Galois Extensions in Chromatic Homotopy

Lior Yanovski

June 7, 2021

 Classical algebra: Abelian symmetric monoidal category of abelain groups (Ab, ⊗, Z).

- Classical algebra: Abelian symmetric monoidal category of abelain groups (Ab, ⊗, Z).
- **Higher algebra**: Stable symmetric monoidal ∞ -category of spectra $(\operatorname{Sp}, \otimes, \mathbb{S})$.

- Classical algebra: Abelian symmetric monoidal category of abelain groups (Ab, ⊗, Z).
- Higher algebra: Stable symmetric monoidal ∞ -category of spectra $(\operatorname{Sp}, \otimes, \mathbb{S})$.
- **Eilenberg-MacLane** spectrum $H : Ab \hookrightarrow Sp$.

- Classical algebra: Abelian symmetric monoidal category of abelain groups (Ab, ⊗, Z).
- Higher algebra: Stable symmetric monoidal ∞-category of spectra (Sp, ⊗, S).
- Eilenberg-MacLane spectrum $H : Ab \hookrightarrow Sp$.
- Homological algebra: $\mathcal{D}(\mathbb{Z}) \simeq \mathrm{Mod}_{H\mathbb{Z}}(\mathrm{Sp})$.

- Classical algebra: Abelian symmetric monoidal category of abelain groups (Ab, ⊗, Z).
- Higher algebra: Stable symmetric monoidal ∞ -category of spectra $(\operatorname{Sp}, \otimes, \mathbb{S})$.
- Eilenberg-MacLane spectrum $H : Ab \hookrightarrow Sp$.
- Homological algebra: $\mathcal{D}(\mathbb{Z}) \simeq \mathrm{Mod}_{H\mathbb{Z}}(\mathrm{Sp})$.
- Examples: HR, \mathbb{S} , $\mathbb{S}[G]$ (= $\Sigma^{\infty}_{+}G$), KU, KO, ...

For $X \in \operatorname{Sp}_{(p)}$, there is an endomorphism $p \colon X \to X$.

For $X \in \operatorname{Sp}_{(p)}$, there is an endomorphism $p \colon X \to X$.

Localization.

$$X[p^{-1}] := \varinjlim (X \xrightarrow{p} X \xrightarrow{p} X \xrightarrow{p} \dots) \in \operatorname{Sp}_{\mathbb{Q}}.$$

For $X \in \operatorname{Sp}_{(p)}$, there is an endomorphism $p \colon X \to X$.

Localization.

$$X[p^{-1}] := \varinjlim (X \xrightarrow{p} X \xrightarrow{p} X \xrightarrow{p} \dots) \in \operatorname{Sp}_{\mathbb{Q}}.$$

Completion.

$$\widehat{X}_p := \varprojlim (\cdots \to X/p^3 \to X/p^2 \to X/p) \in \widehat{\mathrm{Sp}}_p.$$

For $X \in \operatorname{Sp}_{(p)}$, there is an endomorphism $p \colon X \to X$.

Localization.

$$X[p^{-1}] := \varinjlim (X \xrightarrow{p} X \xrightarrow{p} X \xrightarrow{p} \dots) \in \operatorname{Sp}_{\mathbb{Q}}.$$

Completion.

$$\widehat{X}_p := \varprojlim \left(\cdots \to X/p^3 \to X/p^2 \to X/p \right) \; \in \; \widehat{\mathrm{Sp}}_p.$$

Arithmetic Pullback Square.

$$\begin{array}{ccc}
X & \longrightarrow \widehat{X}_p \\
\downarrow & & \downarrow \\
X[p^{-1}] & \longrightarrow (\widehat{X}_p)[p^{-1}].
\end{array}$$

Every $X \in \widehat{\mathrm{Sp}}_p$ has an "asymptotically defined" endomorphism

$$v_1 \colon \Sigma^d X \to X$$
.

Every $X \in \widehat{\mathrm{Sp}}_p$ has an "asymptotically defined" endomorphism

$$v_1 \colon \Sigma^d X \to X$$
.

Suffices for the definition of **localization** and **completion**:

$$X[v_1^{-1}] \in \mathrm{Sp}_{T(1)} \ , \ \widehat{X}_{v_1} \in \widehat{\mathrm{Sp}}_{(p,v_1)}.$$

Every $X \in \widehat{\mathrm{Sp}}_p$ has an "asymptotically defined" endomorphism

$$v_1: \Sigma^d X \to X$$
.

