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1 Fukaya categories
Fukaya categories were the topic of the 2009 Talbot. The idea is to associate to a symplectic
manifold𝑀 (with some restrictions and extra data) an object Fuk(𝑀) that we can think of as an
A∞-category [7; 8; 9; 10; 11; 13; 22; 26, Chapter I], differential graded (dg) category [5; 12; 16,
§1.3.1; 17; 27], or ℤ-linear stable∞-category [16, Chapter 1; 18, §D.1]. That is, there should be
a functor (

some category of
symplectic manifolds

) Fuk(−;ℤ)
,,,,,,,,→

(
stable∞-categories

over ℤ

)
.

1.1 Idea. Just as we use algebra to study geometry in algebraic geometry, we should use the
algebra of Fukaya categories to study topology.

1.2 Comparison. Some more familiar categorical invariants of geometric objects are the func-
tors

Ringsop
Mod
,,,,→

(
stable∞-categories

over ℤ

)

𝑅 ↦,,→ Mod(𝑅)

or

Schemesop
DbCoh
,,,,,,→

(
stable∞-categories

over ℤ

)

𝑋 ↦,,,,→ DbCoh(𝑋) .

1.3 Recent Work (ancestry: Cohen–Jones–Segal [3; 4]). For certain symplectic manifolds𝑀,
we can make sense of an 𝕊-linear refinement of the Fukaya category Fuk(𝑀;𝕊). This is still
conjectural, and Fuk(𝑀;𝕊) is not yet constructed. Some people working on this are: Abouzaid,
Abouzaid–Blumberg, Abouzaid–Blumberg–Kragh, Large, and Lurie–Tanaka.

1.4 Expectation. There is an equivalence

Fuk(T∗ℝ∞;𝕊) ≃ Spfin

between the 𝕊-linear (wrapped) Fukaya category of T∗ℝ∞ and the∞-category of finite spectra.
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1.5Remark. HereT∗ℝ∞ is the stabilization of the point as a symplecticmanifold. In fact, the𝕊-
linear wrapped Fukaya category of T∗ℝ𝑛 is the same for any 𝑛; they should all be the∞-category
of finite spectra.

Morally speaking, Fuk(−;𝕊) should define an equivalence from a localization of the ∞-
category of symplectic manifolds to the∞-category of stable∞-categories.

2 Reminder onMorse theory
We start with a brief review of Morse theory and its relation to homotopy theory. For details,
consult [19, Part I].

2.1 Reminder. Let 𝑄 be a manfiold and 𝑓∶ 𝑄 → ℝ a Morse function, i.e., a smooth function
with no degenerate critical points. Let 𝑐 ∊ 𝑄 be a critical point. By the Morse Lemma, there
exists a coordinate chart 𝜙∶ ℝ𝑛 ↪ 𝑄 such that 𝜙(0) = 𝑐 and when restricted to this coordinate
chart, the Morse function 𝑓 has a simple form:

𝑓𝜙(𝑥) = 𝑓(𝑐) −
𝑘∑

𝑖=1
𝑥2𝑖 +

𝑛∑

𝑗=𝑘+1
𝑥2𝑗 .

The number 𝑘 is independent of the choice of the coordinate chart, and is called theMorse index
of 𝑓 at the critical point 𝑐. See Figure 1 for some examples ofMorse functionswith critical points
and their indices labeled.

One reason why a Morse function 𝑓∶ 𝑄 → ℝ is useful from the perspective of homotopy
theory is because provides a way to give 𝑄 a cell decomposition with 𝑘-cells in bijection with
the critical points of 𝑓 of index 𝑘. This is explained by how the topology of the sublevel sets of
the Morse function change when passing through a critical point.

2.2 Notation. Given a smooth function 𝑓∶ 𝑄 → ℝ and 𝑡 ∊ ℝ, we write 𝑄𝑡 ≔ 𝑓−1(−∞, 𝑡].

2.3 Proposition [19, Theorem 3.1]. Let 𝑓∶ 𝑄 → ℝ be a smooth function, and 𝑎, 𝑏 ∊ ℝ with
𝑎 < 𝑏. If 𝑓−1[𝑎, 𝑏] is compact and there are no critical values between 𝑎 and 𝑏, then:

(1) The manifolds 𝑄𝑎 and 𝑄𝑏 are diffeomorphic.

