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> (,: cyclic group of order 2 with generator 7

» Real space X: X with a Cy-action

X—-X—"T5X
\_/
id
» Real vector bundle E over X:
» E: complex vector bundle over X
» [E: Real space
» p: E — X is Cy-equivariant
» 7:E — E;(y is anti C-linear

T(z-v)=Z-7(v)

(This is NOT a Gy-equivariant complex vector bundle!)

» Kgr(X): Grothendieck's construction
— (C,-equivariant spectrum K (Atiyah's Real K-theory)
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Equivariant stable homotopy theory

Non-equivariantly, 7,X = [S", X]
Equivariantly, we have more spheres
V: G-representation = SV

X: G-spectrum

ToX =[SV, X]°

v

7T£XZ RO(G)-graded homotopy groups of X
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Atiyah's Real K-theory Kgr

> Kg combines complex K-theory and real K-theory
» The underlying spectrum is KU
> K2 = KJ© = KO

» There are two periodicities:

G
> Te+p

> 12, gKr = T2 Kz (real Bott periodicity)

Kg = w% Kr (complex Bott periodicity)
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Real bordism spectrum MUy

» ~,: the universal bundle over BU(n)
» BU(n)": its Thom space
> Y2BU(n)" — BU(n + 1)
= Thom spectrum MU
» BU(n): Real space
~vn: Real vector bundle
» ¥PBU(n)" — BU(n+ 1)1
p: regular representation of G,
—> (-equivariant Thom spectrum MUg
» The underlying spectrum of MUy is MU
» This spectrum is crucial in Hill-Hopkins—Ravenel’s solution of
the Kervaire invariant one problem (later)
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E: multiplicative cohomology theory
> Complex orientation: x € E2(CP™), restricts to the unit in

E?(CP') = E(S?) = E%(pt)

> E*(CP™) = E*[x]

E*(CP* x CP™®) = E*[x, y]
» CP* x CP*® — CP*>®

(classifying tensor product of tautological line bundles)
» E*(CP*) — E*(CP> x CP™)

x — F(x,y) = formal group law / m.E
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Complex orientation

» Complex orientation <= (MU — E)
> Example: (MU — HZ) = Ga(x,y) = x+y
» Example: (MU — KU) = Gpn(x,y) =x+y — Bxy

Theorem (Quillen)

MU itself is complex oriented and it carries the universal formal
group law.
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> Associated to MU is a theory of Real orientations
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v

Real orientation: X € E&(CPOO), restricts to the unit in
EC,(CPY) = EZ,(S7) = E¢,(pt)

> EX(CP>) = EX[x]
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Associated to MUg is a theory of Real orientations
E: Cy-equivariant homotopy commutative ring spectrum

Real orientation: X € E&(CPOO), restricts to the unit in
E2,(CPY) = E2(5°) = EX,(p1)

EX(CP™) = EX[]

EX(CP™ x CP®) = EX[x, 7] (Araki)

CP* x CP*°® — CP> = formal group Iaw/m%E

Real orientation <= (MUr — E) (Hu-Kriz)
Example: MUr — Kg
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Lubin—Tate spectra

vvyyy

KU belongs to a more general class of spectra
k: perfect field, characteristic p
I",: formal group law of height n over k

Lubin—Tate: I',, admits an universal deformation
» Characterized by a map MU, — E,,
> E,. = W(K)[u,u,..., u,,_l]][ui] is the universal deformation
ring
Landweber exact functor theorem
= E,: Complex oriented cohomology theory

k=T MN(x,y)=x+y—fBxy = E1 = KU}
Formal group laws associated with elliptic curves

= Elliptic cohomology theories
(topological modular forms, string orientations, Witten genus)
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Application: stable homotopy groups of spheres

Theorem (Frudenthal 1937)
Tnik(S™) stabilizes for n > k +1 = m3t(S°)

Definition

m5t(S0) = lim 711 (S")
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Application: stable homotopy groups of spheres

Theorem (Pontryagin 1930s)

QY = m(s°)

QZ’ : cobordism classes of stably framed k-manifolds

» This establishes a deep relationship between homotopy theory
and geometry

» Describing 75tS% has been fundamental to algebraic topology
for the past 80 years

» Lubin—Tate spectra can isolate certain “sectors” of the
computation 4 give connections to others areas
(modular forms, geometric topology)
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Lubin—Tate spectra

G(k, Tn)=Aut(I'»)xGal(k/F,)

Theorem (Goerss—Hopkins—Miiller)
The action of G(k,T) on En, can be lifted uniquely to an action
of G(k,T,) on E, by commutative (Es) ring maps.

