations for groups that larger than C2 using the
Hill–Hopkins–Ravenel norm; see [HHR16]. If H is a subgroup of a group G, then there is a
functor NG

H from the category of equivariant H-spectra to that of equivariant G-spectra.11 If

11The norm functorN
C2m

C2
is simple to describe: the underlying objectN

C2m

C2
X isXb2m�1

, with the generator
of C2m acting by

x1 b � � � b x2m�1 ÞÑ x2 b � � � b x2m�1 b τpx1q.
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E hC2

3

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

F8

Figure 3: E15-page of the homotopy fixed point spectral sequence for EhC2
3 .

G contains C2, then we can “norm up” the Real bordism spectrum to G. This is an important
construction, so we give it a name:

MU ppGqq � NG
C2
MUR

For formal reasons, we obtain a kind of “G-equivariant orientation” for Lubin–Tate spectra.

Theorem 22 (Hahn–S.). Let G ¤ Gpκ,Γnq be a finite subgroup containing the central subgroup
C2. Then there is a G-equivariant map

MU ppGqq Ñ En.

The motivation for doing this comes from Hill, Hopkins, and Ravenel’s solution to the
Kervaire invariant one problem. We have mentioned these three names and this problem quite
a lot, so let us explore it now.
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E hC2

3

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48
0

ν
η2
η

σ
ν2

σ2

κ̄

κ̄2

Figure 4: E8-page of the homotopy fixed point spectral sequence for EhC2
3 .

5 Kervaire invariant one problem

Given a framed p4k�2q-dimensional manifold M , then Kervaire constructed a quadratic form

φ : H2k�1pM ; Z{2Zq Ñ Z{2Z, φpx� yq � φpxq � φpyq � xx, yy.

The Kervaire invariant ΦpMq of M is defined by the Arf invariant of φ. This is a funda-
mental invariant in differential and algebraic topology. Let us see how this invariant plays
into questions about smooth structures on spheres and other manifolds. We say that a closed
n-manifold Σn is a homotopy n-sphere if it is homotopy equivalent to Sn. The Generalised
Poincaré conjecture asks:

Are all homotopy n-spheres Σn homeomorphic to Sn?

The answer is yes. For n ¥ 5 this was proven by Smale in 1962, for n � 4 by Freedman in
1982, and for n � 3 by Perelman in 2002 (the cases for n � 0, 1, 2 are easy). Another natural
question then relates not just the homotopical structure of a sphere to its topological type,
but to its diffeomorphism type:
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Are all homotopy n-spheres Σn diffeomorphic to Sn, equipped with the usual smooth
structure?

For n � 3 this is true by Moise’s theorem from 1952, but for n � 4 we still have no idea to
this day. For n � 7, Milnor found counter examples in 1956 by constructing exotic 7-spheres,
which are homotopy 7-spheres which are not diffeomorphic to the standard smooth structure
on S7. In 1963, Kervaire–Milnor computed the groups of possible exotic n-spheres (for n ¡ 4)
in terms of the stable homotopy groups of spheres πst

n S
0, modulo the Kervaire invariant. Let’s

state this result in some more detail. Write Θn for the group of homotopy n-spheres up to
diffeomorphism (the group structure is given by connected sum), and Θbp

n for the group of
homotopy n-sphere that bound parallelizable manifolds. The following is from [KM63].

Theorem 23 (Kervaire–Milnor). Fix n ¥ 5. The subgroup Θbp
n is cyclic,

|Θbp
n | �

$'&
'%

1 n � 2k

1 or 2 n � 4k � 1

bk n � 4k � 1,

where bk � 22k�2p22k�1 � 1q � Np4B2k
k q, and Np�q indicates taking numerators, and B2k

Bernoulli numbers. The indecision in the n � 4k � 1 case is due to the Kervaire invari-
ant. There are also two exact sequences: the first for n � 2 modulo 4

0 Ñ Θbp
n Ñ Θn Ñ πst

n S
0{J Ñ 0.

and the second for n � 2 modulo 4

0 Ñ Θbp
n Ñ Θn Ñ πst

n S
0{J

ΦnÝÝÑ Z{2Z Ñ Θbp
n�1 Ñ 0. (24)

Above, J indicates the image of the J-homomorphism and Φn the Kervaire invariant.

It is in this sense that understanding the Kervaire invariant Φn from (24) is the last missing
piece of this Kervaire–Milnor puzzle. This leads us to the following question:

In which dimensions is there a framed manifold with Kervaire invariant one?