Suffices for the definition of localization and completion:

$$X[v_1^{-1}] \in \operatorname{Sp}_{T(1)} , \ \widehat{X}_{v_1} \in \widehat{\operatorname{Sp}}_{(p,v_1)}.$$

Chromatic Pullback square.

$$\begin{array}{ccc}
X & \longrightarrow \widehat{X}_{v_1} \\
\downarrow & & \downarrow \\
X[v_1^{-1}] & \longrightarrow (\widehat{X}_{v_1})[v_1^{-1}]
\end{array}$$

Every $X \in \widehat{\mathrm{Sp}}_p$ has an "asymptotically defined" endomorphism

$$v_1 \colon \Sigma^d X \to X$$
.

Suffices for the definition of localization and completion:

$$X[v_1^{-1}] \in \mathrm{Sp}_{T(1)}$$
 , $\widehat{X}_{v_1} \in \widehat{\mathrm{Sp}}_{(p,v_1)}$.

Chromatic Pullback square.

$$\begin{array}{c}
X \longrightarrow \widehat{X}_{v_1} \\
\downarrow \qquad \qquad \downarrow \\
X[v_1^{-1}] \longrightarrow (\widehat{X}_{v_1})[v_1^{-1}]
\end{array}$$

This continues...

Every $X \in \widehat{\mathrm{Sp}}_p$ has an "asymptotically defined" endomorphism

$$v_1: \Sigma^d X \to X$$
.

Suffices for the definition of **localization** and **completion**:

$$X[v_1^{-1}] \in \operatorname{Sp}_{T(1)} , \ \widehat{X}_{v_1} \in \widehat{\operatorname{Sp}}_{(p,v_1)}.$$

Chromatic Pullback square.

$$\begin{array}{c}
X \longrightarrow \widehat{X}_{v_1} \\
\downarrow \qquad \qquad \downarrow \\
X[v_1^{-1}] \longrightarrow (\widehat{X}_{v_1})[v_1^{-1}]
\end{array}$$

This continues...

$$L_{T(n)}X := \widehat{X}_{(p,v_1,\dots,v_{n-1})}[v_n^{-1}] \in \operatorname{Sp}_{T(n)}.$$

Chromatic Picture

Prime ideals. A chain under specialization:

$$\overbrace{0}^{\operatorname{Sp}_{\mathbb{Q}}} \to \overbrace{1 \to 2 \to \dots \to n \to \dots \to \infty}$$

Chromatic Picture

Prime ideals. A chain under specialization:

$$\underbrace{\frac{\widehat{\operatorname{Sp}}_{\mathbb{Q}}}{0}}_{\operatorname{Sp}_{T(0)}} \to \underbrace{\frac{1}{\operatorname{Sp}_{T(1)}} \to \underbrace{2}_{\operatorname{Sp}_{T(2)}} \to \dots \to \underbrace{n}_{\operatorname{Sp}_{T(n)}} \to \dots \to \underbrace{\infty}_{\text{"Sp}_{T(\infty)}}$$

Chromatic Picture

Prime ideals. A chain under specialization:

$$\underbrace{\frac{\widehat{\operatorname{Sp}}_{\mathbb{Q}}}{0}}_{\operatorname{Sp}_{T(0)}} \to \underbrace{\frac{1}{\operatorname{Sp}_{T(1)}} \to \underbrace{2}_{\operatorname{Sp}_{T(2)}} \to \dots \to \underbrace{n}_{\operatorname{Sp}_{T(n)}} \to \dots \to \underbrace{\infty}_{\text{"Sp}_{T(\infty)}}$$

Residue fields. Morava *K*-theories:

Comparison. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} \subseteq \operatorname{Sp}_{T(n)}$$
.

Comparison. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} \subseteq \operatorname{Sp}_{T(n)}$$
.

Telescope Conjecture. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} = \operatorname{Sp}_{T(n)}.$$

Comparison. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} \subseteq \operatorname{Sp}_{T(n)}$$
.

Telescope Conjecture. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} = \operatorname{Sp}_{T(n)}.$$

Known for n = 0, 1, but believed to be *false* in general.

Comparison. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} \subseteq \operatorname{Sp}_{T(n)}$$
.

Telescope Conjecture. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} = \operatorname{Sp}_{T(n)}.$$

Known for n = 0, 1, but believed to be *false* in general.

• $\operatorname{Sp}_{K(n)}$ – more computable, related to frormal groups and algebraic geometry.

Comparison. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} \subseteq \operatorname{Sp}_{T(n)}$$
.

Telescope Conjecture. For all $0 \le n < \infty$,

$$\operatorname{Sp}_{K(n)} = \operatorname{Sp}_{T(n)}.$$

Known for n = 0, 1, but believed to be *false* in general.

- Sp_{K(n)} more computable, related to frormal groups and algebraic geometry.
- $\operatorname{Sp}_{T(n)}$ less computable, related to unstable homotopy, redshift in algebraic K-theory.