» Can view E, as a G(k,I,)-equivariant commutative ring
spectrum
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» From now on: p =2
» G C G(k,Ty): acts on Epy by [—1]r,.
G

2

> E,
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Question

Geometry Algebra
C2 C2
cy O
MUg ----- —---» E,

Can we lift it?
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Real Orientation

Theorem (Hahn-S.)

The Lubin—Tate spectrum E, is Real oriented: it receives a
Co-equivariant map
MUr — E,

from the Real bordism spectrum MUg.

This opens the door to a series of computations in stable
homotopy theory
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Chromatic homotopy theory

Theorem (Hopkins—Ravenel, Chromatic Convergence)
S(OP) = LgSY — Lg, S®— - — L SO

Chromatic fracture square:

LEn.SO _— LK(H)SO

J |

[_En7150 E— LE,,,l LK(n)SO

Slogan: in order to study S(op), we just need to study each of the
K (n)-local spheres and how they “glue” together
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Chromatic homotopy theory

Theorem (Hopkins—Devinatz)
LK(n)SO i) E:G"

» EC (G a finite subgroup of G,): central objects to study in
chromatic homotopy theory

> In general, EfC capture large scale periodicity phenomena in
stable homotopy theory (in particular 7, S°)

» Modern detection theorems: study elements in 7,59 by
analyzing S0 — W*E,’]G
(Hill-Hopkins—Ravenel's solution to the Kervaire invariant)
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Computing E"¢: height 1

» Homotopy fixed point spectral sequence:
H*(G;m.E,) = m.ENC
> Height 1: E/< = KO3
> Image of J : 1,0 — m,S°

» Captures everything above a line of slope % in the

Adams—Novikov spectral sequence of S° (Mahowald)
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Height 2: tmf

» Height 2: tmf, tmf with level structures

> tmf: topological refinement of the classical ring of integral
modular forms

> Very active area of research for the past 30 years
(String orientation of tmf refines the Witten genus)

» The Hurewciz map 7+ S0 — 7.tmf detects an astounding
number of elements (nearly all of 7, S for * < 60)

» They resolve the K(2)-local sphere

» These computations rely heavily on the geometry of elliptic
curves
» Choose a specific super-singular elliptic curve
» Have a good understanding of how G is acting on 7. E;
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Height > 2

» n>2: ENC sees more, but they are extremely difficult to
compute

» Group actions on E,: constructed purely from obstruction
theory

» Elliptic curves are not available at higher heights

» There have been attempts to understanding this using TAF
(Behrens—Lawson)

» However, the group action on MUy does come from geometry

» The Real orientation establishes a connection between these
two actions!
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Computation of E" at all heights

HFPSS(MUg) —s HFPSS(E,)

3

> d3(U20) = )_(13(7

> d7(U4g) = )?33?,
15
o

k—1 _ K1_
> dyr (U3, ) = Rpkqay

> dis(ug,) = X7a



Computation of E" at all heights

HFPSS(MUg) — HFPSS(E,)

d3(U20) = )?133

d7(U4U) = )?33?,

| 2
| 2
> dis(ug,) = X7ak®
>
>

(o
2k71 = 2k+1_1
dour1_1(U3, ) = Xok_13;

These differentials induce all the differentials in HFPSS(E,)



Computation of E"® at all heights

Theorem (Hahn-S.)

The E;-page of the RO((,)-graded homotopy fixed point spectral
sequence of E, is

ESH(EN®) = W(Bon)[dn, Go, - . ., Gp1][07] ® Z[u, 35]/(235).

The classes i1, ..., Up_1, a*, and a, are permanent cycles. All
the differentials in the spectral sequence are determined by the
differentials

k-1 _ _pk_q okt1_

doeir_q(U3, ) = mxd® a2 ' 1<k<n-1,
2=t —2n—1 _2ntl_1

doni1_q(U3, ) = O°  "ai , k=n,

and multiplicative structures.
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Theorem (Hahn-S.)

> 7, ENC is 212 _periodic for all n.
» E, is Cy-equivariantly even:
» my,—1En =0 forall k € Z;
» m,,En is a constant Mackey functor for all k € 7

» FE, is Real Landweber exact:
MUR 3 (X) @mu, Ens — Eng(X)

is an isomorphism for every Cy-spectrum X.
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Hurewicz image

Theorem (Li-S.-Wang—Xu)

The Cy-fixed points of MUy detects the Hopf-, Kervaire-, and
k-family.

Theorem (Li-S.-Wang—Xu, Hahn-S.)

The Cy-fixed points of E,, detects the first n elements of the Hopf-
and Kervaire-family, and the first (n — 1) elements of the k-family.
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The Norm

» What about E/® for higher groups?