In other words, for which n is Φn from the second exact sequence of Theorem 23 nontrivial?
In 1963, not much was known. It was know that there were such manifolds in dimensions 2,
6, and 14, and one could show there were no such manifolds in dimensions 10 or 18. There
was no general structure theorems though, nor a direct connection to stable homotopy theory
(apart from rewriting framed cobordism groups as stable homotopy groups of spheres). This
was until the following theorem of Browder from 1969; see [Bro69].

Theorem 25 (Browder). If ΦpMq � 1, then M has dimension 2j�1�2. Moreover, there exists

a framed manifold of Kervaire invariant one if and only if an element h2
j P Ext2,2j�1

A pF2,F2q on

the E2-page of the mod 2 Adams spectral sequence for S0 survives to an element θj P π2j�1�2S
0.

Thus the question is now geared for homotopy theory, and one surrounding the existence
or fate of these θj ’s. There are some approachable examples now:
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� For j � 1, 2, 3, then the elements hj P Ext1,2j

A pF2,F2q survive the Adams spectral se-
quence, as they detect the Hopf elements η, ν, and σ inside π�S

0. This implies that θ1,
θ2, and θ3 also exist.

� Mahowald and Tangora (together with Barratt) show that θ4 P π30S
0 exists.

� Barratt, Jones, and Mahowald show that θ5 P π62S
0 exists.

However, the Adams spectral sequence becomes exceptionally hard to work with as the degrees
grow, so we cannot continue in this direction. The question remains:

What is the fate of the higher θj’s?

The solution to this problem results found in ibid.

Theorem 26 (Hill–Hopkins–Ravenel). For j ¥ 7, the elements θj do not exist.

Let us remark that the case of θ6 P π126S
0 is still open. The outline for the proof of the

above theorem is rather simple, given other results due to Hill, Hopkins, and Ravenel.

Sketch of a proof. Start withMU ppC8qq. We then find a particularly nice classD P πC8
�
MU ppC8qq,

then consider the spectrum formed by inverting that element D�1MU ppC8qq, and set Ω to be
the C8-fixed points of this. There are now the following three theorems from [HHR16]:

� Detection theorem: If θj exists, then its image in π2j�1�2Ω is nonzero.

� Periodicity theorem: The spectrum Ω is 256-periodic.

� Gap theorem: For i � �1,�2,�3, the groups πiΩ vanish.

Combing these three theorems together, one quickly sees that for j ¥ 7, the elements θj cannot
exists, as their image in Ω necessarily vanishes.

Figure 5 displays a slice spectral sequence12 for a baby form of Ω, which illustrates how
one can visualise the gap and periodicity theorems in this simple case. In this example the
spectrum in question has period 32, as opposed to Ω’s period of 256.

In the proof of Theorem 26, Hill, Hopkins, and Ravenel use norms of MUR, but this was
not the original plan. Indeed, these three authors showed that EhC8

4 also detects θj , however
the resulting homotopy fixed point spectral sequence is so difficult that even a correct proof
might not be understood by a majority of the community. This is the reason why they settled
with using MU ppC8qq. Indeed, the pros of MU ppGqq is that it is a genuine equivariant homotopy
type, which provides some ridigity to computations with the slice spectral sequence – a very
useful feature. On the other hand, En is a Borel equivariant homotopy type (meaning we
consider it as a cofree genuine G-spectrum), which is what makes computations so difficult.
However, these Lubin–Tate spectra are perfect for doing chromatic homotopy theory. The
Real orientation of En eliminates the above cons for Lubin–Tate spectra whilst retaining all
the pros!

12The slice spectral sequence is a new kind of spectral sequence developed in [HHR16] for studying equivariant
spectra.
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Baby Ω

Gap Theorem

Periodicity Theorem

Figure 5: Slice spectral sequence for a baby form of Ω.

6 Detection tower

Combining equivariant homotopy theory with chromatic homotopy theory has led to plenty
of recent research. One example of such is the new program to study the following detection
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tower, as formulated by Hill:

pMU ppC2m qqqC2m EhC2m

2m�1n

...

