Real Bordism, Real orientations, and Lubin-Tate spectra

XiaoLin Danny Shi
University of Chicago

June 2021

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

$$
X \underset{i d}{\underset{\longrightarrow}{\tau} X \xrightarrow{\tau}} X
$$

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

- Real vector bundle E over X :

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

$$
X \underset{i d}{\underset{\sim}{\tau}} X \underset{\sim}{\tau} X
$$

- Real vector bundle E over X :
- E : complex vector bundle over X

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

- Real vector bundle E over X :
- E : complex vector bundle over X
- E: Real space

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

- Real vector bundle E over X :
- E : complex vector bundle over X
- E: Real space
- $p: E \rightarrow X$ is C_{2}-equivariant

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

$$
X \underset{i d}{\stackrel{\tau}{\longrightarrow} X \xrightarrow{\tau}} X
$$

- Real vector bundle E over X :
- E : complex vector bundle over X
- E: Real space
- $p: E \rightarrow X$ is C_{2}-equivariant
- $\tau: E_{x} \rightarrow E_{\tau(x)}$ is anti \mathbb{C}-linear

$$
\tau(z \cdot v)=\bar{z} \cdot \tau(v)
$$

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

- Real vector bundle E over X :
- E : complex vector bundle over X
- E: Real space
- $p: E \rightarrow X$ is C_{2}-equivariant
- $\tau: E_{x} \rightarrow E_{\tau(x)}$ is anti \mathbb{C}-linear

$$
\tau(z \cdot v)=\bar{z} \cdot \tau(v)
$$

(This is NOT a C_{2}-equivariant complex vector bundle!)

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

- Real vector bundle E over X :
- E : complex vector bundle over X
- E: Real space
- $p: E \rightarrow X$ is C_{2}-equivariant
- $\tau: E_{x} \rightarrow E_{\tau(x)}$ is anti \mathbb{C}-linear

$$
\tau(z \cdot v)=\bar{z} \cdot \tau(v)
$$

(This is NOT a C_{2}-equivariant complex vector bundle!)

- $K_{\mathbb{R}}(X)$: Grothendieck's construction

What does Real mean?

- C_{2} : cyclic group of order 2 with generator τ
- Real space $X: X$ with a C_{2}-action

- Real vector bundle E over X :
- E : complex vector bundle over X
- E: Real space
- $p: E \rightarrow X$ is C_{2}-equivariant
- $\tau: E_{x} \rightarrow E_{\tau(x)}$ is anti \mathbb{C}-linear

$$
\tau(z \cdot v)=\bar{z} \cdot \tau(v)
$$

(This is NOT a C_{2}-equivariant complex vector bundle!)

- $K_{\mathbb{R}}(X)$: Grothendieck's construction
$\Longrightarrow C_{2}$-equivariant spectrum $K_{\mathbb{R}}$ (Atiyah's Real K-theory)

Equivariant stable homotopy theory

- Non-equivariantly, $\pi_{n} X=\left[S^{n}, X\right]$

Equivariant stable homotopy theory

- Non-equivariantly, $\pi_{n} X=\left[S^{n}, X\right]$
- Equivariantly, we have more spheres

Equivariant stable homotopy theory

- Non-equivariantly, $\pi_{n} X=\left[S^{n}, X\right]$
- Equivariantly, we have more spheres
- V : G-representation $\Longrightarrow S^{V}$

Equivariant stable homotopy theory

- Non-equivariantly, $\pi_{n} X=\left[S^{n}, X\right]$
- Equivariantly, we have more spheres
- V: G-representation $\Longrightarrow S^{V}$
- X : G-spectrum

$$
\pi_{V}^{G} X=\left[S^{V}, X\right]^{G}
$$

Equivariant stable homotopy theory

- Non-equivariantly, $\pi_{n} X=\left[S^{n}, X\right]$
- Equivariantly, we have more spheres
- V: G-representation $\Longrightarrow S^{V}$
- X : G-spectrum

$$
\pi_{V}^{G} X=\left[S^{V}, X\right]^{G}
$$

- $\pi_{\star}^{G} X: R O(G)$-graded homotopy groups of X

Atiyah's Real K-theory $K_{\mathbb{R}}$

- $K_{\mathbb{R}}$ combines complex K-theory and real K-theory
- The underlying spectrum is $K U$
- $K_{\mathbb{R}}^{C_{2}}=K_{\mathbb{R}}^{h C_{2}}=K O$

Atiyah's Real K-theory $K_{\mathbb{R}}$

- $K_{\mathbb{R}}$ combines complex K-theory and real K-theory
- The underlying spectrum is $K U$
- $K_{\mathbb{R}}^{C_{2}}=K_{\mathbb{R}}^{h C_{2}}=K O$
- There are two periodicities:
$-\pi_{\star+\rho}^{C_{2}} K_{\mathbb{R}}=\pi_{\star}^{C_{2}} K_{\mathbb{R}}$ (complex Bott periodicity)
$-\pi_{\star+8}^{\mathcal{C}_{2}} K_{\mathbb{R}}=\pi_{\star}^{\mathcal{C}_{2}} K_{\mathbb{R}}$ (real Bott periodicity)

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space
- $\Sigma^{2} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space
- $\Sigma^{2} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
\Longrightarrow Thom spectrum MU

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space
- $\Sigma^{2} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
\Longrightarrow Thom spectrum $M U$
- $B U(n)$: Real space
γ_{n} : Real vector bundle

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space
- $\Sigma^{2} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
\Longrightarrow Thom spectrum $M U$
- $B U(n)$: Real space
γ_{n} : Real vector bundle
- $\Sigma^{\rho} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
ρ : regular representation of C_{2}

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space
- $\Sigma^{2} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
\Longrightarrow Thom spectrum $M U$
- $B U(n)$: Real space
γ_{n} : Real vector bundle
- $\Sigma^{\rho} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
ρ : regular representation of C_{2}
$\Longrightarrow C_{2}$-equivariant Thom spectrum $M U_{\mathbb{R}}$

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space
- $\Sigma^{2} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
\Longrightarrow Thom spectrum MU
- $B U(n)$: Real space
γ_{n} : Real vector bundle
- $\Sigma^{\rho} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
ρ : regular representation of C_{2}
$\Longrightarrow C_{2}$-equivariant Thom spectrum $M U_{\mathbb{R}}$
- The underlying spectrum of $M U_{\mathbb{R}}$ is $M U$

Real bordism spectrum $M U_{\mathbb{R}}$

- γ_{n} : the universal bundle over $B U(n)$
- $B U(n)^{\gamma_{n}}$: its Thom space
- $\Sigma^{2} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
\Longrightarrow Thom spectrum $M U$
- $B U(n)$: Real space γ_{n} : Real vector bundle
- $\Sigma^{\rho} B U(n)^{\gamma_{n}} \rightarrow B U(n+1)^{\gamma_{n+1}}$
ρ : regular representation of C_{2}
$\Longrightarrow C_{2}$-equivariant Thom spectrum $M U_{\mathbb{R}}$
- The underlying spectrum of $M U_{\mathbb{R}}$ is $M U$
- This spectrum is crucial in Hill-Hopkins-Ravenel's solution of the Kervaire invariant one problem (later)

Complex bordism spectrum

- $M U_{*}(X)$: group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle

Complex bordism spectrum

- $M U_{*}(X)$: group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle
- $\pi_{*} M U=M U_{*}(\mathrm{pt}) \cong \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$, where $\left|x_{i}\right|=2 i$
(Milnor, Novikov)