Definition (Rognes, Auslander-Goldman)

A G-Galois extension of A, is a commutative A-algebra B with a G-action, such that:

Definition (Rognes, Auslander-Goldman)

A G-Galois extension of A, is a commutative A-algebra B with a G-action, such that:

1.
$$A \rightarrow B^{hG}$$
 is iso.

Definition (Rognes, Auslander-Goldman)

A G-Galois extension of A, is a commutative A-algebra B with a G-action, such that:

- 1. $A \rightarrow B^{hG}$ is iso.
- 2. $B \otimes_A B \to \prod_G B$, taking $b_1 \otimes b_2$ to $(gb_1 \cdot b_2)_{g \in G}$, is iso.

Definition (Rognes, Auslander-Goldman)

A G-Galois extension of A, is a commutative A-algebra B with a G-action, such that:

- 1. $A \rightarrow B^{hG}$ is iso.
- 2. $B \otimes_A B \to \prod_G B$, taking $b_1 \otimes b_2$ to $(gb_1 \cdot b_2)_{g \in G}$, is iso.

Idea. $\operatorname{Spec}(B)$ is a principal G-bundle over $\operatorname{Spec}(A)$.

Definition (Rognes, Auslander-Goldman)

A G-Galois extension of A, is a commutative A-algebra B with a G-action, such that:

- 1. $A \rightarrow B^{hG}$ is iso.
- 2. $B \otimes_A B \to \prod_G B$, taking $b_1 \otimes b_2$ to $(gb_1 \cdot b_2)_{g \in G}$, is iso.

Idea. $\operatorname{Spec}(B)$ is a principal G-bundle over $\operatorname{Spec}(A)$.

Theorem (Rognes)

If A is a connective commutative ring spectrum, Galois extensions of A are in bijection with Galois extensions of $\pi_0(A)$.

Definition (Rognes, Auslander-Goldman)

A G-Galois extension of A, is a commutative A-algebra B with a G-action, such that:

- 1. $A \rightarrow B^{hG}$ is iso.
- 2. $B \otimes_A B \to \prod_G B$, taking $b_1 \otimes b_2$ to $(gb_1 \cdot b_2)_{g \in G}$, is iso.

Idea. $\operatorname{Spec}(B)$ is a principal G-bundle over $\operatorname{Spec}(A)$.

Theorem (Rognes)

If A is a connective commutative ring spectrum, Galois extensions of A are in bijection with Galois extensions of $\pi_0(A)$.

Example. $KO \to KU$ is a $\mathbb{Z}/2$ Galois extension.

Cyclotomic extensions.
$$(t^m-1)=\prod_{k|m}\Phi_k(t).$$

Cyclotomic extensions.
$$(t^m-1)=\prod_{k|m}\Phi_k(t).$$

$$R[\omega_m] := R[t]/\Phi_m(t)$$

Cyclotomic extensions.

$$(t^m-1)=\prod_{k|m}\Phi_k(t).$$

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

Cyclotomic extensions.
$$(t^m-1)=\prod_{k|m}\Phi_k(t).$$

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

If $m \in \mathbb{R}^{\times}$, it is a Galois extension (not necessarily connected).

Cyclotomic extensions. $(t^m-1)=\prod_{k|m}\Phi_k(t).$

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

If $m \in \mathbb{R}^{\times}$, it is a Galois extension (not necessarily connected).

Examples.

• $\mathbb{R}[\omega_4] = \mathbb{C}$.

Cyclotomic extensions. $(t^m-1)=\prod_{k|m}\Phi_k(t).$

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

If $m \in \mathbb{R}^{\times}$, it is a Galois extension (not necessarily connected).

Examples.

- $\mathbb{R}[\omega_4] = \mathbb{C}$.
- $\mathbb{F}_p[\omega_{p^d-1}] = \mathbb{F}_{p^d} \times \cdots \times \mathbb{F}_{p^d}$.

Cyclotomic extensions. $(t^m - 1) = \prod_{k|m} \Phi_k(t)$.

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

If $m \in \mathbb{R}^{\times}$, it is a Galois extension (not necessarily connected).

Examples.

- $\mathbb{R}[\omega_4] = \mathbb{C}$.
- $\mathbb{F}_p[\omega_{p^d-1}] = \mathbb{F}_{p^d} \times \cdots \times \mathbb{F}_{p^d}$.
- $\mathbb{Z}_p[\omega_{p^d-1}] = W(\mathbb{F}_{p^d}) \times \cdots \times W(\mathbb{F}_{p^d}).$

Cyclotomic extensions. $(t^m-1)=\prod_{k|m}\Phi_k(t).$

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

If $m \in \mathbb{R}^{\times}$, it is a Galois extension (not necessarily connected).