(2) The manifold 𝑄𝑏 deformation retracts onto the submanifold 𝑄𝑎 .

2.4 Proposition [19, Theorem 3.2]. Let𝑓∶ 𝑄 → ℝ be a smooth function and 𝑐 ∊ 𝑄 a nondegener-
ate critical point of𝑓 of index 𝑘. Write 𝑣 ≔ 𝑓(𝑐) and let 𝜀 > 0 be a number such that𝑓−1[𝑣−𝜀, 𝑣+𝜀]
is compact and 𝑐 is the only critical point contained in 𝑓−1[𝑣 − 𝜀, 𝑣 + 𝜀]. Then the manifold 𝑄𝑣+𝜀
is homotopy equivalent to a space obtained from 𝑄𝑣−𝜀 by attaching a 𝑘-cell.

Using Propositions 2.3 and 2.4 one can show:

2.5 Proposition [19, Theorem 3.5]. Let 𝑓∶ 𝑄 → ℝ be aMorse function and assume that for each
𝑡 ∊ ℝ, themanifold𝑄𝑡 is compact. Then𝑄 is homotopy equivalent to a CW complex with one 𝑘-cell
for each critical point of 𝑓 of index 𝑘.

Figure 2 illustrates how to use a Morse function to build a torus by cells.
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Figure 1. ThreeMorse functions. Each point is sent to its ‘height’ on the verticalℝ axis. Critical
points are labeled inmagenta with theirMorse indices. The light blue labels are what theMorse
function 𝑓 looks like near the critcal point.
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Figure 2. Using the height function from Figure 1 to give a cell decomposition of the torus.

3 Weinstein manifolds and sectors
Motivated by the relationship between Morse functions and CW complexes, we now give an
indication of what a ‘CW complex’ should be in the context of symplectic geometry. We start by
recalling the basics of symplectic manifolds.

3.1Recollection. A symplecticmanifold is the data of a pair (𝑀,𝜔) of a 2𝑛-dimensional (smooth)
manifold𝑀 and a 2-form 𝜔 ∊ Ω2

dR(𝑀;ℝ) satisfying:

(1) The 2𝑛-form 𝜔∧𝑛 is a volume form on𝑀.

(2) The 2-form 𝜔 is closed: d𝜔 = 0.

Note that (1) is equivalent to:

(1′) The map

T𝑀 → T∗𝑀
𝑣 ↦ 𝜔(𝑣,−)

is an isomorphism of vector bundles over𝑀.

The requirement that 𝜔 be closed constrains the topology of𝑀:
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3.2 Observation. If (𝑀,𝜔) is a closed symplectic manifold of dimension 2𝑛, then Poincaré
duality implies that the class [𝜔∧𝑛] ∊ H2𝑛

dR(𝑀;ℝ) is nonzero. Hence for each 1 ≤ 𝑖 ≤ 𝑛, the class
[𝜔∧𝑖] ∊ H2𝑖

dR(𝑀;ℝ) is nonzero.
In particular, spheres other than S0 and S2 do not admit symplectic structures.

3.3 Observation. If (𝑀,𝜔) is a symplectic manifold, then composition with the isomorphism
T𝑀 ⥲ T∗𝑀 of (1′) defines an isomorphism

Γ(𝑀; T𝑀)⥲ Ω1
dR(𝑀;ℝ)

between vector fields on𝑀 and differential 1-forms.

3.4 Example. Let𝑄 be an 𝑛-manifold. Then the cotangent bundle T∗𝑄 has a naturally-defined
symplectic form d𝑝 ∧ d𝑞. The form d𝑝 ∧ d𝑞 is defined locally on each coordinate patch of 𝑄, so
it is sufficient to explain the definition when 𝑄 = ℝ𝑛.