Complex bordism spectrum

- $M U_{*}(X)$: group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle
- $\pi_{*} M U=M U_{*}(\mathrm{pt}) \cong \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$, where $\left|x_{i}\right|=2 i$
(Milnor, Novikov)
- Associated with $M U$ is a theory of complex orientations

Complex orientation

- E: multiplicative cohomology theory

Complex orientation

- E: multiplicative cohomology theory
- Complex orientation: $x \in \widetilde{E}^{2}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\tilde{E}^{2}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}^{2}\left(S^{2}\right) \cong E^{0}(\mathrm{pt})
$$

Complex orientation

- E: multiplicative cohomology theory
- Complex orientation: $x \in \widetilde{E}^{2}\left(\mathbf{C}{ }^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}^{2}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}^{2}\left(S^{2}\right) \cong E^{0}(\mathrm{pt})
$$

- $E^{*}\left(\mathbf{C P}^{\infty}\right) \cong E^{*} \llbracket x \rrbracket$ $E^{*}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty}\right) \cong E^{*} \llbracket x, y \rrbracket$

Complex orientation

- E: multiplicative cohomology theory
- Complex orientation: $x \in \widetilde{E}^{2}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}^{2}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}^{2}\left(S^{2}\right) \cong E^{0}(\mathrm{pt})
$$

- $E^{*}\left(\mathbf{C P}^{\infty}\right) \cong E^{*} \llbracket x \rrbracket$ $E^{*}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty}\right) \cong E^{*} \llbracket x, y \rrbracket$
$-\mathbf{C P}^{\infty} \times \mathbf{C P}^{\infty} \longrightarrow \mathbf{C} \mathbf{P}^{\infty}$
(classifying tensor product of tautological line bundles)

Complex orientation

- E: multiplicative cohomology theory
- Complex orientation: $x \in \widetilde{E}^{2}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}^{2}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}^{2}\left(S^{2}\right) \cong E^{0}(\mathrm{pt})
$$

- $E^{*}\left(\mathbf{C P}^{\infty}\right) \cong E^{*} \llbracket x \rrbracket$
$E^{*}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty}\right) \cong E^{*} \llbracket x, y \rrbracket$
$-\mathbf{C P}^{\infty} \times \mathbf{C P}{ }^{\infty} \longrightarrow \mathbf{C P}^{\infty}$
(classifying tensor product of tautological line bundles)
- $E^{*}\left(\mathbf{C} \mathbf{P}^{\infty}\right) \longrightarrow E^{*}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C P}^{\infty}\right)$
$x \longmapsto F(x, y) \Longrightarrow$ formal group law $/ \pi_{*} E$

Complex orientation

- Complex orientation $\Longleftrightarrow(M U \longrightarrow E)$

Complex orientation

- Complex orientation $\Longleftrightarrow(M U \longrightarrow E)$
- Example: $(M U \longrightarrow H \mathbb{Z}) \Longrightarrow \mathbb{G}_{a}(x, y)=x+y$

Complex orientation

- Complex orientation $\Longleftrightarrow(M U \longrightarrow E)$
- Example: $(M U \longrightarrow H \mathbb{Z}) \Longrightarrow \mathbb{G}_{a}(x, y)=x+y$
- Example: $(M U \longrightarrow K U) \Longrightarrow \mathbb{G}_{m}(x, y)=x+y-\beta x y$

Complex orientation

- Complex orientation $\Longleftrightarrow(M U \longrightarrow E)$
- Example: $(M U \longrightarrow H \mathbb{Z}) \Longrightarrow \mathbb{G}_{a}(x, y)=x+y$
- Example: $(M U \longrightarrow K U) \Longrightarrow \mathbb{G}_{m}(x, y)=x+y-\beta x y$

Theorem (Quillen)
MU itself is complex oriented and it carries the universal formal group law.

Real orientation

- Associated to $M U_{\mathbb{R}}$ is a theory of Real orientations

Real orientation

- Associated to $M U_{\mathbb{R}}$ is a theory of Real orientations
- $E: C_{2}$-equivariant homotopy commutative ring spectrum

Real orientation

- Associated to $M U_{\mathbb{R}}$ is a theory of Real orientations
- $E: C_{2}$-equivariant homotopy commutative ring spectrum
- Real orientation: $\bar{x} \in \widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}_{C_{2}}^{\rho}\left(S^{\rho}\right) \cong E_{C_{2}}^{0}(\mathrm{pt})
$$

Real orientation

- Associated to $M U_{\mathbb{R}}$ is a theory of Real orientations
- $E: C_{2}$-equivariant homotopy commutative ring spectrum
- Real orientation: $\bar{x} \in \widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}_{C_{2}}^{\rho}\left(S^{\rho}\right) \cong E_{C_{2}}^{0}(\mathrm{pt})
$$

$-E_{C_{2}}^{\star}\left(\mathbf{C} \mathbf{P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{\rrbracket} \rrbracket$
$E_{C_{2}}^{\star}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{x}, \bar{y} \rrbracket($ Araki $)$

Real orientation

- Associated to $M U_{\mathbb{R}}$ is a theory of Real orientations
- $E: C_{2}$-equivariant homotopy commutative ring spectrum
- Real orientation: $\bar{x} \in \widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}_{C_{2}}^{\rho}\left(S^{\rho}\right) \cong E_{C_{2}}^{0}(\mathrm{pt})
$$

$-E_{C_{2}}^{\star}\left(\mathbf{C P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{\rrbracket} \rrbracket$ $E_{C_{2}}^{\star}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{x}, \bar{y} \rrbracket$ (Araki)
$-\mathbf{C P}^{\infty} \times \mathbf{C P}^{\infty} \longrightarrow \mathbf{C} \mathbf{P}^{\infty} \Longrightarrow$ formal group law $/ \pi_{\star}^{C_{2}} E$

Real orientation

- Associated to $M U_{\mathbb{R}}$ is a theory of Real orientations
- $E: C_{2}$-equivariant homotopy commutative ring spectrum
- Real orientation: $\bar{x} \in \widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}_{C_{2}}^{\rho}\left(S^{\rho}\right) \cong E_{C_{2}}^{0}(\mathrm{pt})
$$

$-E_{C_{2}}^{\star}\left(\mathbf{C P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{\chi} \rrbracket$ $E_{C_{2}}^{\star}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{x}, \bar{y} \rrbracket$ (Araki)

- $\mathbf{C P}^{\infty} \times \mathbf{C P}^{\infty} \longrightarrow \mathbf{C} \mathbf{P}^{\infty} \Longrightarrow$ formal group law $/ \pi_{\star}^{C_{2}} E$
- Real orientation $\Longleftrightarrow\left(M U_{\mathbb{R}} \longrightarrow E\right)(\mathrm{Hu}-\mathrm{Kriz})$

Real orientation

- Associated to $M U_{\mathbb{R}}$ is a theory of Real orientations
- $E: C_{2}$-equivariant homotopy commutative ring spectrum
- Real orientation: $\bar{x} \in \widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{\infty}\right)$, restricts to the unit in

$$
\widetilde{E}_{C_{2}}^{\rho}\left(\mathbf{C} \mathbf{P}^{1}\right)=\widetilde{E}_{C_{2}}^{\rho}\left(S^{\rho}\right) \cong E_{C_{2}}^{0}(\mathrm{pt})
$$

$-E_{C_{2}}^{\star}\left(\mathbf{C P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{\chi} \rrbracket$ $E_{C_{2}}^{\star}\left(\mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty}\right) \cong E_{C_{2}}^{\star} \llbracket \bar{x}, \bar{y} \rrbracket$ (Araki)