S0 pMU ppC8qqqC8 EhC8
4n

pMU ppC4qqqC4 EhC2
2n

pMURq
C2 EhC2

n

As we move up the tower, more elements in the Hurewicz image are detected and the theories
become more and more powerful. One goal is to analyse this tower as much as possible. Before
we outline the recent study of this detection tower, let us first recall the classical method one
can use truncated forms of BP to model Lubin–Tate spectra. There is the following schematic
diagram of spectra:

BP � � � BP x3y BP x2y BP x1y

v�1
3 BP x3y v�1

2 BP x2y v�1
1 BP x1y

E3 E2 E1

When we p-localise MU , then this spectrum splits into copies of BP , the Brown–Peterson
spectrum, a smaller spectrum than MU which also retains much of the chromatic information.
These simpler p-local spectra BP are often better for calculations. For example, we have
π�BP � Zppqrv1, v2, . . .s, where |vn| � 2ppn � 1q. The truncations BP xny have homotopy
groups Zppqrv1, . . . , vns. The formal group laws associated with BP xny give us models for En.
In the equivariant world there is Real Brown–Peterson spectrum BPR, which comes from a
splitting of the 2-localisation of MUR, and by taking norms and we obtain an equivariant form

16



of the classical case above:

BP ppC2m qq � � � BP ppC2m qqx3y BP ppC2m qqx2y BP ppC2m qqx1y

D�1
3 BP ppC2m qqx3y D�1

2 BP ppC2m qqx2y D�1
1 BP ppC2m qqx1y

E3�2m�1 E2�2m�1 E2m�1

C2m C2m C2m

The loops on the bottom of the diagram indicate that we are considering these Lubin–Tate
spectra with C2m-actions. In some sense, these equivariant refinements also provide us with
good models for equivariant Lubin–Tate spectra. The following contains some of the content
of [BHSZ20].

Theorem 27 (Beaudry–Hill–S.–Zeng). The equivariant formal group laws associated with
BP ppC2m qqxny give good models for E2m�1�n equipped with a C2m-action.

Of course, it is subjective what the adjective “good” means above, however, this is some-
what justified by the computational and conceptual power of these models. Let us consider
the case of m � 2:

BP ppC4qq � � � BP ppC4qqx3y BP ppC4qqx2y BP ppC4qqx1y

D�1
3 BP ppC4qqx3y D�1

2 BP ppC4qqx2y D�1
1 BP ppC4qqx1y

E6 E4 E2

C4 C4 C4

(28)
Starting with BP ppC4qqx1y, we see this spectrum is closely related to TMF0p5q as studied

by Behrens–Ormsby, Hill–Hopkins–Ravenel, and Beaudry–Bobkova–Hill–Stojanoska. We can
actually calculate the slice spectral sequence (SliceSS) for this BP ppC4qqx1y; see Figure 6 and
Figure 7.

Let us also note that the differentials for the homotopy fixed point spectral sequence for
EhC4

2 come from the differentials for the slice spectral sequence for BP ppC4qqx1y; compare Fig-
ure 8 with Figure 9. This example shows how equivariant truncated Brown–Peterson spectra
can help calculate the homotopy fixed points of Lubin–Tate spectra, now for groups larger
than C2.
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SliceSS(BP ((C4))〈1〉)

0 4 8 12 16 20 24 28 32 36 40 44

0
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28

32

36

Figure 6: Slice spectral sequence for BP ppC4qqx1y with differentials.

The next column in (28) is this spectrum BP ppC4qqx2y. Computations with this spectrum
are also possible, due to work by Hill, S., Wang, and Xu; see [HSWX19]. In particular, this
is the first example of a computation of the homotopy fixed points of Lubin–Tate spectra for
heights greater than 2 and where the group is bigger than C2. The slice spectral sequence for
BP ppC4qqx2y illustrates how much information there is to control; see Figure 10 and Figure 11.

One can also read the periodicity of EhC4
4 from this computation, it has period 128. This

also implies that EhC12
4 has period 384. We can ask what the period of EhGn is for any finite

group G ¤ Gn. This is answered by the following periodicity theorem.

Theorem 29 (Beaudry–Hill–S.–Wang–Xu–Zeng). The spectrum EhC2m

n�2m�1 is periodic with pe-

riod 2n�2
m�1�m�1. The spectrum EhQ8

4n�2 is periodic with period 24n�6.

This resolves the periodicity of EhGn at all heights and all G (at p � 2).
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SliceSS(BP ((C4))〈1〉)
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Figure 7: E8-page of the slice spectral sequence for BP ppC4qqx1y.
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