Real Bordism, Real orientations, and Lubin–Tate spectra

XiaoLin Danny Shi

University of Chicago

June 2021

• C_2 : cyclic group of order 2 with generator τ

- C_2 : cyclic group of order 2 with generator τ
- ▶ Real space X: X with a C_2 -action

• C_2 : cyclic group of order 2 with generator τ

▶ Real space X: X with a C₂-action

• C_2 : cyclic group of order 2 with generator τ

▶ Real space X: X with a C_2 -action

▶ Real vector bundle *E* over *X*:

• C_2 : cyclic group of order 2 with generator τ

Real space X: X with a C_2 -action

► Real vector bundle *E* over *X*:

E: complex vector bundle over X

• C_2 : cyclic group of order 2 with generator τ

Real space X: X with a C_2 -action

Real vector bundle E over X:

E: complex vector bundle over X

► E: Real space

• C_2 : cyclic group of order 2 with generator τ

▶ Real space X: X with a C₂-action

Real vector bundle E over X:

- E: complex vector bundle over X
- E: Real space

• $p: E \to X$ is C_2 -equivariant

- C_2 : cyclic group of order 2 with generator τ
- Real space X: X with a C₂-action

Real vector bundle E over X:

- E: complex vector bundle over X
- ► E: Real space

•
$$p: E \to X$$
 is C_2 -equivariant

•
$$\tau: E_x \to E_{\tau(x)}$$
 is anti \mathbb{C} -linear

$$\tau(\mathbf{z}\cdot\mathbf{v})=\overline{\mathbf{z}}\cdot\tau(\mathbf{v})$$

- C_2 : cyclic group of order 2 with generator τ
- Real space X: X with a C₂-action

Real vector bundle E over X:

- E: complex vector bundle over X
- E: Real space

•
$$p: E \to X$$
 is C_2 -equivariant

•
$$\tau: E_x \to E_{\tau(x)}$$
 is anti \mathbb{C} -linear

$$\tau(\mathbf{z}\cdot\mathbf{v})=\overline{\mathbf{z}}\cdot\tau(\mathbf{v})$$

(This is NOT a C₂-equivariant complex vector bundle!)

• C_2 : cyclic group of order 2 with generator τ

▶ Real space X: X with a C₂-action

Real vector bundle E over X:

- E: complex vector bundle over X
- E: Real space

•
$$p: E \to X$$
 is C_2 -equivariant

•
$$\tau: E_x \to E_{\tau(x)}$$
 is anti \mathbb{C} -linear

$$\tau(\mathbf{z}\cdot\mathbf{v})=\overline{\mathbf{z}}\cdot\tau(\mathbf{v})$$

(This is NOT a C₂-equivariant complex vector bundle!)
 K_ℝ(X): Grothendieck's construction

- C_2 : cyclic group of order 2 with generator τ
- Real space X: X with a C₂-action

Real vector bundle E over X:

- E: complex vector bundle over X
- E: Real space

•
$$p: E \to X$$
 is C_2 -equivariant

•
$$\tau: E_x \to E_{\tau(x)}$$
 is anti \mathbb{C} -linear

$$\tau(\mathbf{z}\cdot\mathbf{v})=\overline{\mathbf{z}}\cdot\tau(\mathbf{v})$$

(This is NOT a C_2 -equivariant complex vector bundle!)

K_ℝ(X): Grothendieck's construction ⇒ C₂-equivariant spectrum K_ℝ (Atiyah's Real K-theory)

• Non-equivariantly,
$$\pi_n X = [S^n, X]$$

- ▶ Non-equivariantly, $\pi_n X = [S^n, X]$
- Equivariantly, we have more spheres

- ▶ Non-equivariantly, $\pi_n X = [S^n, X]$
- Equivariantly, we have more spheres
- V: G-representation $\implies S^V$

▶ Non-equivariantly, $\pi_n X = [S^n, X]$

Equivariantly, we have more spheres

- V: G-representation $\implies S^V$
- ► X: G-spectrum

$$\pi_V^G X = [S^V, X]^G$$

• Non-equivariantly, $\pi_n X = [S^n, X]$

Equivariantly, we have more spheres

- V: G-representation $\implies S^V$
- ► X: G-spectrum

$$\pi_V^G X = [S^V, X]^G$$

• $\pi_{\bigstar}^{G}X: RO(G)$ -graded homotopy groups of X

Atiyah's Real K-theory $K_{\mathbb{R}}$

K_ℝ combines complex K-theory and real K-theory The underlying spectrum is KU K_ℝ^{C₂} = K_ℝ^{hC₂} = KO

Atiyah's Real K-theory $K_{\mathbb{R}}$

- *K*_ℝ combines complex *K*-theory and real *K*-theory
 The underlying spectrum is *KU K*_ℝ^{C₂} = *K*_ℝ^{hC₂} = *KO* There are two periodicities:
 π^{C₂}_{★+ρ}*K*_ℝ = π^{C₂}_★*K*_ℝ (complex Bott periodicity)
 - $\pi_{\bigstar+8}^{C_2} K_{\mathbb{R}} = \pi_{\bigstar}^{C_2} K_{\mathbb{R}}$ (real Bott periodicity)

 \triangleright γ_n : the universal bundle over BU(n)

- γ_n : the universal bundle over BU(n)
- $BU(n)^{\gamma_n}$: its Thom space

- γ_n : the universal bundle over BU(n)
- $BU(n)^{\gamma_n}$: its Thom space
- ► $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

- γ_n : the universal bundle over BU(n)
- ▶ $BU(n)^{\gamma_n}$: its Thom space
- ► $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

- γ_n : the universal bundle over BU(n)
- ▶ $BU(n)^{\gamma_n}$: its Thom space
- $\blacktriangleright \ \Sigma^2 BU(n)^{\gamma_n} \to BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum *MU*

BU(n): Real space
 γ_n: Real vector bundle

- γ_n : the universal bundle over BU(n)
- ▶ $BU(n)^{\gamma_n}$: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

- BU(n): Real space
 γ_n: Real vector bundle
- $\Sigma^{\rho} BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$ ρ : regular representation of C_2

- γ_n : the universal bundle over BU(n)
- ▶ $BU(n)^{\gamma_n}$: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