- $\mathbf{C P}^{\infty} \times \mathbf{C P}^{\infty} \longrightarrow \mathbf{C} \mathbf{P}^{\infty} \Longrightarrow$ formal group law $/ \pi_{\star}^{C_{2}} E$
- Real orientation $\Longleftrightarrow\left(M U_{\mathbb{R}} \longrightarrow E\right)(\mathrm{Hu}-\mathrm{Kriz})$
- Example: $M U_{\mathbb{R}} \longrightarrow K_{\mathbb{R}}$

Lubin-Tate spectra

- KU belongs to a more general class of spectra

Lubin-Tate spectra

- KU belongs to a more general class of spectra
- k : perfect field, characteristic p

Lubin-Tate spectra

- KU belongs to a more general class of spectra
- k : perfect field, characteristic p
- Γ_{n} : formal group law of height n over k

Lubin-Tate spectra

- KU belongs to a more general class of spectra
- k : perfect field, characteristic p
- Γ_{n} : formal group law of height n over k
- Lubin-Tate: Γ_{n} admits an universal deformation
- Characterized by a map $M U_{*} \longrightarrow E_{n *}$
- $E_{n *} \cong W(k) \llbracket u_{1}, u_{2}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm}\right]$is the universal deformation ring

Lubin-Tate spectra

- KU belongs to a more general class of spectra
- k : perfect field, characteristic p
- Γ_{n} : formal group law of height n over k
- Lubin-Tate: Γ_{n} admits an universal deformation
- Characterized by a map $M U_{*} \longrightarrow E_{n *}$
- $E_{n *} \cong W(k) \llbracket u_{1}, u_{2}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm}\right]$is the universal deformation ring
- Landweber exact functor theorem
$\Longrightarrow E_{n}$: Complex oriented cohomology theory

Lubin-Tate spectra

- KU belongs to a more general class of spectra
- k : perfect field, characteristic p
- Γ_{n} : formal group law of height n over k
- Lubin-Tate: Γ_{n} admits an universal deformation
- Characterized by a map $M U_{*} \longrightarrow E_{n *}$
- $E_{n *} \cong W(k) \llbracket u_{1}, u_{2}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm}\right]$is the universal deformation ring
- Landweber exact functor theorem
$\Longrightarrow E_{n}$: Complex oriented cohomology theory
- $k=\mathbb{F}_{2}, \Gamma_{1}(x, y)=x+y-\beta x y \Longrightarrow E_{1}=K U_{2}^{\wedge}$

Lubin-Tate spectra

- KU belongs to a more general class of spectra
- k : perfect field, characteristic p
- Γ_{n} : formal group law of height n over k
- Lubin-Tate: Γ_{n} admits an universal deformation
- Characterized by a map $M U_{*} \longrightarrow E_{n *}$
- $E_{n *} \cong W(k) \llbracket u_{1}, u_{2}, \ldots, u_{n-1} \rrbracket\left[u^{ \pm}\right]$is the universal deformation ring
- Landweber exact functor theorem
$\Longrightarrow E_{n}$: Complex oriented cohomology theory
- $k=\mathbb{F}_{2}, \Gamma_{1}(x, y)=x+y-\beta x y \Longrightarrow E_{1}=K U_{2}^{\wedge}$
- Formal group laws associated with elliptic curves
\Longrightarrow Elliptic cohomology theories (topological modular forms, string orientations, Witten genus)

Application: stable homotopy groups of spheres

Theorem (Frudenthal 1937)
$\pi_{n+k}\left(S^{n}\right)$ stabilizes for $n>k+1 \Longrightarrow \pi_{k}^{s t}\left(S^{0}\right)$

Application: stable homotopy groups of spheres

Theorem (Frudenthal 1937)
$\pi_{n+k}\left(S^{n}\right)$ stabilizes for $n>k+1 \Longrightarrow \pi_{k}^{s t}\left(S^{0}\right)$
Definition
$\pi_{k}^{s t}\left(S^{0}\right):=\underset{\longrightarrow}{\lim } \pi_{n+k}\left(S^{n}\right)$

Application: stable homotopy groups of spheres

Theorem (Pontryagin 1930s)

$$
\Omega_{k}^{f r} \cong \pi_{k}^{s t}\left(S^{0}\right)
$$

$\Omega_{k}^{f r}$: cobordism classes of stably framed k-manifolds

Application: stable homotopy groups of spheres

Theorem (Pontryagin 1930s)

$$
\Omega_{k}^{f r} \cong \pi_{k}^{s t}\left(S^{0}\right)
$$

$\Omega_{k}^{f r}$: cobordism classes of stably framed k-manifolds

- This establishes a deep relationship between homotopy theory and geometry

Application: stable homotopy groups of spheres

Theorem (Pontryagin 1930s)

$$
\Omega_{k}^{f r} \cong \pi_{k}^{s t}\left(S^{0}\right)
$$

$\Omega_{k}^{f r}$: cobordism classes of stably framed k-manifolds

- This establishes a deep relationship between homotopy theory and geometry
- Describing $\pi_{*}^{\text {st }} S^{0}$ has been fundamental to algebraic topology for the past 80 years

Application: stable homotopy groups of spheres

Theorem (Pontryagin 1930s)

$$
\Omega_{k}^{f r} \cong \pi_{k}^{s t}\left(S^{0}\right)
$$

$\Omega_{k}^{f r}$: cobordism classes of stably framed k-manifolds

- This establishes a deep relationship between homotopy theory and geometry
- Describing $\pi_{*}^{s t} S^{0}$ has been fundamental to algebraic topology for the past 80 years
- Lubin-Tate spectra can isolate certain "sectors" of the computation + give connections to others areas (modular forms, geometric topology)

Lubin-Tate spectra

Lubin-Tate spectra

Theorem (Goerss-Hopkins-Miller)
The action of $\mathbb{G}\left(k, \Gamma_{n}\right)$ on $E_{n *}$ can be lifted uniquely to an action of $\mathbb{G}\left(k, \Gamma_{n}\right)$ on E_{n} by commutative $\left(\mathbb{E}_{\infty}\right)$ ring maps.

Lubin-Tate spectra

Theorem (Goerss-Hopkins-Miller)
The action of $\mathbb{G}\left(k, \Gamma_{n}\right)$ on $E_{n *}$ can be lifted uniquely to an action of $\mathbb{G}\left(k, \Gamma_{n}\right)$ on E_{n} by commutative $\left(\mathbb{E}_{\infty}\right)$ ring maps.

- Can view E_{n} as a $\mathbb{G}\left(k, \Gamma_{n}\right)$-equivariant commutative ring spectrum

C_{2}-action

- From now on: $p=2$

C_{2}-action

- From now on: $p=2$
- $C_{2} \subset \mathbb{G}\left(k, \Gamma_{n}\right)$: acts on $E_{n *}$ by $[-1]_{\Gamma_{n}}$.

C_{2}-action

- From now on: $p=2$
- $C_{2} \subset \mathbb{G}\left(k, \Gamma_{n}\right)$: acts on $E_{n *}$ by $[-1]_{\Gamma_{n}}$.

Question

Question

Geometry Algebra

Question

Geometry Algebra

Can we lift it?

Real Orientation

Theorem (Hahn-S.)

The Lubin-Tate spectrum E_{n} is Real oriented: it receives a C_{2}-equivariant map

$$
M U_{\mathbb{R}} \longrightarrow E_{n}
$$

from the Real bordism spectrum $M U_{\mathbb{R}}$.

Real Orientation

Theorem (Hahn-S.)