Examples.

- $\mathbb{R}[\omega_4] = \mathbb{C}$.
- $\mathbb{F}_p[\omega_{p^d-1}] = \mathbb{F}_{p^d} \times \cdots \times \mathbb{F}_{p^d}$.
- $\mathbb{Z}_p[\omega_{p^d-1}] = W(\mathbb{F}_{p^d}) \times \cdots \times W(\mathbb{F}_{p^d}).$

Kronecker-Weber. $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)^{\operatorname{ab}} = \widehat{\mathbb{Z}} \times \mathbb{Z}_p^{\times}$.

Cyclotomic extensions. $(t^m-1)=\prod_{k|m}\Phi_k(t).$

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

If $m \in \mathbb{R}^{\times}$, it is a Galois extension (not necessarily connected).

Examples.

- $\mathbb{R}[\omega_4] = \mathbb{C}$.
- $\mathbb{F}_p[\omega_{p^d-1}] = \mathbb{F}_{p^d} \times \cdots \times \mathbb{F}_{p^d}.$
- $\mathbb{Z}_p[\omega_{p^d-1}] = W(\mathbb{F}_{p^d}) \times \cdots \times W(\mathbb{F}_{p^d}).$

Kronecker-Weber. $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)^{\operatorname{ab}} = \widehat{\mathbb{Z}} \times \mathbb{Z}_p^{\times}$.

• $\widehat{\mathbb{Z}}$ corresponds to $\mathbb{Q}_p^{\mathrm{ur}} := \bigcup \mathbb{Q}_p(\omega_{p^d-1}).$

Cyclotomic extensions. $(t^m-1)=\prod_{k|m}\Phi_k(t).$

$$R[\omega_m] := R[t]/\Phi_m(t)$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

If $m \in \mathbb{R}^{\times}$, it is a Galois extension (not necessarily connected).

Examples.

- $\mathbb{R}[\omega_4] = \mathbb{C}$.
- $\mathbb{F}_p[\omega_{p^d-1}] = \mathbb{F}_{p^d} \times \cdots \times \mathbb{F}_{p^d}$.
- $\mathbb{Z}_p[\omega_{p^d-1}] = W(\mathbb{F}_{p^d}) \times \cdots \times W(\mathbb{F}_{p^d}).$

Kronecker-Weber. $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)^{\operatorname{ab}} = \widehat{\mathbb{Z}} \times \mathbb{Z}_p^{\times}$.

- $\widehat{\mathbb{Z}}$ corresponds to $\mathbb{Q}_p^{\mathrm{ur}} := \cup \mathbb{Q}_p(\omega_{p^d-1}).$
- \mathbb{Z}_p^{\times} correspons to $\mathbb{Q}_p(\omega_{p^{\infty}}) := \cup \mathbb{Q}_p(\omega_{p^m})$.

Group algebra. For every $m \in \mathbb{N}$:

$$R[t]/(t^m - 1) \simeq R[C_m]$$

Group algebra. For every $m \in \mathbb{N}$:

$$R[t]/(t^m-1) \simeq R[C_m] \quad \circlearrowleft \quad (\mathbb{Z}/m)^{\times}$$

Group algebra. For every $m \in \mathbb{N}$:

$$R[t]/(t^m-1) \simeq R[C_m]$$
 \circlearrowleft $(\mathbb{Z}/m)^{\times}$

For $m = p^r$, we have

$$0 \to C_p \to C_{p^r} \to C_{p^{r-1}} \to 0$$

Group algebra. For every $m \in \mathbb{N}$:

$$R[t]/(t^m-1) \simeq R[C_m] \quad \circlearrowleft \quad (\mathbb{Z}/m)^{\times}$$

For $m = p^r$, we have

$$0 \to C_p \to C_{p^r} \to C_{p^{r-1}} \to 0$$

$$C_p \stackrel{\iota}{\hookrightarrow} R[C_{p^r}] \to R[C_{p^{r-1}}]$$

Group algebra. For every $m \in \mathbb{N}$:

$$R[t]/(t^m-1) \simeq R[C_m] \quad \circlearrowleft \quad (\mathbb{Z}/m)^{\times}$$

For $m = p^r$, we have

$$0 \to C_p \to C_{p^r} \to C_{p^{r-1}} \to 0$$
$$C_p \stackrel{\iota}{\hookrightarrow} R[C_{p^r}] \to R[C_{p^{r-1}}]$$

Idempotent. If $p \in R^{\times}$, then

$$\varepsilon = \frac{1}{p} \sum\nolimits_{g \in C_p} \iota(g) \quad \in \quad R[C_{p^r}].$$

