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What does Real mean?

I C2: cyclic group of order 2 with generator τ

I Real space X : X with a C2-action

X
τ //

id

77X
τ // X

I Real vector bundle E over X :
I E : complex vector bundle over X
I E : Real space
I p : E → X is C2-equivariant
I τ : Ex → Eτ(x) is anti C-linear

τ(z · v) = z · τ(v)

(This is NOT a C2-equivariant complex vector bundle!)

I KR(X ): Grothendieck’s construction
=⇒ C2-equivariant spectrum KR (Atiyah’s Real K -theory)
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Equivariant stable homotopy theory

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X



Equivariant stable homotopy theory

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X



Equivariant stable homotopy theory

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X



Equivariant stable homotopy theory

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X



Equivariant stable homotopy theory

I Non-equivariantly, πnX = [Sn,X ]

I Equivariantly, we have more spheres

I V : G -representation =⇒ SV

I X : G -spectrum

πGVX = [SV ,X ]G

I πGFX : RO(G )-graded homotopy groups of X



Atiyah’s Real K-theory KR

I KR combines complex K -theory and real K -theory
I The underlying spectrum is KU
I KC2

R = K hC2

R = KO

I There are two periodicities:
I πC2

F+ρKR = πC2

FKR (complex Bott periodicity)

I πC2

F+8KR = πC2

FKR (real Bott periodicity)
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Real bordism spectrum MUR

I γn: the universal bundle over BU(n)

I BU(n)γn : its Thom space

I Σ2BU(n)γn → BU(n + 1)γn+1

=⇒ Thom spectrum MU

I BU(n): Real space
γn: Real vector bundle

I ΣρBU(n)γn → BU(n + 1)γn+1

ρ: regular representation of C2

=⇒ C2-equivariant Thom spectrum MUR

I The underlying spectrum of MUR is MU

I This spectrum is crucial in Hill–Hopkins–Ravenel’s solution of
the Kervaire invariant one problem (later)
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Complex bordism spectrum

I MU∗(X ): group of bordism classes of manifolds over X with a
complex linear structure on the stable normal bundle

I π∗MU = MU∗(pt) ∼= Z[x1, x2, . . .], where |xi | = 2i
(Milnor, Novikov)

I Associated with MU is a theory of complex orientations
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Complex orientation

I E : multiplicative cohomology theory

I Complex orientation: x ∈ Ẽ 2(CP∞), restricts to the unit in

Ẽ 2(CP1) = Ẽ 2(S2) ∼= E 0(pt)

I E ∗(CP∞) ∼= E ∗[[x ]]
E ∗(CP∞ × CP∞) ∼= E ∗[[x , y ]]

I CP∞ × CP∞ −→ CP∞

(classifying tensor product of tautological line bundles)

I E ∗(CP∞) −→ E ∗(CP∞ × CP∞)
x 7−→ F (x , y) =⇒ formal group law / π∗E
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Complex orientation

I Complex orientation ⇐⇒ (MU −→ E )

I Example: (MU −→ HZ) =⇒ Ga(x , y) = x + y

I Example: (MU −→ KU) =⇒ Gm(x , y) = x + y − βxy

Theorem (Quillen)

MU itself is complex oriented and it carries the universal formal
group law.
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Real orientation

I Associated to MUR is a theory of Real orientations

I E : C2-equivariant homotopy commutative ring spectrum

I Real orientation: x̄ ∈ Ẽ ρC2
(CP∞), restricts to the unit in

Ẽ ρC2
(CP1) = Ẽ ρC2

(Sρ) ∼= E 0
C2

(pt)

I EF
C2

(CP∞) ∼= EF
C2

[[x̄ ]]

EF
C2

(CP∞ × CP∞) ∼= EF
C2

[[x̄ , ȳ ]] (Araki)

I CP∞ × CP∞ −→ CP∞ =⇒ formal group law / πC2
F E

I Real orientation ⇐⇒ (MUR −→ E ) (Hu–Kriz)

I Example: MUR −→ KR
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[[x̄ , ȳ ]] (Araki)

I CP∞ × CP∞ −→ CP∞ =⇒ formal group law / πC2
F E

I Real orientation ⇐⇒ (MUR −→ E ) (Hu–Kriz)

I Example: MUR −→ KR



Real orientation

I Associated to MUR is a theory of Real orientations

I E : C2-equivariant homotopy commutative ring spectrum

I Real orientation: x̄ ∈ Ẽ ρC2
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Lubin–Tate spectra

I KU belongs to a more general class of spectra

I k: perfect field, characteristic p

I Γn: formal group law of height n over k
I Lubin–Tate: Γn admits an universal deformation

I Characterized by a map MU∗ −→ En∗
I En∗ ∼= W (k)[[u1, u2, . . . , un−1]][u±] is the universal deformation

ring

I Landweber exact functor theorem
=⇒ En: Complex oriented cohomology theory

I k = F2, Γ1(x , y) = x + y − βxy =⇒ E1 = KU∧2
I Formal group laws associated with elliptic curves

=⇒ Elliptic cohomology theories
(topological modular forms, string orientations, Witten genus)
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C2-equivariant map
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from the Real bordism spectrum MUR.