We write the coordinates of ℝ𝑛 as (𝑞1,… , 𝑞𝑛) and the coordinates of

T∗ℝ𝑛 ≅ ℝ𝑛 ×ℝ𝑛

in the cotangent direction as (𝑝1,… , 𝑝𝑛). There is a naturally defined 1-form 𝜆 on T∗ℝ𝑛 given
by the formula

𝜆 ≔
𝑛∑

𝑖=1
𝑝𝑖d𝑞𝑖 .

The symplectic form d𝑝 ∧ d𝑞 is the differential

d𝑝 ∧ d𝑞 ≔ d𝜆 =
𝑛∑

𝑖=1
d𝑝𝑖 ∧ d𝑞𝑖 .

The 1-form 𝜆 is often called the tautological 1-form or Liouville 1-form.

Cotangent bundles are examples of a special type of symplectic manifold where the symplec-
tic form is exact.

3.5 Definition. A symplectic manifold (𝑀,𝜔) is exact if the symplectic form 𝜔 is exact, i.e.,
there exists a 1-form 𝜆 such that 𝜔 = d𝜆. A 1-form whose differential is 𝜔 is called a Liouville
1-form or primitive for 𝜔. An exact structure on a symplectic manifold (𝑀,𝜔) is a choice of a
primitive 𝜆 for 𝜔.

3.6 Observation. Let (𝑀,𝜔) be a symplectic manifold. In light of Observation 3.3, given a 1-
form 𝜆 on𝑀, there is a unique vector field 𝑋 such that 𝜄𝑋𝜔 = 𝜆. Combining Cartan’s homotopy
formula for the Lie derivative

ℒ𝑋𝜔 = d𝜄𝑋𝜔 + 𝜄𝑋d𝜔

with the assumption that d𝜔 = 0, we see that d𝜆 = 𝜔 if and only if ℒ𝑋𝜔 = 𝜔.
Thus the the data of a primitive for 𝜔 is equivalent to specifying a vector field 𝑋 satisfying

ℒ𝑋𝜔 = 𝜔. Such a vector field is called a Liouville vector field.

3.7 Remark. In light of Observation 3.2, every positive-dimensional exact symplectic manifold
is non-compact.
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3.8 Idea. Given a Morse decomposition of a manifold 𝑄, by applying T∗ to the cells used to
build up 𝑄, we can build T∗𝑄 symplectically. More generally, we should be able to make some
symplectic manifolds out of ‘Weinstein cells.’

For example, consider the height function on the circle from Figure 1. The Morse function
tells us to build the circle out of two hemispheres as on the left-hand side of Figure 3. These
hemispheres have vector fields generated by a choice of gradient flow, always flowing from lower
index critical points to higher index critical points. It turns out one can construct another vector
field on the cotangent bundles of these hemispheres by combining the original vector fields with
an always-outward-pointing-in-the-cotangent-direction vector field. Since these vector fields
agree at the boundaries of the hemispheres, we can glue the cotangent bundles together to obtain
T∗S1 by gluing together two cotangent bundles of Euclidean spaces.

Figure 3. Gluing two copies of T∗ℝ together into T∗S1.

Wewant to consider a larger class of symplecticmanifolds that we can build out of cotangent
bundles of Euclidean spaces as in Figure 3. Here is essentially what we need.

3.9 Informal Definition. AWeinstein manifold consists of:

(1) A symplectic manifold (𝑀,𝜔).

(2) A Liouville vector field 𝑋 for (𝑀,𝜔). Equivalently, a primitive 𝜆 for 𝜔.

(3) A Morse function 𝑓∶ 𝑀 → ℝ.

Along with some additional properties of and compatibilities between the vector field 𝑋 and
Morse function 𝑓.

A Weinstein sector is a generalization of a Weinstein manifold to have boundaries and cor-
ners.

3.10 Slogan. Weinstein manifolds are like CW complexes in the symplectic world.

See [2, Chapter 11; 6] for detailed introductions to Weinstein manifolds.

4 Lagrangians & ‘wrapped’ Fukaya categories
Now we explain (informally) how to define the Fukaya category Fuk(𝑀). The objects of the
Fukaya category are an important class of submanifold of a symplectic manifold:

4.1 Definition. Let (𝑀,𝜔) be a symplectic manifold of dimension 2𝑛. An 𝑛-dimensional sub-
manifold 𝐿 ⊂ 𝑀 is Lagrangian if 𝜔|𝐿 = 0.
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4.2 Examples.