BU(n): Real space
 γ_n: Real vector bundle

$$\blacktriangleright \ \Sigma^{\rho} BU(n)^{\gamma_n} \to BU(n+1)^{\gamma_{n+1}}$$

 ρ : regular representation of C_2

 \implies C₂-equivariant Thom spectrum $MU_{\mathbb{R}}$

- γ_n : the universal bundle over BU(n)
- $BU(n)^{\gamma_n}$: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

- BU(n): Real space
 γ_n: Real vector bundle
- $\Sigma^{
 ho} BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 ρ : regular representation of C_2

 \implies C₂-equivariant Thom spectrum $MU_{\mathbb{R}}$

• The underlying spectrum of $MU_{\mathbb{R}}$ is MU

- γ_n : the universal bundle over BU(n)
- $BU(n)^{\gamma_n}$: its Thom space
- $\Sigma^2 BU(n)^{\gamma_n} \rightarrow BU(n+1)^{\gamma_{n+1}}$

 \implies Thom spectrum MU

- BU(n): Real space
 γ_n: Real vector bundle
- $\blacktriangleright \ \Sigma^{\rho} BU(n)^{\gamma_n} \to BU(n+1)^{\gamma_{n+1}}$

 ρ : regular representation of C_2

 \implies C₂-equivariant Thom spectrum $MU_{\mathbb{R}}$

- The underlying spectrum of $MU_{\mathbb{R}}$ is MU
- This spectrum is crucial in Hill–Hopkins–Ravenel's solution of the Kervaire invariant one problem (later)

Complex bordism spectrum

 MU_{*}(X): group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle

Complex bordism spectrum

- MU_{*}(X): group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle
- $\pi_*MU = MU_*(\text{pt}) \cong \mathbb{Z}[x_1, x_2, \ldots]$, where $|x_i| = 2i$ (Milnor, Novikov)

Complex bordism spectrum

- MU_{*}(X): group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle
- $\pi_*MU = MU_*(\text{pt}) \cong \mathbb{Z}[x_1, x_2, \ldots]$, where $|x_i| = 2i$ (Milnor, Novikov)
- Associated with MU is a theory of complex orientations

• *E*: multiplicative cohomology theory

E: multiplicative cohomology theory

• Complex orientation: $x \in \widetilde{E}^2(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^2({f CP}^1)=\widetilde{E}^2(S^2)\cong E^0({
m pt})$$

- E: multiplicative cohomology theory
- Complex orientation: $x \in \widetilde{E}^2(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^2({f CP}^1)=\widetilde{E}^2(S^2)\cong E^0({
m pt})$$

$$E^*(\mathbf{CP}^{\infty}) \cong E^*\llbracket x \rrbracket \\ E^*(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E^*\llbracket x, y \rrbracket$$

- E: multiplicative cohomology theory
- Complex orientation: $x \in \widetilde{E}^2(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^2({f CP}^1)=\widetilde{E}^2(S^2)\cong E^0({
m pt})$$

$$E^*(\mathbf{CP}^{\infty}) \cong E^*[[x]] E^*(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E^*[[x, y]]$$

$$\blacktriangleright \mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty} \longrightarrow \mathbf{CP}^{\infty}$$

(classifying tensor product of tautological line bundles)

- E: multiplicative cohomology theory
- Complex orientation: $x \in \widetilde{E}^2(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^2({f CP}^1)=\widetilde{E}^2(S^2)\cong E^0({
m pt})$$

$$E^*(\mathbf{CP}^{\infty}) \cong E^*[[x]] E^*(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E^*[[x, y]]$$
• Complex orientation $\iff (MU \longrightarrow E)$

- Complex orientation $\iff (MU \longrightarrow E)$
- Example: $(MU \longrightarrow H\mathbb{Z}) \Longrightarrow \mathbb{G}_a(x, y) = x + y$

Complex orientation ⇔ (MU → E)
 Example: (MU → HZ) ⇒ G_a(x, y) = x + y
 Example: (MU → KU) ⇒ G_m(x, y) = x + y − βxy

- Complex orientation $\iff (MU \longrightarrow E)$
- Example: $(MU \longrightarrow H\mathbb{Z}) \Longrightarrow \mathbb{G}_a(x, y) = x + y$
- Example: $(MU \longrightarrow KU) \Longrightarrow \mathbb{G}_m(x, y) = x + y \beta xy$

Theorem (Quillen)

MU itself is complex oriented and it carries the universal formal group law.

▶ Associated to $MU_{\mathbb{R}}$ is a theory of Real orientations

- \blacktriangleright Associated to $\textit{MU}_{\mathbb{R}}$ is a theory of Real orientations
- ► E: C₂-equivariant homotopy commutative ring spectrum

- ▶ Associated to $MU_{\mathbb{R}}$ is a theory of Real orientations
- ► E: C₂-equivariant homotopy commutative ring spectrum
- ▶ Real orientation: $\bar{x} \in \widetilde{E}^{\rho}_{C_2}(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^{
ho}_{C_2}(\mathbf{CP}^1)=\widetilde{E}^{
ho}_{C_2}(S^{
ho})\cong E^0_{C_2}(\mathsf{pt})$$

- ▶ Associated to $MU_{\mathbb{R}}$ is a theory of Real orientations
- E: C₂-equivariant homotopy commutative ring spectrum
- ▶ Real orientation: $\bar{x} \in \widetilde{E}^{\rho}_{C_2}(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^{
ho}_{\mathcal{C}_2}(\mathbf{CP}^1)=\widetilde{E}^{
ho}_{\mathcal{C}_2}(S^{
ho})\cong E^0_{\mathcal{C}_2}(\mathsf{pt})$$

$$E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\![\bar{x}]\!] \\ E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\![\bar{x}, \bar{y}]\!] \text{ (Araki)}$$

- ▶ Associated to $MU_{\mathbb{R}}$ is a theory of Real orientations
- E: C₂-equivariant homotopy commutative ring spectrum
- ▶ Real orientation: $\bar{x} \in \widetilde{E}^{\rho}_{C_2}(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^{
ho}_{\mathcal{C}_2}(\mathbf{CP}^1)=\widetilde{E}^{
ho}_{\mathcal{C}_2}(S^{
ho})\cong E^0_{\mathcal{C}_2}(\mathsf{pt})$$