Group algebra. For every $m \in \mathbb{N}$:

$$R[t]/(t^m-1) \simeq R[C_m] \quad \circlearrowleft \quad (\mathbb{Z}/m)^{\times}$$

For $m = p^r$, we have

$$0 \to C_p \to C_{p^r} \to C_{p^{r-1}} \to 0$$
$$C_p \stackrel{\iota}{\hookrightarrow} R[C_{p^r}] \to R[C_{p^{r-1}}]$$

Idempotent. If $p \in R^{\times}$, then

$$\varepsilon = \frac{1}{p} \sum\nolimits_{g \in C_p} \iota(g) \quad \in \quad R[C_{p^r}].$$

Splitting. $R[C_{p^r}] \simeq R[C_{p^{r-1}}] \times R[\omega_{p^r}]$.

∞-Categorical Cyclotomic Extensions

Observation (Waldhausen-Schwänzl): Can do everything ∞ -categorically!

∞-Categorical Cyclotomic Extensions

Observation (Waldhausen-Schwänzl): Can do everything ∞ -categorically!

Example. The spherical Witt vectors

$$\widehat{\mathbb{S}}_p \to \mathbb{S}W(\mathbb{F}_{p^d})$$

Lift the \mathbb{Z}/d -Galois extension $\mathbb{Z}_p \to W(\mathbb{F}_{p^d})$.

∞-Categorical Cyclotomic Extensions

Observation (Waldhausen-Schwänzl): Can do everything ∞ -categorically!

Example. The spherical Witt vectors

$$\widehat{\mathbb{S}}_p \to \mathbb{S}W(\mathbb{F}_{p^d})$$

Lift the \mathbb{Z}/d -Galois extension $\mathbb{Z}_p \to W(\mathbb{F}_{p^d})$.

Generalization (Tyler Lawson). Adjoining roots of arbitrary elements $a \in \pi_0 R^{\times}$:

$$\pi_0(R[a^{1/n}]) \simeq \pi_0(R)[t]/(t^n - a)$$

via twisted group rings.

Algebraic closure. Morava *E*-Theory

$$\mathbb{S}_{K(n)} \to E_n \in \operatorname{Sp}_{K(n)}$$

Algebraic closure. Morava *E*-Theory

$$\mathbb{S}_{K(n)} \to E_n \in \operatorname{Sp}_{K(n)}$$

Galois group. Morava stabilizer group $\mathbb{G}_n = \widehat{\mathbb{Z}} \ltimes S_n$.

Algebraic closure. Morava *E*-Theory

$$\mathbb{S}_{K(n)} \to E_n \in \operatorname{Sp}_{K(n)}$$

Galois group. Morava stabilizer group $\mathbb{G}_n = \widehat{\mathbb{Z}} \ltimes S_n$.

• $\mathcal{D}_n = \text{the } n^2\text{-dim. div. alg. over } \mathbb{Q}_p \text{ of inv. } 1/n \in \mathbb{Q}/\mathbb{Z}.$

Algebraic closure. Morava *E*-Theory

$$\mathbb{S}_{K(n)} \to E_n \in \operatorname{Sp}_{K(n)}$$

Galois group. Morava stabilizer group $\mathbb{G}_n = \widehat{\mathbb{Z}} \ltimes S_n$.

- $\mathcal{D}_n = \text{the } n^2\text{-dim. div. alg. over } \mathbb{Q}_p \text{ of inv. } 1/n \in \mathbb{Q}/\mathbb{Z}.$
- $\mathcal{O}_n \subseteq \mathcal{D}_n$ the maximal order.

Algebraic closure. Morava *E*-Theory

$$\mathbb{S}_{K(n)} \to E_n \in \operatorname{Sp}_{K(n)}$$

Galois group. Morava stabilizer group $\mathbb{G}_n = \widehat{\mathbb{Z}} \ltimes S_n$.

- $\mathcal{D}_n = \text{the } n^2\text{-dim. div. alg. over } \mathbb{Q}_p \text{ of inv. } 1/n \in \mathbb{Q}/\mathbb{Z}.$
- $\mathcal{O}_n \subseteq \mathcal{D}_n$ the maximal order.
- $S_n \simeq \mathcal{O}^{\times}$ the group of units.

Algebraic closure. Morava E-Theory

$$\mathbb{S}_{K(n)} \to E_n \in \operatorname{Sp}_{K(n)}$$

Galois group. Morava stabilizer group $\mathbb{G}_n = \widehat{\mathbb{Z}} \ltimes S_n$.

- $\mathcal{D}_n = \text{the } n^2\text{-dim. div. alg. over } \mathbb{Q}_p \text{ of inv. } 1/n \in \mathbb{Q}/\mathbb{Z}.$
- $\mathcal{O}_n \subseteq \mathcal{D}_n$ the maximal order.
- $S_n \simeq \mathcal{O}^{\times}$ the group of units.