This opens the door to a series of computations in stable
homotopy theory
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K (n)-local spheres and how they “glue” together
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Theorem (Hopkins–Devinatz)
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n (G a finite subgroup of Gn): central objects to study in
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I In general, EhG
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stable homotopy theory (in particular π∗S
0)

I Modern detection theorems: study elements in π∗S
0 by

analyzing π∗S
0 −→ π∗E
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I Height 2: tmf, tmf with level structures

I tmf: topological refinement of the classical ring of integral
modular forms

I Very active area of research for the past 30 years
(String orientation of tmf refines the Witten genus)

I The Hurewciz map π∗S
0 −→ π∗tmf detects an astounding

number of elements (nearly all of π∗S
0 for ∗ < 60)

I They resolve the K (2)-local sphere
I These computations rely heavily on the geometry of elliptic

curves
I Choose a specific super-singular elliptic curve
I Have a good understanding of how G is acting on π∗E2
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I n > 2: EhG
n sees more, but they are extremely difficult to

compute

I Group actions on En: constructed purely from obstruction
theory

I Elliptic curves are not available at higher heights

I There have been attempts to understanding this using TAF
(Behrens–Lawson)

I However, the group action on MUR does come from geometry

I The Real orientation establishes a connection between these
two actions!



Height > 2

I n > 2: EhG
n sees more, but they are extremely difficult to

compute

I Group actions on En: constructed purely from obstruction
theory

I Elliptic curves are not available at higher heights

I There have been attempts to understanding this using TAF
(Behrens–Lawson)

I However, the group action on MUR does come from geometry

I The Real orientation establishes a connection between these
two actions!



Height > 2

I n > 2: EhG
n sees more, but they are extremely difficult to

compute

I Group actions on En: constructed purely from obstruction
theory

I Elliptic curves are not available at higher heights

I There have been attempts to understanding this using TAF
(Behrens–Lawson)

I However, the group action on MUR does come from geometry

I The Real orientation establishes a connection between these
two actions!



Height > 2

I n > 2: EhG
n sees more, but they are extremely difficult to

compute

I Group actions on En: constructed purely from obstruction
theory

I Elliptic curves are not available at higher heights

I There have been attempts to understanding this using TAF
(Behrens–Lawson)

I However, the group action on MUR does come from geometry

I The Real orientation establishes a connection between these
two actions!



Height > 2

I n > 2: EhG
n sees more, but they are extremely difficult to

compute

I Group actions on En: constructed purely from obstruction
theory

I Elliptic curves are not available at higher heights

I There have been attempts to understanding this using TAF
(Behrens–Lawson)

I However, the group action on MUR does come from geometry

I The Real orientation establishes a connection between these
two actions!



Height > 2

I n > 2: EhG
n sees more, but they are extremely difficult to

compute

I Group actions on En: constructed purely from obstruction
theory

I Elliptic curves are not available at higher heights

I There have been attempts to understanding this using TAF
(Behrens–Lawson)

I However, the group action on MUR does come from geometry

I The Real orientation establishes a connection between these
two actions!



Computation of E hC2
n at all heights

MUR −→ En



Computation of E hC2
n at all heights

HFPSS(MUR) −→ HFPSS(En)



Computation of E hC2
n at all heights

HFPSS(MUR) −→ HFPSS(En)

I d3(u2σ) = x̄1a
3
σ



Computation of E hC2
n at all heights

HFPSS(MUR) −→ HFPSS(En)

I d3(u2σ) = x̄1a
3
σ

I d7(u4σ) = x̄3a
7
σ



Computation of E hC2
n at all heights

HFPSS(MUR) −→ HFPSS(En)

I d3(u2σ) = x̄1a
3
σ

I d7(u4σ) = x̄3a
7
σ

I d15(u8σ) = x̄7a
15
σ



Computation of E hC2
n at all heights

HFPSS(MUR) −→ HFPSS(En)

I d3(u2σ) = x̄1a
3
σ

I d7(u4σ) = x̄3a
7
σ

I d15(u8σ) = x̄7a
15
σ

I d2k+1−1(u2k−1

2σ ) = x̄2k−1a
2k+1−1
σ



Computation of E hC2
n at all heights

HFPSS(MUR) −→ HFPSS(En)

I d3(u2σ) = x̄1a
3
σ

I d7(u4σ) = x̄3a
7
σ

I d15(u8σ) = x̄7a
15
σ

I d2k+1−1(u2k−1

2σ ) = x̄2k−1a
2k+1−1
σ

I These differentials induce all the differentials in HFPSS(En)



Computation of E hC2
n at all heights

Theorem (Hahn–S.)