► $E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\bar{x}]]$ $E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\bar{x}, \bar{y}]]$ (Araki) ► $\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty} \longrightarrow \mathbf{CP}^{\infty} \implies$ formal group law / $\pi_{\perp}^{C_2} E$

- ▶ Associated to $MU_{\mathbb{R}}$ is a theory of Real orientations
- E: C₂-equivariant homotopy commutative ring spectrum
- ▶ Real orientation: $\bar{x} \in \widetilde{E}^{\rho}_{C_2}(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^{
ho}_{\mathcal{C}_2}(\mathbf{CP}^1) = \widetilde{E}^{
ho}_{\mathcal{C}_2}(S^{
ho}) \cong E^0_{\mathcal{C}_2}(\mathsf{pt})$$

- $E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\![\bar{x}]\!]$ $E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\![\bar{x}, \bar{y}]\!] \text{ (Araki)}$
- ► $\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty} \longrightarrow \mathbf{CP}^{\infty} \Longrightarrow$ formal group law / $\pi_{\bigstar}^{\mathcal{C}_2} E$
- ▶ Real orientation $\iff (MU_{\mathbb{R}} \longrightarrow E)$ (Hu–Kriz)

- ▶ Associated to $MU_{\mathbb{R}}$ is a theory of Real orientations
- E: C₂-equivariant homotopy commutative ring spectrum
- ▶ Real orientation: $\bar{x} \in \widetilde{E}^{\rho}_{C_2}(\mathbf{CP}^{\infty})$, restricts to the unit in

$$\widetilde{E}^{
ho}_{C_2}(\mathbf{CP}^1)=\widetilde{E}^{
ho}_{C_2}(S^{
ho})\cong E^0_{C_2}(\operatorname{pt})$$

- $E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\![\bar{x}]\!] \\ E_{C_2}^{\bigstar}(\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty}) \cong E_{C_2}^{\bigstar}[\![\bar{x}, \bar{y}]\!] \text{ (Araki)}$
- $\mathbf{CP}^{\infty} \times \mathbf{CP}^{\infty} \longrightarrow \mathbf{CP}^{\infty} \Longrightarrow$ formal group law / $\pi_{\bigstar}^{C_2} E$
- ▶ Real orientation $\iff (MU_{\mathbb{R}} \longrightarrow E)$ (Hu–Kriz)
- ► Example: $MU_{\mathbb{R}} \longrightarrow K_{\mathbb{R}}$

► KU belongs to a more general class of spectra

► KU belongs to a more general class of spectra

k: perfect field, characteristic p

- ► KU belongs to a more general class of spectra
- k: perfect field, characteristic p
- **Γ**_n: formal group law of height *n* over k

- KU belongs to a more general class of spectra
- k: perfect field, characteristic p
- **Γ**_n: formal group law of height *n* over k
- Lubin–Tate: Γ_n admits an universal deformation
 - Characterized by a map $MU_* \longrightarrow E_{n_*}$
 - E_{n*} ≅ W(k) [[u₁, u₂, ..., u_{n-1}]] [u[±]] is the universal deformation ring

- KU belongs to a more general class of spectra
- k: perfect field, characteristic p
- **Γ**_n: formal group law of height *n* over k
- Lubin–Tate: Γ_n admits an universal deformation
 - Characterized by a map $MU_* \longrightarrow E_{n_*}$
 - E_{n*} ≅ W(k) [[u₁, u₂,..., u_{n-1}]] [u[±]] is the universal deformation ring
- Landweber exact functor theorem
 - \implies E_n : Complex oriented cohomology theory

- KU belongs to a more general class of spectra
- k: perfect field, characteristic p
- **Γ**_n: formal group law of height *n* over k
- Lubin–Tate: Γ_n admits an universal deformation
 - Characterized by a map $MU_* \longrightarrow E_{n_*}$
 - E_{n*} ≅ W(k) [[u₁, u₂,..., u_{n-1}]] [u[±]] is the universal deformation ring
- Landweber exact functor theorem
 - \implies E_n : Complex oriented cohomology theory

$$\blacktriangleright \ k = \mathbb{F}_2, \ \mathsf{\Gamma}_1(x, y) = x + y - \beta xy \Longrightarrow E_1 = \mathsf{K} U_2^{\wedge}$$

- KU belongs to a more general class of spectra
- k: perfect field, characteristic p
- **Γ**_n: formal group law of height *n* over k
- Lubin–Tate: Γ_n admits an universal deformation
 - Characterized by a map $MU_* \longrightarrow E_{n_*}$
 - E_{n*} ≅ W(k) [[u₁, u₂,..., u_{n-1}]] [u[±]] is the universal deformation ring
- Landweber exact functor theorem

 \implies E_n : Complex oriented cohomology theory

$$\blacktriangleright k = \mathbb{F}_2, \ \mathsf{\Gamma}_1(x, y) = x + y - \beta xy \Longrightarrow E_1 = \mathsf{K} U_2^{\wedge}$$

 Formal group laws associated with elliptic curves

 Elliptic cohomology theories (topological modular forms, string orientations, Witten genus)

Theorem (Frudenthal 1937)

 $\pi_{n+k}(S^n)$ stabilizes for $n > k+1 \Longrightarrow \pi_k^{st}(S^0)$

Theorem (Frudenthal 1937)

 $\pi_{n+k}(S^n)$ stabilizes for $n > k+1 \Longrightarrow \pi_k^{st}(S^0)$

Definition $\pi_k^{st}(S^0) := \varinjlim \pi_{n+k}(S^n)$

Theorem (Pontryagin 1930s)

$$\Omega^{fr}_k \cong \pi^{st}_k(S^0)$$

 Ω_k^{fr} : cobordism classes of stably framed k-manifolds

Theorem (Pontryagin 1930s)

$$\Omega^{fr}_k \cong \pi^{st}_k(S^0)$$

 Ω_k^{fr} : cobordism classes of stably framed k-manifolds

 This establishes a deep relationship between homotopy theory and geometry

Theorem (Pontryagin 1930s)

$$\Omega^{fr}_k \cong \pi^{st}_k(S^0)$$

 Ω_k^{fr} : cobordism classes of stably framed k-manifolds

- This establishes a deep relationship between homotopy theory and geometry
- Describing $\pi_*^{st}S^0$ has been fundamental to algebraic topology for the past 80 years