The Lubin-Tate spectrum E_{n} is Real oriented: it receives a C_{2}-equivariant map

$$
M U_{\mathbb{R}} \longrightarrow E_{n}
$$

from the Real bordism spectrum $M U_{\mathbb{R}}$.
This opens the door to a series of computations in stable homotopy theory

Chromatic homotopy theory

Theorem (Hopkins-Ravenel, Chromatic Convergence)

$$
S_{(p)}^{0} \xrightarrow{\simeq} \cdots \longrightarrow L_{E_{n}} S^{0} \longrightarrow L_{E_{n-1}} S^{0} \longrightarrow \cdots \longrightarrow L_{E_{0}} S^{0} .
$$

Chromatic homotopy theory

Theorem (Hopkins-Ravenel, Chromatic Convergence)

$$
S_{(p)}^{0} \xrightarrow{\simeq} \cdots \longrightarrow L_{E_{n}} S^{0} \longrightarrow L_{E_{n-1}} S^{0} \longrightarrow \cdots \longrightarrow L_{E_{0}} S^{0} .
$$

Chromatic fracture square:

$$
\begin{gathered}
L_{E_{n}} S^{0} \longrightarrow L_{K(n)} S^{0} \\
\downarrow \\
L_{E_{n-1}} S^{0} \longrightarrow L_{E_{n-1}} L_{K(n)} S^{0}
\end{gathered}
$$

Chromatic homotopy theory

Theorem (Hopkins-Ravenel, Chromatic Convergence)

$$
S_{(p)}^{0} \xrightarrow{\simeq} \cdots \longrightarrow L_{E_{n}} S^{0} \longrightarrow L_{E_{n-1}} S^{0} \longrightarrow \cdots \longrightarrow L_{E_{0}} S^{0} .
$$

Chromatic fracture square:

$$
\begin{gathered}
L_{E_{n}} S^{0} \longrightarrow \downarrow_{L_{E_{n-1}}}^{L_{K(n)}} S^{0} \\
L_{E_{n-1}} L_{K(n)} S^{0}
\end{gathered}
$$

Slogan: in order to study $S_{(p)}^{0}$, we just need to study each of the $K(n)$-local spheres and how they "glue" together

Chromatic homotopy theory

Theorem (Hopkins-Devinatz)

$$
L_{K(n)} S^{0} \xrightarrow{\simeq} E_{n}^{h \mathbb{G}_{n}}
$$

- $E_{n}^{h G}\left(G\right.$ a finite subgroup of $\left.\mathbb{G}_{n}\right)$: central objects to study in chromatic homotopy theory

Chromatic homotopy theory

Theorem (Hopkins-Devinatz)

$$
L_{K(n)} S^{0} \xrightarrow{\simeq} E_{n}^{h \mathbb{G}_{n}}
$$

- $E_{n}^{h G}\left(G\right.$ a finite subgroup of $\left.\mathbb{G}_{n}\right)$: central objects to study in chromatic homotopy theory
- In general, $E_{n}^{h G}$ capture large scale periodicity phenomena in stable homotopy theory (in particular $\pi_{*} S^{0}$)

Chromatic homotopy theory

Theorem (Hopkins-Devinatz)

$$
L_{K(n)} S^{0} \xrightarrow{\simeq} E_{n}^{h \mathbb{G}_{n}}
$$

- $E_{n}^{h G}\left(G\right.$ a finite subgroup of $\left.\mathbb{G}_{n}\right)$: central objects to study in chromatic homotopy theory
- In general, $E_{n}^{h G}$ capture large scale periodicity phenomena in stable homotopy theory (in particular $\pi_{*} S^{0}$)
- Modern detection theorems: study elements in $\pi_{*} S^{0}$ by analyzing $\pi_{*} S^{0} \longrightarrow \pi_{*} E_{n}^{h G}$
(Hill-Hopkins-Ravenel's solution to the Kervaire invariant)

Computing $E_{n}^{h G}$: height 1

- Homotopy fixed point spectral sequence:

$$
H^{*}\left(G ; \pi_{*} E_{n}\right) \Longrightarrow \pi_{*} E_{n}^{h \dot{G}}
$$

Computing $E_{n}^{h G}$: height 1

- Homotopy fixed point spectral sequence: $H^{*}\left(G ; \pi_{*} E_{n}\right) \Longrightarrow \pi_{*} E_{n}^{h G}$
- Height 1: $E_{1}^{h C_{2}}=K O_{2}^{\wedge}$
- Image of $J: \pi_{*} O \rightarrow \pi_{*} S^{0}$
- Captures everything above a line of slope $\frac{1}{5}$ in the Adams-Novikov spectral sequence of S^{0} (Mahowald)

Height 2: tmf

- Height 2: tmf, tmf with level structures

Height 2: tmf

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms

Height 2: tmf

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)

Height 2: tmf

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)
- The Hurewciz map $\pi_{*} S^{0} \longrightarrow \pi_{*}$ tmf detects an astounding number of elements (nearly all of $\pi_{*} S^{0}$ for $*<60$)

Height 2: tmf

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)
- The Hurewciz map $\pi_{*} S^{0} \longrightarrow \pi_{*}$ tmf detects an astounding number of elements (nearly all of $\pi_{*} S^{0}$ for $*<60$)
- They resolve the $K(2)$-local sphere

Height 2: tmf

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)
- The Hurewciz map $\pi_{*} S^{0} \longrightarrow \pi_{*}$ tmf detects an astounding number of elements (nearly all of $\pi_{*} S^{0}$ for $*<60$)
- They resolve the $K(2)$-local sphere
- These computations rely heavily on the geometry of elliptic curves
- Choose a specific super-singular elliptic curve
- Have a good understanding of how G is acting on $\pi_{*} E_{2}$

Height > 2

- $n>2: E_{n}^{h G}$ sees more, but they are extremely difficult to compute

Height > 2

- $n>2: E_{n}^{h G}$ sees more, but they are extremely difficult to compute
- Group actions on E_{n} : constructed purely from obstruction theory

Height > 2

- $n>2: E_{n}^{h G}$ sees more, but they are extremely difficult to compute
- Group actions on E_{n} : constructed purely from obstruction theory
- Elliptic curves are not available at higher heights

Height > 2

- $n>2: E_{n}^{h G}$ sees more, but they are extremely difficult to compute
- Group actions on E_{n} : constructed purely from obstruction theory
- Elliptic curves are not available at higher heights
- There have been attempts to understanding this using TAF (Behrens-Lawson)

Height > 2

- $n>2: E_{n}^{h G}$ sees more, but they are extremely difficult to compute
- Group actions on E_{n} : constructed purely from obstruction theory
- Elliptic curves are not available at higher heights
- There have been attempts to understanding this using TAF (Behrens-Lawson)
- However, the group action on $M U_{\mathbb{R}}$ does come from geometry

Height > 2

- $n>2: E_{n}^{h G}$ sees more, but they are extremely difficult to compute
- Group actions on E_{n} : constructed purely from obstruction theory
- Elliptic curves are not available at higher heights
- There have been attempts to understanding this using TAF (Behrens-Lawson)
- However, the group action on $M U_{\mathbb{R}}$ does come from geometry
- The Real orientation establishes a connection between these two actions!