The E2-page of the RO(C2)-graded homotopy fixed point spectral
sequence of En is

E s,t
2 (EhC2

n ) = W (F2n)[[ū1, ū2, . . . , ūn−1]][ū±]⊗ Z[u±2σ, aσ]/(2aσ).

The classes ū1, . . ., ūn−1, ū±, and aσ are permanent cycles. All
the differentials in the spectral sequence are determined by the
differentials

d2k+1−1(u2k−1

2σ ) = ūk ū
2k−1a2k+1−1

σ , 1 ≤ k ≤ n − 1,

d2n+1−1(u2n−1

2σ ) = ū2n−1a2n+1−1
σ , k = n,

and multiplicative structures.
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Theorem (Hahn–S.)

I π∗E
hC2
n is 2n+2-periodic for all n.

I En is C2-equivariantly even:
I πkρ−1En = 0 for all k ∈ Z;
I πkρEn is a constant Mackey functor for all k ∈ Z

I En is Real Landweber exact:

MURF(X )⊗MU∗ En∗ −→ EnF(X )

is an isomorphism for every C2-spectrum X.
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Hurewicz image

Theorem (Li–S.–Wang–Xu)

The C2-fixed points of MUR detects the Hopf-, Kervaire-, and
κ̄-family.

Theorem (Li–S.–Wang–Xu, Hahn–S.)

The C2-fixed points of En detects the first n elements of the Hopf-
and Kervaire-family, and the first (n − 1) elements of the κ̄-family.
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I Norm functor NG
H : SH −→ SG (Hill–Hopkins–Ravenel)

I G : a group that contains C2
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Let G ⊂ G(k , Γn) be a finite subgroup containing the central
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The Kervaire invariant

I M: framed (4k + 2)-dimensional manifold

I Kervaire used the framing to construct a quadratic form

φ : H2k+1(M;Z/2) −→ Z/2

φ(x + y) = φ(x) + φ(y) + 〈x , y〉
I The Kervaire invariant of M is defined as Φ(M) := Arf (φ)

I A fundamental invariant in differential and algebraic topology
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Smooth structures on Sn

Question

Are they all diffeomorphic to Sn, equipped with the usual smooth
structure?

I n =3: True (Moise’s Theorem 1952)

I n = 4: wide open

I n = 7: Milnor constructed an exotic 7-sphere (1956)

I Kervaire and Milnor (1963) computed the groups of exotic
n-spheres (n > 4) in terms of πstn S

0, modulo the Kervaire
invariant
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Kervaire–Milnor

I Θn = group of homotopy n-spheres up to diffeomorphism
(connected sum)

I Θbp
n = homotopy n-spheres that bounds parallelizable

manifolds

Theorem (Kervaire–Milnor)

For n ≥ 5, the subgroup Θbp
n is cyclic,

|Θbp
n | =


1, n even
1 or 2, n = 4k + 1
bk , n = 4k − 1

bk = 22k−2(22k−1 − 1) · numerator of 4B2k
k

B2k : Bernoulli number
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Theorem (Kervaire–Milnor)

I For n 6≡ 2 (mod 4), there is an exact sequence

0 −→ Θbp
n −→ Θn −→ πn/J −→ 0

πn: n-th stable homotopy groups of spheres
πn/J: cokernel of the J-homomorphism

I For n ≡ 2 (mod 4), there is an exact sequence

0 −→ Θbp
n −→ Θn −→ πn/J

Φn−→ Z/2 −→ Θbp
n−1 −→ 0

Φn: the Kervaire invariant

The Kervaire invariant problem is the last missing piece of this
puzzle
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The Kervaire invariant one problem

Question

In which dimensions is there a framed manifold with Kervaire
invariant one?

I At the time (1963): 2, 6, 10, 14, 18

I Unclear that it is related to stable homotopy theory

I Next piece of the puzzle was unlocked by Browder
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Theorem (Browder 1969)

If Φ(M) = 1, then dim(M) = 2j+1 − 2.