Theorem (Pontryagin 1930s)

$$\Omega_k^{fr} \cong \pi_k^{st}(S^0)$$

 Ω_k^{fr} : cobordism classes of stably framed k-manifolds

- This establishes a deep relationship between homotopy theory and geometry
- Describing \(\pi_*^{st} S^0\) has been fundamental to algebraic topology for the past 80 years
- Lubin-Tate spectra can isolate certain "sectors" of the computation + give connections to others areas (modular forms, geometric topology)

Theorem (Goerss-Hopkins-Miller)

The action of $\mathbb{G}(k,\Gamma_n)$ on E_{n*} can be lifted uniquely to an action of $\mathbb{G}(k,\Gamma_n)$ on E_n by commutative (\mathbb{E}_{∞}) ring maps.

Theorem (Goerss-Hopkins-Miller)

The action of $\mathbb{G}(k,\Gamma_n)$ on E_{n*} can be lifted uniquely to an action of $\mathbb{G}(k,\Gamma_n)$ on E_n by commutative (\mathbb{E}_{∞}) ring maps.

C_2 -action

From now on: p = 2
 C₂ ⊂ G(k, Γ_n): acts on E_{n*} by [-1]_{Γn}.

C_2 -action

Question

Question

Question

Can we lift it?

Theorem (Hahn–S.)

The Lubin–Tate spectrum E_n is Real oriented: it receives a C_2 -equivariant map

 $MU_{\mathbb{R}} \longrightarrow E_n$

from the Real bordism spectrum $MU_{\mathbb{R}}$.

Theorem (Hahn–S.)

The Lubin–Tate spectrum E_n is Real oriented: it receives a C_2 -equivariant map

 $MU_{\mathbb{R}} \longrightarrow E_n$

from the Real bordism spectrum $MU_{\mathbb{R}}$.

This opens the door to a series of computations in stable homotopy theory

Chromatic homotopy theory

Theorem (Hopkins-Ravenel, Chromatic Convergence)

$$S^0_{(p)} \xrightarrow{\simeq} \cdots \longrightarrow L_{E_n} S^0 \longrightarrow L_{E_{n-1}} S^0 \longrightarrow \cdots \longrightarrow L_{E_0} S^0.$$
Theorem (Hopkins–Ravenel, Chromatic Convergence) $S^0_{(p)} \xrightarrow{\simeq} \cdots \longrightarrow L_{E_n} S^0 \longrightarrow L_{E_{n-1}} S^0 \longrightarrow \cdots \longrightarrow L_{E_0} S^0.$

Chromatic fracture square:

Theorem (Hopkins-Ravenel, Chromatic Convergence)

$$S^0_{(p)} \xrightarrow{\simeq} \cdots \longrightarrow L_{E_n} S^0 \longrightarrow L_{E_{n-1}} S^0 \longrightarrow \cdots \longrightarrow L_{E_0} S^0.$$

Chromatic fracture square:

Slogan: in order to study $S^{0}_{(p)}$, we just need to study each of the K(n)-local spheres and how they "glue" together

Theorem (Hopkins–Devinatz)

$$L_{K(n)}S^{0} \xrightarrow{\simeq} E_{n}^{h\mathbb{G}_{n}}$$

► E_n^{hG} (G a finite subgroup of G_n): central objects to study in chromatic homotopy theory

Theorem (Hopkins–Devinatz)

$$L_{K(n)}S^{0} \xrightarrow{\simeq} E_{n}^{h\mathbb{G}_{n}}$$

- E_n^{hG} (G a finite subgroup of G_n): central objects to study in chromatic homotopy theory
- ▶ In general, E_n^{hG} capture large scale periodicity phenomena in stable homotopy theory (in particular π_*S^0)

Theorem (Hopkins-Devinatz)

$$L_{K(n)}S^{0} \xrightarrow{\simeq} E_{n}^{h\mathbb{G}_{n}}$$

- E_n^{hG} (G a finite subgroup of G_n): central objects to study in chromatic homotopy theory
- ► In general, E_n^{hG} capture large scale periodicity phenomena in stable homotopy theory (in particular π_*S^0)
- Modern detection theorems: study elements in π_∗S⁰ by analyzing π_∗S⁰ → π_∗E^{hG}_n (Hill–Hopkins–Ravenel's solution to the Kervaire invariant)

Computing E_n^{hG} : height 1

► Homotopy fixed point spectral sequence: H^{*}(G; π_{*}E_n) ⇒ π_{*}E^{hG}_n

Computing E_n^{hG} : height 1

• Homotopy fixed point spectral sequence: $H^*(G; \pi_* E_n) \Longrightarrow \pi_* E_n^{hG}$

• Height 1:
$$E_1^{hC_2} = KO_2^{\wedge}$$

• Image of $J: \pi_* O \rightarrow \pi_* S^0$

 Captures everything above a line of slope ¹/₅ in the Adams–Novikov spectral sequence of S⁰ (Mahowald)

Height 2: tmf, tmf with level structures

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)
- ► The Hurewciz map π_{*}S⁰ → π_{*}tmf detects an astounding number of elements (nearly all of π_{*}S⁰ for * < 60)</p>

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)
- ► The Hurewciz map π_{*}S⁰ → π_{*}tmf detects an astounding number of elements (nearly all of π_{*}S⁰ for * < 60)</p>
- They resolve the K(2)-local sphere

- Height 2: tmf, tmf with level structures
- tmf: topological refinement of the classical ring of integral modular forms
- Very active area of research for the past 30 years (String orientation of tmf refines the Witten genus)
- ► The Hurewciz map π_{*}S⁰ → π_{*}tmf detects an astounding number of elements (nearly all of π_{*}S⁰ for * < 60)</p>
- They resolve the K(2)-local sphere
- These computations rely heavily on the geometry of elliptic curves
 - Choose a specific super-singular elliptic curve
 - Have a good understanding of how G is acting on π_*E_2