Computation of $E_{n}^{h C_{2}}$ at all heights

$$
M U_{\mathbb{R}} \longrightarrow E_{n}
$$

Computation of $E_{n}^{h C_{2}}$ at all heights

$$
\operatorname{HFPSS}\left(M U_{\mathbb{R}}\right) \longrightarrow \operatorname{HFPSS}\left(E_{n}\right)
$$

Computation of $E_{n}^{h C_{2}}$ at all heights

$\operatorname{HFPSS}\left(M \cup_{\mathbb{R}}\right) \longrightarrow \operatorname{HFPSS}\left(E_{n}\right)$

- $d_{3}\left(u_{2 \sigma}\right)=\bar{x}_{1} a_{\sigma}^{3}$

Computation of $E_{n}^{h C_{2}}$ at all heights

$\operatorname{HFPSS}\left(M U_{\mathbb{R}}\right) \longrightarrow \operatorname{HFPSS}\left(E_{n}\right)$

- $d_{3}\left(u_{2 \sigma}\right)=\bar{x}_{1} a_{\sigma}^{3}$
- $d_{7}\left(u_{4 \sigma}\right)=\bar{x}_{3} a_{\sigma}^{7}$

Computation of $E_{n}^{h C_{2}}$ at all heights

$\operatorname{HFPSS}\left(M U_{\mathbb{R}}\right) \longrightarrow \operatorname{HFPSS}\left(E_{n}\right)$

- $d_{3}\left(u_{2 \sigma}\right)=\bar{x}_{1} a_{\sigma}^{3}$
- $d_{7}\left(u_{4 \sigma}\right)=\bar{x}_{3} a_{\sigma}^{7}$
- $d_{15}\left(u_{8 \sigma}\right)=\bar{x}_{7} a_{\sigma}^{15}$

Computation of $E_{n}^{h C_{2}}$ at all heights

$\operatorname{HFPSS}\left(M U_{\mathbb{R}}\right) \longrightarrow \operatorname{HFPSS}\left(E_{n}\right)$

- $d_{3}\left(u_{2 \sigma}\right)=\bar{x}_{1} a_{\sigma}^{3}$
- $d_{7}\left(u_{4 \sigma}\right)=\bar{x}_{3} a_{\sigma}^{7}$
- $d_{15}\left(u_{8 \sigma}\right)=\bar{x}_{7} a_{\sigma}^{15}$
- $d_{2^{k+1}-1}\left(u_{2 \sigma}^{2^{k-1}}\right)=\bar{x}_{2^{k}-1} a_{\sigma}^{2^{k+1}-1}$

Computation of $E_{n}^{h C_{2}}$ at all heights

$\operatorname{HFPSS}\left(M U_{\mathbb{R}}\right) \longrightarrow \operatorname{HFPSS}\left(E_{n}\right)$

- $d_{3}\left(u_{2 \sigma}\right)=\bar{x}_{1} a_{\sigma}^{3}$
- $d_{7}\left(u_{4 \sigma}\right)=\bar{x}_{3} a_{\sigma}^{7}$
- $d_{15}\left(u_{8 \sigma}\right)=\bar{x}_{7} a_{\sigma}^{15}$
- $d_{2^{k+1}-1}\left(u_{2 \sigma}^{2^{k-1}}\right)=\bar{x}_{2^{k}-1} a_{\sigma}^{2^{k+1}-1}$
- These differentials induce all the differentials in $\operatorname{HFPSS}\left(E_{n}\right)$

Computation of $E_{n}^{h C_{2}}$ at all heights

Theorem (Hahn-S.)

The E_{2}-page of the $R O\left(C_{2}\right)$-graded homotopy fixed point spectral sequence of E_{n} is

$$
E_{2}^{s, t}\left(E_{n}^{h C_{2}}\right)=W\left(\mathbb{F}_{2^{n}}\right) \llbracket \bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{n-1} \rrbracket\left[\bar{u}^{ \pm}\right] \otimes \mathbb{Z}\left[u_{2 \sigma}^{ \pm}, a_{\sigma}\right] /\left(2 a_{\sigma}\right) .
$$

The classes $\bar{u}_{1}, \ldots, \bar{u}_{n-1}, \bar{u}^{ \pm}$, and a_{σ} are permanent cycles. All the differentials in the spectral sequence are determined by the differentials

$$
\begin{aligned}
& d_{2^{k+1}-1}\left(u_{2 \sigma}^{2^{k-1}}\right)=\bar{u}_{k} \bar{u}^{2^{k}-1} a_{\sigma}^{2^{k+1}-1}, \quad 1 \leq k \leq n-1, \\
& d_{2^{n+1}-1}\left(u_{2 \sigma}^{2^{n-1}}\right)=\bar{u}^{2^{n}-1} a_{\sigma}^{2^{n+1}-1}, \quad k=n,
\end{aligned}
$$

and multiplicative structures.

$E_{3}^{h C_{2}}$

$E_{3}^{h C_{2}}$

Theorem (Hahn-S.)

- $\pi_{*} E_{n}^{h C_{2}}$ is 2^{n+2}-periodic for all n.

Theorem (Hahn-S.)

- $\pi_{*} E_{n}^{h C_{2}}$ is 2^{n+2}-periodic for all n.
- E_{n} is C_{2}-equivariantly even:
- $\underline{\pi}_{k \rho-1} E_{n}=0$ for all $k \in \mathbb{Z}$;
- $\underline{\pi}_{k \rho} E_{n}$ is a constant Mackey functor for all $k \in \mathbb{Z}$

Theorem (Hahn-S.)

- $\pi_{*} E_{n}^{h C_{2}}$ is 2^{n+2}-periodic for all n.
- E_{n} is C_{2}-equivariantly even:
- $\underline{\pi}_{k \rho-1} E_{n}=0$ for all $k \in \mathbb{Z}$;
- $\underline{\pi}_{k \rho} E_{n}$ is a constant Mackey functor for all $k \in \mathbb{Z}$
- E_{n} is Real Landweber exact:

$$
M U_{\mathbb{R} \star}(X) \otimes_{M U_{*}} E_{n *} \longrightarrow E_{n \star}(X)
$$

is an isomorphism for every C_{2}-spectrum X.

Hurewicz image

Theorem (Li-S.-Wang-Xu)

The C_{2}-fixed points of $M U_{\mathbb{R}}$ detects the Hopf-, Kervaire-, and $\bar{\kappa}$-family.

Theorem (Li-S.-Wang-Xu, Hahn-S.)
The C_{2}-fixed points of E_{n} detects the first n elements of the Hopfand Kervaire-family, and the first $(n-1)$ elements of the $\bar{\kappa}$-family.

The Norm

- What about $E_{n}^{h G}$ for higher groups?

The Norm

- What about $E_{n}^{h G}$ for higher groups?
- $H \subset G$ a subgoup

The Norm

- What about $E_{n}^{h G}$ for higher groups?
- $H \subset G$ a subgoup
- Norm functor $N_{H}^{G}: \mathcal{S}^{H} \longrightarrow \mathcal{S}^{G}$ (Hill-Hopkins-Ravenel)

The Norm

- What about $E_{n}^{h G}$ for higher groups?
- $H \subset G$ a subgoup
- Norm functor $N_{H}^{G}: \mathcal{S}^{H} \longrightarrow \mathcal{S}^{G}$ (Hill-Hopkins-Ravenel)
- G : a group that contains C_{2}

The Norm

- What about $E_{n}^{h G}$ for higher groups?
- $H \subset G$ a subgoup
- Norm functor $N_{H}^{G}: \mathcal{S}^{H} \longrightarrow \mathcal{S}^{G}$ (Hill-Hopkins-Ravenel)
- G : a group that contains C_{2}
- $M U^{((G))}:=N_{C_{2}}^{G} M U_{\mathbb{R}}$

G-orientation

Theorem (Hahn-S.)
Let $G \subset \mathbb{G}\left(k, \Gamma_{n}\right)$ be a finite subgroup containing the central subgroup C_{2}. There is a G-equivariant map

$$
M U^{((G))} \longrightarrow E_{n} .
$$

G-orientation

Theorem (Hahn-S.)

