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Abstract. These are the notes taken by Venkata Sai Narayana Bavisetty and Saad Slaoui -
the notetakers are most likely to blame for any mistakes herein.

1. Algebra

In abstract algebra, if R is a commutative ring, we can make the following three constructions:
Algebraic interpretation Categorical interpretation Cohomological interpretation

R× Group of units of R Multiplicative units in R H0(Spec(R),Gm)

Pic(R) Picard group of invertible
R-modules up to equivalence

Units for ⊗R in ModR H1(Spec(R),Gm)

Br(R) Brauer Group of Azumaya
R-algebras up to equivalence

Units for ⊗ModR in the category
CatR of R-linear categories

H2(Spec(R),Gm)1

Here, Gm = Spec(Z[t±]) denotes the multiplicative group, and we are taking étale cohomology
groups. Note that all these invariants are abelian groups and that they are obtained by taking
units one categorical level higher! We may think of these invariants as capturing arithmetic
information about the ring R.
Question:
• Can we find analogous interpretations of H3(SpecR,Gm)?
• Can we make similar constructions in the world of stable homotopy theory?

In this talk, we focus on the latter question.

2. Stable homotopy theory

In the following, R will denote a commutative ring spectrum, i.e. a commutative algebra
object in the ∞-category of spectra.

2.1. Units of R (70s, [MQRT]). The space of units is denoted by GL1(R) and defined via
the following pullback diagram:

GL1(R) Ω∞(R)

π0(R)× π0(R)

One can check that GL1(R) is a group-like infinite loop space, so that we can associate to it
a spectrum of units gl1(R), whose infinite loop space recovers GL1(R). However, the inclusion
of spaces GL1(R) → Ω∞R is not even a based map. Even if we make it based by subtracting

1This is not quite right for a non-regular ring R.
1
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1, it is still not a map of E∞-spaces. Therefore, we do not have a natural map of spectra from
gl1(R) to R.

The corresponding statement in algebra is the fact that the inclusion R× ↪→ R does not preserve
the group structure. Here, the group structure on R× is given by multiplication, whereas the
group structure on R is given by addition.

Exercise 1: Compute the homotopy groups π∗(GL1(R))

Exercise 2: Show that, for any space X, we can identify [X,Gl1(R)] ∼= R0(X)×.

Vista: [Rezk] “The units of a ring spectrum and a logarithmic cohomology operation”.
There is a K(n)-local logarithm

gl1(R)
log−→ LK(n)R,

where K(n) denotes Morava K-theory of height n.

In algebra we can identify R× = MapRings(Z[t±], R). Similarly, in stable homotopy theory,
we have that:

GL1(R) ' MapCAlg

(
Free comm. alg. on one invertible generator, R

)
.

2.2. Strict units of R. The strict units of R, denoted by Gm(R), are defined as follows:

Gm(R) := MapCAlg(S
0[t±], R) ' MapSp(HZ, gl1(R)).

Exercise 3: Try to compute the homotopy groups π∗(Gm(R), and see how hard to impossible
it is.

2.3. The Picard Space/Spectrum [ABGHR1]. The Picard space, denoted by Pic(R), is
defined as

Pic(R) :=
{
space of invertible R-modules and equivalences between them

}
.

It is a group like E∞-space under tensor product ⊗R.

Note: π0(Pic(R)) =
{
invertible R-modules modulo equivalences

}
retrieves the classical Pi-

card group of graded modules.

Some properties of Pic(R):
(1) ΩPic(R) = Gl1(R)
(2) (Pic(R))R = BGL1(R), where (Pic(R))R denotes the connected component containing

R.
(3) [X,Pic(R)] = Bundles of invertible R-modules on X.
(4) [X,Pic(S0)] = Stable spherical fibrations on X.

Since Pic(R) is an E∞-space, we get an associated connective spectrum pic(R).

Exercise 4: Classify invertible S0 modules, i.e. compute π0(Pic(S0)).

Example: Let ko be the connective K-theory spectrum. Then Ω∞ko ' Z × BO classifies
stable real vector bundles. Given a vector bundle ξ → X, we can take its Thom spectrum
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Th(ξ), which is a spherical fibration. Therefore, we get a map of the classifying objects i.e we
get a map of E∞-spaces

Z×BO → Pic(S0),

which gives rise to a map of spectra

ko→ pic(S0).

This map is precisely Adams’ J-homomorphism.

Why did people study all these?