Height > 2

n > 2: E_n^{hG} sees more, but they are extremely difficult to compute

- n > 2: E_n^{hG} sees more, but they are extremely difficult to compute
- Group actions on E_n: constructed purely from obstruction theory

- n > 2: E_n^{hG} sees more, but they are extremely difficult to compute
- Group actions on E_n: constructed purely from obstruction theory
- Elliptic curves are not available at higher heights

- n > 2: E_n^{hG} sees more, but they are extremely difficult to compute
- Group actions on E_n: constructed purely from obstruction theory
- Elliptic curves are not available at higher heights
- There have been attempts to understanding this using TAF (Behrens-Lawson)

- n > 2: E_n^{hG} sees more, but they are extremely difficult to compute
- Group actions on E_n: constructed purely from obstruction theory
- Elliptic curves are not available at higher heights
- There have been attempts to understanding this using TAF (Behrens-Lawson)
- However, the group action on $MU_{\mathbb{R}}$ does come from geometry

- n > 2: E_n^{hG} sees more, but they are extremely difficult to compute
- Group actions on E_n: constructed purely from obstruction theory
- Elliptic curves are not available at higher heights
- There have been attempts to understanding this using TAF (Behrens-Lawson)
- ▶ However, the group action on $MU_{\mathbb{R}}$ does come from geometry
- The Real orientation establishes a connection between these two actions!

$$MU_{\mathbb{R}} \longrightarrow E_n$$

$$\blacktriangleright d_3(u_{2\sigma}) = \bar{x}_1 a_{\sigma}^3$$

$$d_3(u_{2\sigma}) = \bar{x}_1 a_{\sigma}^3 d_7(u_{4\sigma}) = \bar{x}_3 a_{\sigma}^7$$

•
$$d_3(u_{2\sigma}) = \bar{x}_1 a_{\sigma}^3$$

• $d_7(u_{4\sigma}) = \bar{x}_3 a_{\sigma}^7$
• $d_{15}(u_{8\sigma}) = \bar{x}_7 a_{\sigma}^{15}$

►
$$d_3(u_{2\sigma}) = \bar{x}_1 a_{\sigma}^3$$

► $d_7(u_{4\sigma}) = \bar{x}_3 a_{\sigma}^7$
► $d_{15}(u_{8\sigma}) = \bar{x}_7 a_{\sigma}^{15}$
► $d_{2^{k+1}-1}(u_{2\sigma}^{2^{k-1}}) = \bar{x}_{2^k-1} a_{\sigma}^{2^{k+1}-1}$

- ► $d_3(u_{2\sigma}) = \bar{x}_1 a_{\sigma}^3$ ► $d_7(u_{4\sigma}) = \bar{x}_3 a_{\sigma}^7$ ► $d_{15}(u_{8\sigma}) = \bar{x}_7 a_{\sigma}^{15}$ ► $d_{2^{k+1}-1}(u_{2\sigma}^{2^{k-1}}) = \bar{x}_{2^k-1} a_{\sigma}^{2^{k+1}-1}$
- These differentials induce all the differentials in HFPSS(E_n)

Theorem (Hahn–S.)

The E_2 -page of the $RO(C_2)$ -graded homotopy fixed point spectral sequence of E_n is

$$E_2^{s,t}(E_n^{hC_2}) = W(\mathbb{F}_{2^n})\llbracket \overline{u}_1, \overline{u}_2, \ldots, \overline{u}_{n-1} \rrbracket [\overline{u}^{\pm}] \otimes \mathbb{Z}[u_{2\sigma}^{\pm}, a_{\sigma}]/(2a_{\sigma}).$$

The classes $\bar{u}_1, \ldots, \bar{u}_{n-1}, \bar{u}^{\pm}$, and a_{σ} are permanent cycles. All the differentials in the spectral sequence are determined by the differentials

$$\begin{array}{lll} d_{2^{k+1}-1}(u_{2\sigma}^{2^{k-1}}) & = & \bar{u}_k \bar{u}^{2^k-1} a_{\sigma}^{2^{k+1}-1}, & 1 \leq k \leq n-1, \\ d_{2^{n+1}-1}(u_{2\sigma}^{2^{n-1}}) & = & \bar{u}^{2^n-1} a_{\sigma}^{2^{n+1}-1}, & k=n, \end{array}$$

and multiplicative structures.

$E_3^{hC_2}$

Theorem (Hahn–S.)

•
$$\pi_* E_n^{hC_2}$$
 is 2^{n+2} -periodic for all n.

Theorem (Hahn–S.)

Theorem (Hahn–S.)

$$MU_{\mathbb{R}}_{\bigstar}(X) \otimes_{MU_*} E_{n*} \longrightarrow E_{n\bigstar}(X)$$

is an isomorphism for every C_2 -spectrum X.

Hurewicz image

Theorem (Li–S.–Wang–Xu)

The C₂-fixed points of $MU_{\mathbb{R}}$ detects the Hopf-, Kervaire-, and $\bar{\kappa}$ -family.

Theorem (Li–S.–Wang–Xu, Hahn–S.)

The C₂-fixed points of E_n detects the first n elements of the Hopfand Kervaire-family, and the first (n - 1) elements of the $\bar{\kappa}$ -family.
• What about E_n^{hG} for higher groups?

- What about E_n^{hG} for higher groups?
- $H \subset G$ a subgoup

- What about E_n^{hG} for higher groups?
- $H \subset G$ a subgoup
- ▶ Norm functor $N_H^G : S^H \longrightarrow S^G$ (Hill–Hopkins–Ravenel)

- What about E_n^{hG} for higher groups?
- $H \subset G$ a subgoup
- ▶ Norm functor $N_H^G : S^H \longrightarrow S^G$ (Hill–Hopkins–Ravenel)
- G: a group that contains C_2

- What about E_n^{hG} for higher groups?
- H ⊂ G a subgoup
- ▶ Norm functor $N_H^G : S^H \longrightarrow S^G$ (Hill–Hopkins–Ravenel)
- ► G: a group that contains C₂
- $\blacktriangleright MU^{((G))} := N_{C_2}^G MU_{\mathbb{R}}$

G-orientation

Theorem (Hahn–S.)