Slogan. " S_n is a twisted form of $\mathrm{GL}_n(\mathbb{Z}_p)$ ".

Algebraic closure. Morava *E*-Theory

$$\mathbb{S}_{K(n)} \to E_n \in \operatorname{Sp}_{K(n)}$$

Galois group. Morava stabilizer group $\mathbb{G}_n = \widehat{\mathbb{Z}} \ltimes S_n$.

- $\mathcal{D}_n = \text{the } n^2\text{-dim. div. alg. over } \mathbb{Q}_p \text{ of inv. } 1/n \in \mathbb{Q}/\mathbb{Z}.$
- $\mathcal{O}_n \subseteq \mathcal{D}_n$ the maximal order.
- $S_n \simeq \mathcal{O}^{\times}$ the group of units.

Slogan. " S_n is a twisted form of $\mathrm{GL}_n(\mathbb{Z}_p)$ ".

Abelianization. We have $\det \colon S_n \to \mathbb{Z}_p^{\times}$ and $\mathbb{G}_n^{\mathrm{ab}} \simeq \widehat{\mathbb{Z}} \times \mathbb{Z}_p^{\times}$.

• The finite quotients

$$\mathbb{G}_n \to \widehat{\mathbb{Z}} \twoheadrightarrow \mathbb{Z}/d$$

The finite quotients

$$\mathbb{G}_n \to \widehat{\mathbb{Z}} \to \mathbb{Z}/d$$

classify the Galois extensions

$$\mathbb{S}_{K(n)} = L_{K(n)} \widehat{\mathbb{S}}_p \to L_{K(n)} \mathbb{S}W(\mathbb{F}_{p^d})$$

The finite quotients

$$\mathbb{G}_n \to \widehat{\mathbb{Z}} \twoheadrightarrow \mathbb{Z}/d$$

classify the Galois extensions

$$\mathbb{S}_{K(n)} = L_{K(n)} \widehat{\mathbb{S}}_p \to L_{K(n)} \mathbb{S}W(\mathbb{F}_{p^d})$$

(hence embed into prime to p cyclo. extensions.)

The finite quotients

$$\mathbb{G}_n \to \widehat{\mathbb{Z}} \to \mathbb{Z}/d$$

classify the Galois extensions

$$\mathbb{S}_{K(n)} = L_{K(n)} \widehat{\mathbb{S}}_p \to L_{K(n)} \mathbb{S}W(\mathbb{F}_{p^d})$$

(hence embed into prime to p cyclo. extensions.)

The finite quotients

$$\mathbb{G}_n \to \mathbb{Z}_p^{\times} \twoheadrightarrow (\mathbb{Z}/p^r)^{\times}$$

do *not* classify p-power cyclo. extensions.

The finite quotients

$$\mathbb{G}_n \to \widehat{\mathbb{Z}} \twoheadrightarrow \mathbb{Z}/d$$

classify the Galois extensions

$$\mathbb{S}_{K(n)} = L_{K(n)} \widehat{\mathbb{S}}_p \to L_{K(n)} \mathbb{S}W(\mathbb{F}_{p^d})$$

(hence embed into prime to p cyclo. extensions.)

The finite quotients

$$\mathbb{G}_n \to \mathbb{Z}_p^{\times} \twoheadrightarrow (\mathbb{Z}/p^r)^{\times}$$

do *not* classify p-power cyclo. extensions.

Theorem (Devalapurkar)

For $n \ge 1$, there is no K(n)-local commutative ring spectrum R, such that $\pi_0(R)$ contains a primitive p-th root of unity.

Functor of points. For commutative R-algebras S,

Functor of points. For commutative R-algebras S,

• $R[C_{p^r}]$ co-represents p^r -th roots of unity $C_{p^r} \xrightarrow{\omega} S^{\times}$.

Functor of points. For commutative R-algebras S,

- $R[C_{p^r}]$ co-represents p^r -th roots of unity $C_{p^r} \xrightarrow{\omega} S^{\times}$.
- $R[\omega_{p^r}]$ co-represents *primitive* p^r -th roots of unity.

Functor of points. For commutative R-algebras S,

- $R[C_{p^r}]$ co-represents p^r -th roots of unity $C_{p^r} \xrightarrow{\omega} S^{\times}$.
- $R[\omega_{p^r}]$ co-represents *primitive* p^r -th roots of unity.