Let $G \subset \mathbb{G}\left(k, \Gamma_{n}\right)$ be a finite subgroup containing the central subgroup C_{2}. There is a G-equivariant map

$$
M U^{((G))} \longrightarrow E_{n} .
$$

Motivation: $M U^{((G))}$ is crucial in Hill-Hopkins-Ravenel's solution of the Kervaire invariant one problem

The Kervaire invariant

- M : framed $(4 k+2)$-dimensional manifold

The Kervaire invariant

- M : framed $(4 k+2)$-dimensional manifold
- Kervaire used the framing to construct a quadratic form

$$
\begin{gathered}
\phi: H^{2 k+1}(M ; \mathbb{Z} / 2) \longrightarrow \mathbb{Z} / 2 \\
\phi(x+y)=\phi(x)+\phi(y)+\langle x, y\rangle
\end{gathered}
$$

The Kervaire invariant

- : framed $(4 k+2)$-dimensional manifold
- Kervaire used the framing to construct a quadratic form

$$
\begin{gathered}
\phi: H^{2 k+1}(M ; \mathbb{Z} / 2) \longrightarrow \mathbb{Z} / 2 \\
\phi(x+y)=\phi(x)+\phi(y)+\langle x, y\rangle
\end{gathered}
$$

- The Kervaire invariant of M is defined as $\Phi(M):=\operatorname{Arf}(\phi)$

The Kervaire invariant

- M : framed $(4 k+2)$-dimensional manifold
- Kervaire used the framing to construct a quadratic form

$$
\begin{gathered}
\phi: H^{2 k+1}(M ; \mathbb{Z} / 2) \longrightarrow \mathbb{Z} / 2 \\
\phi(x+y)=\phi(x)+\phi(y)+\langle x, y\rangle
\end{gathered}
$$

- The Kervaire invariant of M is defined as $\Phi(M):=\operatorname{Arf}(\phi)$
- A fundamental invariant in differential and algebraic topology

Smooth structures on S^{n}

Definition
A homotopy n-sphere: closed manifold $\Sigma^{n} \simeq S^{n}$

Smooth structures on S^{n}

Definition
A homotopy n-sphere: closed manifold $\Sigma^{n} \simeq S^{n}$
Question
Is Σ^{n} homeomorphic to S^{n} ?

Smooth structures on S^{n}

Definition

A homotopy n-sphere: closed manifold $\Sigma^{n} \simeq S^{n}$
Question
Is Σ^{n} homeomorphic to S^{n} ?

- Yes. (Generalized) Poincaré conjecture

Smooth structures on S^{n}

Definition

A homotopy n-sphere: closed manifold $\Sigma^{n} \simeq S^{n}$

Question

Is Σ^{n} homeomorphic to S^{n} ?

- Yes. (Generalized) Poincaré conjecture
- Smale (1962): $n \geq 5$
- Freedman (1982): $n=4$
- Perelman (2002): $n=3$

Smooth structures on S^{n}

Question

Are they all diffeomorphic to S^{n}, equipped with the usual smooth structure?

Smooth structures on S^{n}

Question

Are they all diffeomorphic to S^{n}, equipped with the usual smooth structure?

- $\mathrm{n}=3$: True (Moise's Theorem 1952)
- $\mathrm{n}=4$: wide open
- $\mathrm{n}=7$: Milnor constructed an exotic 7 -sphere (1956)

Smooth structures on S^{n}

Question

Are they all diffeomorphic to S^{n}, equipped with the usual smooth structure?

- $\mathrm{n}=3$: True (Moise's Theorem 1952)
- $\mathrm{n}=4$: wide open
- $\mathrm{n}=7$: Milnor constructed an exotic 7-sphere (1956)
- Kervaire and Milnor (1963) computed the groups of exotic n-spheres $(n>4)$ in terms of $\pi_{n}^{s t} S^{0}$, modulo the Kervaire invariant

Kervaire-Milnor

- $\Theta_{n}=$ group of homotopy n-spheres up to diffeomorphism (connected sum)

Kervaire-Milnor

- $\Theta_{n}=$ group of homotopy n-spheres up to diffeomorphism (connected sum)
- $\Theta_{n}^{b p}=$ homotopy n-spheres that bounds parallelizable manifolds

Kervaire-Milnor

- $\Theta_{n}=$ group of homotopy n-spheres up to diffeomorphism (connected sum)
- $\Theta_{n}^{b p}=$ homotopy n-spheres that bounds parallelizable manifolds

Theorem (Kervaire-Milnor)

For $n \geq 5$, the subgroup $\Theta_{n}^{b p}$ is cyclic,

$$
\left|\Theta_{n}^{b p}\right|= \begin{cases}1, & n \text { even } \\ 1 \text { or } 2, & n=4 k+1 \\ b_{k}, & n=4 k-1\end{cases}
$$

$b_{k}=2^{2 k-2}\left(2^{2 k-1}-1\right) \cdot$ numerator of $\frac{4 B_{2 k}}{k}$
$B_{2 k}$: Bernoulli number

Theorem (Kervaire-Milnor)

- For $n \not \equiv 2(\bmod 4)$, there is an exact sequence

$$
0 \longrightarrow \Theta_{n}^{b p} \longrightarrow \Theta_{n} \longrightarrow \pi_{n} / J \longrightarrow 0
$$

π_{n} : n-th stable homotopy groups of spheres
π_{n} / J : cokernel of the J-homomorphism

Theorem (Kervaire-Milnor)

- For $n \not \equiv 2(\bmod 4)$, there is an exact sequence

$$
0 \longrightarrow \Theta_{n}^{b p} \longrightarrow \Theta_{n} \longrightarrow \pi_{n} / J \longrightarrow 0
$$

π_{n} : n-th stable homotopy groups of spheres
π_{n} / J : cokernel of the J-homomorphism

- For $n \equiv 2(\bmod 4)$, there is an exact sequence

$$
0 \longrightarrow \Theta_{n}^{b p} \longrightarrow \Theta_{n} \longrightarrow \pi_{n} / J \xrightarrow{\Phi_{n}} \mathbb{Z} / 2 \longrightarrow \Theta_{n-1}^{b p} \longrightarrow 0
$$

Φ_{n} : the Kervaire invariant

Theorem (Kervaire-Milnor)

- For $n \not \equiv 2(\bmod 4)$, there is an exact sequence

$$
0 \longrightarrow \Theta_{n}^{b p} \longrightarrow \Theta_{n} \longrightarrow \pi_{n} / J \longrightarrow 0
$$

π_{n} : n-th stable homotopy groups of spheres
π_{n} / J : cokernel of the J-homomorphism

- For $n \equiv 2(\bmod 4)$, there is an exact sequence

$$
0 \longrightarrow \Theta_{n}^{b p} \longrightarrow \Theta_{n} \longrightarrow \pi_{n} / J \xrightarrow{\Phi_{n}} \mathbb{Z} / 2 \longrightarrow \Theta_{n-1}^{b p} \longrightarrow 0
$$

Φ_{n} : the Kervaire invariant
The Kervaire invariant problem is the last missing piece of this puzzle

The Kervaire invariant one problem

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

The Kervaire invariant one problem

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

- At the time (1963): 2, 6, 10, 14, 18

The Kervaire invariant one problem

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

- At the time (1963): 2, 6, 10, 14, 18
- Unclear that it is related to stable homotopy theory

The Kervaire invariant one problem

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

- At the time (1963): 2, 6, 10, 14, 18
- Unclear that it is related to stable homotopy theory
- Next piece of the puzzle was unlocked by Browder

Theorem (Browder 1969)
If $\Phi(M)=1$, then $\operatorname{dim}(M)=2^{j+1}-2$.