(1) If 𝑛 = 1 so that 𝑀 is a surface, then any curve in 𝑀 is Lagrangian. This is because 𝜔 is a
2-form, hence vanishes when restricted to any 1-dimensional submanifold.

(2) Let 𝑄 be a manifold and write 𝜋∶ T∗𝑄 → 𝑄 for the projection. The zero section 𝑄 ⊂ T∗𝑄 is
Lagrangian. For a fixed 𝑞 ∊ 𝑄, the cotangent fiber T∗𝑞𝑄 ≔ 𝜋−1(𝑞) is Lagrangian in T∗𝑄. See
Figure 4.

T�*� 

�

T*�

�

Figure 4. The cotangent bundle of a manifold 𝑄 with the zero section in magenta and a cotan-
gent fiber T∗𝑞𝑄 in light blue.

In order to define Fuk(𝑀), it turns out that we need to choose an almost complex structure
compatible with the symplectic structure on𝑀. Recall that an almost complex structure on𝑀
is an endomorphism 𝐽∶ T𝑀 → T𝑀 of the tangent bundle of 𝑀 such that 𝐽2 = − idT𝑀 . Com-
patibility with a symplectic form 𝜔 ∊ Ω2

dR(𝑀;ℝ) means that 𝜔(−, 𝐽(−)) defines a Riemannian
metric on𝑀.

Luckily, the space of compatible almost complex structures is contractible, so we shouldn’t
worry about this choice!

4.3 Informal Definition see [1; 26] for details. Let (𝑀,𝜔) be a symplectic manifold equipped
with a compatible almost complex structure 𝐽∶ T𝑀 → T𝑀. The ℤ∕2-linear Fukaya category
Fuk(𝑀;ℤ∕2) is an A∞-category with:

(0) Objects: Lagrangian submanifolds 𝐿 ⊂ 𝑀. (Literally speaking, this is false.)

(1) Suppose we are given Lagrangians 𝐿0, 𝐿1 ⊂ 𝑀. If 𝐿0 and 𝐿1 do not intersect transversely,
then we deform 𝐿1 so that the intersection 𝐿0 ∩ 𝐿1 is transverse. Once 𝐿0 and 𝐿1 intersect
transversely, we define themapping chain complexhom(𝐿0, 𝐿1)has underlying gradedmod-
ule

hom(𝐿0, 𝐿1) ≔
⨁

𝑥∊𝐿0⋔𝐿1

ℤ∕2[|𝑥|] .

7



�₁ = � + d� 

�₀ = �

� = T*�

Figure 5. The cotangent bundle of a manifold 𝑄 with the zero section 𝐿0 and a deformation of
the zero section so to make the self-intersection 𝐿0 ∩ 𝐿0 transverse.

Here |𝑥| denotes the degree of the point 𝑥. The differential d on hom(𝐿0, 𝐿1) is given by
counting holomorphic disks:

d(𝑥) ≔
∑

𝑦
# {

holomorphic
disks from
𝑥 to 𝑦

} 𝑦 .

By a holomorphic disk from 𝑥 to 𝑦 wemean a map 𝑢∶ D2 → 𝑀 as depicted in Figure 6 such
that 𝜕̄𝑢 = 0.

�₁ 

�₀

D² −−−−−⟶ � �

�

Figure 6. A holomorphic disk from 𝑥 to 𝑦.

(2) TheA∞-structure is defined heuristically as follows. Given Lagrangians 𝐿0, 𝐿1, 𝐿2 ⊂ 𝑀, the
composition

hom(𝐿1, 𝐿2)⊗ hom(𝐿0, 𝐿1)→ hom(𝐿0, 𝐿2)

is given by sending a pure tensor 𝑦 ⊗ 𝑥, where 𝑦 ∊ 𝐿1 ⋔ 𝐿2 and 𝑥 ∊ 𝐿0 ⋔ 𝐿1 to the sum

∑

𝑧∊𝐿0⋔𝐿2

# {
holomorphic
triangles with

vertices 𝑥,𝑦, and 𝑧
} 𝑧 .