There exists a framed manifold of Kervaire invariant one
⇐⇒ h2

j ∈ Ext2,2j+1

A (F2,F2) survives the Adams spectral sequence

to an element θj ∈ π2j+1−2S
0

I hj ∈ Ext1,2j

A (F2,F2): Hopf invariant one elements, only the
first three survives (θ1, θ2, θ3)

I Mahowald–Tangora: θ4 ∈ π30S
0 exists

I Barrat–Jones–Mahowald: θ5 ∈ π62S
0 exists

I However, the Adams spectral sequence gets very hard at
higher dimensions

I What about the fate of the higher θj ’s?
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Hill–Hopkins–Ravenel Theorems

Theorem (Hill–Hopkins–Ravenel)

For j ≥ 7, the Kervaire invariant elements θj do not exist.

I The case for θ6 ∈ π126S
0 is still open

I Start with MU((C8))

I Invert a certain class D ∈ πC8
F MU((C8)): D−1MU((C8))

I Ω: its C8-fixed point spectrum

I Detection Theorem:
If θj exists, then its image in π2j+1−2Ω is nonzero

I Periodicity Theorem:
π∗Ω is 256-periodic

I Gap Theorem:
πiΩ = 0 for i = −1,−2,−3
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Baby Ω

Gap Theorem

Periodicity Theorem



MU ((G )) vs. E hG
n

I Originally, Hill–Hopkins–Ravenel didn’t plan to use MU((C8))

I EhC8
4 also detects θj

I However, its HFPSS is HARD!

I In the end, they settled with MU((C8))
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MU ((G )) vs. E hG
n

MU((G)):

I Genuine equivariant homotopy theory (rigid).

I Accessible to computations: SliceSS(MU((G))).

EhG
n :

I Borel equivariant homotopy theory (not rigid).

I HFPSS(EhG
n ) is hard.

I Perfect for doing chromatic homotopy theory.

The Real Orientation combines the pros and gets rid of the cons
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MU((G)):

I Genuine equivariant homotopy theory (rigid).

I Accessible to computations: SliceSS(MU((G))).

EhG
n :

I Borel equivariant homotopy theory (not rigid).

I HFPSS(EhG
n ) is hard.

I Perfect for doing chromatic homotopy theory.

The Real orientation combines the pros and gets rid of the cons!
We can now use the slice spectral sequence to compute EhG

n !



The detection tower

(MU((C2m )))C2m EhC2m

2m−1n

...

S0 (MU((C8)))C8 EhC8
4n

(MU((C4)))C4 EhC4
2n

(MUR)C2 EhC2
n

I As we move up the tower, the Hurewicz images increase and
the theories become more powerful

I Goal: analyze this tower as much as possible
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Classically:

BP · · · BP〈3〉 BP〈2〉 BP〈1〉

v−1
3 BP〈3〉 v−1

2 BP〈2〉 v−1
1 BP〈1〉

E3 E2 E1

I 2-locally, MU splits as a wedge of suspensions of BP

I π∗BP〈n〉 = Z(2)[v1, . . . , vn]

I The formal group laws associated with BP〈n〉 give models for En
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Models of Lubin–Tate spectra

BP((C2m )) BP((C2m ))〈3〉 BP((C2m ))〈2〉 BP((C2m ))〈1〉

D−1
3 BP((C2m ))〈3〉 D−1

2 BP((C2m ))〈2〉 D−1
1 BP((C2m ))〈1〉

E3·2m−1 E2·2m−1 E2m−1

C2m C2m C2m

Theorem (Beaudry–Hill–S.–Zeng)

The equivariant formal group laws associated with BP((C2m ))〈n〉 give good
models of E2m−1·n, equipped with a C2m -action.

These models are great for doing computations
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I TMF0(5)

I Behrens–Ormsby, Hill–Hopkins–Ravenel,
Beaudry–Bobkova–Hill–Stojanoska
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SliceSS(BP ((C4))〈1〉)



HFPSS(E hC4

2 )
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Periodicity Theorem

I This is the first height > 2 computation where the group is
bigger than C2

I Our computation implies that EhC12
4 is 384-periodic

I Question: what is the period of EhG
n for finite G ⊂ Gn?

Theorem (Beaudry–Hill–S.–Wang–Xu–Zeng, Periodicity
Theorem)

1. The spectrum E hC2m

n·2m−1 is periodic with period 2n·2m−1+m+1.

2. The spectrum E hQ8
4n+2 is periodic with period 24n+6.

I This resolves the periodicity of EhG
n at all heights and all G
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Thank you!