Theorem (Browder 1969)

If $\Phi(M)=1$, then $\operatorname{dim}(M)=2^{j+1}-2$.
There exists a framed manifold of Kervaire invariant one $\Longleftrightarrow h_{j}^{2} \in E x t_{\mathcal{A}}^{2,2^{j+1}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ survives the Adams spectral sequence to an element $\theta_{j} \in \pi_{2^{j+1}-2} S^{0}$

Theorem (Browder 1969)

If $\Phi(M)=1$, then $\operatorname{dim}(M)=2^{j+1}-2$.
There exists a framed manifold of Kervaire invariant one $\Longleftrightarrow h_{j}^{2} \in E^{2} t_{\mathcal{A}}^{2,2^{j+1}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ survives the Adams spectral sequence to an element $\theta_{j} \in \pi_{2^{j+1}-2} S^{0}$
$-h_{j} \in \mathrm{Ext}_{\mathcal{A}}^{1,{ }^{j}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$: Hopf invariant one elements, only the first three survives $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$

Theorem (Browder 1969)

If $\Phi(M)=1$, then $\operatorname{dim}(M)=2^{j+1}-2$.
There exists a framed manifold of Kervaire invariant one $\Longleftrightarrow h_{j}^{2} \in E^{2} t_{\mathcal{A}}^{2,2^{j+1}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ survives the Adams spectral sequence to an element $\theta_{j} \in \pi_{2^{j+1}-2} S^{0}$

- $h_{j} \in \mathrm{Ext}_{\mathcal{A}}^{1,{ }^{j}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$: Hopf invariant one elements, only the first three survives $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
- Mahowald-Tangora: $\theta_{4} \in \pi_{30} S^{0}$ exists
- Barrat-Jones-Mahowald: $\theta_{5} \in \pi_{62} S^{0}$ exists

Theorem (Browder 1969)

If $\Phi(M)=1$, then $\operatorname{dim}(M)=2^{j+1}-2$.
There exists a framed manifold of Kervaire invariant one $\Longleftrightarrow h_{j}^{2} \in E x t_{\mathcal{A}}^{2,2^{j+1}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ survives the Adams spectral sequence to an element $\theta_{j} \in \pi_{2 j+1}{ }^{j+2} S^{0}$

- $h_{j} \in \mathrm{Ext}_{\mathcal{A}}^{1,{ }^{j}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$: Hopf invariant one elements, only the first three survives $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
- Mahowald-Tangora: $\theta_{4} \in \pi_{30} S^{0}$ exists
- Barrat-Jones-Mahowald: $\theta_{5} \in \pi_{62} S^{0}$ exists
- However, the Adams spectral sequence gets very hard at higher dimensions

Theorem (Browder 1969)

If $\Phi(M)=1$, then $\operatorname{dim}(M)=2^{j+1}-2$.
There exists a framed manifold of Kervaire invariant one $\Longleftrightarrow h_{j}^{2} \in E x t_{\mathcal{A}}^{2,2^{j+1}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ survives the Adams spectral sequence to an element $\theta_{j} \in \pi_{2^{j+1}-2} S^{0}$

- $h_{j} \in \mathrm{Ext}_{\mathcal{A}}^{1, j^{j}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$: Hopf invariant one elements, only the first three survives $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$
- Mahowald-Tangora: $\theta_{4} \in \pi_{30} S^{0}$ exists
- Barrat-Jones-Mahowald: $\theta_{5} \in \pi_{62} S^{0}$ exists
- However, the Adams spectral sequence gets very hard at higher dimensions
- What about the fate of the higher θ_{j} 's?

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)
For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)
For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

- The case for $\theta_{6} \in \pi_{126} S^{0}$ is still open

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)
For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

- The case for $\theta_{6} \in \pi_{126} S^{0}$ is still open
- Start with $M U^{\left(\left(C_{8}\right)\right)}$

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)
For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

- The case for $\theta_{6} \in \pi_{126} S^{0}$ is still open
- Start with $M U U^{\left(\left(C_{8}\right)\right)}$
- Invert a certain class $D \in \pi_{\star}^{C_{8}} M U^{\left(\left(C_{8}\right)\right)}: D^{-1} M U^{\left(\left(C_{8}\right)\right)}$

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)
For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

- The case for $\theta_{6} \in \pi_{126} S^{0}$ is still open
- Start with $M U^{\left(\left(C_{8}\right)\right)}$
- Invert a certain class $D \in \pi_{\star}^{C_{8}} M U^{\left(\left(C_{8}\right)\right)}: D^{-1} M U^{\left(\left(C_{8}\right)\right)}$
- Ω : its C_{8}-fixed point spectrum

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)

For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

- The case for $\theta_{6} \in \pi_{126} S^{0}$ is still open
- Start with $M U^{\left(\left(C_{8}\right)\right)}$
- Invert a certain class $D \in \pi_{\star}^{C_{8}} M U^{\left(\left(C_{8}\right)\right)}: D^{-1} M U^{\left(\left(C_{8}\right)\right)}$
- Ω : its C_{8}-fixed point spectrum
- Detection Theorem:

If θ_{j} exists, then its image in $\pi_{2^{j+1}-2} \Omega$ is nonzero

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)

For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

- The case for $\theta_{6} \in \pi_{126} S^{0}$ is still open
- Start with $M U^{\left(\left(C_{8}\right)\right)}$
- Invert a certain class $D \in \pi_{\star}^{C_{8}} M U\left(\left(C_{8}\right)\right): D^{-1} M U^{\left(\left(C_{8}\right)\right)}$
- Ω : its C_{8}-fixed point spectrum
- Detection Theorem:

If θ_{j} exists, then its image in $\pi_{2^{j+1}-2} \Omega$ is nonzero

- Periodicity Theorem:
$\pi_{*} \Omega$ is 256 -periodic

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)

For $j \geq 7$, the Kervaire invariant elements θ_{j} do not exist.

- The case for $\theta_{6} \in \pi_{126} S^{0}$ is still open
- Start with $M U^{\left(\left(C_{8}\right)\right)}$
- Invert a certain class $D \in \pi_{\star}^{C_{8}} M U\left(\left(C_{8}\right)\right): D^{-1} M U^{\left(\left(C_{8}\right)\right)}$
- Ω : its C_{8}-fixed point spectrum
- Detection Theorem:

If θ_{j} exists, then its image in $\pi_{2^{j+1}-2} \Omega$ is nonzero

- Periodicity Theorem:
$\pi_{*} \Omega$ is 256 -periodic
- Gap Theorem: $\pi_{i} \Omega=0$ for $i=-1,-2,-3$

Baby Ω

$M U^{((G))}$ vs. $E_{n}^{h G}$

- Originally, Hill-Hopkins-Ravenel didn't plan to use $M U^{\left(\left(C_{8}\right)\right)}$

$M U^{((G))}$ vs. $E_{n}^{h G}$

- Originally, Hill-Hopkins-Ravenel didn't plan to use $M U^{\left(\left(C_{8}\right)\right)}$
- $E_{4}^{h C_{8}}$ also detects θ_{j}

$M U^{((G))}$ vs. $E_{n}^{h G}$

- Originally, Hill-Hopkins-Ravenel didn't plan to use $M U^{\left(\left(C_{8}\right)\right)}$
- $E_{4}^{h C_{8}}$ also detects θ_{j}
- However, its HFPSS is HARD!