By a holomorphic triangle with vertices 𝑥, 𝑦, and 𝑧 we mean a map 𝑢∶ D2 → 𝑀 as depicted
in Figure 7 such that 𝜕̄𝑢 = 0. This composition is associative up to higher homotopies, given
by counting holomorphic 𝑘-gons.
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Figure 7. A holomorphic triangle with vertices 𝑥, 𝑦, and 𝑧.
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Figure 8. A holomorphic 4-gon.

5 Theorems & Conjectures
5.1 Notation. Given a Weinstein sector𝑀, we write 𝜆𝑀 for its chosen Liouville 1-form.

5.2 Definition. The categoryWein ofWeinstein sectors has objects Weinstein sectors and mor-
phisms codimension 0 embeddings 𝑗∶ 𝑀 ↪ 𝑁 such that

𝑗∗𝜆𝑁 = 𝜆𝑀 + d
(
compactly supported

function

)
.

5.3 Theorem (Oh–Tanaka [23; 24; 25]). Let 𝑀 be a Weinstein sector. Then automorphisms of
𝑀 act on the ℤ-linear stable ∞-category Fuk(𝑀;ℤ). That is, the (wrapped) Fukaya category is
functorial in automorphisms of Weinstein sectors.

There is ‘dimensional stabilization’Wein⋄ of the categoryWein informally described by tak-
ing the colimit of the diagram

Wein
(−) ×T∗ℝ
,,,,,,,,,→ Wein

(−) ×T∗ℝ
,,,,,,,,,→ Wein

(−) ×T∗ℝ
,,,,,,,,,→⋯

given by iterating the endofunctor𝑀 ↦ 𝑀 × T∗ℝ. The Fukaya category Fuk(−;ℤ) extends to
Wein⋄:

5.4 Theorem (Lazarev–Sylvan–Tanaka [15, Theorem 1.13]). The (wrapped) Fukaya category
defines a functor

Fuk(−;ℤ)∶ Wein⋄ → StabCat∞,ℤ

to ℤ-linear stable∞-categories.

5.5 Note. There are ways to soup this up to (𝕊-linear) stable∞-categories:
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(1) The work of Abouzaid, Abouzaid–Blumberg, Abouzaid–Blumberg–Kragh, and Large men-
tioned in Recent Work 1.3.

(2) Lurie–Tanaka: Reformulate Fuk(𝑀) as a solution to a deformation problem.

(3) Nadler–Tanaka [21]: Out of𝑀 construct a stable∞-category Lag(𝑀) of Lagrangian cobor-
disms.

(4) Nadler–Shende [20]: microlocal spectral sheaves.

5.6 Conjecture. The 𝕊-linear (wrapped) Fukaya category defines a functor

Fuk(−;𝕊)∶ Wein⋄ → StabCat∞

to stable∞-categories.

5.7 Conjecture (see Nadler–Tanaka [21, Conjecture 1.6.1]). There is an equivalence ofℤ-linear
stable∞-categories

Lag(𝑀)⊗𝕊 ℤ ≃ Fuk(𝑀;ℤ) .

5.8 Question. Can the category Wein⋄ be used to symplectically construct certain 𝔼∞-rings?
For example, 𝕊 or 𝕊[1∕𝑝]?

The answer is yes if we localizeWein⋄ in a natural way!

5.9 Theorem (Lazarev–Sylvan–Tanaka [14]). There is a (naturally defined) class of morphisms
𝑊 inWein⋄ that the functorFuk(−;ℤ) carries to equivalences. Moreover, the following results hold:

(1) The localizationWein⋄[𝑊−1] has a natural symmetric monoidal structure.

(2) Given a prime number 𝑝, one can construct a symplectic manifold𝐷𝑝 which is an 𝔼∞-algebra
in the symmetric monoidal∞-categoryWein⋄[𝑊−1].

(3) The Fukaya category Fuk(𝐷𝑝;ℤ) has a natural symmetric monoidal structure and there is an
equivalence of symmetric monoidal ℤ-linear stable∞-categories

Fuk(𝐷𝑝;ℤ) ≃ Mod(ℤ[1∕𝑝]) .
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