Let $G \subset \mathbb{G}(k, \Gamma_n)$ be a finite subgroup containing the central subgroup C_2 . There is a *G*-equivariant map

$$MU^{((G))} \longrightarrow E_n.$$

G-orientation

Theorem (Hahn–S.)

Let $G \subset \mathbb{G}(k, \Gamma_n)$ be a finite subgroup containing the central subgroup C_2 . There is a *G*-equivariant map

$$MU^{((G))} \longrightarrow E_n.$$

Motivation: $MU^{((G))}$ is crucial in Hill–Hopkins–Ravenel's solution of the Kervaire invariant one problem

• *M*: framed (4k + 2)-dimensional manifold

• *M*: framed (4k + 2)-dimensional manifold

Kervaire used the framing to construct a quadratic form

$$\phi: H^{2k+1}(M; \mathbb{Z}/2) \longrightarrow \mathbb{Z}/2$$
$$\phi(x+y) = \phi(x) + \phi(y) + \langle x, y \rangle$$

• *M*: framed (4k + 2)-dimensional manifold

Kervaire used the framing to construct a quadratic form

$$\phi: H^{2k+1}(M; \mathbb{Z}/2) \longrightarrow \mathbb{Z}/2$$

$$\phi(x+y) = \phi(x) + \phi(y) + \langle x, y \rangle$$

• The Kervaire invariant of M is defined as $\Phi(M) := Arf(\phi)$

• *M*: framed (4k + 2)-dimensional manifold

Kervaire used the framing to construct a quadratic form

$$\phi: H^{2k+1}(M; \mathbb{Z}/2) \longrightarrow \mathbb{Z}/2$$

$$\phi(x+y) = \phi(x) + \phi(y) + \langle x, y \rangle$$

The Kervaire invariant of *M* is defined as Φ(*M*) := Arf(φ)
A fundamental invariant in differential and algebraic topology

Definition

A homotopy n-sphere: closed manifold $\Sigma^n \simeq S^n$

Definition

A homotopy n-sphere: closed manifold $\Sigma^n \simeq S^n$

Question

Is Σ^n homeomorphic to S^n ?

Definition

A homotopy n-sphere: closed manifold $\Sigma^n \simeq S^n$

Question

Is Σ^n homeomorphic to S^n ?

Yes. (Generalized) Poincaré conjecture

Definition

A homotopy n-sphere: closed manifold $\Sigma^n \simeq S^n$

Question

- Is Σ^n homeomorphic to S^n ?
 - Yes. (Generalized) Poincaré conjecture
 - ► Smale (1962): n ≥ 5
 - ▶ Freedman (1982): *n* = 4
 - ▶ Perelman (2002): *n* = 3

Question

Are they all diffeomorphic to S^n , equipped with the usual smooth structure?

Question

Are they all diffeomorphic to S^n , equipped with the usual smooth structure?

- ▶ n =3: True (Moise's Theorem 1952)
- n = 4: wide open
- ▶ n = 7: Milnor constructed an exotic 7-sphere (1956)

Question

Are they all diffeomorphic to S^n , equipped with the usual smooth structure?

- ▶ n =3: True (Moise's Theorem 1952)
- n = 4: wide open
- n = 7: Milnor constructed an exotic 7-sphere (1956)
- Kervaire and Milnor (1963) computed the groups of exotic *n*-spheres (n > 4) in terms of πst_nS⁰, modulo the Kervaire invariant

Kervaire-Milnor

▶ Θ_n = group of homotopy *n*-spheres up to diffeomorphism (connected sum)

Kervaire-Milnor

- Θ_n = group of homotopy *n*-spheres up to diffeomorphism (connected sum)
- ► Θ^{bp}_n = homotopy *n*-spheres that bounds parallelizable manifolds

Kervaire-Milnor

- ▶ Θ_n = group of homotopy *n*-spheres up to diffeomorphism (connected sum)
- ▶ Θ^{bp}_n = homotopy *n*-spheres that bounds parallelizable manifolds

Theorem (Kervaire-Milnor)

For $n \ge 5$, the subgroup Θ_n^{bp} is cyclic,

$$|\Theta_n^{bp}| = \begin{cases} 1, & n \text{ even} \\ 1 \text{ or } 2, & n = 4k+1 \\ b_k, & n = 4k-1 \end{cases}$$

 $b_k = 2^{2k-2}(2^{2k-1}-1) \cdot numerator \text{ of } \frac{4B_{2k}}{k}$ B_{2k} : Bernoulli number

Theorem (Kervaire–Milnor)

For
$$n \not\equiv 2 \pmod{4}$$
, there is an exact sequence

$$0 \longrightarrow \Theta_n^{bp} \longrightarrow \Theta_n \longrightarrow \pi_n/J \longrightarrow 0$$

 π_n : n-th stable homotopy groups of spheres π_n/J : cokernel of the J-homomorphism

Theorem (Kervaire–Milnor)

For
$$n \not\equiv 2 \pmod{4}$$
, there is an exact sequence

$$0 \longrightarrow \Theta_n^{bp} \longrightarrow \Theta_n \longrightarrow \pi_n/J \longrightarrow 0$$

 π_n : *n*-th stable homotopy groups of spheres π_n/J : cokernel of the J-homomorphism

For $n \equiv 2 \pmod{4}$, there is an exact sequence

$$0 \longrightarrow \Theta_n^{bp} \longrightarrow \Theta_n \longrightarrow \pi_n/J \xrightarrow{\Phi_n} \mathbb{Z}/2 \longrightarrow \Theta_{n-1}^{bp} \longrightarrow 0$$

 Φ_n : the Kervaire invariant

Theorem (Kervaire–Milnor)

For
$$n \not\equiv 2 \pmod{4}$$
, there is an exact sequence

$$0 \longrightarrow \Theta_n^{bp} \longrightarrow \Theta_n \longrightarrow \pi_n/J \longrightarrow 0$$

 π_n : *n*-th stable homotopy groups of spheres π_n/J : cokernel of the J-homomorphism

For $n \equiv 2 \pmod{4}$, there is an exact sequence

$$0 \longrightarrow \Theta_n^{bp} \longrightarrow \Theta_n \longrightarrow \pi_n/J \xrightarrow{\Phi_n} \mathbb{Z}/2 \longrightarrow \Theta_{n-1}^{bp} \longrightarrow 0$$

 Φ_n : the Kervaire invariant

The Kervaire invariant problem is the last missing piece of this puzzle

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

At the time (1963): 2, 6, 10, 14, 18

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

- At the time (1963): 2, 6, 10, 14, 18
- Unclear that it is related to stable homotopy theory

Question

In which dimensions is there a framed manifold with Kervaire invariant one?