$M U^{((G))}$ vs. $E_{n}^{h G}$

- Originally, Hill-Hopkins-Ravenel didn't plan to use $M U^{\left(\left(C_{8}\right)\right)}$
- $E_{4}^{h C_{8}}$ also detects θ_{j}
- However, its HFPSS is HARD!
- In the end, they settled with $M U^{\left(\left(C_{8}\right)\right)}$
$M U^{((G))}$:
- Genuine equivariant homotopy theory (rigid).
- Accessible to computations: SliceSS($\left.M U^{((G))}\right)$.
$E_{n}^{h G}:$
$M U^{((G))}$ vs. $E_{n}^{h G}$
$M U^{((G))}$:
- Genuine equivariant homotopy theory (rigid).
- Accessible to computations: SliceSS $\left(M U^{((G))}\right)$.
$E_{n}^{h G}$:
- Borel equivariant homotopy theory (not rigid).
- $\operatorname{HFPSS}\left(E_{n}^{h G}\right)$ is hard.
$M U^{((G))}$ vs. $E_{n}^{h G}$
$M U^{((G))}$:
- Genuine equivariant homotopy theory (rigid).
- Accessible to computations: SliceSS $\left(M U^{((G))}\right)$.
$E_{n}^{h G}$:
- Borel equivariant homotopy theory (not rigid).
- $\operatorname{HFPSS}\left(E_{n}^{h G}\right)$ is hard.
- Perfect for doing chromatic homotopy theory.
$M U^{((G))}$ vs. $E_{n}^{h G}$
$M U^{((G))}:$
- Genuine equivariant homotopy theory (rigid).
- Accessible to computations: SliceSS($\left.M U^{((G))}\right)$.
$E_{n}^{h G}:$
- Borel equivariant homotopy theory (not rigid).
- HFPSS $\left(E_{n}^{h G}\right)$ is hard.
- Perfect for doing chromatic homotopy theory.

The Real orientation combines the pros and gets rid of the cons!
$M U^{((G))}$:

- Genuine equivariant homotopy theory (rigid).
- Accessible to computations: SliceSS $\left(M U^{((G))}\right)$.
$E_{n}^{h G}$:
- Borel equivariant homotopy theory (not rigid).
- HFPSS $\left(E_{n}^{h G}\right)$ is hard.
- Perfect for doing chromatic homotopy theory.

The Real orientation combines the pros and gets rid of the cons! We can now use the slice spectral sequence to compute $E_{n}^{h G}$!

The detection tower

The detection tower

- As we move up the tower, the Hurewicz images increase and the theories become more powerful

The detection tower

- As we move up the tower, the Hurewicz images increase and the theories become more powerful
- Goal: analyze this tower as much as possible

Classically:

- 2-locally, MU splits as a wedge of suspensions of $B P$

Classically:

- 2-locally, MU splits as a wedge of suspensions of $B P$
- $\pi_{*} B P\langle n\rangle=\mathbb{Z}_{(2)}\left[v_{1}, \ldots, v_{n}\right]$

Classically:

- 2-locally, MU splits as a wedge of suspensions of $B P$
- $\pi_{*} B P\langle n\rangle=\mathbb{Z}_{(2)}\left[v_{1}, \ldots, v_{n}\right]$
- The formal group laws associated with $B P\langle n\rangle$ give models for E_{n}

Models of Lubin-Tate spectra

Theorem (Beaudry-Hill-S.-Zeng)

The equivariant formal group laws associated with $B P^{\left(\left(C_{2} m\right)\right)}\langle n\rangle$ give good models of $E_{2^{m-1} \cdot n}$, equipped with a $C_{2^{m}}$-action.

Models of Lubin-Tate spectra

Theorem (Beaudry-Hill-S.-Zeng)

The equivariant formal group laws associated with $B P^{\left(\left(C_{2} m\right)\right)}\langle n\rangle$ give good models of $E_{2^{m-1} \cdot n}$, equipped with a $C_{2^{m}}$-action.

These models are great for doing computations
$B P^{\left(\left(C_{4}\right)\right)}\langle 1\rangle$
$B P^{\left(\left(C_{4}\right)\right)}$

$D_{3}^{-1} B P^{\left(\left(C_{4}\right)\right)}\langle 3\rangle$

$$
D_{2}^{-1} B P^{\left(\left(C_{4}\right)\right)}\langle 2\rangle
$$

$$
D_{1}^{-1} B P P^{\left(\left(C_{4}\right)\right)}\langle 1\rangle
$$

$B P^{\left(\left(C_{4}\right)\right)}\langle 1\rangle$
$B P^{\left(\left(C_{4}\right)\right)} \longrightarrow B P^{\left(\left(C_{4}\right)\right)}\langle 3\rangle$ $B P^{\left(\left(C_{4}\right)\right)}\langle 2\rangle$

$$
D_{3}^{-1} B P^{\left(\left(C_{4}\right)\right)}\langle 3\rangle
$$

$$
D_{2}^{-1} B P^{\left(\left(C_{4}\right)\right)}\langle 2\rangle
$$

$$
D_{1}^{-1} B P^{\left(\left(C_{4}\right)\right)}\langle 1\rangle
$$

- $\mathrm{TMF}_{0}(5)$
- Behrens-Ormsby, Hill-Hopkins-Ravenel, Beaudry-Bobkova-Hill-Stojanoska

SliceSS($\left.B P^{\left(\left(C_{4}\right)\right)}\langle 1\rangle\right)$

SliceSS(BP((C$\left.\left.C_{4}\right)\langle 1\rangle\right)$

SliceSS(BP((C $\left.\left.C_{4}\right)\langle 1\rangle\right)$

$\operatorname{HFPSS}\left(E_{2}^{h C_{4}}\right)$

$B P^{\left(\left(C_{4}\right)\right)}\langle 2\rangle$

- Hill-S.-Wang-Xu
- First height >2 computation where the group is bigger than C_{2}

SliceSS($\left.B P^{\left(\left(C_{4}\right)\right)}\langle 2\rangle\right)$

SliceSS $\left(B P^{\left(\left(C_{4}\right)\right)}\langle 2\rangle\right): E_{\infty}$

Periodicity Theorem

- This is the first height >2 computation where the group is bigger than C_{2}

Periodicity Theorem

- This is the first height >2 computation where the group is bigger than C_{2}
- Our computation implies that $E_{4}^{h C_{12}}$ is 384 -periodic

Periodicity Theorem

- This is the first height >2 computation where the group is bigger than C_{2}
- Our computation implies that $E_{4}^{h C_{12}}$ is 384 -periodic
- Question: what is the period of $E_{n}^{h G}$ for finite $G \subset \mathbb{G}_{n}$?

Periodicity Theorem

- This is the first height >2 computation where the group is bigger than C_{2}
- Our computation implies that $E_{4}^{h C_{12}}$ is 384 -periodic
- Question: what is the period of $E_{n}^{h G}$ for finite $G \subset \mathbb{G}_{n}$?

Theorem (Beaudry-Hill-S.-Wang-Xu-Zeng, Periodicity Theorem)

1. The spectrum $E_{n \cdot 2^{m-1}}^{h C_{2 m}}$ is periodic with period $2^{n \cdot 2^{m-1}+m+1}$.
2. The spectrum $E_{4 n+2}^{h Q_{8}}$ is periodic with period $2^{4 n+6}$.

Periodicity Theorem

- This is the first height >2 computation where the group is bigger than C_{2}
- Our computation implies that $E_{4}^{h C_{12}}$ is 384 -periodic
- Question: what is the period of $E_{n}^{h G}$ for finite $G \subset \mathbb{G}_{n}$?

Theorem (Beaudry-Hill-S.-Wang-Xu-Zeng, Periodicity Theorem)

1. The spectrum $E_{n \cdot 2^{m-1}}^{h C_{2 m}}$ is periodic with period $2^{n \cdot 2^{m-1}+m+1}$.
2. The spectrum $E_{4 n+2}^{h Q_{8}}$ is periodic with period $2^{4 n+6}$.

- This resolves the periodicity of $E_{n}^{h G}$ at all heights and all G