Vista: [[MQRT], [ABGHR2]] “Orientations and Thom Spectra”
To a map X f−→ BGL1(R), we can associate a Thom spectrum:

Mf := colim(X
f−→ BGL1(R) ↪→ModR).

Vista: [AS], [FHT], [ABG], [SW].

The ideas of this section are involved in the study of twisted R-cohomology, as well as twists
by ordinary cohomology classes, e.g. via strict Pic = map(HZ, pic).

2.4. Brauer Space. This is much harder to work with. One may consult [BRS], [AG],
[GL], . . .

3. Computations

Well, how do we compute anything? For our purposes we will assume that the homotopy
groups of R are known and go from there.

We may look at:
(1) π0(Br(R))

(2) π1(Br(R)) = π0(Pic(R))

(3) π2(Br(R))=π1(Pic(R)) = π0(GL1(R)) = π0(R)×.

(4) π>2(Br(R)) = π>1(Pic(R)) = π>0(GL1(R)) = π>0(R).
We are also interested in the k-invariants.

Example: First k-invariant of Pic(R):

pic(R)→ H(π0(pic(R)))
k−→ Σ2H(π1(pic(R)))

So the k-invariant is equivalent to the data of a homomorphism:

π0(pic(R))→ π1(pic(R))[2] = π0(R)×[2].

The fact that this k-invariant has to be 2 torsion follows from its explicit description. Any
L ∈ π0(pic(R)) comes with a twist map

τ : L⊗R L
'−→ L⊗R L.
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Since L⊗RL ∈ π0(pic(R)), we get an element of π0(R)×[2]. This map precisely is the k-invariant
and it is clearly 2-torsion.

4. Approaches

We will see three approaches to understanding these structures:
(1) Comparison with algebra (“reduction to an easier problem”).
(2) Descent.
(3) Obstruction theory.

4.1. Comparison with algebra. We have an injective map

0→ Pic(π∗(R))
i−→ π0(pic(R)),

where Pic(π∗(R)) denotes the graded Picard group of π∗(R). This map is constructed by using
the fact that N ∈ Pic(π∗(R)) is automatically flat over π∗(R). We can use a presentation of N
to build this map.

Theorem:[BR] The map i is an isomorphism in either of the following cases
(1) R is connective.
(2) R is weakly even periodic and π0(R) is a regular Noetherian ring.
By weakly even periodic, we mean that πoddR = 0, π2(R) is an invertible π0(R)-module, and

π2kR ' π2R
⊗k for every k ≥ 0.

Vista:The analogue for Br(R) is much harder. See [BRS], [GL].

4.2. Descent. Theorem:[ABGHR3], [AG], [GL], [MS], [AMS]
The functors

Pic,Br : CALg(Sp)→
(
infinite loop spaces

)
both satisfy étale and Galois descent.

Here, we use Galois descent in the sense of Rognes. Note that in the settings of ring spectra,
étale descent does NOT imply Galois descent. A map of ring spectra R→ S is said to be étale
if

(1) The induced map π0(R)→ π0(S) is étale as a map of commutative rings, and
(2) π∗(S)

'←− π∗(R)⊗π0(R) π0(S) for all k ≥ 1.
Next, if S is a Borel G-spectrum, we say that R→ S is a G-Galois extension if
(1) The induced map R→ ShG is an isomorphism.
(2) We have an equivalence S ⊗R S ' ΠGS.

Here, ShG denotes the homotopy fixed points of S under the G-action.

Example: KO has no interesting étale extensions, but it has an interesting C2 Galois ex-
tension. Namely, the map KO → KU is a C2 Galois extension.

Expanding upon the above example, we have that π∗(KU) = Z[β±] and Pic(π∗(KU)) =
Z/2Z. This implies that Pic(KU) = Z/2Z.
So, by descent, we have that Pic(KO) = Pic(KU)hC2 . The right hand side is more computable,
as we have access to a homotopy fixed point spectral sequence. See [GL], [MJ] for more details.
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Applications: Suppose R → S is a G-Galois extension, where S is an even periodic G-
spectrum. Then this framework allows us to calculate π0(pic(R)) and the relative Brauer group
associated to this situation - even though the absolute Brauer space Br(S) itself may be more
mysterious. There are also applications relating to étale locally trivial Brauer classes.

4.3. Obstruction theory. See [HL]. This approach is more difficult and unfortunately we
did not have time to cover it.
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