» H C G a subgoup

» Norm functor NS : SH — S¢ (Hill-Hopkins—Ravenel)
> G: a group that contains G,

> MU(E) .= N& MUg



G-orientation

Theorem (Hahn-S.)
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G-orientation

Theorem (Hahn-S.)

Let G C G(k,T,) be a finite subgroup containing the central
subgroup C,. There is a G-equivariant map

mu(©) —; E,.

Motivation: MU(®) is crucial in Hill-Hopkins—Ravenel's solution
of the Kervaire invariant one problem
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The Kervaire invariant

» M: framed (4k + 2)-dimensional manifold

> Kervaire used the framing to construct a quadratic form
¢ H**Y(M; 2/)2) — 7./2

¢(x +y) = o(x) + ¢(y) + {x,y)
» The Kervaire invariant of M is defined as ®(M) := Arf(¢)

» A fundamental invariant in differential and algebraic topology
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Smooth structures on S”

Definition

A homotopy n-sphere: closed manifold X" ~ S"

Question

Is X" homeomorphic to S"?

» Yes. (Generalized) Poincaré conjecture
» Smale (1962): n>5

» Freedman (1982): n=4

» Perelman (2002): n=3
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Smooth structures on S”

Question

Are they all diffeomorphic to S", equipped with the usual smooth
structure?

» n =3: True (Moise's Theorem 1952)
» n = 4: wide open
» n = 7: Milnor constructed an exotic 7-sphere (1956)

» Kervaire and Milnor (1963) computed the groups of exotic
n-spheres (n > 4) in terms of 75tS% modulo the Kervaire
invariant
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Kervaire—Milnor

» ©, = group of homotopy n-spheres up to diffeomorphism
(connected sum)

> @2" = homotopy n-spheres that bounds parallelizable
manifolds

Theorem (Kervaire-Milnor)

For n > 5, the subgroup 62” is cyclic,

1, n even
@2 ={ 1o0r2, n=4k+1
by, n=4k —1

by = 22"_2(22"—1 — 1) - numerator of“BT”
B>y: Bernoulli number



Theorem (Kervaire-Milnor)
» For n# 2 (mod 4), there is an exact sequence
0—0% -0, —mr,/]—0

T, n-th stable homotopy groups of spheres
mn/J: cokernel of the J-homomorphism
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Theorem (Kervaire-Milnor)

» For n# 2 (mod 4), there is an exact sequence
0—0% -0, —mr,/]—0

T, n-th stable homotopy groups of spheres
mn/J: cokernel of the J-homomorphism

» Forn=2 (mod 4), there is an exact sequence
ol
0—er e, —m/J257/2—0% —0
&, the Kervaire invariant

The Kervaire invariant problem is the last missing piece of this
puzzle
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The Kervaire invariant one problem

Question
In which dimensions is there a framed manifold with Kervaire
invariant one?

> At the time (1963): 2, 6, 10, 14, 18

P> Unclear that it is related to stable homotopy theory

» Next piece of the puzzle was unlocked by Browder
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Theorem (Browder 1969)

If (M) = 1, then dim(M) = 2+1 — 2,
There exists a framed manifold of Kervaire invariant one
— h2 € Ext; A (IFQ,FQ) survives the Adams spectral sequence

to an e/ement 0 € mpit1_,S°

> hj e ExtA (IFz,Fg) Hopf invariant one elements, only the
first three survives (01, 62, 63)

» Mahowald-Tangora: 4 € 13050 exists
» Barrat—Jones—Mahowald: 5 € 16 S° exists

» However, the Adams spectral sequence gets very hard at
higher dimensions

» What about the fate of the higher 6;'s?
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Hill-Hopkins—Ravenel Theorems

Theorem (Hill-Hopkins—Ravenel)

For j > 7, the Kervaire invariant elements 0; do not exist.

> The case for 6 € m126S° is still open
> Start with MU(%)
» Invert a certain class D € ﬂiSI\/IU((CS)): D1 MyU(G)
> Q: its Cg-fixed point spectrum
» Detection Theorem:
If 0; exists, then its image in 7,152 is nonzero



Hill-Hopkins—Ravenel Theorems

Theorem (Hill-Hopkins—Ravenel)

For j > 7, the Kervaire invariant elements 0; do not exist.

vVvyyYyyvyy
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The case for 6 € m126S° is still open

Start with MU(G)

Invert a certain class D € ﬂiSI\/IU((CS)): D1 MyU(G)
Q: its Cg-fixed point spectrum

Detection Theorem:

If 0; exists, then its image in 7,152 is nonzero

Periodicity Theorem:
w42 is 256-periodic



Hill-Hopkins—Ravenel Theorems

Theorem (Hill-Hopkins—Ravenel)

For j > 7, the Kervaire invariant elements 0; do not exist.