Higher Roots of unity. For commutative ring spectra

$$\omega^{(n)} \colon HC_{p^r} \to \Omega^n S^{\times}$$

Functor of points. For commutative R-algebras S,

- $R[C_{p^r}]$ co-represents p^r -th roots of unity $C_{p^r} \xrightarrow{\omega} S^{\times}$.
- $R[\omega_{p^r}]$ co-represents *primitive* p^r -th roots of unity.

Higher Roots of unity. For commutative ring spectra

$$\omega^{(n)} \colon HC_{p^r} \to \Omega^n S^{\times}$$

Corepresented by $R[B^nC_{p^r}]$ and acted by $(\mathbb{Z}/p^r)^{\times}$.

Functor of points. For commutative R-algebras S,

- $R[C_{p^r}]$ co-represents p^r -th roots of unity $C_{p^r} \xrightarrow{\omega} S^{\times}$.
- $R[\omega_{p^r}]$ co-represents *primitive* p^r -th roots of unity.

Higher Roots of unity. For commutative ring spectra

$$\omega^{(n)} \colon HC_{p^r} \to \Omega^n S^{\times}$$

Corepresented by $R[B^nC_{p^r}]$ and acted by $(\mathbb{Z}/p^r)^{\times}$.

Primitivity. There is a natural definition for $\omega^{(n)}$ to be *primitive*.

Higher Cyclotomic Extensions

Chromatic World. The ring $\mathbb{S}_{K(n)}[B^nC_{p^r}]$ splits (equivariantly):

Higher Cyclotomic Extensions

Chromatic World. The ring $\mathbb{S}_{K(n)}[B^nC_{p^r}]$ splits (equivariantly):

$$\mathbb{S}_{K(n)}[B^nC_{p^r}] \simeq \mathbb{S}_{K(n)}[B^nC_{p^{r-1}}] \times \mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}],$$

Higher Cyclotomic Extensions

Chromatic World. The ring $\mathbb{S}_{K(n)}[B^nC_{p^r}]$ splits (equivariantly):

$$\mathbb{S}_{K(n)}[B^nC_{p^r}] \simeq \mathbb{S}_{K(n)}[B^nC_{p^{r-1}}] \times \mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}],$$

where $\mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}]$ co-represents *primitive* higher roots of unity.

Higher Cyclotomic Extensions

Chromatic World. The ring $\mathbb{S}_{K(n)}[B^nC_{p^r}]$ splits (equivariantly):

$$\mathbb{S}_{K(n)}[B^n C_{p^r}] \simeq \mathbb{S}_{K(n)}[B^n C_{p^{r-1}}] \times \mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}],$$

where $\mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}]$ co-represents *primitive* higher roots of unity.

Theorem (Westerland)

The algebra $\mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}]$ is $(\mathbb{Z}/p^r)^{\times}$ -Galois and is classified by

$$\mathbb{G}_n \xrightarrow{\det} \mathbb{Z}_p^{\times} \twoheadrightarrow (\mathbb{Z}/p^r)^{\times}.$$

Higher Cyclotomic Extensions

Chromatic World. The ring $\mathbb{S}_{K(n)}[B^nC_{p^r}]$ splits (equivariantly):

$$\mathbb{S}_{K(n)}[B^n C_{p^r}] \simeq \mathbb{S}_{K(n)}[B^n C_{p^{r-1}}] \times \mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}],$$

where $\mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}]$ co-represents *primitive* higher roots of unity.

Theorem (Westerland)

The algebra $\mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}]$ is $(\mathbb{Z}/p^r)^{\times}$ -Galois and is classified by

$$\mathbb{G}_n \xrightarrow{\det} \mathbb{Z}_p^{\times} \twoheadrightarrow (\mathbb{Z}/p^r)^{\times}.$$

Slogan. "det: $\mathbb{G}_n \to \mathbb{Z}_p^{\times}$ is the *p*-adic cyclotomic character"

 ∞ -Semiadditivity (Hopkins-Lurie). For all π -finite spaces A,

$$\varinjlim_A \stackrel{\sim}{\longrightarrow} \varprojlim_A.$$

 ∞ -Semiadditivity (Hopkins-Lurie). For all π -finite spaces A,

$$\varinjlim_A \stackrel{\sim}{\longrightarrow} \varprojlim_A.$$

Structure. Integration of morphisms

$$A \xrightarrow{\varphi} \operatorname{Map}(X, Y) \quad , \quad \int_A \varphi \in \operatorname{Map}(X, Y)$$

 ∞ -Semiadditivity (Hopkins-Lurie). For all π -finite spaces A,

$$\varinjlim_A \stackrel{\sim}{\longrightarrow} \varprojlim_A.$$

Structure. Integration of morphisms

$$A \xrightarrow{\varphi} \operatorname{Map}(X, Y)$$
 , $\int_{A} \varphi \in \operatorname{Map}(X, Y)$
$$|A| \colon X \to X \quad , \quad |A| = \int_{A} \operatorname{Id}_{X}$$