- At the time (1963): 2, 6, 10, 14, 18
- Unclear that it is related to stable homotopy theory
- Next piece of the puzzle was unlocked by Browder

If $\Phi(M) = 1$, then dim $(M) = 2^{j+1} - 2$.

If $\Phi(M) = 1$, then dim $(M) = 2^{j+1} - 2$. There exists a framed manifold of Kervaire invariant one $\iff h_j^2 \in Ext_{\mathcal{A}}^{2,2^{j+1}}(\mathbb{F}_2,\mathbb{F}_2)$ survives the Adams spectral sequence to an element $\theta_j \in \pi_{2^{j+1}-2}S^0$

If $\Phi(M) = 1$, then dim $(M) = 2^{j+1} - 2$. There exists a framed manifold of Kervaire invariant one $\iff h_j^2 \in Ext_{\mathcal{A}}^{2,2^{j+1}}(\mathbb{F}_2,\mathbb{F}_2)$ survives the Adams spectral sequence to an element $\theta_j \in \pi_{2^{j+1}-2}S^0$

h_j ∈ Ext^{1,2j}_A(𝔽₂,𝔽₂): Hopf invariant one elements, only the first three survives (θ₁, θ₂, θ₃)

If $\Phi(M) = 1$, then dim $(M) = 2^{j+1} - 2$. There exists a framed manifold of Kervaire invariant one $\iff h_j^2 \in Ext_{\mathcal{A}}^{2,2^{j+1}}(\mathbb{F}_2,\mathbb{F}_2)$ survives the Adams spectral sequence to an element $\theta_j \in \pi_{2^{j+1}-2}S^0$

h_j ∈ Ext^{1,2^j}_A(𝔽₂,𝔽₂): Hopf invariant one elements, only the first three survives (θ₁, θ₂, θ₃)

• Mahowald–Tangora: $\theta_4 \in \pi_{30}S^0$ exists

▶ Barrat–Jones–Mahowald: $\theta_5 \in \pi_{62}S^0$ exists

If $\Phi(M) = 1$, then dim $(M) = 2^{j+1} - 2$. There exists a framed manifold of Kervaire invariant one $\iff h_j^2 \in Ext_{\mathcal{A}}^{2,2^{j+1}}(\mathbb{F}_2,\mathbb{F}_2)$ survives the Adams spectral sequence to an element $\theta_j \in \pi_{2^{j+1}-2}S^0$

- h_j ∈ Ext^{1,2'}_A(𝔽₂,𝔽₂): Hopf invariant one elements, only the first three survives (θ₁, θ₂, θ₃)
- Mahowald–Tangora: $\theta_4 \in \pi_{30}S^0$ exists
- ▶ Barrat–Jones–Mahowald: $\theta_5 \in \pi_{62}S^0$ exists
- However, the Adams spectral sequence gets very hard at higher dimensions

If $\Phi(M) = 1$, then dim $(M) = 2^{j+1} - 2$. There exists a framed manifold of Kervaire invariant one $\iff h_j^2 \in Ext_{\mathcal{A}}^{2,2^{j+1}}(\mathbb{F}_2,\mathbb{F}_2)$ survives the Adams spectral sequence to an element $\theta_j \in \pi_{2^{j+1}-2}S^0$

- h_j ∈ Ext^{1,2'}_A(𝔽₂,𝔽₂): Hopf invariant one elements, only the first three survives (θ₁, θ₂, θ₃)
- Mahowald–Tangora: $\theta_4 \in \pi_{30}S^0$ exists
- ▶ Barrat–Jones–Mahowald: $\theta_5 \in \pi_{62}S^0$ exists
- However, the Adams spectral sequence gets very hard at higher dimensions
- What about the fate of the higher θ_i's?

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

Hill-Hopkins-Ravenel Theorems

Theorem (Hill-Hopkins-Ravenel)

For $j \ge 7$, the Kervaire invariant elements θ_j do not exist.

▶ The case for $heta_6 \in \pi_{126}S^0$ is still open
Theorem (Hill-Hopkins-Ravenel)

- ▶ The case for $heta_6 \in \pi_{126}S^0$ is still open
- Start with MU^{((C₈))}

Theorem (Hill-Hopkins-Ravenel)

- The case for $heta_6 \in \pi_{126}S^0$ is still open
- Start with MU^{((C₈))}
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$

Theorem (Hill-Hopkins-Ravenel)

- The case for $heta_6 \in \pi_{126}S^0$ is still open
- Start with MU^{((C₈))}
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum

Theorem (Hill-Hopkins-Ravenel)

- The case for $heta_6 \in \pi_{126}S^0$ is still open
- Start with MU^{((C₈))}
- ► Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum
- Detection Theorem: If θ_j exists, then its image in $π_{2^{j+1}-2}Ω$ is nonzero

Theorem (Hill-Hopkins-Ravenel)

- The case for $heta_6 \in \pi_{126}S^0$ is still open
- Start with MU^{((C₈))}
- ▶ Invert a certain class $D \in \pi_{\bigstar}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum
- Detection Theorem: If θ_j exists, then its image in $π_{2^{j+1}-2}Ω$ is nonzero
- Periodicity Theorem:
 π_{*}Ω is 256-periodic

Theorem (Hill-Hopkins-Ravenel)

- The case for $heta_6 \in \pi_{126}S^0$ is still open
- Start with MU^{((C₈))}
- ▶ Invert a certain class $D \in \pi_{\bullet}^{C_8} MU^{((C_8))}$: $D^{-1}MU^{((C_8))}$
- Ω : its C_8 -fixed point spectrum
- Detection Theorem: If θ_j exists, then its image in π_{2^{j+1}-2}Ω is nonzero
- Periodicity Theorem:
 π_{*}Ω is 256-periodic
- Gap Theorem: $\pi_i \Omega = 0$ for i = -1, -2, -3

$\mathsf{Baby}\ \Omega$

Originally, Hill–Hopkins–Ravenel didn't plan to use MU^{((C₈))}
 E^{hC₈}₄ also detects θ_j

- Originally, Hill–Hopkins–Ravenel didn't plan to use MU^{((C₈))}
- $E_4^{hC_8}$ also detects θ_j
- However, its HFPSS is HARD!