The case for 6 € m126S° is still open

Start with MU(G)

Invert a certain class D € ﬂiSI\/IU((CS)): D1 MyU(G)
Q: its Cg-fixed point spectrum

vVvyyYyyvyy

Detection Theorem:
If 0; exists, then its image in 7,152 is nonzero

v

Periodicity Theorem:
w42 is 256-periodic

» Gap Theorem:
mQ=0fori=-1,-2,-3
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MU(C) ys. EhG

» Originally, Hill-Hopkins—Ravenel didn’t plan to use MU(C)
> Efcs also detects 6;

» However, its HFPSS is HARD!

» In the end, they settled with MU(Ce)
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MU(©) ys. ERC

My(G).
» Genuine equivariant homotopy theory (rigid).
» Accessible to computations: SliceSS(MU(©)).

E,?G:
> hG\ ;

n

» Perfect for doing chromatic homotopy theory.

The Real orientation combines the pros and gets rid of the cons!
We can now use the slice spectral sequence to compute E,',’G!
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The detection tower

(MU(Gm))Gm ghCom

2m—1p

SO (MU(G))G N ELCS

(MU((C4)))C4 SN E2hnC4

(MUR)® ——— EL©

> As we move up the tower, the Hurewicz images increase and
the theories become more powerful
» Goal: analyze this tower as much as possible
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Classically:

BP BP(3) —— BP(2) —— BP(1)
| | |
v; 1BP(3) v; 'BP(2) v 1BP(1)
i i i
E; E E,

» 2-locally, MU splits as a wedge of suspensions of BP
> m.BP(n) = Zx[v1,..., v

» The formal group laws associated with BP(n) give models for E,



Models of Lubin—Tate spectra

pp(&m) BP((sz))<3> - B,D((sz))<2> - B,D((sz))<1>

| | |

D;l BP(&m)(3) D{l BP(&m) (2) Dfl BP(&r) (1)
E3.om—1 Eyom— Eyns
Com Com Com

Theorem (Beaudry-Hill-S.—Zeng)

The equivariant formal group laws associated with BP(%") (n) give good
models of Eym-1.,,, equipped with a Com-action.



Models of Lubin—Tate spectra

pp(&m) B,D((sz))<3> — , pp(&m) 2) ——— B,D((sz))<1>

| | |

D;l BP(&m)(3) szl BP(&m) (2) Dfl BP(&r) (1)
E3.om—1 Eyom— Eyns
Com Com Com

Theorem (Beaudry-Hill-S.—Zeng)

The equivariant formal group laws associated with BP(%") (n) give good
models of Eym-1.,,, equipped with a Com-action.

These models are great for doing computations



BP((C4))<1>
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BP((C4))<1>

BP(G) ., gp(G)(3) — ., gp(G2y — Bp(G)(1)

| | |

D;lBP((C4))<3> Dgl,gp((C4))<2> Dfl BP(C) (1)
Es E, E,
) ) -
C4 C4 C4

> TMFo(5)

» Behrens—Ormsby, Hill-Hopkins—Ravenel,
Beaudry—Bobkova—Hill-Stojanoska
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SliceSS(BP(C)(1))
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SliceSS(BP(C4) (1))
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BP((C4))<2>

BP(G) ., gp(G)(3) — ., PGy —, Bp(GI(1)

| | |

D3—15,D((C4))<3> D;l Bp((c4))<2> Dl—l BP((C4))<1>
Es E, E,
- ) )
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BP((C4))<2>

BP(G) ., gp(G)(3) — ., PGy —, Bp(GI(1)

| | |

D3—13,D((C4))<3> Dglgp((C4))<2> Dl—l BP((C4))<1>
Es E, E,
- ) )
G G G

» Hill-S.-Wang—Xu

» First height > 2 computation where the group is bigger than G,






SliceSS(BP(S)(2)) : E,,
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» This is the first height > 2 computation where the group is
bigger than G,

» Our computation implies that Efcu is 384-periodic
> Question: what is the period of EC for finite G C G,?

Theorem (Beaudry—Hill-S.-Wang—Xu-Zeng, Periodicity
Theorem)
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Periodicity Theorem

» This is the first height > 2 computation where the group is
bigger than G,

» Our computation implies that Efcu is 384-periodic
> Question: what is the period of EC for finite G C G,?

Theorem (Beaudry—Hill-S.-Wang—Xu-Zeng, Periodicity
Theorem)

EhGam

n-2m—1
2. The spectrum Ef,g?2 is periodic with period 2*"*6.

1. The spectrum is periodic with period on-2" "1 mt1

> This resolves the periodicity of EC at all heights and all G