 ∞ -Semiadditivity (Hopkins-Lurie). For all π -finite spaces A,

$$\varinjlim_A \stackrel{\sim}{\longrightarrow} \varprojlim_A.$$

Structure. Integration of morphisms

$$A \xrightarrow{\varphi} \operatorname{Map}(X, Y)$$
 , $\int_{A} \varphi \in \operatorname{Map}(X, Y)$
$$|A| \colon X \to X$$
 , $|A| = \int_{A} \operatorname{Id}_{X}$

Theorem (Hopkins-Lurie, Greenlees-Hovey-Sadofsky)

The ∞ -categories $\operatorname{Sp}_{K(n)}$ are ∞ -semiadditive for all $0 \le n < \infty$.

 ∞ -Semiadditivity (Hopkins-Lurie). For all π -finite spaces A,

$$\varinjlim_A \stackrel{\sim}{\longrightarrow} \varprojlim_A.$$

Structure. Integration of morphisms

$$A \xrightarrow{\varphi} \operatorname{Map}(X, Y)$$
 , $\int_{A} \varphi \in \operatorname{Map}(X, Y)$
$$|A| \colon X \to X$$
 , $|A| = \int_{A} \operatorname{Id}_{X}$

Theorem (Hopkins-Lurie, Greenlees-Hovey-Sadofsky)

The ∞ -categories $\operatorname{Sp}_{K(n)}$ are ∞ -semiadditive for all $0 \le n < \infty$.

Fact. For $\operatorname{Sp}_{K(n)}$, the map $|B^nC_p|$ is invertible.

Fiber sequence.

$$B^nC_p \to B^nC_{p^r} \to B^nC_{p^{r-1}}.$$

Fiber sequence.

$$B^nC_p \to B^nC_{p^r} \to B^nC_{p^{r-1}}.$$

Gives a map

$$\iota \colon B^n C_p \to \Omega^{\infty}(\mathbb{S}_{K(n)}[B^n C_{p^r}]).$$

Fiber sequence.

$$B^nC_p \to B^nC_{p^r} \to B^nC_{p^{r-1}}.$$

Gives a map

$$\iota \colon B^n C_p \to \Omega^{\infty}(\mathbb{S}_{K(n)}[B^n C_{p^r}]).$$

Idempotent.

$$\varepsilon := \frac{1}{|B^n C_p|} \int_{g \in B^n C_p} \iota(g) \in \pi_0(\mathbb{S}_{K(n)}[B^n C_{p^r}]).$$

Fiber sequence.

$$B^nC_p \to B^nC_{p^r} \to B^nC_{p^{r-1}}.$$

Gives a map

$$\iota \colon B^n C_p \to \Omega^{\infty}(\mathbb{S}_{K(n)}[B^n C_{p^r}]).$$

Idempotent.

$$\varepsilon := \frac{1}{|B^n C_p|} \int_{q \in B^n C_p} \iota(g) \in \pi_0(\mathbb{S}_{K(n)}[B^n C_{p^r}]).$$

Splitting.

$$\mathbb{S}_{K(n)}[B^n C_{p^r}][(1-\varepsilon)^{-1}] \simeq \mathbb{S}_{K(n)}[\omega_{p^r}^{(n)}].$$

Theorem (Carmeli-Schlank-Y)

The ∞ -category $\operatorname{Sp}_{T(n)}$ is ∞ -semiadditive of height n for all $0 \le n < \infty$.

Theorem (Carmeli-Schlank-Y)

The ∞ -category $\operatorname{Sp}_{T(n)}$ is ∞ -semiadditive of height n for all $0 \le n < \infty$.

Theorem (Carmeli-Schlank-Y)

The algebra $\mathbb{S}_{T(n)}[\omega_{p^r}^{(n)}]$ is a $(\mathbb{Z}/p^r)^{\times}$ -Galois extension of $\mathbb{S}_{T(n)}$.

Theorem (Carmeli-Schlank-Y)

The ∞ -category $\operatorname{Sp}_{T(n)}$ is ∞ -semiadditive of height n for all $0 \le n < \infty$.

Theorem (Carmeli-Schlank-Y)

The algebra $\mathbb{S}_{T(n)}[\omega_{p^r}^{(n)}]$ is a $(\mathbb{Z}/p^r)^{\times}$ -Galois extension of $\mathbb{S}_{T(n)}$.

Corollary

We can lift every finite **abelian** G-Galois extension $\mathbb{S}_{K(n)} \to R$, to a G-Galois extension $\mathbb{S}_{T(n)} \to R^f$.

Thank You!