- Originally, Hill–Hopkins–Ravenel didn't plan to use MU^{((C8))}
- $E_4^{hC_8}$ also detects θ_j
- However, its HFPSS is HARD!
- ▶ In the end, they settled with $MU^{((C_8))}$

MU((*G*)):

- Genuine equivariant homotopy theory (rigid).
- Accessible to computations: $SliceSS(MU^{((G))})$.

MU((*G*)):

- Genuine equivariant homotopy theory (rigid).
- ► Accessible to computations: SliceSS(*MU*^{((G))}).

E_n^{hG} :

- Borel equivariant homotopy theory (not rigid).
- ▶ HFPSS (E_n^{hG}) is hard.

MU((*G*)):

- Genuine equivariant homotopy theory (rigid).
- ► Accessible to computations: SliceSS(*MU*^{((G))}).

E_n^{hG} :

- Borel equivariant homotopy theory (not rigid).
- HFPSS (E_n^{hG}) is hard.
- Perfect for doing chromatic homotopy theory.

MU((*G*)):

- Genuine equivariant homotopy theory (rigid).
- ► Accessible to computations: SliceSS(*MU*^{((G))}).

E_n^{hG} :

- Borel equivariant homotopy theory (not rigid).
- ► HFPSS(E_n^{hG}) is hard.
- Perfect for doing chromatic homotopy theory.

The Real orientation combines the pros and gets rid of the cons!

MU((*G*)):

- Genuine equivariant homotopy theory (rigid).
- ► Accessible to computations: SliceSS(*MU*^{((G))}).

E_n^{hG} :

- Borel equivariant homotopy theory (not rigid).
- ▶ HFPSS (E_n^{hG}) is hard.
- Perfect for doing chromatic homotopy theory.

The Real orientation combines the pros and gets rid of the cons! We can now use the slice spectral sequence to compute E_n^{hG} !

The detection tower

The detection tower

As we move up the tower, the Hurewicz images increase and the theories become more powerful

The detection tower

- As we move up the tower, the Hurewicz images increase and the theories become more powerful
- Goal: analyze this tower as much as possible

Classically:

2-locally, MU splits as a wedge of suspensions of BP

Classically:

2-locally, MU splits as a wedge of suspensions of BP

Classically:

2-locally, MU splits as a wedge of suspensions of BP

• The formal group laws associated with $BP\langle n \rangle$ give models for E_n

Models of Lubin-Tate spectra

Theorem (Beaudry-Hill-S.-Zeng)

The equivariant formal group laws associated with $BP^{((C_{2^m}))}(n)$ give good models of $E_{2^{m-1}\cdot n}$, equipped with a C_{2^m} -action.

Models of Lubin-Tate spectra

Theorem (Beaudry–Hill–S.–Zeng)

The equivariant formal group laws associated with $BP^{((C_{2^m}))}\langle n \rangle$ give good models of $E_{2^{m-1}\cdot n}$, equipped with a C_{2^m} -action.

These models are great for doing computations

 $BP^{(\!(C_4)\!)}\langle 1 \rangle$

 $BP^{((C_4))}\langle 1\rangle$

- \blacktriangleright TMF₀(5)
- Behrens–Ormsby, Hill–Hopkins–Ravenel, Beaudry–Bobkova–Hill–Stojanoska

$SliceSS(BP^{((C_4))}(1))$

$\mathsf{SliceSS}(BP^{((C_4))}\langle 1 \rangle)$

$SliceSS(BP^{((C_4))}(1))$

$HFPSS(E_2^{hC_4})$

 $BP^{((C_4))}(2)$

 $BP^{((C_4))}(2)$

Hill–S.–Wang–Xu

First height > 2 computation where the group is bigger than C_2

$SliceSS(BP^{((C_4))}\langle 2 \rangle)$

$\mathsf{SliceSS}(\mathit{BP}^{(\!(\mathit{C_4})\!)}\langle 2\rangle): \mathit{E_{\infty}}$

Periodicity Theorem

This is the first height > 2 computation where the group is bigger than C₂

Periodicity Theorem

- This is the first height > 2 computation where the group is bigger than C₂
- Our computation implies that $E_4^{hC_{12}}$ is 384-periodic
Periodicity Theorem

- This is the first height > 2 computation where the group is bigger than C₂
- Our computation implies that $E_4^{hC_{12}}$ is 384-periodic
- Question: what is the period of E_n^{hG} for finite $G \subset \mathbb{G}_n$?

Periodicity Theorem

- This is the first height > 2 computation where the group is bigger than C₂
- Our computation implies that $E_4^{hC_{12}}$ is 384-periodic
- Question: what is the period of E_n^{hG} for finite $G \subset \mathbb{G}_n$?

Theorem (Beaudry–Hill–S.–Wang–Xu–Zeng, Periodicity Theorem)

The spectrum E^{hC_{2m}}_{n.2^{m-1}} is periodic with period 2^{n·2^{m-1}+m+1}.
 The spectrum E^{hQ₈}_{4n+2} is periodic with period 2⁴ⁿ⁺⁶.

Periodicity Theorem

- This is the first height > 2 computation where the group is bigger than C_2
- Our computation implies that $E_{A}^{hC_{12}}$ is 384-periodic
- Question: what is the period of E_n^{hG} for finite $G \subset \mathbb{G}_n$?

Theorem (Beaudry-Hill-S.-Wang-Xu-Zeng, Periodicity Theorem)

- The spectrum E^{hC_{2m}}_{n.2^{m-1}} is periodic with period 2^{n·2^{m-1}+m+1}.
 The spectrum E^{hQ₈}_{4n+2} is periodic with period 2⁴ⁿ⁺⁶.

• This resolves the periodicity of E_n^{hG} at all heights and all G

