Najib Idrissi

Viva Talbot! – June 4th

Operads and configuration spaces

Embedding calculus

(Part 1)

Motivation: Emb(M, N)

- $\Leftrightarrow \operatorname{Emb}(M, N) = \{ f : M \hookrightarrow N \mid f \text{ is an embedding } \}.$
- \Leftrightarrow Knot theory = $\pi_0 \text{Emb}(\mathbb{S}^1, \mathbb{S}^3) \Rightarrow \text{hard!}$
- \Leftrightarrow When dim N dim $M \ge 3$, $\pi_0 = \{*\}$...
- \diamond ...but higher π_k are interesting.
- \diamond Largest issue: Emb(-, N) is not "linear", i.e.,

 $\operatorname{Emb}(M \cup M', N) \neq \operatorname{Emb}(M, N) \times_{\operatorname{Emb}(M \cap M', N)} \operatorname{Emb}(M', N).$

Configuration spaces

- \diamond The idea: approximate Emb(M, N) by maps between **configuration spaces**.
- $\Leftrightarrow \operatorname{Conf}_{M}(r) := \{(x_{1}, \dots, x_{r}) \in M^{r} \mid \forall i \neq j, x_{i} \neq x_{j}\}.$
- ♦ Classical objects in algebraic topology, initially for studying braids.

Goodwillie-Weiss manifold calculus

 \Leftrightarrow Emb(M, N) is a subspace of:

$$\operatorname{Map}_{\mathfrak{S}}(\operatorname{Conf}_M,\operatorname{Conf}_N)\coloneqq \prod_{r=0}^{+\infty}\operatorname{Map}_{\mathfrak{S}_r}(\operatorname{Conf}_M(r),\operatorname{Conf}_N(r)).$$

- \diamond Consider Map_{\leq} (Conf^{fr}_M, Conf^{m-fr}_N) for unframed manifolds.
- $\Leftrightarrow f \mapsto (f_r)_{r \geq 0}$ satisfies compatibility relations:
 - \diamond Forgetting in the source \mapsto forgetting in the target;
 - \diamond Proximity in the source \mapsto proximity in the target.
- \Leftrightarrow \Rightarrow these relations are **relaxed** "up to homotopy".

Operadic structure

- ♦ We want to clarify what "up to homotopy" means...
- \Leftrightarrow \Rightarrow we need operads!
- \Leftrightarrow Let $\mathrm{D}_{M}^{\mathrm{fr}}(r)\coloneqq\mathrm{Emb}(\coprod_{i=1}^{r}\mathbb{D}^{m}$, M) and $\mathrm{D}_{m}^{\mathrm{fr}}(r)\coloneqq\mathrm{Emb}(\coprod_{i=1}^{r}\mathbb{D}^{m}$, $\mathbb{D}^{m})$
- \bullet $D_m^{fr} := \{D_m^{fr}(r)\}_{r>0}$ is the (framed) **little disks operad**:

 \Rightarrow $D_M^{fr} := \{D_M^{fr}(r)\}_{r \ge 0}$ is a **right module** over D_m^{fr} via $D_M^{fr}(r) \times D_m^{fr}(s) \to D_M^{fr}(r+s-1)$

Operads & GW calculus

- \Leftrightarrow Any embedding $f: M \hookrightarrow N$ induces a **morphism** $D_M^{fr} \to D_N^{fr}$, not just a map between configuration spaces!
- **Theorem** [Goodwillie–Weiss, Arone–Turchin, Turchin, Boavida–Weiss, Sinha…]. If dim N − dim $M \ge 3$, then

$$\operatorname{Emb}(M, N) \simeq \operatorname{\mathbb{R}Map}_{\operatorname{D}_{m}^{\operatorname{fr}}}(\operatorname{D}_{M}^{\operatorname{fr}}, \operatorname{D}_{N}^{m-\operatorname{fr}}).$$

♦ Upshot: if we know the homotopy type of the **collection** of configuration spaces **as right modules**, then we can compute embedding spaces.

⇒ Computing $Conf_M(r)$ is difficult. For example, $M \simeq M' \Rightarrow Conf_M(r) \simeq Conf_{M'}(r).$

Bonus: deloopings

- \diamond Operads were initially introduced to study **iterated loop spaces**: $\Omega^n X := \{ \gamma \colon \mathbb{D}^n \to X \mid \gamma(0) = \gamma(1) = x_0 \}.$
- ♦ **Theorem** [Boardman–Vogt, May] If Y is an "algebra" over D_m , then $Y \simeq \Omega^m X$ for some X.
- \diamond The space $\mathrm{Emb}_{\partial}(D^m,D^n)$ is an algebra over D_m :

 \Rightarrow Emb_{∂} $(D^m, D^n) \simeq \Omega^m X$ where X has an operadic description [Dwyer-Hess, Arone-Turchin, Ducoulombier-Turchin]. (In fact, $\simeq \Omega^{m+1}$!)

Homotopy of configuration spaces (Part 2)

Rational homotopy theory

- ♦ The whole homotopy type is too complex.
- ♦ We focus on **characteristic zero**.
- ♦ **Definition**: $f: X \to Y$ is a **rational equivalence** if $\pi_*(f) \bigotimes_{\mathbb{Z}} \mathbb{Q} : \pi_*(X) \bigotimes_{\mathbb{Z}} \mathbb{Q} \to \pi_*(Y) \bigotimes_{\mathbb{Z}} \mathbb{Q}$ is an isomorphism.
- ♦ **Theorem** [Sullivan]: There is an equivalence $\Omega^* \dashv \langle \rangle$ between:
 - ♦ Simply connected finite-type spaces, up to rational equivalence;
 - ♦ Simply connected finite-type commutative differential-graded algebras, up to quasi-isomorphism.
- \diamond Upshot: we want to find a **model** of $\Omega^*(D_M^{fr})$ with its action of $\Omega^*(D_m^{fr})$.

Building brick: \mathbb{R}^m

- $\text{$\Rightarrow$ The cohomology $H^*(\text{Conf}_{\mathbb{R}^m}(r)) = H^*(D_m(r))$ is well-known [Arnold, Cohen]: } \\ S(\omega_{ij})_{1 \leq i \neq j \leq r} \\ H^*(D_m(r); \mathbb{Q}) = \frac{S(\omega_{ij})_{1 \leq i \neq j \leq r}}{(\omega_{ij}^2 = \omega_{ji} (-1)^m \omega_{ij} = \omega_{ij} \omega_{jk} + \omega_{jk} \omega_{ki} + \omega_{ki} \omega_{ij} = 0)}.$
- ♦ **Theorem** [Kontsevich, Tamarkin, Lambrechts–Volić,] The operad D_m is formal, i.e., $H^*(D_m; \mathbb{Q}) \simeq \Omega^*(D_m)$.
- Many important consequences, e.g., deformation quantization, Deligne conjecture...

Formality: two approaches

- ♦ Kontsevich's approach:
 - ♦ Replace the 3T relation by "internal vertices";
 - \diamond Prove combinatorically that we have a resolution of $H^*(D_n)$;
 - \diamond Use integrals to connect with $\Omega^*(D_n)$.
- ♦ [Giansiracusa–Salvatore] formality of D₂^{fr}.

- ♦ Tamarkin's approach:
 - \Leftrightarrow Find a simpler groupoid PaB $\simeq \pi D_2$;
 - \Leftrightarrow Find a (Koszul) resolution of $H^*(D_2)$, the Drinfeld–Kohno Lie algebra;
 - Connect the two with a Drinfeld associator.
- ♦ [Ševera] Formality of D₂^{fr}.
- ♦ Theorem [CIW] Cyclic formality of D₂^{fr}.
 Proof inspired by Ševera's.

Configuration spaces of closed manifolds

- \diamond Model of $D_M(r) \simeq Conf_M(r) = M^r \setminus \bigcup_{i \neq j} \Delta_{ij}$ conjectured by Lambrechts-Stanley:
 - \Leftrightarrow Generators: ω_{ij} for $1 \le i \ne j \le r$; x_i for $1 \le i \le r$ and $x \in A \simeq \Omega^*(M)$.
 - ♦ Relations:
 - \Rightarrow Same as before: $\omega_{ij}^2 = \omega_{ji} \omega_{ij} = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0$;
 - \diamond Symmetry: $x_i \omega_{ij} = x_j \omega_{ij}$.
 - \Leftrightarrow Differential: $d\omega_{ij} = \overline{\Delta_{ij}}$.
- ♦ **Theorem** [I, cf. Campos-Willwacher] The above *is* a model for M simply connected; operadic structure if dim $M \ge 4$.
- **Corollary.** Real homotopy invariance.

Configuration spaces of surfaces

Theorem [CIW]. Small, explicit model $G_{\Sigma_g}^{fr}$ of $D_{\Sigma_g}^{fr}$, in arity r:

- \Leftrightarrow Generators: ω_{ij} for $1 \le i \ne j \le r$; $\alpha_{1,i}, ..., \alpha_{g,i}, \beta_{1,i}, ..., \beta_{g,i}$ for $1 \le i \le r$; θ_i for $1 \le i \le r$.
- ♦ Relations:
 - \diamond Same as before: $\omega_{ij}^2 = \omega_{ji} \omega_{ij} = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0$;
 - $\Leftrightarrow \alpha_{k,i}\beta_{k,i} = \alpha_{l,i}\beta_{l,i}$ (volume form of Σ_g) and 0 otherwise;
 - \Leftrightarrow Symmetry: $\alpha_{k,i}\omega_{ij} = \alpha_{k,j}\omega_{ij}, \beta_{k,i}\omega_{ij} = \beta_{k,j}\omega_{ij}, \theta_i\omega_{ij} = \theta_j\omega_{ij}.$
- \Rightarrow Differential: $d\omega_{ij} = \Delta_{ij}$ and $d\theta_i = (2 2g) \cdot \text{vol}_i$.
- $\Rightarrow \text{ Proof: } G_{\Sigma_g}^{\text{fr}} \xleftarrow{\text{Combin.}} \text{Graphs}_{\Sigma_g}^{\text{fr}} \xrightarrow{\text{K}} \text{IterHoch}\left(H^*\left(D_{S^2 \setminus 2g}^{\text{fr}}\right); H^*\left(D_{S^1 \times \mathbb{R}}^{\text{fr}}\right)\right) \xleftarrow{\text{T}} \Omega^*\left(D_{\Sigma_g}^{\text{fr}}\right).$

Thank you for your attention!

These slides, the paper: https://idrissi.eu